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Abstract The Gittins index is a tool that optimally solves a variety of decision-making problems
involving uncertainty, including multi-armed bandit problems, minimizing mean latency
in queues, and search problems like the Pandora’s box model. However, despite the
above examples and later extensions thereof, the space of problems that the Gittins
index can solve perfectly optimally is limited, and its definition is rather subtle
compared to those of other multi-armed bandit algorithms. As a result, the Gittins
index is often regarded as being primarily a concept of theoretical importance, rather
than a practical tool for solving decision-making problems.

The aim of this tutorial is to demonstrate that the Gittins index can be fruitfully
applied to practical problems. We start by giving an example-driven introduction to
the Gittins index, then walk through several examples of problems it solves—some
optimally, some suboptimally but still with excellent performance. Two practical
highlights in the latter category are applying the Gittins index to Bayesian optimization,
and applying the Gittins index to minimizing tail latency in queues.

Keywords Gittins index; Pandora’s box; multi-armed bandit; scheduling; M/G/1 queue; Bayesian
optimization; tail latency

Contents

1 Introduction 2

2 An illustrative example: Pandora’s box 3

2.1 Pandora’s box as a Markov decision process . . . . . . . . . . . . . . . . . . . 4

2.2 Why obvious greedy policies are suboptimal . . . . . . . . . . . . . . . . . . . 5

2.2.1 Connecting expected improvement to one-step lookahead . . . . . . . 6

2.3 Defining the Gittins index for Pandora’s box . . . . . . . . . . . . . . . . . . 7

2.4 Extensions and limitations: what else can the Gittins index do? . . . . . . . . 8

3 General formulation of the Gittins index 9

3.1 The Markov Chain Selection decision problem . . . . . . . . . . . . . . . . . . 9

3.1.1 A note on the name Markov chain selection . . . . . . . . . . . . . . . 11

3.2 Defining the Gittins index via the local MDP . . . . . . . . . . . . . . . . . . 11

3.3 Optimality of the Gittins policy . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



2 Ziv Scully and Alexander Terenin: The Gittins Index

4 Examples: optimal policies 14
4.1 Two-stage Pandora’s box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Bayesian Bernoulli bandits with discounting . . . . . . . . . . . . . . . . . . . 16
4.3 Selecting multiple boxes, or finishing multiple Markov chains . . . . . . . . . 16
4.4 Scheduling in queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4.1 Representing batch scheduling as MCS . . . . . . . . . . . . . . . . . . 18
4.4.2 From batch scheduling to queue scheduling . . . . . . . . . . . . . . . 19

4.5 Branching bandits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Examples: beyond optimality 22
5.1 Bayesian optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Defining a Gittins index for Bayesian optimization . . . . . . . . . . . 23
5.1.2 Maximizing the Gittins index numerically . . . . . . . . . . . . . . . . 24
5.1.3 Performance of the Gittins index in Bayesian optimization . . . . . . . 24

5.2 Pandora’s box with optional inspection . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Why MDP selection is harder than Markov chain selection . . . . . . . 26
5.2.2 Approximate solutions to MDP selection using the Gittins index . . . 28

5.3 Minimizing tail latency in queues . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Conclusion 30
6.1 Additional topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

References 32

A Optimality of the Gittins index policy 38
A.1 Optimality via dynamic programming using surrogate values . . . . . . . . . 38
A.2 Generalization: finishing multiple Markov chains . . . . . . . . . . . . . . . . 43
A.3 Comparison to other optimality proofs . . . . . . . . . . . . . . . . . . . . . . 44

1. Introduction

Making effective decisions under uncertainty is a central theme in many areas of science,
engineering, and technology. Algorithms for making decisions are therefore central to many
fields—from operations research to economics and artificial intelligence, to name a few. In
many—though certainly not all—such situations, it can be appropriate to model the decision-
making problem stochastically, by formalizing it as a fully specified Markov decision process.
An important subclass of such Markov decision processes represents, loosely speaking,

choosing the best option among a set of alternatives in the face of stochastic feedback about
which option is best. This includes the class of Bayesian multi-armed bandits, but also a
number of other decision problems which at first glance might appear to be of a rather
different character, such as consumer choice problems arising in economics, or certain optimal
scheduling problems arising in queueing theory.

An underappreciated fact about such problems is that there is a general way to solve them
exactly using a class of techniques broadly known as Gittins index theory. These techniques
have been rediscovered in various communities, often through the lens of a surprising solution
to a specific decision problem. As an example, let us quote a widely known exchange between
two colleagues as recalled by Peter Whittle [45] and abridged by Richard Weber [105]:

A colleague of high repute asked an equally well-known colleague:

—What would you say if you were told that the multi-armed bandit problem had been
solved?

— Sir, the multi-armed bandit problem is not of such a nature that it can be solved.
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Reflecting this sentiment, our first goal in this tutorial will be to illustrate how such solutions
work, focusing chiefly on the key definitions. In doing so, we show that Gittins index theory
tells us, intuitively: to choose the best option among a set of alternatives under stochastic
feedback, compare each stochastic option with an equivalent deterministic option.

A second, even more underappreciated fact about the decision problems we study is that
the definitions arising from exact solutions of simple problems can also yield strong solutions
for more complex problems where there is no hope of an exact solution. In his course on
information-directed sampling, Tor Lattimore described the setup covered by Gittins index
theory as the “miraculous case” [70]—to contrast it with more general situations where
optimal policies are intractable. While this might tempt one to conclude that the Gittins
index is not an appropriate technical tool for such settings, the basic idea of comparing
stochastic options with equivalent deterministic options often continues to make intuitive
sense, even though it is no longer optimal.
Against this background, our second goal is to illustrate how Gittins index theory can

be used as a design principle for general decision problems. For this, we showcase problems
where policies based on the Gittins index, while not optimal, are known to perform strongly—
either in a theoretical or an empirical sense, covering examples from queueing theory and
Bayesian optimization.
Our tutorial begins by covering what Gittins indices are and how they arise, intuitively.

This is done by way of analyzing Pandora’s box, arguably the simplest concrete example,
in Section 2—and then placing it into a suitable abstract framework in Section 3. We then
survey various extensions and advanced examples. Section 4 covers settings where optimality
holds, while Section 5 covers settings where optimality does not hold, but the Gittins index
still either (a) has excellent empirical performance, (b) satisfies an approximate or asymptotic
optimality guarantee, or (c) both. Two particularly practically relevant examples are Bayesian
optimization (Section 5.1) and scheduling to minimize tail latency (Section 5.3). We give a
more detailed outline of the themes covered by the examples in Section 2.4. We conclude our
tutorial in Section 6 with a discussion of open problems.

2. An illustrative example: Pandora’s box

The easiest way to understand the Gittins index is by way of example: for this, we present the
Pandora’s box problem from economics, originally due to Weitzman [108]. In the Pandora’s
box problem, the decision-making agent is presented with a set of n boxes, labeled i ∈
{1, . . . , n}. For a set X, let P(X) be the space of probability measures over X. Each box is
associated with two quantities:

1. A cost to open ci > 0.

2. A reward distribution pi ∈P(R), assumed to have finite mean.

At the starting time, each box is assumed to be closed : we conceptually imagine it to contain
a reward inside which is unknown to the agent and viewed as random. Starting from the
state where all boxes are closed, at each time point, the agent is allowed to either:

1. Open a closed box i of their choosing: the agent pays a cost of ci, and learns the precise
value of the reward vi ∼ pi which is contained inside the box.

2. Select an open box i from the set of open boxes: the agent’s decision-making process
ends, and they receive the reward vi which is inside the box.

Letting T be the time when the agent selects a box, and it be the box opened resp. selected
at time t, the agent’s aim is to maximize their expected total value, which is

E

[
viT −

T−1∑
t=1

cit

]
. (2.1)
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A very important aspect of this formulation is that, even though the agent can open multiple
boxes and must pay a cost for each box, they ultimately receive only one reward—namely,
the value in the box they selected at the very end. This results in an explore-exploit tradeoff:
should the agent pay to learn about more possible rewards they might eventually select, or
are the rewards revealed already good enough?

2.1. Pandora’s box as a Markov decision process

We can formulate the Pandora’s box problem (denoted PB in subscripts) as a discrete-time
Markov decision process (MDP) as follows. Define the state space to be the set of tuples

SPB = {(s1, . . . , sn) : si ∈ {⊠}∪R∪{✓}} (2.2)

where si =⊠ represents box i being closed, si ∈R represents box i being open with reward
vi = si, and si =✓ represents box i being selected. This is a finite-horizon undiscounted
MDP, whose initial state is (⊠, . . . ,⊠), and terminal states are tuples (s1, . . . , sn) with
si =✓ for some i. The action space is APB = {1, . . . , n}, which refers to indices of boxes.
Each action a∈APB corresponds to either opening the respective box, or selecting it: the
transition kernel’s action replaces the corresponding identifier in the tuple. For example, for
a three-closed-box state and a= 1, this occurs by

(⊠,⊠,⊠)
a=17→ (v1,⊠,⊠) (2.3)

where v1 ∼ p1 is the revealed reward. Throughout this section, we focus on the classical
variant where all boxes’ rewards are independent. The MDP’s reward function, defined for
non-terminal states and all actions, is

rPB(s, a) =

{
−ca sa =⊠

sa sa ∈R
(2.4)

which returns either the negated costs of a closed box, or the previously revealed reward
of an open box—here and throughout, we work with MDPs that allow negative rewards.
Our expected total value defined previously is therefore equal to the MDP’s value function.
Continuing our three-box example, choosing a= 1 a second time would transition

(v1,⊠,⊠)
a=17→ (✓,⊠,⊠) (2.5)

with a reward of v1, for an overall value of v1 − c1.
By general MDP theory, there exists an optimal policy which maximizes the agent’s

expected value. At first glance, however, it is unclear how much more one can expect to
say about this policy. On the one hand, the decision problem is, at the vaguest level, clean
enough that one might hope for a surprisingly straightforward solution—as occurs, in, say,
the secretary problem. On the other hand, for general Markov decision processes, there is
little hope of saying much about the optimal policy. It will turn out that, using the Gittins
index, one can obtain the optimal policy analytically—producing a solution that will turn
out to be both straightforward and subtle at the same time.
Before proceeding, we conclude with a few comments. First, note that the agent’s policy

can be adaptive: they can—and should—use values from opened boxes to decide what action
to take next. Second, note that decision problem is not an unknown-MDP statistical learning
problem: all of MDP parameters, and in particular all reward distributions pi defining the
transition kernel, are known to the agent. In this problem, therefore, learning takes place in
the sense of conditional probability: the agent learns the box’s value by opening it.
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Box 1: closed

• •µ
c1 = 1

v1 ∼ p1 =

{
14 w.p. 1

2

0 w.p. 1
2

Box 2: closed

• •µ
c2 = 1

v2 ∼ p2 =

{
18 w.p. 1

5

0 w.p. 4
5

Box 3: open

• •b

v3 = 10

Figure 2.1. An instance of the Pandora’s box problem with two closed boxes and one opened box.
Here, we know the realized value of the opened box 3, but only the reward distributions and not the
realized value of the closed boxes 1 and 2.

2.2. Why obvious greedy policies are suboptimal

Before explaining how to solve the Pandora’s box problem, it is worth walking through an
example that illustrates why the problem is non-trivial. In particular, we will see that the
most obvious greedy policy, consisting of choosing boxes according to the expected difference
between rewards and costs, is suboptimal. We will then see that the second-most obvious
greedy policy, specifically one-step lookahead, is also suboptimal. This might make one think
greedy policies are not the right approach: remarkably, however, the optimal policy will turn
out to be a greedy policy—albeit with respect to a more subtle objective compared to the
above two policies.
Consider the three-box scenario shown in Figure 2.1. In the situation represented by

this state, we have already opened box 3, so we take its realized value v3 = 10 to be fixed
throughout this example, and ignore its cost because it has been paid already. To decide
what to do next, we have to answer two questions:

(a) Is it worth opening another box, or should we stop now?

(b) If we open another box, should we open box 1 or box 2?

For (a), a näıve idea is to think about how valuable each closed box i would be if it were
the only box we had, which is simply E[vi]− ci. We compute

E[v1]− c1 =
1
2 · 14− 1 = 6 (2.6)

E[v2]− c2 =
1
5 · 18− 1 = 2.6. (2.7)

Both of these are much less than v3 = 10, so it may seem like boxes 1 and 2 are less valuable
than box 3, which might suggest we should stop now.

However, the above computation fails to account for a crucial fact: box 3’s reward remains
available even if we open another box. That is, if we were to open box i, and then stop,
we can receive a reward of either vi or v3 when we stop, depending on our selection, and
not simply vi. We assume henceforth that we always select the best open box: this means
our reward is max(vi, v3).

1 Computing the expected value of opening each box and then
stopping, we find

E[max(v1, v3)]− c1 =
1
2 · 14+

1
2 · 10− 1 = 11 (2.8)

E[max(v2, v3)]− c2 =
1
5 · 18+

4
5 · 10− 1 = 10.6. (2.9)

Both of these are greater than 10, so we conclude that opening either closed box and then
stopping is better than stopping now—thus, we should definitely open at least one more box.

1 Recall again that we can ultimately only receive the reward from one box: this is why we receive the
maximum of vi and v3, and not their sum.
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Having decided to open a box, we move on to (b): which box should we open? As a first
step towards answering this, it will help to review (2.8) and (2.9) from a different perspective.
Let the expected improvement of box i over a baseline α be

EIi(α) =E[max(vi −α,0)]− ci. (2.10)

That is, if the current best value (among open boxes) is α, then EIi(α) is the expected
amount we gain by opening box i instead of stopping now, accounting for both the cost of
opening the box −ci and increasing the best value from α to max(vi, α). The expected value
of opening box i and then stopping is thus α+EIi(α). We can recognize (2.8) and (2.9) as
α+EIi(α) values with baseline α= v3 = 10:

EI1(v3) =
1
2 · (14− 10)− 1 = 1 (2.11)

EI2(v3) =
1
5 · (18− 10)− 1 = 0.6. (2.12)

So, box 1 has better expected improvement than box 2, which might suggest we should open
box 1. In fact, if we were only allowed to open one more box, then this computation shows
that opening box 1 would be best.
Of course, we are not limited to opening just one more box. In particular, if we open a

box but find its realized value is low (say, 0), then v3 = 10 would still be our best value. In
this case, the remaining closed box would still have positive expected improvement, so it
would make sense to open it. This reasoning suggests the following policy:

• We first open one of the closed boxes.

• If the realized value is high (say, 14 or 18), we stop.

• If the realized value is low (say, 0), we open the other closed box.

We can carry this out starting by opening either box 1, which we call policy P1, or box 2,
which we call policy P2. Our expected value under P1 is

E
[
1(v1 = 14) · 14+1(v1 = 0) · (max(v2, v3)− c2)

]
− c1 = 11.3 (2.13)

which is better than opening box 1 then stopping. But our expected value under P2 is

E
[
1(v2 = 18) · 18+1(v2 = 0) · (max(v1, v3)− c1)

]
− c2 = 11.4 (2.14)

which is even better. Thus, even though box 1 has higher expected improvement than box 2,
policy P2 outperforms P1. In fact, with a little bit more casework, one can show P2 is optimal!

2.2.1. Connecting expected improvement to one-step lookahead There is a con-
nection between expected improvement and the one-step lookahead policy. Specifically, the
one-step lookahead policy behaves as follows at every time step:

• Let vmax be the maximum realized value among opened boxes.

• If maxiEIi(vmax)< 0, namely if every box’s expected improvement is negative, then
stop.

• Otherwise, open argmaxiEIi(vmax), namely the box of greatest expected improvement.

Policies like this are a standard approach used for constructing Bayesian optimization
algorithms for black-box optimization, where they give rise to the expected improvement
acquisition function: we will return to this in Section 5.

The example from Figure 2.1 we have just worked through demonstrates that one-step
lookahead is suboptimal. In particular, one can check that P1 is the one-step lookahead policy,
and its expected value is 0.1 less than that of P2. This might not seem so bad, but there
are other Pandora’s box instances where the performance gap between one-step lookahead
and the optimal policy can be arbitrarily large—a performance counterexample is given by
Singla [96, Appendix A.1]. With this background, we proceed to study the structure of P2.
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2.3. Defining the Gittins index for Pandora’s box

We have seen in Section 2.2 that one-step lookahead does not solve Pandora’s box. To find
the optimal policy, we essentially had to resort to brute force in (2.13) and (2.14). This will
not work in larger instances with more boxes. Can we still solve Pandora’s box in such cases?
Remarkably—as first shown by Weitzman [108] for Pandora’s box, and Gittins [44] in a

general abstract setting—the optimal policy, which is called the Gittins index policy or, more
concisely, the Gittins policy, is nearly as simple as one-step lookahead. Specifically, both the
Gittins policy and one-step lookahead are index policies : they work by computing a numeric
rating for each box, called the box’s index, then opening the box with the best index. Such
policies are also known in the Bayesian optimization literature as acquisition functions: we
return to this connection in Section 5. We consider the following index policies:

a. Under one-step lookahead, a box’s index is its expected improvement over the current
best value.

b. Under the Gittins policy, a box’s index is a quantity called, appropriately, its Gittins
index.

Below, we give a quick definition of the Gittins index of a (closed) box and discuss its
relationship to expected improvement. Later on, we discuss in more depth where this definition
comes from, and why it is natural.

We first briefly review one-step lookahead. Suppose box i is closed, and suppose the current
best value is vmax. One-step lookahead sets box i’s index to EIi(vmax), defined in (2.10).
Roughly speaking, this index answers the question: how valuable is it to open box i?
The Gittins index comes from a related but different question. Ignoring the actual value

of vmax, we ask: hypothetically, if we had vmax = α, how large would α need to be to rule out
opening box i? If box’s i’s expected improvement over α were negative, say if EIi(α)< 0, we
could rule out opening box i: simply stopping with reward α would be a better action. So,
define the Gittins index of box i, denoted Gi, to be the solution to the root-finding problem

EIi(Gi) = 0 (2.15)

or, equivalently, E[max(vi−Gi,0)] = ci. To see that the Gittins index is well defined, meaning
there is a unique solution Gi in (2.15), note that EIi(α) is convex (and hence, since its
domain is the real line, continuous), decreasing as a function of α, and satisfies

lim
α→∞

EIi(α) =−ci < 0<∞= lim
α→−∞

EIi(α). (2.16)

Note also that a higher Gittins index corresponds to a more desirable box. For instance,
increasing ci decreases Gi.

2

Having defined the Gittins index, we can define how the Gittins policy behaves:

• Let vmax be the maximum realized value among opened boxes.

• If maxiGi < vmax, meaning if every box’s Gittins index is worse (less) than vmax, then
stop and select the best open box.

• Otherwise, open argmaxiGi, the box of best (greatest) Gittins index.

In fact, if we extend the Gittins index to also cover open boxes, by letting the Gittins index
of an open box be its revealed reward value, then—up to a choice of how to resolve ties—the
Gittins policy reduces to one rule:

(⋆) Always take the action of greatest Gittins index.

2 Here and throughout, increasing and decreasing are meant in their non-strict forms by default.
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Returning to the example boxes in Figure 2.1, their Gittins indices are

EI1(α) =
1
2 ·max(14−α,0)− 1 ⇒ g1 = 12 (2.17)

EI2(α) =
1
5 ·max(18−α,0)− 1 ⇒ g2 = 13. (2.18)

Box 2 thus has better Gittins index than either box 1 or the open box (vmax = V3 = 10), so
the Gittins policy would open box 2—the optimal action we saw in Section 2.2!

2.4. Extensions and limitations: what else can the Gittins index do?

At a high level, the Pandora’s box problem is a model of search with costly information
acquisition. Our goal is to in find a good value, but without paying too much opening
costs. In general, search problems like this can, at first, appear to be completely different
than Pandora’s box—indeed, the seminal work of Gittins and Jones [46] was motivated by
discounted Bayesian multi-armed bandits (Section 4.2). Even direct generalizations can have
many features that go beyond the classical Pandora’s box:

1. Multiple stages of inspection. In Pandora’s box, the reward is revealed immediately. In
general, it might be revealed gradually over time (Section 4.1).

2. Searching for multiple values. In Pandora’s box, our reward comes from just one box.
In other settings, it may depend on the state of multiple boxes (Section 4.3).

3. Dynamic sets of options. In Pandora’s box, the set of boxes is fixed. In general, new
actions might become possible over time, such as when scheduling a set of randomly
arriving jobs in a queueing system (Section 4.4), or more generally (Section 4.5).

4. Correlations between values. In Pandora’s box, the rewards of different boxes are
assumed independent. In general, they can be correlated. This is common in Bayesian
optimization, where rewards are modeled using Gaussian processes (Section 5.1).

5. Optional inspection. In Pandora’s box, a box must be opened before being selected. In
general, it might be possible to select a box and receive its reward without first opening
it (Section 5.2).

6. Metrics beyond expected value. In Pandora’s box, the objective is to maximize expected
net reward. In general, one might hope to optimize metrics beyond expected value. For
instance, when scheduling in a queueing system, it is often more important to prevent
very long delays than to reduce the average delay (Section 5.3).

In which of these situations can the Gittins index be defined? In what cases is the resulting
Gittins policy still optimal? What if we have several of these aspects simultaneously, such as
multiple stages of inspection, with parts that can be skipped?

A principal aim of the rest of this tutorial is to shed light on these questions. To do so, we
first need to be able to precisely describe the potential features listed above. To that end,
over the next few sections, we present a unifying decision-making framework which includes
Pandora’s box—as well as well as related problems from seemingly different settings such as
optimal queueing—into a common language.
At this level of generality, the Gittins index can be defined, and the resulting Gittins

policy is optimal. We then generalize our framework further to capture the more difficult of
the advanced variants presented above: in most such situations, the Gittins index can still
be defined, but can only be expected to yield a strong policy—in the spirit, of, say, upper
confidence bounds or information-theoretic decision rules—rather than an outright optimal
one. We conclude the tutorial by surveying applications where the Gittins policy, despite
being suboptimal, has excellent theoretical or empirical performance.
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• •µ
⊠

reward −c

next state ∼ p

...

...

...
• •b

3.2

• •b
3.1

• •b
3.0

• •b
2.9

...

...

reward 3.2

reward 3.1

reward 3.0

reward 2.9

...

• •
✓

Figure 3.1. Illustration of the Markov chain for a box with opening cost c and reward distribution p.
The states are closed, denoted ⊠; opened with reward v ∈R, denoted v; and selected, denoted ✓.

3. General formulation of the Gittins index

Having seen the Pandora’s box problem, its formulation as a Markov decision process, and
its solution, one can ask: is there a general theory this solution is an example of? We now
present such a theory, focusing on a formulation that generalizes well beyond Pandora’s box.

The key idea is to conceptualize each individual Pandora’s box as a transient Markov chain
with one absorbing state, with the collection of all boxes represented as tuples whose ith
element is the Markov chain state corresponding to box i. Figure 3.1 provides an illustration.
An action i then amounts to advancing the ith Markov chain forward by one step, and
collecting whatever rewards arise as a result—where costs are represented as negative rewards.
The agent must select which Markov chain to advance at each time point.

This formulation enables one to handle many situations which, at first, appear to have
little to do with Pandora’s box. This includes Bayesian variants of the multi-armed bandit
problem [44, 46] and mean delay minimization in single-server queues [67, 68, 94, 95, 103],
both of which predate the Pandora’s box of Weitzman [108], and for which Gittins indices
were discovered independently. We now study a framework that enables one to see how
optimal policies arise in all of these setups.

3.1. The Markov Chain Selection decision problem

We begin by formulating our general decision problem, which we call Markov chain selection
(MCS), as a Markov decision process.

Definition 3.1 (Markov chain). A Markov chain3 with rewards is a tuple (S,∂S, p, r)
consisting of:

1. The state space S.

2. A subset of terminal states ∂S ⊆ S, which may be empty.

3. A transition kernel p : S →P(S).

4. A reward function r : S →R, which may take negative values.

We require that the terminal states be absorbing with zero reward, namely p(s) deterministi-
cally maps s∈ ∂S to itself, and r(s) = 0 for all s∈ ∂S.

3 Note that our definition of a Markov chain (without rewards) is is equivalent to the usual random-variable-
theoretic formulation from probability theory. Here, we opt to work with transition kernels, rather than
collections of random variables, because this will make it notationally cleaner to track relationships between
various different Markov decision processes that arise in our context.



10 Ziv Scully and Alexander Terenin: The Gittins Index

To ease terminology, we often omit with rewards. Note that when specifying a Markov
chain, it suffices to define the part of the transition kernel which describes transitions out of
non-terminal states, and similarly it suffices to define rewards for non-terminal states.

Definition 3.2 (Markov chain selection). Define the Markov chain selection (MCS) problem
with Markov chains (Si, ∂Si, pi, ri), for i∈ {1, . . . , n}, to be the MDP given as follows:

1. State space: let the state space be

SMCS = {(s1, . . . , sn) : si ∈ Si for all i} (3.1)

together with an initial state whose components are all non-terminal.

2. Terminal states: let the terminal state set be

∂SMCS = {(s1, . . . , sn)∈ SMCS : si ∈ ∂Si for some i}. (3.2)

3. Action space: let AMCS = {1, . . . , n}.
4. Reward function: let

rMCS(s, a) = ra(sa). (3.3)

5. Transition kernel: given a state (s1, . . . , sn) and action a, we transition the MDP into a
new state by replacing sa with s′a ∼ pa(sa) according to that respective Markov chain’s
transition kernel, leaving other states unchanged.

6. Discount factor: let γ ∈ (0,1].

To understand this definition, note that Pandora’s box is a special case where each Markov
chain, illustrated Figure 3.1, is as follows. For box i, the state space is Si = {⊠}∪R∪{✓}
and transition kernel given by pi(⊠) = pi and pi(vi) = pi(✓) = δ✓, where δ✓ is the Dirac
measure at the symbol ✓. In this Markov chain, ✓ is the unique absorbing state, which is
also terminal, and all other states are transient. Here, we take γ = 1.
In general, choosing an action thus corresponds to choosing which Markov chain to

transition—an abstract generalization of choosing which box to open. Our formulation
works with time-homogeneous Markov chains: this is without loss of generality, as non-time-
homogeneous chains can be handled by adjoining time to their state space, transforming them
into time-homogeneous ones. To ensure well-definedness, we make the following assumption
on each individual Markov chain.

Assumption 3.3. At least one of the following two conditions holds:

(a) From any initial state, the Markov chain with transition kernel p reaches a terminal
state in finite time with probability one, and the sum of absolute values of rewards of
all transitions until termination has finite expectation.

(b) We have γ < 1, and r is uniformly bounded in absolute value.

Our arguments will proceed by showing that (b) reduces to (a), then studying that case.
It is also possible to work in slightly greater generality: we adopt the formulation here to
minimize technicalities while keeping results sufficiently general.
Compared to the situation of Pandora’s box, it is, at first, even less obvious whether

anything can be said about the defined MDP’s optimal policy—particularly given that the
MDP is much less concrete than before, and its abstract nature could potentially give rise to
rather different looking examples.

The insight of Gittins [44]—which is particularly remarkable given it was first discovered
in essentially the same generality we consider here—is that this class of MDPs can be solved
in much the same manner as we presented Pandora’s box in Section 2. Namely, the idea will
be to look for a way to compare Markov chains with each other, just as before we looked
for a way to compare Pandora’s boxes with each other. Specifically, we seek a way compare
Markov chains, which are stochastic, with real numbers, which are not.
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3.1.1. A note on the name Markov chain selection We conclude with a note on
terminology. What we call MCS is, roughly speaking, usually called the Markovian multi-
armed bandit problem in the Gittins index literature. We introduce the new name Markov
chain selection for two reasons. First, the Markovian multi-armed bandit is typically defined
slightly more restrictively, namely ruling out undiscounted settings and terminal states [45],
and we want to emphasize that we do not impose these restrictions.

Second, we wish to slightly de-emphasize the link between Gittins indices and multi-armed
bandits. The broader multi-armed bandit literature is vast [71, 97], and in the context of
this vast literature, the Gittins index might only seem useful for solving one corner case,
namely discounted Bayesian bandits (Section 4.2). On the other hand, in our opinion, many
applications of the Gittins index do not superficially resemble bandit problems. The feature
that unifies Gittins index applications—Pandora’s box, bandits, queue scheduling, and more—
is repeatedly choosing which of multiple independent Markov chains to advance. Our hope is
that the Markov chain selection name directly evokes this unifying feature.

3.2. Defining the Gittins index via the local MDP

Mirroring the approach used in Pandora’s box—namely, defining the Gittins index of a single
closed box—we now define the Gittins index of a general Markov chain equipped with a
general reward function. We do so using the following notion.

Definition 3.4 (Local MDP). Let (S,∂S, p, r) be a Markov chain satisfying Assumption 3.3.
For every alternative option α∈R and initial state s∈ S, define a Markov decision process,
called the (s,α)-local MDP, as follows:

1. State space: let Sloc = S ∪{✓},4 with initial state s.

2. Terminal state: ∂Sloc = {✓}.
3. Action space: let Aloc = {▷,□}, called go and stop, respectively.

4. Reward function: for s ∈ S, let rloc(s,▷) = r(s), rloc(s,□) = α, and rloc(✓,▷) =
rloc(✓,□) = 0.

5. Transition kernel: if s∈ S and a=▷, then let s′ ∼ p(s), otherwise if s=✓ or a= □ let
s′ =✓.

6. Discount factor: let γ ∈ (0,1].

The intuition behind the local MDP is that it simplifies a global MCS instance down
to the local perspective of one Markov chain. Specifically, it captures the tradeoff between
advancing the Markov chain in state s vs. taking some other action. While MCS has are
many other actions to choose from, the local MDP simplifies the tradeoff by providing just
one other action □ with a very clear value α. This generalizes the idea from Section 2.3
of comparing a closed Pandora’s box with an open box—that is, comparing whether to
transition the respective Markov chain one state forward, or simply take the value α from
an alternative open box.
To make this precise, let V ∗

loc(s;α) be the value function of the local MDP, which is well
defined by Assumption 3.3. In the undiscounted setting, we can write

V ∗
loc(s;α) = sup

π:Sloc→Aloc

(Eπ(s)+αPπ(s)) (3.4)

where Eπ(s) is the expected total reward π receives while playing ▷ when starting from s,
and Pπ(s) is the probability π eventually plays □ when starting from s. In the discounted
setting, we can still write (3.4), but Eπ(s) is discounted reward, and Pπ(s) =E[γtπ ], where tπ
is either the time when π plays □, or ∞ if □ is never played. Figure 3.2 gives an illustration
of the local MDP’s value function for the closed boxes from Figure 2.1.

4Throughout this work, we adopt the convention that unions with symbols such as ✓ are disjoint unions.
That is, it is understood that the union S ∪{✓} uses a symbol ✓ /∈ S which is not part of the original states.
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⋆

0 G1(⊠) = 12

6 =E[v1]− c1
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V ∗
loc,1(⊠;α)
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(a) Local MDP value for box 1 from Figure 2.1.

⋆

0 G2(⊠) = 13

2.6 =E[v2]− c2

13

V ∗
loc,2(⊠;α)

α

(b) Local MDP value for box 2 from Figure 2.1.

Figure 3.2. Optimal value of the (⊠, α)-local MDP for the two closed boxes in Figure 2.1. We
include the box identifier in subscripts throughout for disambiguation. For sufficiently small α,
namely α≤ 0, the optimal policy opens the box and takes its reward, meaning it plays ▷ twice,
yielding value E[vi]− ci. For intermediate values of α, the optimal policy opens the box but might
then take the alternative, meaning it plays ▷ at least once. The value’s slope in this regime is the
probability of eventually taking the alternative, namely (a) 1

2
or (b) 4

5
. For sufficiently large α, the

optimal policy takes the alternative without opening the box, meaning it plays □. The value of α at
the boundary between the latter two regimes—that is. the unique value at which both ▷ and □ are
optimal—is the Gittins index Gi(⊠).

The general definition of the Gittins index of a state s similarly generalizes the Pandora’s
box Gittins index definition from Section 2.3. The definition follows from two key observations
about the local MDP with initial state s and varying alternative:

1. If playing □ is optimal when the alternative is α, then □ is still optimal for any better
alternative α′ >α.

2. If playing ▷ is optimal when the alternative is α, then ▷ is still optimal for any worse
alternative α′ <α.

One can prove this using the fact that □ is optimal if and only if V ∗
loc(s;α) = α and the

following properties of V ∗
loc.

Lemma 3.5. For any state s of any Markov chain satisfying Assumption 3.3, the function
α 7→ V ∗

loc(s;α) has the following properties:

(a) It is convex and non-decreasing.

(b) It has left and right derivatives taking values in [0,1].

(c) It is bounded below by V ∗
loc(s;α)≥ α.

Proof. We argue as follows:

(a) By (3.4), α 7→ V ∗
loc(s;α) is a supremum of convex (namely, affine) and non-decreasing

functions, so it is also convex non-decreasing.

(b) This follows from (3.4), the convexity of α 7→ V ∗
loc(s;α), the fact that Pπ(s)∈ [0,1], and

a standard envelope theorem [78, Theorem 1]. See Xie et al. [114, Appendix B.6] for
additional discussion about envelope theorems in this setting.

(c) Playing □ immediately yields value α, and the optimal policy does at least as well.

Using these properties, one can show that there is a unique alternative α such that both □

and ▷ are optimal, namely the minimum value of α such that □ is optimal. We define the
Gittins index G(s) of s to be this transition point. Figure 3.2 illustrates an example.

Definition 3.6 (Gittins index). Let (S,∂S, p, r) be a Markov chain satisfying Assumption 3.3.
The Gittins index function for the Markov chain, denoted G : S →R∪{∞}, maps each state
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s∈ S to either the unique number g ∈R such that both ▷ and □ are optimal actions for the
(g, s)-local MDP at its initial state, or to ∞ if no such number exists.5

We call G(s) the Gittins index of state s, and there are many equivalent ways to formulate
it, for instance using stopping times. In particular, one can define the Gittins index to be
the supremum of alternative values for which ▷ is strictly optimal, or the minimum value
of g such that playing □—which we note results in value g—is optimal:

G(s) = sup{g ∈R : V ∗
loc(s;g)> g}= inf{g ∈R : V ∗

loc(s;g) = g} (3.5)

with the convention that infima and suprema of empty sets are ∞. One can similarly view
G(s) as the solution to a root finding problem, as we did for Pandora’s box in (2.15): letting
V ▷
loc(s;g) be the optimal value achievable when playing ▷ at least once, we have

G(s) = V ▷
loc(s;G(s)). (3.6)

There are other ways to express G(s), particularly in terms of optimization problems over
stopping policies, or equivalently, stopping sets. We refer the interested reader to prior
expositions of the Gittins index for details [25, 45, 50, 117].

When needed for disambiguation between multiple Markov chains (Si, ∂Si, pi, ri), we add
a subscript i as needed, for instance Gi and V ∗

loc,i, as was used in Figure 3.2.

3.3. Optimality of the Gittins policy

We now state the key optimality theorem for Definition 3.6, deferring its proof to Appendix A.

Theorem 3.7. Consider an instance of MCS (Definition 3.2) with all Markov chains
satisfying Assumption 3.3. A policy for MCS is optimal if and only if it always selects an
action of maximal Gittins index—meaning, if when in state (s1, . . . , sn), it selects

a∈ argmax
i∈{1,...,n}

Gi(si). (3.7)

In general, there may be several such policies, parameterized by an appropriately defined
tie-breaking rule which chooses a maximizer in the event it is non-unique. We will implicitly
assume that a tie-breaking rule has been chosen, and will refer to any policy satisfying the
condition in Theorem 3.7 as the Gittins policy. We can summarize Theorem 3.7 as follows:

(⋆) Always choose the Markov chain of greatest Gittins index.

One can view this not just as a policy for MCS, but as a general design principle. If we can
compare an action to a deterministic alternative in the style of the local MDP, then we can
usually define the action’s Gittins index just as in Definition 3.6. For example, in Section 5.1,
we explain how this design principle applies to Bayesian optimization, a problem which may
at first appear dissimilar to MCS.
In the situation formalized here—and a small set of generalizations, some of which we

discuss in further detail in Section 4—this decision-making principle is outright optimal.
However, the specific statement in Theorem 3.7 is rather fragile. It is not uncommon, in
more general situations, for optimality to fail, and do so in a manner that suggests the proof
technique breaks down completely.
In such situations, it be very tempting to conclude that this is because Gittins indices

are not a good approach. However, there are cases where the definition continues to make
intuitive sense, and one can either (a) show various notions of near-optimality, such as regret

5 Under Assumption 3.3, it is always possible to pass to the setting where G(s) is necessarily finite: one can
replace the given MCS instance with a modified MCS instance over a slightly smaller state space in a manner
that preserves value functions and policies. See Assumption A.2(b) and the following discussion for details.
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[36, 69] or approximation ratio [27, 43, 87] bounds, or (b) show strong empirical performance
[114]. In such cases, it can be more insightful to instead interpret the lack of an optimality
theorem as a statement about the problem’s richness, rather than of Gittins-index-style
stochastic-to-deterministic comparisons being the wrong decision-making approach.
Understanding where the Gittins policy is strong, even if not outright optimal, remains

an active research area. In Section 5, we cover some examples where the Gittins policy is
suboptimal but nevertheless has strong theoretical or empirical performance.

3.4. Computation

We now discuss computational properties of the Gittins index. This problem is well studied
for finite-state Markov chains: Chakravorty and Mahajan [25] give a survey of the topic.
The current state-of-the-art algorithm is that of Gast et al. [41], which runs in sub-cubic
time. We note also that even faster algorithms are possible under additional structure: see
for instance Scully et al. [91, Section 4.2 and Appendix B].

For infinite-state Markov chains, computation remains a significant challenge [36, 45, 64, 65].
Continuous state spaces have received comparatively little attention beyond Pandora’s box,
and we view computing the Gittins index of continuous-state Markov chains to be a significant
open problem: we return to this in Section 6.2. We now discuss the key challenges for doing so.
As expressed by (3.6), computing the Gittins index G(s) of a given Markov chain state

s requires one to solve a root-finding problem defined in terms of the local MDP’s value
function V ∗

loc. As such, one can expect computation of G(s) in a given concrete setting to
potentially involve elements of dynamic programming, together with root-finding algorithms.
This gives rise to two challenges:

1. For continuous-state Markov chains, one must usually perform dynamic programming
approximately [10].

2. The local MDP must be solved for enough different values of the parameter α to
determine the Gittins index.

In some classical problems—for instance, Gaussian Pandora’s box—one can compute V ∗
loc

analytically. In such cases, owing to monotonicity of α 7→ V ∗
loc(s;α), the Gittins index can be

computed efficiently using bisection search.
Even when V ∗

loc cannot be computed analytically, we suspect one can do better than simply
apply off-the-shelf approximate dynamic programming algorithms. This is because the local
MDP possesses two properties which generic MDPs do not: its action space {□,▷} is very
small, and the value of □ is always g. At present, methods that leverage these properties
have largely yet to be developed. The key challenge is in effectively handling the state space
S in situations where it is sufficiently high-dimensional to render discretization unviable.
Finally, there are extensions of MCS where there are infinitely many Markov chains,

possibly uncountably many. This introduces another obstacle: finding the chain of maximum
Gittins index. In general, this needs to be performed using gradient-based optimization. We
discuss how to do so in the context of Bayesian optimization in Section 5.1.2.

4. Examples: optimal policies

We now work through a number of examples. We begin with a multi-stage Pandora’s box, as a
simple illustration of how the developed framework allows us to handle a slight generalization
of our initial illustrative setup (Section 4.1). We then follow up with a discounted Bayesian
bandit, illustrating how discounted chains without terminal states are handled (Section 4.2).
Finally, we discuss three mild generalizations of the developed framework: (a) a variant
which models Markovian search for multiple items, which therefore involves termination
of more than one Markov chain (Section 4.3); (b) a queueing example with a seemingly
different objective, but which is handled similarly to the aforementioned Markovian search
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(Section 4.4); and (c) a branching bandit, where the action space at each time point varies
stochastically in a manner that can depend on the chosen actions (Section 4.5). In all cases,
an optimality result in the spirit of Theorem 3.7 continues to hold.

4.1. Two-stage Pandora’s box

Consider the following variant of Pandora’s box where there are two stages of inspection for
a box.

1. The first stage reveals some partial information about the box’s contents, which we call
its label. This inspection incurs some cost.

2. The second stage opens the box and reveals its reward, just like in ordinary Pandora’s
box. This incurs additional cost.

3. Finally, we can select a box and receive its reward once it is fully open.

To model a two-stage box as a Markov chain, we use much the same approach as for ordinary
Pandora’s box in Figure 3.1, but with additional states representing the label. Specifically,
letting L be the set of labels, assumed disjoint from the remaining states, define

S2-PB = {⊠}∪L∪R∪{✓}. (4.1)

The transition kernel p2-PB : S →P(S) described above then has the following form.

1. For the first stage, we always transition from ⊠ to some label ℓ ∈ L. We thus write
p2-PB(⊠)∈P(L) as the distribution over labels.

2. For the second stage, when in state ℓ∈L, we transition to a state v ∈R by sampling
v∼ p2-PB(ℓ). Here, p2-PB(ℓ) is the reward distribution of a box given that its label is ℓ.

3. Finally, from any fully inspected state v ∈ R, we always transition to the selected
state ✓.

This encodes how information is revealed as part of the inspection process. Similarly, the
reward function r : S →R encodes the inspection costs.

1. If the cost of the first inspection stage is c(⊠), then r(⊠) =−c(⊠).

2. If, given a label ℓ, the cost of the second stage is c(ℓ), then r(ℓ) =−c(ℓ).

3. Finally, for any fully inspected state v ∈R, the reward is simply r(v) = v.

What does the Gittins index look like for this two-stage box? Following Theorem 3.7, to
compute the Gittins index G(s) of a state s, we need to understand how the local MDP’s
value function V ∗

loc(s;α) depends on α. Specifically, the point where □ and ▷ are co-optimal
is by definition also the smallest value of α for which V ∗

loc(s;α) = α.
To obtain the value function, we apply dynamic programming to the local MDP’s, which is

tractable because there are only two possible actions. Working backwards from the terminal
state ✓, we find:

3. For fully inspected states v ∈R, we clearly have

V ∗
loc(v;α) =max(v,α). (4.2)

So, as in the one-stage Pandora’s box, co-optimality implies G(v) = v.

2. For partially inspected states ℓ∈L, we essentially have the same situation as for ordinary
Pandora’s box:

V ∗
loc(ℓ;α) =max

(
Ev∼p(ℓ)[V

∗
loc(v;α)]− c(ℓ), α

)
(4.3)

=max
(
Ev∼p(ℓ)[max(v,α)]− c(ℓ), α

)
. (4.4)

So computing G(ℓ) amounts to the same root-finding problem as in (2.15), namely

Ev∼p(ℓ)[max(v−G(ℓ),0)]− c(ℓ) = 0. (4.5)
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1. Finally, for the initial uninspected state ⊠, we have

V ∗
loc(⊠;α) =max

(
Eℓ∼p(⊠)[V

∗
loc(ℓ;α)]− c(⊠), α

)
(4.6)

which yields a second kind of root-finding problem for G(⊠), namely

Eℓ∼p(⊠)[V
∗
loc(ℓ;α)−α]− c(⊠) = 0. (4.7)

The Gittins index for this problem can therefore be expressed as a solution to a sequence
of root-finding problems. One can generalize this to more than two stages while maintaining
a similar structure. In general, following Section 3.4, one can expect that computing G will
require numerical methods—albeit ones which involve each local MDP individually, rather
than the full Markov chain selection MDP.

4.2. Bayesian Bernoulli bandits with discounting

In the Bernoulli multi-armed bandit problem, an agent is presented with n coins, where each
coin i has unknown heads probability xi. Our goal, roughly, is to repeatedly flip coins in a
way that maximizes the expected (discounted) number of heads. In the Bayesian version of
the problem, the agent has a prior distribution on xi. This problem fits into the framework
of Definition 3.2 with discount parameter γ < 1: each Markov chain corresponds to one
coin, advancing the Markov chain corresponds to flipping the coin: the Markov chain’s state
represents the current posterior distribution the agent has on xi.
We focus on the traditional beta-distributed prior xi ∼Beta(ai, bi) for some ai, bi > 0. In

this case, by standard properties of the beta distribution, we can express each coin i as a
Markov chain as follows:

1. The state space is S = (0,∞)2, with an initial state is (ai, bi).

2. The transition kernel is

p(a, b) =

{
(a+1, b) w.p. a

a+b

(a, b+1) w.p. b
a+b .

(4.8)

3. The reward function is r(a, b) = a
a+b .

Definition 3.2, with Markov chains of the above, is therefore our Bayesian Bernoulli
bandit of interest. To compute the Gittins index, we need to solve the respective local
MDP of Definition 3.4 for the above Markov chain. However, because the Markov chain
has a countably infinite state space and no terminal states, computing the Gittins index is
nontrivial, though several practical approaches for approximating or bounding it are known:
see Farias and Gutin [36], Gittins et al. [45], Kelly [64], Kim and Lim [65] for examples.

4.3. Selecting multiple boxes, or finishing multiple Markov chains

One can view Pandora’s box, and more generally MCS with terminating Markov chains, as
a model of searching for a single item. What if one is instead searching for multiple items? It
turns out that in the undiscounted setting—that is, with γ = 1—the Gittins policy optimally
solves this version of the problem, too. Specifically, for any k, the Gittins policy maximizes
the total expected reward received up until the point the first k Markov chains reach terminal
states. We now state this more formally.

Definition 4.1. The k-finish Markov chain selection (MCS-k) problem for k≤ n Markov
chains is an MDP defined in the same way as Definition 3.2, except the process does not end
until k Markov chains reach terminal states, meaning the terminal states are

∂SMCS-k = {(s1, . . . , sn)∈ SMCS : si ∈ ∂Si for k distinct i}. (4.9)
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Additionally, action i is disallowed if Markov chain i is in a terminal state, meaning this
MDP has a state-dependent action space, which is defined to be

AMCS-k(s1, . . . , sn) = {i : si /∈ ∂Si}. (4.10)

The case k= 1 reduces to Definition 3.2. The following result shows Theorem 3.7 generalizes
to k≥ 2. Moreover, the proof is very similar: see Appendix A.2.

Theorem 4.2. The Gittins policy is optimal for undiscounted MCS-k.

In fact, one can use the Gittins index to solve an even more general problem than MCS-k
involving combinatorial constraints. For example, consider the following problem introduced
by Singla [96], which we call spanning-tree Pandora’s box. We are given a graph, where each
edge of the graph is associated with a box with some opening cost and reward distribution.
The problem proceeds much like the k-finish variant of Pandora’s box, except the set of
boxes we take must contain no cycles. One can view this as a max-weight spanning tree
variant where we replace deterministic edge weights with Pandora’s boxes.

The classical max-weight spanning tree problem is famously optimally solvable by greedy
algorithms. The simplest of these, arguably, is Kruskal’s algorithm, which accumulates a
spanning tree by repeatedly adding the edge of greatest weight that would not form a cycle.
Singla [96] shows that essentially the same algorithm solves spanning-tree Pandora’s box if
one uses Gittins indices in place of deterministic edge weights. That is, at every time step,
we take the action corresponding to the box of greatest Gittins index, provided that box’s
edge would not form a cycle with selected edges.
Moreover, there is nothing special about Pandora’s box here, and indeed, Gupta et al.

[55] show that essentially the same algorithm solves the version of the problem where each
edge has an arbitrary (terminating) Markov chain. For example, one could use the two-stage
Pandora’s box variant of Section 4.1 to model max-weight spanning tree problems where
each edge requires two rounds of inspection to reveal its value—perhaps an inexpensively
acquired initial estimate followed by an expensively acquired precise valuation. The resulting
strategy of taking a classic combinatorial algorithm and plugging in Gittins indices in place
of deterministic weights is potentially very general.
In what situations does this strategy work? The answer, roughly speaking, is for greedy

algorithms of a certain form identified by Singla [96]. For instance, one can optimally solve
what we might call matroid-finish MCS, because matroid packing problems—of which max-
weight spanning tree is a special case—are solved by greedy algorithms. Moreover, for
situations where greedy algorithms only give approximately optimal solutions, Singla [96]
(for Pandora’s box) and Gupta et al. [55] (for general Markov chains) show that the Gittins
index version of the greedy algorithm achieves the same approximation ratio as the algorithm
would achieve in the classical deterministic-weight setting. Thus, one can view Gittins indices
as providing a good definition for what greedy should mean in stochastic contexts.

4.4. Scheduling in queues

Another famous application of the Gittins policy is scheduling in single-server queues,
particularly the M/G/1 queue [1, 3, 11, 13, 67, 68, 90, 94, 95, 103, 112]. Here the problem
is to schedule jobs that arrive over time on a single server in order to minimize their mean
latency—also called their response time or sojourn time—which is the mean amount of time
between a job arrives and when it completes.
In this section, we give a brief overview of how to formulate job scheduling in terms of

MCS. We first explain the arrival-free batch setting, then explain how the theory extends
to handle (time-homogeneous) Poisson arrivals. For simplicity, we focus throughout on the
unweighted case. See Scully and Harchol-Balter [90] for an account of most of the features
the Gittins policy is known to handle in the M/G/1, including unknown and state-varying
job weights, and Glazebrook [49] for an additional discussion of priority constraints.
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✓ 1 2 3 4 . . .reward −1 reward −1 reward −1 reward −1 reward −1

Figure 4.1. Markov chain of a job with known service time. The job’s state is its remaining service,
namely how many more time units of service until it completes—meaning, transitions to the finished
state ✓. Every transition yields reward −1, representing one unit of time passing. The transitions
are all deterministic, and one can confirm that ✓ is reached.

4.4.1. Representing batch scheduling as MCS Broadly, (single-server, discrete-time)
batch scheduling is a family of problems where an agent has n jobs to complete using a single
server. Every time step, the agent chooses one job to receive one time unit of service. Each
job requires a (strictly positive) number of time units at the server to complete, which we call
the job’s service time. As we discuss below, these service times might be known, unknown,
or partially known to the agent. The agent’s goal is to optimize some metric related to the
jobs’ completion times, where a job’s completion time is the time step when it completes.6

We focus on minimizing the expected values of the following three metrics:

1. The earliest completion time is the minimum of all jobs’ completion times.

2. The kth completion time is the kth least among all jobs’ completion times. First
completion time is then the special case where k= 1.

3. The total completion time is the sum of all jobs’ completion times. An equivalent metric
is mean completion time, which is total completion time times 1/n. These are the
metrics most closely related to minimizing mean latency in queues with arrivals.

In the above, we stated that service times might be known, unknown, or partially known.
Specifically, we assume that each job’s service can be modeled as a Markov chain, with
different jobs’ Markov chains evolving independently. A job’s service time is then the number
of transitions it takes to reach a completed state, which we denote by ✓. The appropriate
Markov chain for each job depends on what the agent knows about that job’s service time.
For example:

a. For jobs with known service time, we use the Markov chain in Figure 4.1. A job’s state
here is its remaining service time. With each unit of service, the remaining service time
decrements by 1, with completed state ✓ taking the place of 0 remaining service time.
In this case, the Gittins index of a job is simply its (negative) remaining service time

G(s) =−s (4.11)

and the Gittins policy reduces to (discretized) shortest remaining processing time [85].

b. For jobs with unknown service time sampled from some known distribution m, we use
the Markov chain in Figure 4.2. A job’s state here is its attained service. With each
unit of service, the attained service typically increments by 1, but there is a chance to
transition to the completed state ✓. In this case, the Gittins index can be written [1, 2]

G(s) =−inf
s′>s

Et∼m[min(t, s′)− s | v > s]

Pt∼m[t≤ s′ | t > s]
(4.12)

where t∼m is service time of the job, namely the random number of steps it takes to
reach ✓ starting from 0. The intuition is that s′ represents a deadline by which we
might hope the job will finish, the fraction is the mean time per completion ratio for
deadline s′, and G(s) is the (negated) best—namely, least—such ratio achievable.

6To be precise: letting the first time step have index 1, a job’s completion time is the index of the time step
during which it receives its last unit of service. For example, if a job with service time t is served starting at
time 1 until it completes, then it receives service at times 1, . . . , t and has completion time t.
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Figure 4.2. Markov chain of a job with unknown service time sampled from distribution m—that is,
the job’s service time is t with probability mt, and it is at least t with probability m≥t =

∑∞
u=tmu.

The job’s state is its attained service, namely how many time units of service it has already received.
Every transition yields reward −1, representing one unit of time passing. The transition probabilities
come from the fact that if the job is in state s, then because the job has not yet completed, its
service time must be at least s+1. Given this, a job in state s completes within its next unit of
service with probability ms+1/m≥s+1.

c. An intermediate case where the agent receives partial information about a job’s service
time is illustrated in Figure 4.3. Here a job’s service has two stages, and while the agent
does not know a priori how long either stage will take, the agent is notified when the
job advances from the first stage to the second.

Throughout, we give all states reward −1 to represent the fact that one unit of time passes per
transition—though, as we discuss below, this is not essential. The three examples presented
here generalize easily to a large number of possible Markov chain variants.
Having specified the job model we are working with, we can observe the following about

the different metrics we hope to optimize. The main takeaway is that all the problems are
variants of undiscounted MCS—and, thus, they can be solved with the Gittins policy.

i. Minimizing expected earliest completion time is MCS (Definition 3.2), because we
receive reward −1 per time step until a job completes. Therefore, by Theorem 3.7, the
Gittins policy minimizes expected earliest completion time.

ii. Minimizing expected kth completion time is MCS-k (Definition 4.1), because we receive
reward −1 per time step until k jobs complete. Therefore, by Theorem 4.2, the Gittins
policy minimizes expected kth completion time.

iii. Minimizing expected total completion time does not directly fit into MCS or MCS-k.
However, we can express total completion time C as the sum of kth completion times
C(k), namely

C =
n∑

k=1

C(k). (4.13)

Because the Gittins policy minimizes E[C(k)] for all k, it also minimizes E[C].

Before discussing adding arrivals, let us briefly revisit one of our assumptions, namely
that every transition incurs cost 1 (and thus yields reward −1). The MCS framework allows
different costs in different states, so the entire discussion above generalizes to jobs where
different transitions incur different costs. One can interpret this as scheduling jobs where
different transitions take different amounts of time. In particular, transitions that take a long
time can be viewed as uninterruptible segments. That is, one can represent an interruptible
part of a job using many low-cost transitions, and one can represent a uninterruptible part
using a single high-cost transition.

4.4.2. From batch scheduling to queue scheduling Broadly, a (single-server, discrete-
time) queue scheduling problem is a batch scheduling problem with the following changes:
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Figure 4.3. Markov chain of a job with two stages of service. Each stage i requires an unknown
amount of service sampled from distribution m(i), so the service time is a priori unknown, but the
agent learns when the transition from the first to the second stage occurs. A job’s state is thus
a pair consisting of the current stage and the attained service of the current stage. The result is,
roughly speaking, two stacked instances of the Markov chain from Figure 4.2.

1. Instead of n jobs being present at time 0, jobs arrive over time. We usually consider an
infinite sequence jobs arriving according to some stochastic process.

2. Instead of optimizing metrics related to completion time, we optimize metrics related
to latency (also called response time or sojourn time), where a job’s latency is its
completion time minus its arrival time. We usually consider metrics that are (limiting)
averages over the sequence of arriving jobs, such as mean latency.

If new Markov chains can appear over time in an arbitrary fashion, then the Gittins
policy is no longer optimal for MCS, let alone MCS-k. However, there is a more general case
where the Gittins policy remains optimal: when arrivals are generated by a memoryless and
time-homogeneous stochastic process [110]. This means Poisson arrival times, where each
arriving job’s initial state is drawn i.i.d. from some initial state distribution (or a similar
arrival process—see Remark 4.5). In the language of queueing theory, this is the M/G/1
queueing model, which allows Poisson arrival times and general service time distributions.
We now illustrate one type of result that can be shown, though we emphasize that it is not
the most general result possible [49, 90].

Definition 4.3. A Markov chain M/G/1 model consists of:

1. A job Markov chain (S,∂S, p, r) such that r(s)< 0 for all non-terminal states s∈ S \∂S.
2. An initial state distribution p0 ∈P(S \ ∂S).
3. An arrival rate λ> 0.

Here, jobs arrive at the increments of a Poisson process of rate λ, and each job’s initial
state is sampled i.i.d. from p0. Each job’s Markov chain advances while it is in service. It
takes −r(s) time for a job to transition from state s to its next state (possibly with some
randomness—see Remark 4.5), and a job cannot be interrupted during a state transition. A
scheduling policy for the Markov chain M/G/1 repeatedly chooses which job to serve next,
at which point the job remains in service until it has completed a state transition. We also
allow the scheduling policy to leave the server idle for a time.

We say the M/G/1 is stable if the expected interarrival time—that is, 1/λ—is greater than
the expected service time—that is, the amount of time it takes a job to transition from an
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initial state drawn from p0 to a terminal state in ∂S. This ensures ergodicity of the system
under any (non-idling) scheduling policy, in which case the following optimality statement
holds for the Gittins policy.

Theorem 4.4. In any stable Markov chain M/G/1, among all scheduling policies, the Gittins
policy minimizes mean latency.

Unfortunately, to the best of our knowledge, there are no proofs of Theorem 4.4 that build
directly on the techniques used to prove Theorems 3.7 and 4.2. Proofs using a vanishing
discount approach—see Gittins et al. [45, Chapter 3]—come the closest, but they require
restrictive assumptions, such as for instance the job Markov chain having a finite state space.
Thus far, the approaches that yield the most general results use work conservation laws or
similar M/G/1-specific reasoning [13, 49, 90].

Remark 4.5. The optimality of the Gittins policy continues to hold under the following
two types of extensions:

(a) One can generalize slightly beyond Poisson arrivals to other time-homogeneous arrival
processes. The simplest case of this is batch Poisson arrivals, where at each arrival time,
multiple jobs can arrive at once [90]. In this batch setting, the lists of initial states of
jobs in a batch must be i.i.d. across batches. Another time-homogeneous case occurs if
all jobs are time-slotted—meaning, if all jobs’ transitions take an integer number of
time unit—then one can work with arrival processes that are similarly time-slotted,
even if they are not Poisson.

(b) One can generalize from deterministic to randomized transition times in job Markov
chains, in which case −r(s) should be the expected amount of time it takes to transition
from s to the next state. In this more general model, instead of specifying a job via p
and r, one specifies a kernel q : S →P(S× [0,∞)), where q(s) is the joint distribution
over (next state, transition time) pairs. Even though one (p, r) pair can arise from many
possible kernels q, the Gittins index depends only on p and r, though the mean latency
achieved is affected by q. This generalization is possible because it embeds into the
continuous-time framework of [90].

Of course, the M/G/1 is a rather specialized queueing model, so it is natural to ask whether
the Gittins policy performs strongly in more general settings—say, with more than one server
or with non-Poisson arrivals. Thus far, it appears the answer is often yes: there are now
several results showing the Gittins policy is in some sense approximately optimal, including
the multiserver M/G/k [49, 51, 52, 86, 88] and, most recently, the non-Poisson G/G/1 and
G/G/k [58]. Even under adversarial arrivals—in the sense of adversarially chosen arrival
times and initial states, but where the job still evolves stochastically according to a known
transition kernel during service—it is known that a variation of the the Gittins policy is a
2-approximation for mean completion time [76], meaning each job’s clock starts at time 0. It
is an open question whether a similar guarantee holds for mean latency, where each job’s
clock starts when it arrives.

4.5. Branching bandits

To arrive at a general formulation of the Gittins index, following our exposition of Pandora’s
box, we asked: is there a general theory this solution is an example of? In the same spirit,
let us note that the Gittins index for the M/G/1 queue does not directly arise as an instance
of MCS, and again ask the same question.

Compared to MCS, what is new about the M/G/1 setting is that every time an action is
chosen, a new set of Markov chains arrives, according to the Poisson process and initial state
distribution, and becomes part of the total action space. More precisely, when a Markov
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chain in state s transitions to a new state s′ ∼ p(s), it also gives rise to a random set of new
Markov chains in some initial states drawn from a known distribution.
The appropriate abstract generalization of the M/G/1 setting is the so-called branching

bandit setting of Weiss [107]. The branching bandit problem is like MCS, but it replaces
each Markov chain with a particular kind of branching process (namely, a multi-type Galton–
Watson process), defined in the following sense. When advancing a branching process, instead
of its state s transitioning to exactly one next state, it transitions by replacing the current
state with multiple new states according to a suitable probability kernel, which describes
the joint distribution over the number of new states and their values. This means that the
overall problem’s state space is now described by tuples (s1, .., sn) of variable length, where
n varies according to the actions selected by the policy and the random transition outcomes.
Variants of the branching bandit problem have been studied in the discounted setting

[45, 77, 107], as well as the undiscounted Pandora’s box setting [19]: in these cases, one can
define a Gittins index in an appropriate sense, and prove that the resulting Gittins policy
is optimal. However, to the best of our knowledge, there is not yet a proof that holds at
the level of generality of Theorem 3.7. For instance, Weiss [107] requires each Markov chain
to have finitely many states and satisfy Assumption 3.3(b). In principle, a more general
dynamic programming proof similar to the one of Appendix A should be feasible, but we are
not aware of one.7

5. Examples: beyond optimality

We now discuss three examples where Gittins indices can be defined and applied, but do
not result in an optimality proof. These are (a) certain forms of Bayesian optimization,
where optimality fails due to the presence of correlations between different Markov chains
(Section 5.1); (b) Pandora’s box with optional inspection, where additional decisions that
can be made render the problem more complicated (Section 5.2); and (c) minimizing tail
latency in queues, where one seeks to perform well in terms of objectives beyond average
rewards (Section 5.3).

5.1. Bayesian optimization

Bayesian optimization [37, 40] is a broad class of algorithms for global optimization of
unknown functions which are expensive to evaluate. In most instances, such algorithms
require only black-box access to the unknown function, meaning the only way to learn about
the function is by evaluating it. Bayesian optimization is a workhorse tool in areas like
machine learning hyperparameter tuning [98], where it is deployed in production at most
major technology companies, and is available as standard functionality in popular artificial
intelligence operations platforms.
Let f :X → R be the unknown function, where X is allowed to be a general set, with

X = [0,1]d a typical choice. Bayesian optimization works by building a probabilistic model
for the unknown function f , typically in a Bayesian manner by placing a Gaussian process
prior over it. Function evaluations are incorporated into the probabilistic model using Bayes’
Rule, by conditioning the prior on the location and value of previous function evaluations.
With this setup, one aims to design a policy that adaptively chooses inputs x1, . . . , xT in
order to find the global optimum in as few function evaluations as possible.
There are multiple distinct criteria one use to can study performance of Bayesian opti-

mization algorithms. The simplest, arguably, is expected simple regret with respect to the
prior, namely

E
[
sup
x∈X

f(x)− f∗
T

]
(5.1)

7 In the language of Section 5.2.2, we believe that one should be able to show that all branching processes
satisfy the Whittle condition in an appropriate sense, and use this to construct an optimality argument.
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where f∗
t =maxu∈{1,...,t} f(xu) and the unknown function f is sampled from the prior. In

this setting, the question of how to adaptively choose the next data point xt+1, given a
set of previous function evaluations (x1, f(x1)), . . . , (xt, f(xt)) can be formalized to define
an MDP. Solving this MDP—and, indeed, almost all other MDPs which occur in Bayesian
optimization contexts—is known to be intractable. However, by applying a one-step greedy
approximation to this MDP’s dynamic programming equations, one arrives at the expected
improvement acquisition function

EIt(x) =E[max(f(x)− f∗
t ,0)]. (5.2)

A very similar expected improvement formula above previously came up in Section 2. This is
not a coincidence: consider a mild generalization known as cost-aware Bayesian optimization,
specifically the cost-per-sample formulation, where one adds a sequence of costs c(xt)> 0
to the above objective, and allows the algorithm to decide when to stop, as opposed to
having T be a fixed hyperparameter. Note that that E[supx∈X f(x)] is constant with respect
to the policy. Using this, following Xie et al. [114], if we switch from minimizing regret to
maximizing the negation of all terms, and drop the aforementioned constant, we obtain

E

[
f∗
T −

T∑
t=1

c(xt)

]
(5.3)

which is the same as the objective of Pandora’s box in (2.1). We therefore conclude:

(⋆) Cost-per-sample Bayesian optimization, under the expected simple regret performance
criterion, is a Pandora’s box problem with correlations between boxes.

Compared to the Pandora’s box of Section 2, the crucial difference here is that there is
now a potentially uncountable number of boxes, indexed by X, and rewards in different
boxes are correlated. These correlations completely break the argument of Theorem 3.7,
which no longer applies. On the other hand, the same correlations also make the optimal
policy intractable: one can therefore ask whether the Gittins policy at least makes sense as a
candidate to consider implementing in practice.

5.1.1. Defining a Gittins index for Bayesian optimization To proceed, we view
cost-per-sample Bayesian optimization as a variant of MCS where whenever one Markov
chain advances, the transition kernels of all other Markov chains also update. In Bayesian
optimization, this transition kernel update occurs due to updating the posterior distribution
of the unknown function f . The appropriate definition of a Gittins policy for this variant of
MCS—and thereby for Bayesian optimization—is just like the Gittins policy for ordinary
MCS, but where we make sure to always use the updated transition kernel when defining
Gittins indices. We now make this precise.

Suppose we have already observed the values f(x1), . . . , f(xt), resulting in a posterior
distribution pt for f | f(x1), . . . , f(xt). Based on this posterior distribution, we define the
Gittins index of an input point x in much the same way as the Gittins index of a Pandora’s
box in Section 2.3. Specifically, we think of input point x as corresponding to a box whose
opening cost is c(x) and whose value distribution is that of f(x) for f ∼ pt: That is, we define
the expected improvement function at time t to be

EIt(x,α) =Ef∼pt
[max(f(x)−α,0)]− c(x) (5.4)

= (µt(x)−α)Φ

(
µt(x)−α

σt(x)

)
+σt(x)φ

(
µt(x)−α

σt(x)

)
− c(x) (5.5)

where µt and σt are the mean and standard deviation of the posterior Gaussian process, and
φ and Φ are the standard Gaussian PDF and CDF, respectively. From this, we define the
Gittins index function at time t to be Gt, where Gt(x) solves the root-finding problem

EIt(x,Gt(x)) = 0. (5.6)
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Here, the expected improvement function in (5.2) is the special case of (5.4) where we always
plug in α = f∗

t . At time t, meaning after evaluating f(x1), . . . , f(xt), we need to choose
between one of the following actions.

a. Choose a next point xt+1 to evaluate. As described above, choosing to evaluate xt+1 = x
has Gittins index Gt(x).

b. Choose to stop by setting T = t and taking an observed value, namely f∗
T =

max(f(x1), . . . , f(xT )). This action yields reward f∗
T and ends the process—so, just as

in ordinary Pandora’s box, it has Gittins index f∗
T .

The Gittins policy for Bayesian optimization, also called the Pandora’s box Gittins index
(PBGI) by Xie et al. [114] to emphasize its connection with Pandora’s box, is then the policy
that always takes the action of maximum Gittins index.

One point of subtlety is that, even though (5.4) and (5.6) are essentially the same as their
Pandora’s box counterparts in (2.10) and (2.15), which involve no correlations, it is not
correct to say that (5.4) and (5.6) ignore correlations. This is because they use the posterior
distribution pt, which accounts for correlations in its definition. Thus, a more accurate
description would be to say that (5.4) and (5.6), in some sense, account for correlations from
the past, but disregard correlations in the future.

5.1.2. Maximizing the Gittins index numerically Since the state space is infinite,
maximizing Gt(x) in order to select the next data point requires gradient-based optimization.
In Bayesian optimization, this step is called acquisition function optimization, and is generally
performed numerically using multi-start variants of either LBFGS or ADAM. The challenge
now is that one needs to compute the gradient ∇Gt(x), which involves automatically differ-
entiating through the root-finding problem. To avoid differentiating through the individual
steps of bisection search or other root-finding algorithm, Xie et al. [114] show that ∇Gt(x)
admits a particularly simple form, namely

∇Gt(x) =∇µ(x)+
φ
(

µt(x)−Gt(x)
σt(x)

)
∇σt(x)−∇c(x)

Φ
(

µt(x)−Gt(x)
σt(x)

) . (5.7)

Using this, one can compute Gt(x) numerically using bisection search, then plug the result
in to (5.7) to obtain the gradient. This approach is an instance of a general principle used
throughout the automatic differentiation literature [4, 18]: one can differentiate through the
solution of a root-finding problem numerically by expressing the respective derivative in
terms of the function defining the root-finding problem, together with the root.

5.1.3. Performance of the Gittins index in Bayesian optimization With an appro-
priate Gittins policy—which is not optimal—defined, the question becomes: is it strong?
Empirically, at least for the kind of Gaussian processes which are used in Bayesian opti-
mization benchmarking, the answer appears to be yes : Xie et al. [114] show that the Gittins
policy either matches or outperforms most baselines—this is shown in Figure 5.1.
This connection appears to be new: to the best of our knowledge, it remained unnoticed

until the recent work of Xie et al. [114], and prior to that, only Persky [84] had approached
Bayesian optimization using a discounted-bandit variant of Gittins indices. One benefit the
Gittins index perspective brings to Bayesian optimization is that Gittins indices naturally
handle different input points having different function evaluation costs—an ongoing challenge
in Bayesian optimization [72, 73, 114]—because the Pandora’s box problem naturally allows
different boxes to have different opening costs.

Developing a theory that characterizes the strengths and limitations of the Gittins policy’s
performance in Bayesian optimization—for instance, in the language of regret or approxi-
mation ratio bounds—is the subject of ongoing research. Recent results on Pandora’s box
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Figure 5.1. Results reproduced from Xie et al. [114]: empirical performance (higher is better) of
the Gittins policy for Bayesian optimization, also called PBGI (green) in the legend, against other
baseline policies, shown in terms of medians and quartiles over 16 seeds. The task here is to optimize
benchmark objective functions, constructed to resemble real-world black-box optimization settings.
We plot the best observed function value, in terms of medians and quartiles from 16 trials with
different random initializations. We see that PBGI, along with a minor variant called PBGI-D
(purple), claim the top-performing spot in the first two problems, and are reasonably competitive
in the third. This holds for both c(x) chosen to be a constant function, termed the uniform-cost
setting, and c(x) non-constant, termed the varying-cost setting.

with general joint value distributions [28, 43] may provide a good starting point, though
it is likely that stronger guarantees might be possible when focusing on the multivariate
Gaussian distributions that arise in typical Bayesian optimization priors.

Another rich future direction is developing versions of the Gittins policy for more advanced
Bayesian optimization settings, such as multi-fidelity optimization for applications like
hyperparameter tuning [35, 118]. These are problems where there are multiple actions one
can take at any given input point—for instance, one can either fully evaluate the function,
or obtain a cheap but noisy value estimate. Some such problems may share features of our
next example: a Pandora’s box variant with two actions available for closed boxes.

5.2. Pandora’s box with optional inspection

A natural question about the Pandora’s box problem is: what changes if one is allowed to
select a closed box—without opening it first? This variant of the problem is called Pandora’s
box with optional inspection (also known as nonobligatory inspection) [33], in contrast with
the original problem’s required inspection (also known as obligatory inspection). Optional
inspection results in a much harder problem than required inspection, with Fu et al. [39]
showing it is NP-hard in an appropriate computational sense. In particular, while the Gittins
index can still be defined, the Gittins policy is no longer optimal for reasons we explain
below. With this said, the Gittins index is still a critical tool for the optional inspection
setting: a number of approximation algorithms for Pandora’s box with optional inspection
are known [15, 17, 27, 39, 54, 87], and all of them use the Gittins policy as a subroutine.
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Figure 5.2. A single Pandora’s box with optional inspection is not simply a Markov chain, but an
MDP: specifically, from the closed state ⊠, one can take either the ▷open action, which incurs cost
but reveals the box’s reward, or the ▷take action, which takes the box without opening it first. Once
a box is opened, the only available action is ▷take.

The core reason why the Pandora’s box problem with optional inspection is difficult is
that it is not an instance of Markov chain selection (MCS; see Definition 3.2). Instead, it is
an instance of what we call MDP selection, where instead of choosing which one of multiple
Markov chains to advance at each time step, one chooses which one of multiple MDPs to
advance, along with which action to take in the chosen MDP. MDP selection is usually
referred to in the Gittins index literature as a the Markovian multi-armed bandit with bandit
superprocesses [23, 56, 80, 109], but we introduce the MDP selection name for consistency
with MCS. (See also the discussion in Section 3.1.1.)

The reason Pandora’s box with optional inspection is an instance of MDP selection, as
opposed to the simpler MCS, is that each box admits two possible actions when it is closed:

a. Open, denoted ▷open behaves like the Markov chain for required inspection, yielding
reward −c and advances the box to an open state v∼ p.

b. Take, denoted ▷take, takes the box without opening it, yielding (expected) reward
Ev∼p[v].

Figure 5.2 gives an illustration.

5.2.1. Why MDP selection is harder than Markov chain selection One might
hope that the Gittins index approach might extend from MCS to MDP selection. Indeed,
it turns out that one can still define the Gittins index of an MDP in essentially the same
way as for a Markov chain, namely using a local MDP (Definition 3.4). Unfortunately, the
resulting Gittins policy for MDP selection is generally not optimal. This is not a surprise:
MDP selection is NP-hard, thanks to the aforementioned NP-hardness of Pandora’s box with
optional inspection [39], so we should not expect the Gittins policy—which can be computed
in polynomial time in the finite-state case [25, 41, 63]—to solve it. But what specifically
prevents the Gittins policy from being optimal?

Let us first clarify what the local MDP and Gittins index look like for an MDP with action
space A instead of a Markov chain. Just like in Definition 3.4, the local MDP is essentially
the original MDP with an extra action □ that terminates the process and yields reward α,
meaning that we have

Aloc =A∪{□}. (5.8)
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⋆

H1 = 2 G1(⊠) = 12

12

value

α

V open
loc,1 (⊠;α)

V take
loc,1(⊠;α) =E[v1] = 7

V □
loc,1(⊠;α) = α

(a) Local MDP value for box 1 from Figure 2.1.

⋆

H2 = 1.25 G2(⊠) = 13

13

value

α

V open
loc,2 (⊠;α)

V take
loc,2(⊠;α) =E[v2] = 3.6

V □
loc,2(⊠;α) = α

(b) Local MDP value for box 2 from Figure 2.1.

Figure 5.3. Analogue of Figure 3.2 for Pandora’s box with optional inspection. Value functions
of the (⊠, α)-local MDP for the two closed boxes in Figure 2.1 with three different initial actions:
▷open (teal), ▷take (orange), and □ (violet). As in Figure 3.2, the optimal action is □ for all values of
α above a threshold, and we define the Gittins index Gi(⊠) to be that threshold. In these cases,
the action that is co-optimal with □ when α=Gi(⊠) is ▷open. But when α is lower than another
threshold Hi, the optimal first action is ▷take. This means that in the context of a larger Pandora’s
box with optional inspection problem, or more generally MDP selection, even if we are confident
about wanting to play an action on box i, whether we prefer ▷open or ▷take may depend on the
states of the other MDPs.

But this action space is no longer a two-element set: instead of a single action ▷ that advances
the Markov chain, now each of the MDP’s actions a∈A advances it using action a, which
must be specified. In spite of this, one can show that Definition 3.6 continues to make sense,
yielding a well-defined Gittins index G(s) of each state s among MDPs. We can then define
the Gittins policy as the policy that always plays an action from the MDP of greatest Gittins
index G(s), choosing an action, other than □, that is optimal for the (G(s), s)-local MDP.
The core issue is that optimality of the Gittins policy relies on the following fact about

the local MDP with a Markov chain and any fixed starting state s:

(⋆) If the ▷ action is optimal under some alternative α, then the same ▷ action is also
optimal with any worse alternative α′ <α.

This property fails in general when using an MDP instead of a Markov chain, because the
single action ▷ is replaced by the MDP’s action space A. In particular, the optimal action
for the local MDP with alternative G(s) might be different than the optimal action with
lower alternative option. Intuitively, this is a problem because it means that in full MDP
selection, the optimal action to take within one MDP might depend on the states of the
other MDPs. See Remark A.8 for details on exactly where the proof of Theorem 3.7 breaks
down when generalizing from MCS to MDP selection.
For example, consider the MDP of a box in Pandora’s box with optional inspection

(Figure 5.2) in the closed state ⊠. We show the values in the local MDP for three different
initial actions in Figure 5.3.

(a) For sufficiently large values of α, as usual, the optimal action is □.

(b) For intermediate values of α, the optimal action is ▷open. The intuition is that the box
has a good chance of being either significantly greater or significantly less than α, so it
is worth paying the opening cost to learn the box’s value.

(c) For sufficiently small values of α, the optimal action is ▷take. The intuition is that the
alternative α is so low that we are very unlikely to prefer it to the box’s value, so we
are happy taking the box without paying the cost to open it.
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This means that in the context of a broader MDP selection instance with multiple boxes,
the optimal ▷open vs. ▷take choice within one box’s MDP might depend on the states of the
other MDPs. This can cause prioritizing by Gittins index to be suboptimal: Doval [33] gives
a concrete example.

5.2.2. Approximate solutions to MDP selection using the Gittins index Despite
the above challenges, many approximation algorithms have been proposed for Pandora’s
box with optional inspection [15, 17, 27, 39, 54, 87], and similarly for other Pandora’s box
variants and applications [7, 16, 21, 27, 66]. The Gittins index plays a critical role in most
of these algorithms. For example, Fu et al. [39] and Beyhaghi and Cai [15] show that the
optimal policy for the optional inspection setting is a two-phase policy, the second phase
of which is to use the Gittins policy; and, while optimally choosing the phase boundary is
intractable, they use this insight to construct a polynomial-time approximation scheme for
the problem.

There are a few sufficient conditions under which the Gittins policy is known to be optimal
for MDP selection. Doval [33] identifies one such condition for Pandora’s box with optional
inspection. In the general MDP selection setting, Whittle [109] identifies a condition, now
called the Whittle condition [23, 48, 56] that can be checked separately for each local MDP,
with the Gittins policy being optimal if all local MDPs satisfy it.

An MDP satisfies the Whittle condition if, roughly, it can be reduced to a Markov chain
with no loss of value in the local MDP. Specifically, it requires that in every state s of the
MDP, there is a single action a such that for all alternative values α, either □ or a is optimal
in the (s,α)-local MDP. This precludes the cases shown in Figure 5.3, where either ▷open or
▷take can be optimal. One can show, in Pandora’s box with optional inspection, that a box
MDP (Figure 5.2) satisfies the Whittle condition only in the trivial case where its opening
cost is so large that ▷open is never optimal in the local MDP [33]. The Whittle condition is
thus relatively limited in scope, though there are some notable classes of MDPs that satisfy
it [47, 48, 107].

However, recent work has revealed fresh promise for the idea of reducing MDPs to Markov
chains as a general approach for solving MDP selection: Scully and Doval [87] and Chawla
et al. [27] introduce a relaxation of the Whittle condition called local β-approximation and
show that many MDPs that fail the Whittle condition admit local approximations. Roughly
speaking, an MDP admits a local β-approximation if it can be reduced to a Markov chain
such that if the rewards are then scaled by β, there is no loss of value in the local MDP
with any alternative α, as compared to the original local MDP with the same alternative α
(and without any scaling). This slightly unusual approximation requirement—which is not
equivalent to simply achieving a β-approximation in the local MDP—ensures the following
guarantee: in an MDP selection instance where all the MDPs admit (possibly randomized)
local β-approximations, the Gittins policy is a β-approximation of the optimal policy [27, 87].
Moreover, this guarantee also holds in the k-finish and combinatorial settings described in
Section 4.3 [27, 87]. We suspect that local approximation is related to the results of Clarkson
et al. [29], who prove an approximation guarantee for a special case of MDP selection without
explicitly reasoning using the local MDP.
The local approximation approach described above reduces MDPs to Markov chains by

attempting to solve the local MDP in a way that is in some sense good for any alternative
value α. A complementary approach to could be to figure out, based on the specific MDP
selection instance, what alternative value αi is, in some sense, most relevant for each individual
MDP i, then take actions within MDP i that would solve its local MDP with alternative αi.
Bowers et al. [20] prove a 1/2-approximation result that is a first step in this direction. In
fact, they obtain their result even under an additional take it or leave it constraint, so it is
possible that there are even stronger guarantees waiting to be shown with this approach.
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5.3. Minimizing tail latency in queues

As our last example, we revisit the queue scheduling setting from Section 4.4, where we
saw in Definition 4.3 and Theorem 4.4 that the Gittins policy minimizes mean latency in
the M/G/1 queue. However, in many settings, a more relevant objective than minimizing
mean latency is minimizing tail latency. Tail latency is a broad term that refers to one of a
number of related metrics that capture how likely jobs are to have especially large latency.
Optimizing tail latency is of direct importance to efficiently meeting service level objectives
in a wide variety of queueing systems in service, computing, healthcare, and other domains.

The specific metric we focus on minimizing tail probabilities, namely the probabilities a job
has latency greater than large thresholds t. That is, if an M/G/1 scheduling policy induces
latency distribution L, then the tail probabilities are P[L> t]. We could equivalently work
with tail quantiles, namely the (1− ε)th quantiles of L for small values of ε.

Given a fixed threshold t, one might hope to use the Gittins index to minimize P[L> t] by
having a job’s Markov chain incur cost 1 (meaning, yield a reward of −1) once it has been in
the system for time t. Unfortunately, this type of cost structure cannot be encoded as part
of standard MCS (Definition 3.2) or its M/G/1 variant. The issue is that for the job to incur
cost 1 after spending time t in the system, one would need to keep track of the job’s time in
the system so far as part of its state. But this quantity changes even when the job is not in
service, whereas in MCS, a Markov chain only advances when its action is played—meaning,
here, that a job changes state only when in service.

There is an extension of MCS, called the restless bandit problem [111], in which all Markov
chains advance each step, with the selected Markov chain advancing according to a different
(typically thought of as better) transition kernel and reward function than non-selected
Markov chains. In some cases, the Gittins index can be generalized to the restless bandit
setting—in which it is called the Whittle index. This approach has been used to for problems
similar to minimizing tail probabilities [6, 116], but tends to obtain theoretical guarantees
that are much weaker than optimality [106].
Nevertheless, there is a limited way in which ordinary MCS and the Gittins index can

handle jobs undergoing some sort of change even when not in service: discounting. Suppose, for
instance, that we consider job Markov chains with similar transitions to those in Figures 4.1–
4.3, but instead of incurring cost 1 with all transitions, most transitions incur cost 0, with
only transitions to the terminal state ✓ yielding reward 1. Then a job completed at time t
would yield reward γt, where γ < 1 is the discount factor. Notably, this reward is affected by
the global time t that advances every time step—no matter which job is served—which is
exactly the type of phenomenon that one typically needs restless bandits to capture.

Translating the above discussion to the M/G/1 setting, it suggests that one might be able
to use the Gittins index to maximize a metric like E[γL] for γ < 1.8 Unfortunately, while
this metric does incentivize completing jobs sooner rather than later, it does not capture
tail scheduling well: once a job has accrued large latency, it becomes less and less urgent,
because one is already guaranteed to receive a very small reward from it.
However, recent work by Yu and Scully [115] and Harlev et al. [57] shows that with a

small tweak, the metric E[γL] becomes a good proxy for tail probabilities:

(⋆) Instead of aiming to maximize E[γL] with discount factor γ < 1, one should aim to
minimize E[γL] with inflation factor γ > 1.

Indeed, when γ > 1, the goal of minimizing E[γL] not only incentivizes completing jobs earlier,
but also causes jobs to become more urgent the longer they have waited: the cost to be
eventually paid upon completion increases exponentially over time! Specifically, it is known

8 Specifically, there are issues to do with arrivals, because one cannot capture the E[γL] metric using time-
homogeneous arrivals [57, Section 3.3]. The work of Yu and Scully [115] and Harlev et al. [57], which we
soon discuss, does resolve these issues, but doing so is among their main technical contributions.
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Figure 5.4. Results reproduced from Yu and Scully [115]: empirical performance (higher is better)
of the Gittins policy for minimizing tail probabilities, also called Boost (blue) in the legend, against
other baseline policies, simulated in three different M/G/1 models with different service time
distributions. The job model is a continuous-time analogue of the known-size Markov chain from
Figure 4.1. The metric shown is tail improvement ratio relative to first-come first-served (FCFS),
which for policy π and response time threshold t is 1− P[Lπ > t]/P[LFCFS > t]. The probabilities
P[Lπ > t] are approximated by simulating the policies on a trace of 50 million randomly generated
arrivals. The Gittins policy is the clear winner over the Nudge family of baselines [26, 53, 101], with
larger improvement when the service time distribution’s coefficient of variation is larger. Shortest
remaining processing time (SRPT) (purple) performs better than the Gittins policy for small
thresholds t, but SRPT’s performance suddenly collapses as t increases. This is because although
SRPT minimizes mean latency [85], under light-tailed service times, it has the worst possible
asymptotic tail probabilities as t→∞ [82, 83].

that under certain light-tail assumptions on the service time distribution, minimizing E[γL]
for a carefully chosen value of γ > 1 results in asymptotically minimal tail probabilities—that
is, minimizing the asymptotics of P[L > t] in the t → ∞ limit in a certain precise sense
[22, 113]. This idea led to the first policies that achieve better tail probabilities than simple
first-come first-served (FCFS) policies for light-tailed service times [26, 53, 101]. However, it
was viewing the problem as MCS with inflation that led to the discovery of the asymptotically
optimal policies—which are instances of the Gittins policy—first for known service times
[115], then for general job Markov chains [57]. See Harlev et al. [57, Appendix D] for a
general account of MCS with inflation.

We conclude that, by using inflation instead of discounting, one can use the Gittins policy
to asymptotically minimize tail probabilities P[L> t] as t→∞. Moreover, this translates
into state-of-the-art empirical performance for practical values of t:

a. For known service times, Figure 5.4 shows that the respective Gittins policy makes a
substantial improvement over other baselines.

b. For unknown service times, the Gittins policy is the first policy known to improve upon
FCFS’s tail asymptotics, so there are no other baselines to compare against.

We refer the interested reader to Yu and Scully [115] and Harlev et al. [57] for further details.

6. Conclusion

We have presented the Gittins index (Definition 3.6), a tool for solving decision-making
problems under uncertainty that require choosing among multiple processes to advance. The
Gittins index yields an optimal policy when these processes are independent—specifically,
it solves MDPs that can be expressed as an instance of Markov chain selection (MCS,
Definition 3.2)—and many problems fit directly into this framework (Section 4). The key
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idea behind the Gittins index definition is to compare a stochastic action to a deterministic
alternative in the local MDP (Definition 3.4), which continues to make sense in problems
beyond MCS. In various cases, the Gittins index continues to yield strong policies in these
more difficult problems (Section 5). In particular, we highlighted two practical applications
where the Gittins index shows particular promise: Bayesian optimization (Section 5.1) and
scheduling to minimize tail latency (Section 5.3).

6.1. Additional topics

There are many Gittins index topics that we did not cover. For example, we focused on
one particular way of defining the Gittins index, but there are actually many equivalent
definitions, each of which gives different intuition or insight [45, 63, 109]. We also only briefly
touched on proofs, limiting ourselves to a dynamic programming argument in Appendix A:
however, just as the Gittins index enjoys many definitions, it also enjoys many optimality
proofs [12, 32, 34, 99, 100, 104, 107, 109]. See Frostig and Weiss [38] for an overview of four
of the main optimality proof approaches and Appendix A.3 for additional discussion. Other
important topics that we omitted or mentioned only briefly include:

1. The history of the Gittins index , for which we refer the reader to Gittins et al. [45] and
Glazebrook et al. [50]. We also highlight the latter half of Gittins [44], which records
discussion about the Gittins index shortly after its discovery.

2. Efficiently computing the Gittins index , which is well understood for finite-state Markov
chains [25, 41, 63], but, as discussed in Section 3.4, remains a challenge for general
infinite-state Markov chains [36, 45, 64, 65].

3. Formulating the Gittins index in continuous time, which is conceptually similar, but
technically more difficult, than the discrete-time setting we focus on here [9, 61, 62, 75].

4. Approximate optimality results in two settings beyond standard MCS: when one has
only approximately computed the Gittins index, and when multiple Markov chains
must be played in parallel. See Gittins et al. [45, Sections 4.10 and 5.7] for a treatment
of the discounted setting and Scully [86, Chapters 16 and 17] for a treatment of the
queueing setting.

5. Robust variants of the Gittins index for settings with misspecified transition kernels
[24, 31, 55, 65, 79, 89].

6. Other modern work on the Gittins index , including applying it to auction design
[66], adapting it to fairness constraints [5], applying it to analyze games [30], better
understanding its behavior in queues [1–3, 92, 93], and proving regret bounds for
non-Bayesian bandit settings [36, 69].

7. Restless bandit problems [111], in which Markov chains can transition even on time
steps when they are not played. In this setting, a generalization of the Gittins index,
called the Whittle index, yields a good policy under certain conditions [106], and similar
ideas have recently led to policies that achieve even better performance under more
general conditions [8, 42, 59, 60, 102]. See Niño-Mora [81] for a recent survey.

6.2. Open problems

We conclude by listing several classes of open problems in Gittins indices, some of which
have been mentioned throughout our exposition. The first a comprehensive understanding of
numerical computation beyond finite-state settings, as discussed in Section 3.4. Are there
general classes of infinite-state Markov chains for which the Gittins index can be efficiently
computed, especially if the state space is high-dimensional? Can one utilize the very small
and structured nature of the local MDP’s action space to solve the corresponding dynamic
program more efficiently than off-the-shelf approximate dynamic programming methods
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would allow? An understanding of these questions would allow Gittins indices to be applied in
substantially more complicated settings compared to those which are well understood today.

The second class of open problems is the analysis beyond optimality of the Gittins policy.
We mention several results of this type in Section 6.1, but many open problems remain. One
such problem, which is particularly important for Bayesian optimization (Section 5.1), is
proving regret bounds on the Gittins policy. For finite-horizon bandits, an important initial
step in this direction has been taken by Lattimore [69] and Farias and Gutin [36]. However,
at present, even for simple regret in Pandora’s box, a corresponding analysis has yet to be
developed. An improved understanding of the Gittins policy’s regret, and related quantities
appropriate for other setups, could help understand in which situations the key definition is
the right approach.

In this context, it is worth noting that compared to approximate optimality, exact optimal-
ity is a rigid notion—which, necessarily, captures all phenomena occurring in the problem,
including those reflected in constant factors rather than rates. In contrast, approximate
optimality arguments tend to work in greater generality, and can therefore provide a comple-
mentary understanding by clarifying which phenomena are specific and which are universal.
Such analyses might therefore reveal properties of the Gittins index that complement what
is known from its optimality theory.

A third class of open problems involves understanding metrics beyond mean performance.
Here, we have illustrated a Gittins index variant that can be used to minimize tail latency
in queueing. More broadly, many decision-making algorithms admit analogues that seek
to perform well in terms of quantile regret, or in terms of high-probability bounds. We
therefore expect there to be decision problems which may appear rather different from the
classical Gittins index examples, but which nonetheless can be approached fruitfully using
the presented toolkit.
Finally, we believe that, given the scope of generality presented in this tutorial—where

Definition 3.2 allows for arbitrary Markov chains—that Gittins-index-based decision-making
should be helpful for a broader set of domains that may otherwise appear to have little
to do with queueing and economics, where Gittins indices have traditionally been applied.
Domains where Bayesian optimization is popular, such as chemistry and material design,
seem particularly promising: here, Gittins-index-based machinery might allow one to work
with more-complex experimental pipelines—or with more-flexible probabilistic models defined
by, for instance, diffusion models, rather than traditional Gaussian processes. To achieve
this, developing the aforementioned understanding of numerical methods is a key initial step.
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A. Optimality of the Gittins index policy

In this appendix, we prove Theorem 3.7, namely optimality of the Gittins policy for MCS
(Definition 3.2). The result is a direct corollary of Theorem A.7, the main result of this
appendix, which gives an explicit formula for the value function of MCS. Our proof, given in
Appendix A.1, consists of the following steps:

1. We state the specific assumptions needed for our proof. Some involve dynamic program-
ming (Assumption A.1), while others are taken to ease presentation (Assumption A.2).

2. We define the surrogate value of a Markov chain (Definition A.4), a random variable
that gives a probabilistic interpretation of the local MDP value function (Lemma A.5).

3. We define a guess for the MCS value function by appropriately combining the Markov
chains’ surrogate prices, then show that it solves the MCS Bellman equation (Theo-
rem A.7). The rough idea is that our MCS value function guess inherits the respective
Bellman inequalities of the Markov chains’ local MDPs.

After the proof, we explain how to extend it from MCS to MCS-k (Appendix A.2), then
discuss other proofs of the Gittins policy’s optimality from the literature (Appendix A.3).
Our proof is primarily based on that of Whittle [109] but uses ideas from other proofs, too.

A.1. Optimality via dynamic programming using surrogate values

To begin, define the Bellman operator of action i, denoted Bi, to be an affine operator that
acts on all f : Si →R for which Es′i∼pi(si)[f(s

′
i)] is finite for all si by

(Bif)(si) = ri(si)+Es′i∼pi(si)[f(s
′
i)]. (A.1)

Using Assumption 3.3, by standard theory, the local MDP’s optimal value function V ∗
loc,i :

Si ×R→R is well defined and solves the Bellman optimality equation

V ∗
loc,i(si;α) =max

(
α,BiV

∗
loc,i(si;α)

)
. (A.2)

The corresponding Bellman optimality equation for MCS is

V ∗
MCS(s1, . . . , sn) = max

i∈{1,...,n}
BiV

∗
MCS(s1, . . . , sn). (A.3)

where the Bellman operator Bi is understood as acting on the function si 7→ V ∗
MCS(s1, . . . , sn),

and similarly throughout for other expressions using the variables s1, . . . , sn. We first make
the following assumption, to ensure dynamic programming works the way one expects it to.

Assumption A.1. The optimal value function V ∗
MCS : S1×· · ·×Sn →R is well defined, and

is achieved by at least one policy π∗ : S1 × · · ·×Sn →{1, . . . , n}. Moreover, a given policy is
optimal if and only if its value function satisfies Bellman’s optimality equation (A.3).

We expect Assumption A.1 to follow from Assumption 3.3, but do not rigorously check
this in order to focus our presentation on Gittins-index-theoretic aspects. Note, however, that
Assumption 3.3 guarantees that V ∗

loc,i(si;α) is bounded by the sum of α plus the maximum
absolute sum of the rewards, both of which are finite: this implies V ∗

loc,i is never infinite
and hence well defined. Using this and finiteness of MCS’ action space, one can show that
the maximum in (A.3) is achieved, and therefore defines a policy. By unrolling this policy’s
respective Bellman equation and applying the fact that Assumption 3.3 guarantees either
discounting or termination in finite time, one can check that the resulting policy achieves
a value of V ∗

MCS, which is always finite. In the other direction, any policy which does not
satisfy Bellman’s optimality equation is suboptimal, as it can be improved by replacing its
action in some state with one that maximizes (A.3). A final subtlety worth noting is that, in
our setting, (A.3) need not admit a unique solution V ∗

MCS, and spurious solutions can occur
in practical settings—see Scully et al. [91, Appendix D] for an example.

For ease of exposition, we make two additional assumptions without loss of generality.



Ziv Scully and Alexander Terenin: The Gittins Index 39

Assumption A.2. Both of the following hold:

(a) There is no discounting: γ = 1.

(b) All Markov chains have no free states, where a Markov chain state is called free if it has
non-negative reward and zero probability of transitioning directly into a terminal state.

The intuition behind Assumption A.2(b) is in the name: free, as in beer. Free states always
give a reward, and never cause the decision problem to end, resulting in only gain with no
downside. So, any reasonable algorithm should always play them whenever they occur. From
a Gittins index viewpoint, this manifests in the form of having to deal with extended-valued
functions: this is a technical nuisance, so we will assume without loss of generality that none
occur. To avoid casework, we work in the undiscounted setting, also without loss of generality.

We now briefly argue why Assumption A.2 can be made without loss of generality. For (a),
one can use the standard trick of replacing discount factor γ by probability-(1−γ) transitions
from all states to a terminal state. For (b), in an MCS instance with free states, one can
show that an optimal agent always prioritizes playing Markov chains in free states before
those in non-free states. We can thus eliminate free states from each Markov chain, altering
the transition kernels and reward functions in light of the fact that the Markov chain will be
advanced until it reaches a non-free state.
Provided there are no free states, the Gittins index is always finite, as shown below. In

fact, it is this property that causes the MCS value function to admit a simple form.

Lemma A.3. For any state non-terminal s of any Markov chain satisfying Assumption 3.3,
if s is not free, then G(s)<∞.

Proof. Consider a Markov chain (S,∂S, p, r), and define the following quantities for all
non-terminal states s:

• Let q(s) = Ps′∼p(s)[s
′ ∈ ∂S] be the probability of transitioning directly from s to a

terminal state.

• Recall that r(s) is the immediate reward of s.

• Let random variable R(s) be the total reward received on a random trajectory from s
to a terminal state. Assumption 3.3 tells us E[R(s)]<∞.

Suppose s is not free, meaning either q(s)> 0 or r(s)< 0, and consider the (s,α)-local MDP
It suffices to show there exists α∈R such that playing □ is strictly better than playing ▷.
There are two cases to consider, depending on the reason s is not free. In both cases, we

bound V ▷
loc(s;α), the optimal value achievable in the local MDP when playing ▷ at least

once. Specifically, we show V ▷
loc(s;α)< α for sufficiently large α ∈ R in both cases, which

implies the result.
When q(s)> 0, we apply the bound

V ▷
loc(s;α)≤E[R(s)] + (1− q(s))α. (A.4)

This holds because the maximum expected reward obtainable from the Markov chain is
E[R(s)], and when playing ▷ first, the probability of ever playing □ is at most 1− q(s).
Because E[R(s)]<∞ and 1− q(s)< 1, we have V ▷

loc(s;α)<α for large enough α.
When r(s)< 0, we apply the bound

V ▷
loc(s;α)≤ r(s)+E[max(R(s)− r(s), α)]. (A.5)

This holds because the right-hand side is the value that would be achievable if after playing ▷
once, the agent learned the Markov chain’s full trajectory and clairvoyantly chose between
the alternative α and the remaining trajectory reward R(s)− r(s). Because E[R(s)]<∞, we
have

lim
α→∞

(
V ▷
loc(s;α)−α

)
≤ r(s)+ lim

α→∞
E[max(R(s)−α,0)] = r(s). (A.6)

Because r(s)< 0, this means V ▷
loc(s;α)<α for large enough α.
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We now introduce the machinery needed to state the MCS value function. At a high
level, this value function is a certain combination of the value functions of the Markov
chains’ local MDPs. The specific combination is most easily written and understood using a
probabilistic interpretation. Our next step is therefore to express a Markov chain’s local MDP
value function probabilistically. Throughout, let (S,∂S, p, r) be a Markov chain satisfying
Assumptions A.2 and 3.3, and note again by Lemma A.3 that all Gittins indices in question
are finite.

Definition A.4. The surrogate value of non-terminal state s∈ S \ ∂S, denoted Γ(s), is the
random variable equal to the minimum Gittins index on the trajectory from s (inclusive) to
a terminal state in ∂S (exclusive). More formally, letting s(0), s(1), . . . be a trajectory of the
Markov chain with s(0) = s, and letting τ be the hitting time of ∂S, we have

Γ(s) = min
0≤u<τ

G(s(u)). (A.7)

From (A.7), it is immediate that a state’s surrogate value is at most its Gittins index:

P[Γ(s)≤G(s)] = 1. (A.8)

The following lemma strengthens this by relating the full distribution function of Γ(s) to the
local MDP. In what follows, we use the term almost all in the Lebesgue sense.

Lemma A.5. The surrogate value and local MDP’s value function satisfy

P[Γ(s)≤ α] =
d

dα
V ∗
loc(s;α) for almost all α∈R (A.9)

E[max(Γ(s), α)] = V ∗
loc(s;α) for all α∈R. (A.10)

Proof. We first show (A.9). By the reasoning in the proof of Lemma 3.5, d
dαV

∗
loc(s;α), which

exists for almost all α by convexity, is the probability that an optimal policy for the local
MDP ever plays □.9 But we know that an optimal policy for the local MDP is to play □ if
and only if the current state s′ has G(s′)≤ α. The probability this policy ever plays □ is the
probability that some state s′ on the trajectory from s to a terminal state has G(s′)≤ α.
By (A.7), this happens if and only if Γ(s)≤ α, so the probability is P[Γ(s)≤ α], as desired.

Having shown (A.9), we move on to showing (A.10). Recall the definition of G(s) in (3.5):

G(s) = sup{g ∈R : V ∗
loc(s;g)> g}= inf{g ∈R : V ∗

loc(s;g) = g}. (A.11)

and recall also from Lemma A.3 that G(s)<∞. Combining (A.9) and (A.11) shows that for
all α≥G(s), we have

E[max(Γ(s), α)] = α= V ∗
loc(s;α) (A.12)

so (A.10) holds for α≥G(s). By the tail integral formula, for almost all α, we get

d

dα
E[max(Γ(s), α)] = P[Γ(s)≤ α]. (A.13)

Combining this with (A.9) implies (A.10) holds for α<G(s), too.

9 One can say more: if the derivative fails to exist, it is because there are multiple optimal policies with
different probabilities of playing □. But left and right derivatives still exist in this case, and Xie et al.
[114, Appendix B.6] show that they are the minimum and maximum probabilities of playing □ among
optimal policies.
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We are now ready to prove Theorem 3.7. We consider an undiscounted MCS instance with
n Markov chains (Si, ∂Si, pi, ri), all satisfying Assumptions A.1, A.2, and 3.3. As previously
discussed, our approach will be to guess the form of the MCS value function, then show that
it satisfies the Bellman equation.

Let VMCS : S1× · · ·×Sn →R be the value function of MCS of this MCS instance. Because
MCS terminates once any of its constituent Markov chains terminates, V ∗

MCS satisfies the
terminal condition

V ∗
MCS(s1, . . . , sn) = 0 if (s1, . . . , sn)∈ ∂SMCS (A.14)

where the latter is equivalent to si ∈ ∂Si for some i.
To solve the MCS Bellman equation (A.3), we need to consider what we know about the

operators Bi. The key piece of information is that Bi features in the Bellman equation for
the local MDP of Markov chain i, as spelled out in Lemma A.6 below. This suggests that if
we define V ∗

MCS by combining the local MDP value functions V ∗
loc,i in a suitable manner, we

can control how V ∗
MCS interacts with the Bellman operators Bi. We do this in Theorem A.7

below, which relies crucially on the surrogate value interpretation of V ∗
loc,i (Lemma A.5).

Lemma A.6. For all si ∈ Si \ ∂Si and all α∈R, we have

V ∗
loc,i(si;α) =max

(
α,BiV

∗
loc,i(si;α)

)
=

{
α if α≥Gi(si)

BiV
∗
loc,i(si;α) if α≤Gi(si)

(A.15)

with equality between the two branches, namely α=BiV
∗
loc,i(si;α) if and only if α=Gi(si).

Proof. The first equality is the Bellman equation of the local MDP for Markov chain i with
alternative α, and the rest follows from Definition 3.6. Specifically, playing □, which yields
value α, is optimal if and only if α≥Gi(si); and playing ▷, which yields expected value
BiV

∗
loc,i(si;α), is optimal if and only if α≤Gi(si).

Theorem A.7. The MCS optimal value function is

V ∗
MCS(s1, . . . , sn) =

E
[

max
i∈{1,...,n}

Γi(si)

]
if si ∈ Si \ ∂Si for all i

0 otherwise.

(A.16)

Moreover, the maximizing actions in the Bellman equation (A.3) are those with maximal
Gittins index:

argmax
i∈{1,...,n}

BiV
∗
MCS(s1, . . . , sn) = argmax

i∈{1,...,n}
Gi(si) (A.17)

and the value V ∗
MCS is achieved by the Gittins policy.

Proof. For the purposes of this proof, let us take V ∗
MCS to be the function defined by

the expression (A.16), which we emphasize is not assumed to be the optimal value. By
Assumption A.1, if we can show that this ansatz satisfies the Bellman equation (A.3) and is
the value of some policy π∗, then V ∗

MCS is indeed the true optimal value function.
Suppose si ∈ Si \ ∂Si for all i. It suffices to show that for all i,

BiV
∗
MCS(s1, . . . , sn)≤ V ∗

MCS(s1, . . . , sn) (A.18)

with equality if and only if Markov chain i has maximal Gittins index, meaningGi(si)≥Gj(sj)
for all j ̸= i.

Below, to reduce clutter, we shortenGi(si) toGi and shorten Γi(si) to Γi. Recall throughout
that surrogate values of different Markov chains are mutually independent. Let

Γ ̸=i =max
j ̸=i

Γj . (A.19)
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We first check that BiV
∗
MCS is well defined: this follows by the fact that rewards are bounded

in absolute value (Assumption 3.3). Next, using Lemma A.5, we can write the proposed
MCS value function in terms of Γ ̸=i:

V ∗
MCS(s1, . . . , sn) =E[max(Γi, Γ̸=i)] =E[V ∗

loc,i(si,Γ ̸=i)]. (A.20)

One intuition is that (A.20) shows the perspective of i on the MCS instance, where the
value of playing any action other than i has been summarized by the random variable Γ ̸=i.
Applying the (affine) Bellman operator Bi and using Lemma A.6 yields

BiV
∗
MCS(s1, . . . , sn) =BiE[V ∗

loc,i(si; Γ̸=i)] (A.21)

=E[BiV
∗
loc,i(si; Γ̸=i)] (A.22)

≤E[V ∗
loc,i(si; Γ̸=i)] (A.23)

= V ∗
MCS(s1, . . . , sn) (A.24)

with equality if and only if P[Γ̸=i ≤Gi] = 1. Here, changing the order of expectations when
going from (A.21) to (A.22) follows by Fubini’s Theorem, using absolute integrability of the
reward sum (Assumption 3.3). One subtlety is that while we have assumed si is non-terminal,
it might be that the next state s′i ∼ pi(si), which is used implicitly when we apply the
Bellman operator, is terminal. To handle this, one can check that (A.20) holds even when si
is terminal, in which case it becomes 0 = 0= 0.
It remains only to show that P[Γ̸=i ≤Gi] = 1 if and only if Gi ≥Gj for all j ̸= i. The if

direction follows from (A.8) and (A.19), which together imply

Γ̸=i =max
j ̸=i

Γj ≤max
j ̸=i

Gj ≤Gi (A.25)

with probability 1. For the only if direction, because Γ̸=i ≥ Γj for all j, it suffices to show
that if Gi <Gj for some j, then P[Γj ≤Gi]< 1. Lemmas A.5 and 3.5 together imply that for
all α∈R, the following three expressions are equivalent:

P[Γj ≤ α]< 1
d

dα
V ∗
loc(sj ;α)< 1 α<Gj . (A.26)

The desired statement follows by plugging in α=Gi.
Finally, we argue that the value achieved by the Gittins policy is indeed given by V ∗

MCS: in
some sense, this ensures that V ∗

MCS is not a spurious solution to the Bellman equation. Denote
the Gittins policy, under an arbitrary tie-breaking rule, by π∗ : S1 × · · · ×Sn →{1, . . . , n},
where, as with the notation used before, we do not assume optimality. Let s(0), . . . , s(τ),
without subscripts, be the trajectory of the MCS state vector under π, where s(0) = s=
(s1, . . . , sn) is the initial state, and τ is the time when MCS terminates, namely the hitting
time of ∂SMCS. By the preceding argument, we know that

V ∗
MCS(s) = max

i∈{1,...,n}
BiV

∗
MCS(s) =Bπ∗(s)V

∗
MCS(s). (A.27)

For every finite T ≥ 1, iterating the above expression and using the fact that V ∗
MCS(s(τ)) = 0

by (A.14) gives

V ∗
MCS(s) =E

[
min(T,τ)−1∑

t=0

rπ∗(s(t))(sπ∗(s(t)))+V ∗
MCS(s(min(T, τ)))

]
. (A.28)

Taking the T →∞ limit and applying dominated convergence via Assumption 3.3 yields

V ∗
MCS(s) =E

[
τ−1∑
t=0

rπ∗(s(t))(sπ∗(s(t)))

]
. (A.29)

The right-hand side is exactly the value achieved by the Gittins policy, as desired.
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Remark A.8. As discussed in Section 5.2, one cannot in general extend Theorems A.7
and 3.7 from MCS to MDP selection. However, part of the argument still goes through:

(a) On one hand, the Bellman inequality, namely (A.21)–(A.24), continues to hold. This
implies the value function guess in (A.16) is an upper bound for the MDP selection
value function, a fact which plays a crucial role in many approximation results for MDP
selection [7, 16, 20, 23, 27, 87].

(b) On the other hand, the Bellman equation generally fails: there need not exist an action
that makes the Bellman inequality tight. The issue is that in (A.22), the random
realization of Γ̸=i might influence which action is optimal, but we have to choose
an action without knowledge of Γ̸=i—recall that, here, Bellman operators are now
parameterized by a pair (i, a), where a is an action in MDP i. One of the few cases
when the Bellman equation holds despite this obstacle is when all the MDPs satisfy the
Whittle condition (see Section 5.2.2).

A.2. Generalization: finishing multiple Markov chains

We now sketch how the statement and proof of Theorem A.7 can be generalized from MCS
to MCS-k. The overall approach we take is the similar to that of Scully and Doval [87],
although that work considers just the Pandora’s box setting and its optional inspection
variant. See Singla [96] and Gupta et al. [55] for alternative proofs that also yield results for
variants of MCS-k involving combinatorial constraints.

The main difference here is that instead of the MCS value function involving the maximum
single surrogate value, the argument involves the sum of the k greatest surrogate values.
Specifically, when there are k items still to be selected, we have

V ∗
MCS-k(s1, . . . , sn) =E

 max
I⊆{1,...,n}

|I|=k

∑
i∈I

Γi(si)

. (A.30)

More generally, when exactly ℓ≤ k of the Markov chains are in terminal states, the same
formula holds, except we use only the k− ℓ greatest surrogate values, meaning we replace
|I| = k by |I| = k − ℓ. In particular, because the empty sum is 0, this gives a boundary
condition VMCS-k(s1, . . . , sn) = 0 when there are k Markov chains in terminal states.

To show that (A.30) gives a solution to the MCS-k Bellman equation, we use an analogue
of (A.20), expressing the MCS-k value function in terms of the local MDP’s value function.
To reduce clutter, we again shorten Gi(si) to Gi and Γi(si) to Γi, and we assume without
loss of generality that none of the Markov chains are in terminal states. Letting

Γwith i = max
I⊆{1,...,n}\{i}

|J|=k−1

∑
j∈J

Γj Γwithout i = max
I⊆{1,...,n}\{i}

|J|=k

∑
j∈J

Γj (A.31)

we can rewrite (A.30) as

V ∗
MCS-k(s1, . . . , sn) =E[max(Γi +Γwith i,Γwithout i)] (A.32)

=E[max(Γi,Γwithout i −Γwith i)] +E[Γwith i] (A.33)

=E[V ∗
loc,i(si; Γwithout i −Γwith i)] +E[Γwith i]. (A.34)

Just as (A.20) can be thought of as i’s perspective on MCS, (A.34) can be thought of as
i’s perspective on MCS-k. Because neither Γwith i nor Γwithout i depend on si, applying the
Bellman operator and then reasoning similarly to the end of proof of Theorem A.7 shows
the that Bellman equation holds, with playing i being optimal if and only if Gi is among the
k greatest Gittins indices.
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A.3. Comparison to other optimality proofs

There are many proofs of the optimality of the Gittins policy in the literature, taking a
variety of approaches and covering a variety of settings. We discuss just a few approaches
here, referring the reader to Gittins et al. [45, Section 2.12] for a more comprehensive history.
To the best of our knowledge, there is no single theorem that unifies all of the known

optimality results, particularly when infinite spaces, continuous time, or inflation (as in Sec-
tion 5.3) are involved. We consider providing such a unifying account to be an open problem.

For settings where Markov chains have finitely many states, a common approach is to use
induction on the number of states. See Tsitsiklis [100] for a particularly accessible proof of
this form. Roughly speaking, these proofs show that the state of maximal index should be
prioritized over all others, then reduce the Markov chain involved by removing that state.
One advantage of this inductive approach is that it easily generalizes to branching bandits
[107]. Another advantage is that the proofs are elegant and elementary. On the other hand,
a key difficulty is that they are hard to generalize to infinite state spaces.
The proof we give above is based primarily on that of Whittle [109], which is the first

dynamic programming proof of the Gittins policy’s optimality. In particular, Whittle [109]
discovered the form of the MCS value function as a combination of all the Markov chains’ local
MDP value functions, though without the probabilistic interpretation of Theorem A.7. Unlike
the inductive approach, the dynamic programming approach works essentially whenever
dynamic programming itself works—which our argument took as assumption.

An advantage of the dynamic programming approach is that it can be easily extended to
yield results about MDP selection (Section 5.2.2), including optimality when the MDPs satisfy
the Whittle condition [48, 109] and approximation results when they do not [7, 23, 27, 87].
Even more generally, in the setting where independent Markov chains are replaced by a
generalization called interleaved filtrations, essentially the same construction still works [74],
and extends to continuous time [9, 61, 62, 75].
Our proof is also influenced by proofs based on an economic argument, as pioneered

by Weber [104] for the discounted setting and later replicated in undiscounted settings
[21, 27, 34, 55, 66]. In the undiscounted setting, the argument consists of three main steps:

1. For each Markov chain i, define a random variable called its surrogate value, denoted Γi.
This is exactly our Definition A.4.

2. Show that, in MCS, the expected value achieved by any policy π is at most E[Γiπ ],
where iπ is the identifier of the Markov chain that π finishes, noting that there is always
exactly one such Markov chain under Assumption 3.3(a).

3. Show that the above inequality is in fact an equality when π is the Gittins policy.

4. Finally, observe that the Gittins policy always finishes the Markov chain of maximal
surrogate value, and thus always obtains surrogate value maxi∈{1,...,n} Γi.

The economic argument thus gives another interpretation of the value function we derive
in Theorem A.7: the expected value achieved by Gittins is E[maxi∈{1,...,n}Γi], and every
other policy π achieves at most E[Γiπ ]. One can therefore loosely think of Γi as a kind of
amortized value for each chain, hence the name surrogate value for it.
Finally, two more proof techniques, which are related to each other, are those based on

the achievable region approach [11–14, 32] and the WINE (work integral number equality)
queueing identity [86, 88, 90]. The main appeal of these approaches is that they can also
be used to prove guarantees on the approximate optimality of approximate index policies,
and to prove performance bounds for the multiserver case where multiple Markov chains are
advanced at every time step [14, 49, 51]. We refer the reader to Dacre et al. [32] for a primer
on the achievable region approach and to Scully [86] for a primer on WINE. There is not yet
a full account of the relationship between these approaches, but see Scully [86, Section 2.2.3]
for some initial discussion. A full unification would likely require a version of the achievable
region method that works with measure-valued linear programs.
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