

# What TCS Can Do for Queueing

*and*

# What Queueing Can Do for TCS

*in Scheduling Theory*

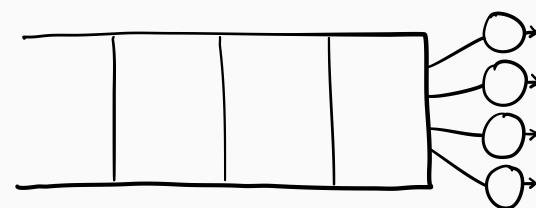


Ziv Scully  
Cornell University



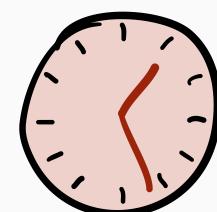
*Part I*

# Handling job size uncertainty



*Part II*

# Analyzing multiserver scheduling

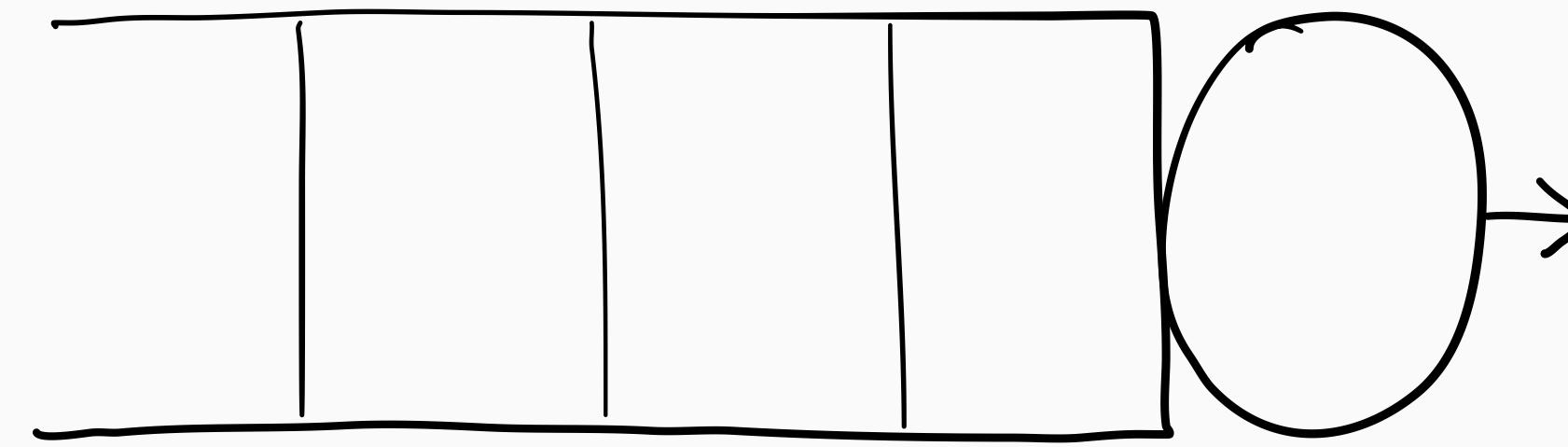


*Part III*

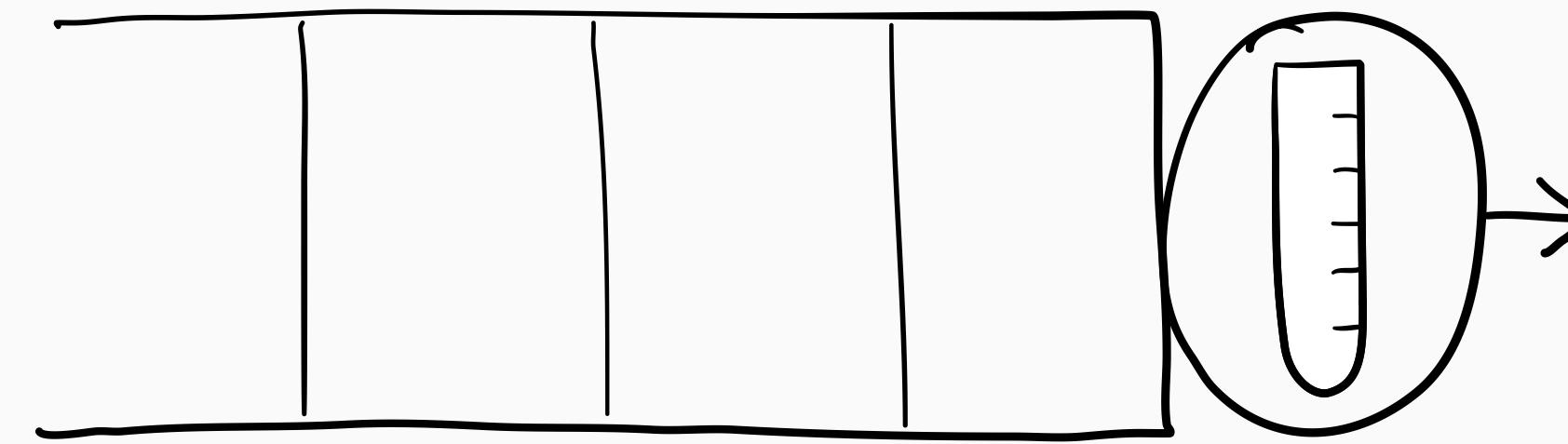
# Optimizing tail metrics

# How should we schedule jobs to minimize delay?

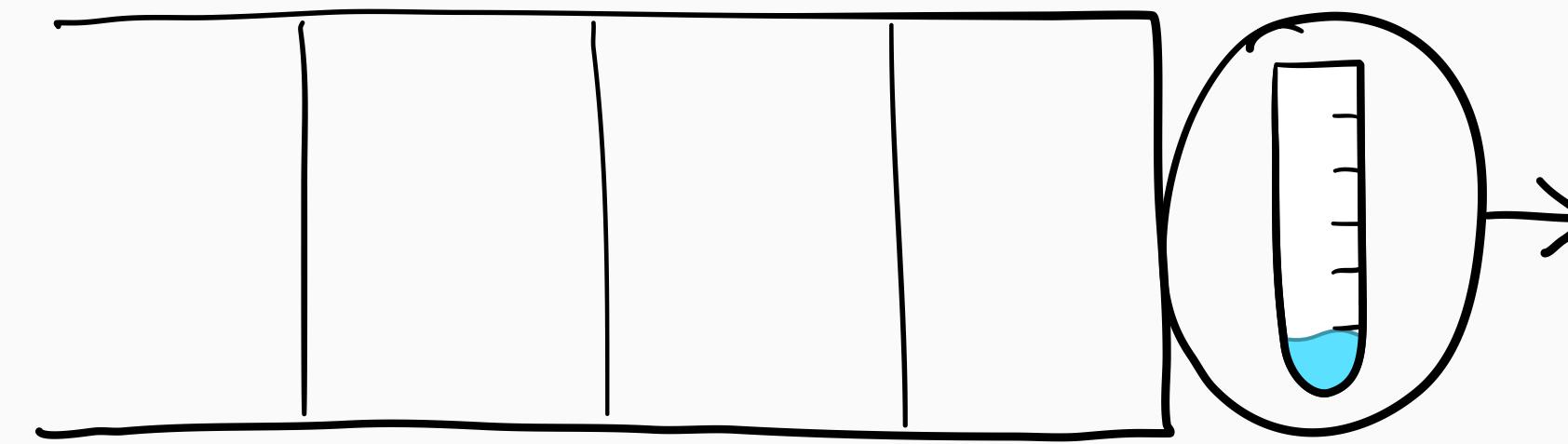
# How should we schedule jobs to minimize delay?



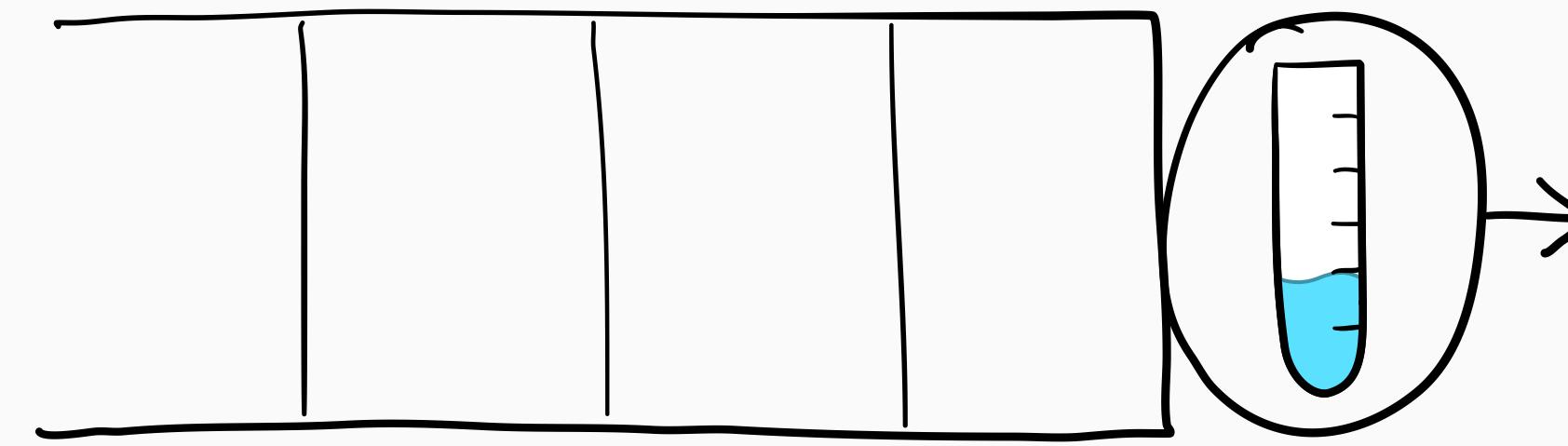
# How should we schedule jobs to minimize delay?



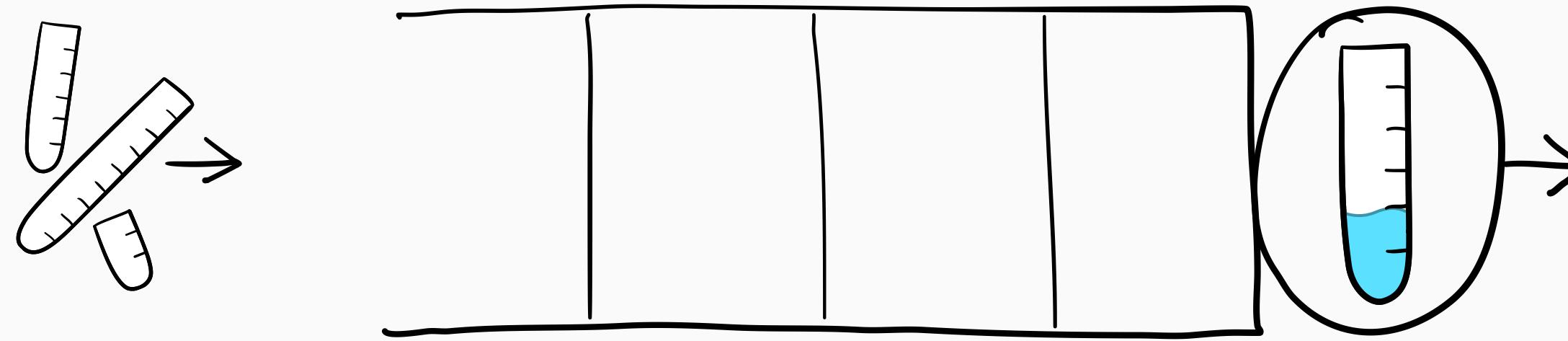
# How should we schedule jobs to minimize delay?



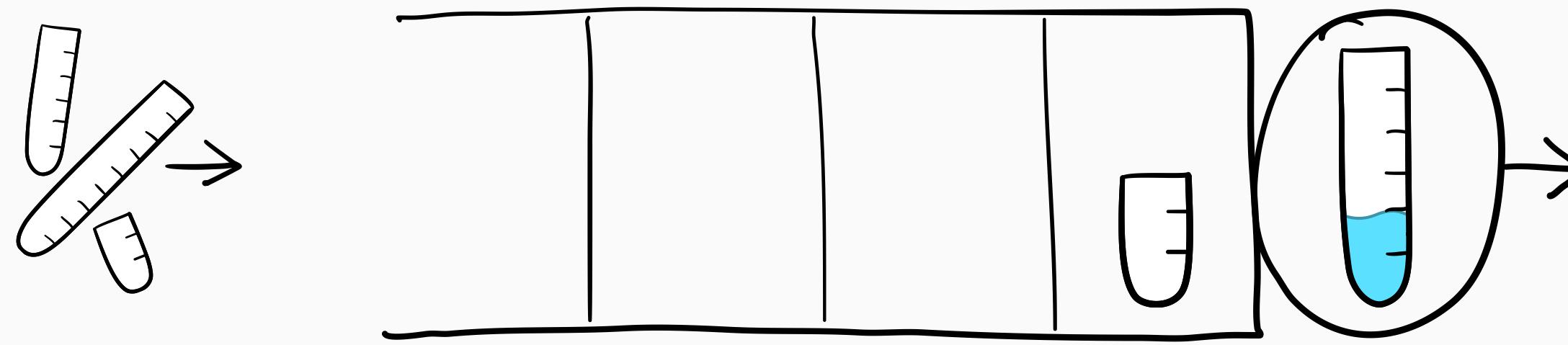
# How should we schedule jobs to minimize delay?



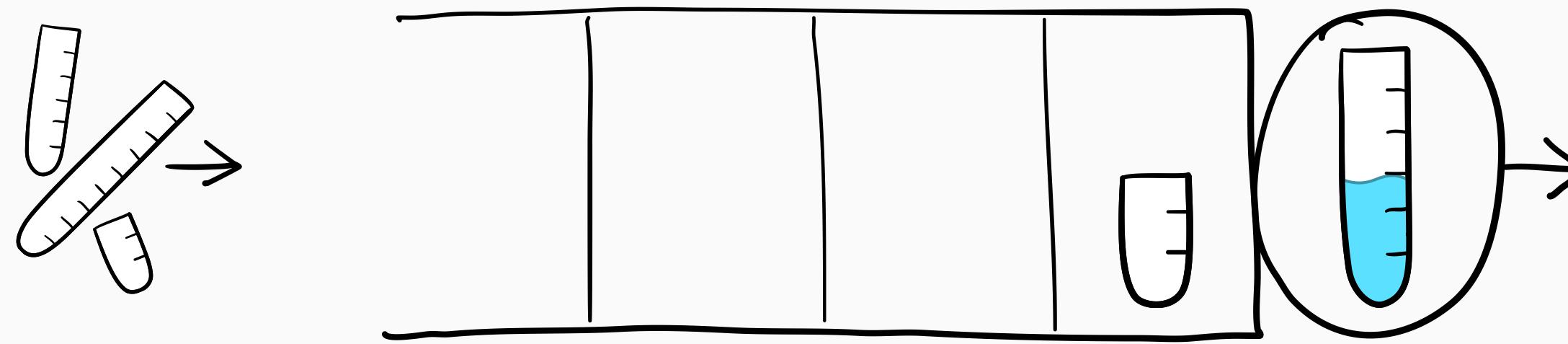
# How should we schedule jobs to minimize delay?



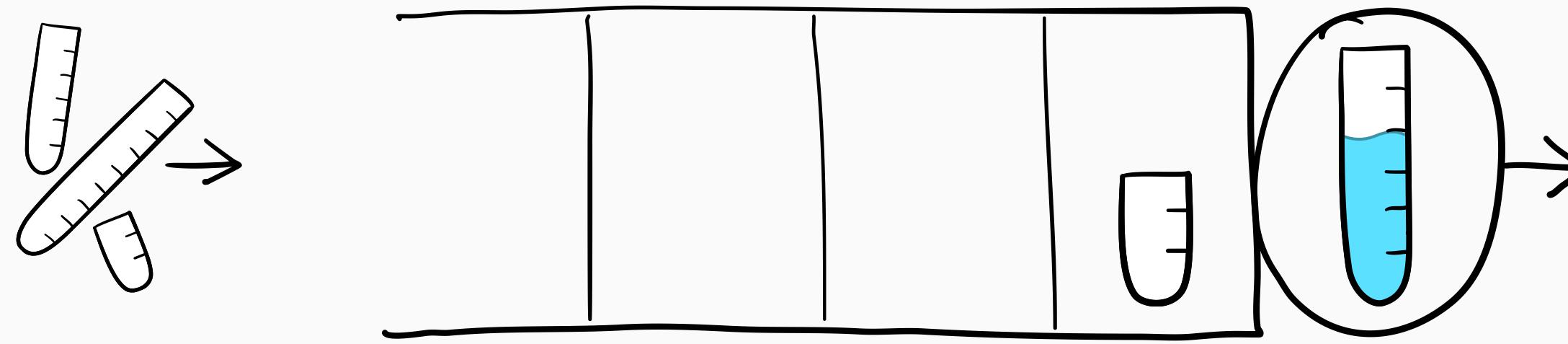
# How should we schedule jobs to minimize delay?



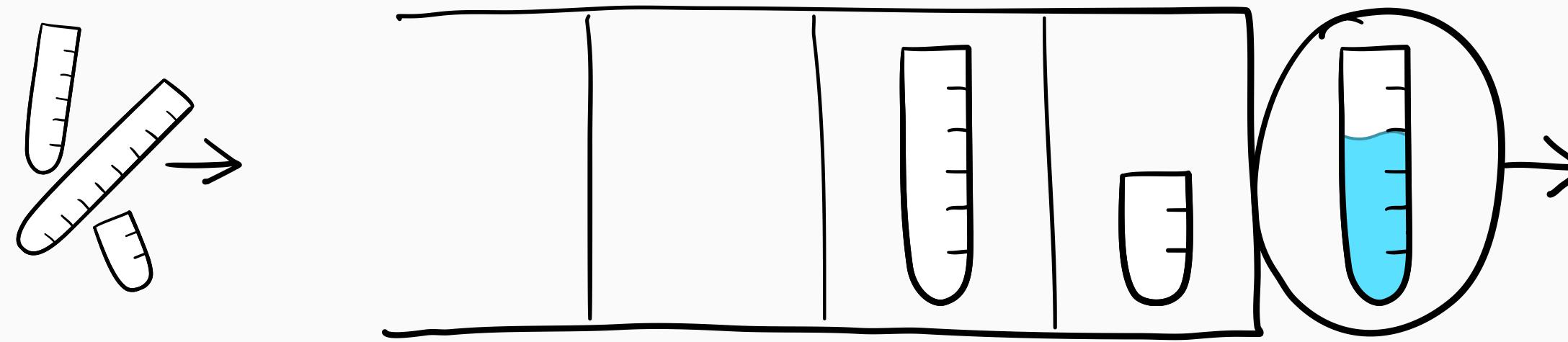
# How should we schedule jobs to minimize delay?



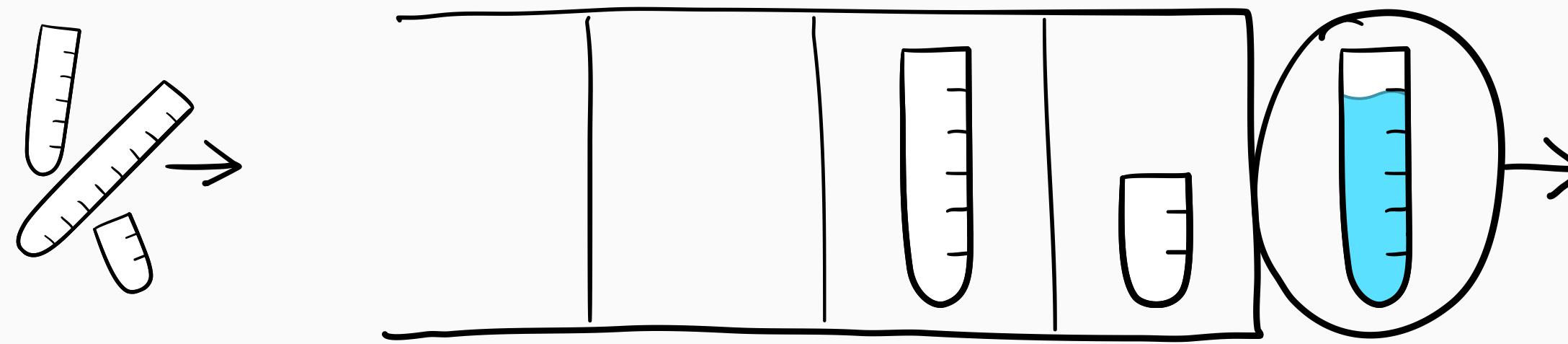
# How should we schedule jobs to minimize delay?



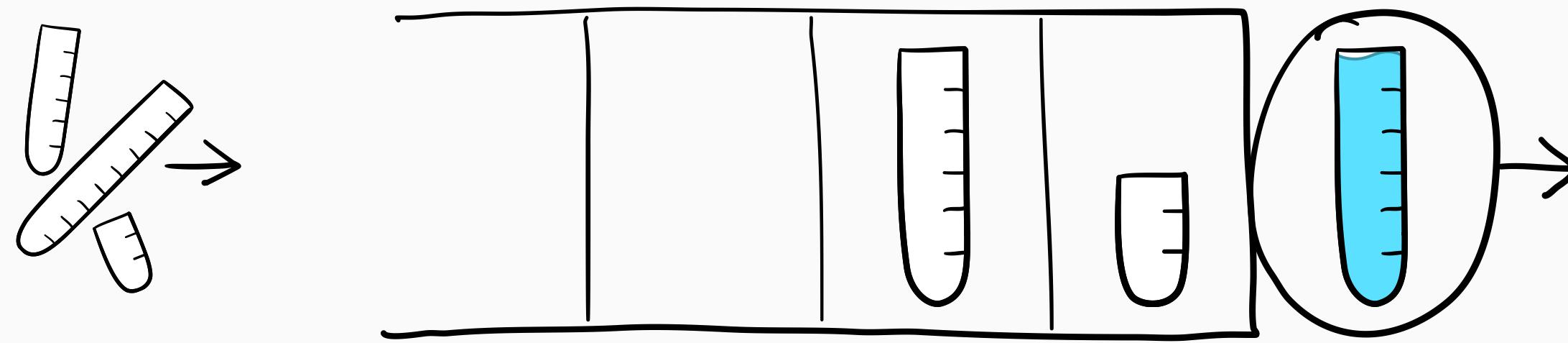
# How should we schedule jobs to minimize delay?



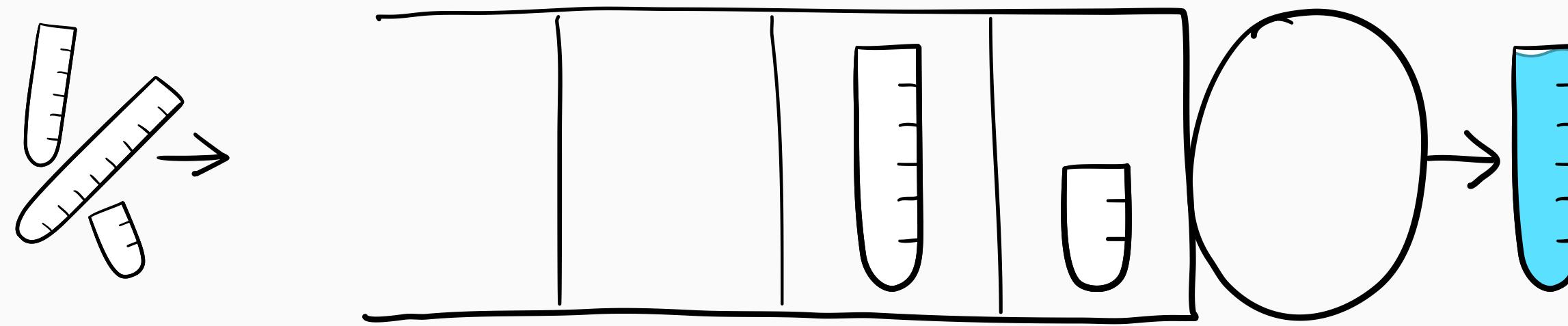
How should we schedule jobs to minimize delay?



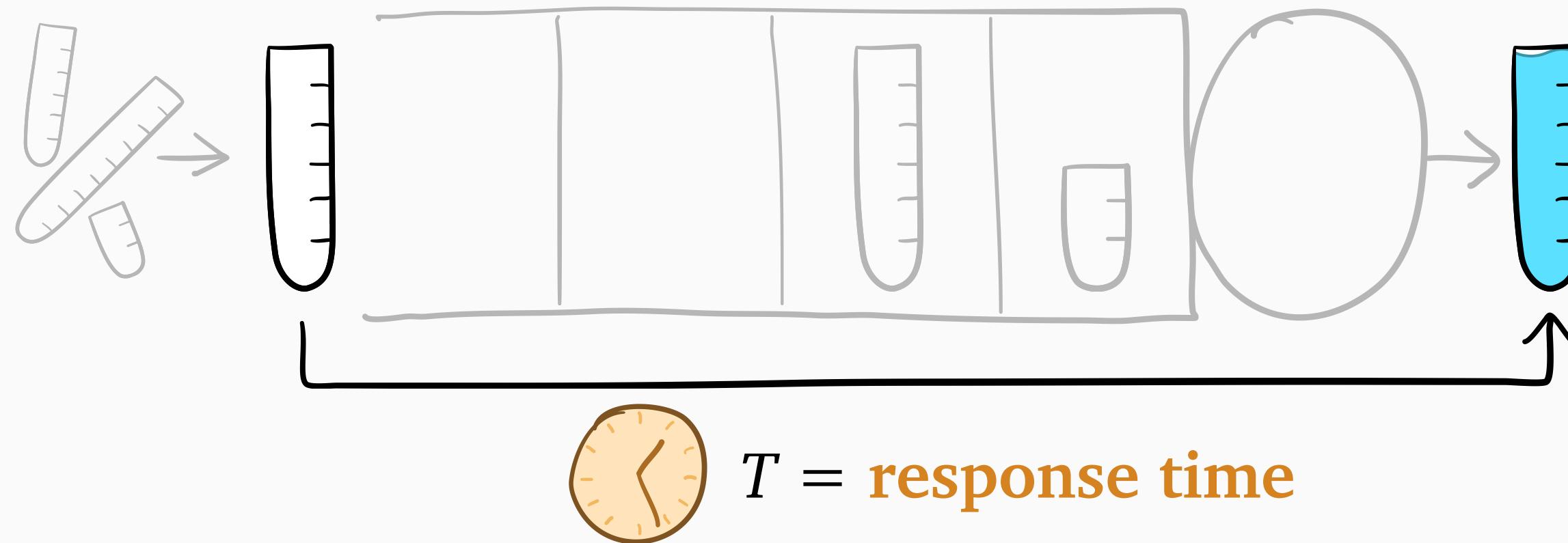
How should we schedule jobs to minimize delay?



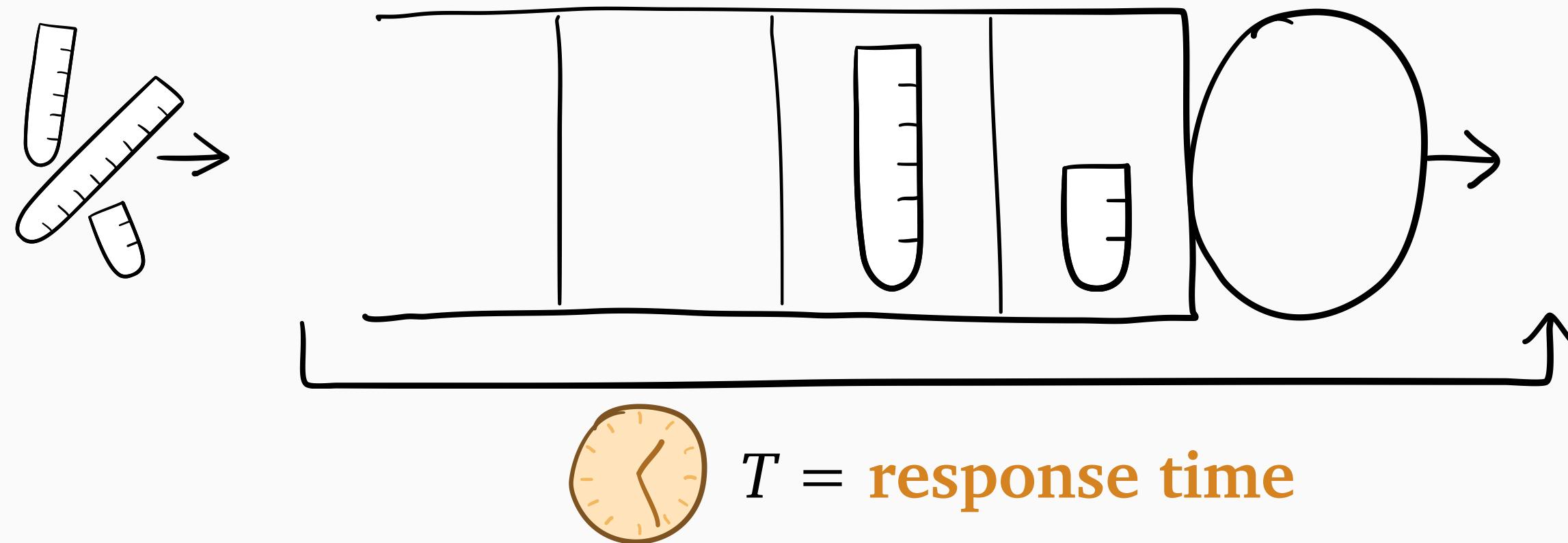
# How should we schedule jobs to minimize delay?



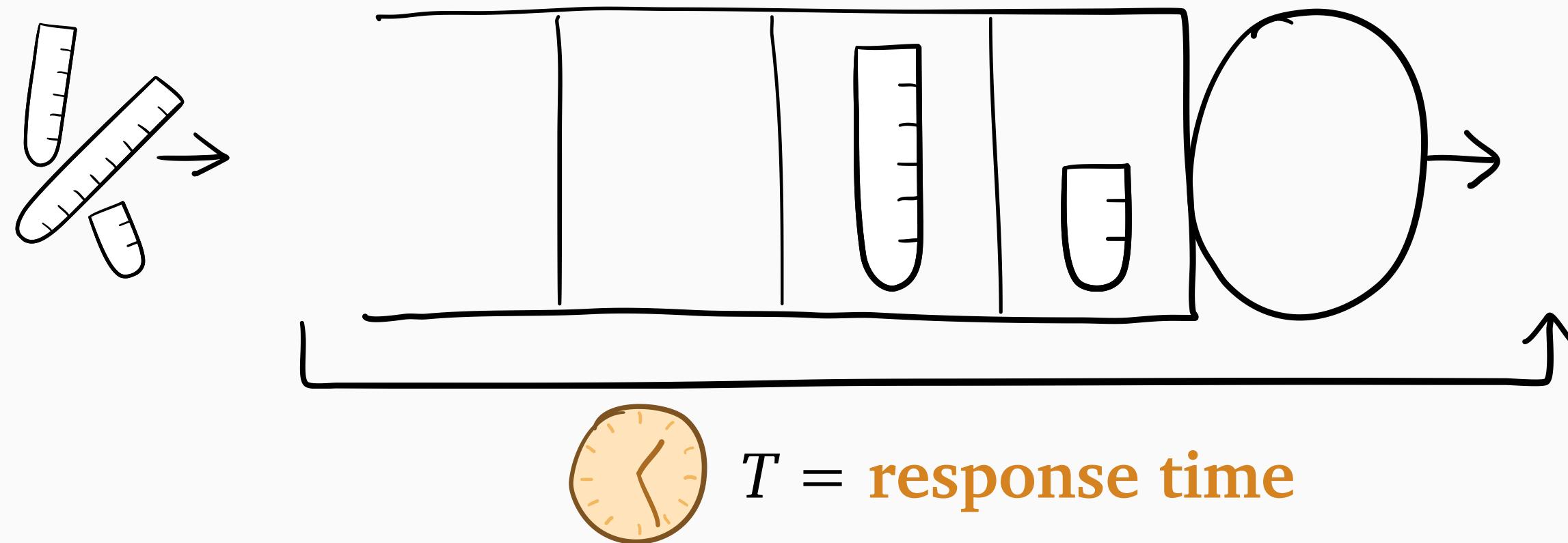
# How should we schedule jobs to minimize delay?



# How should we schedule jobs to minimize delay?

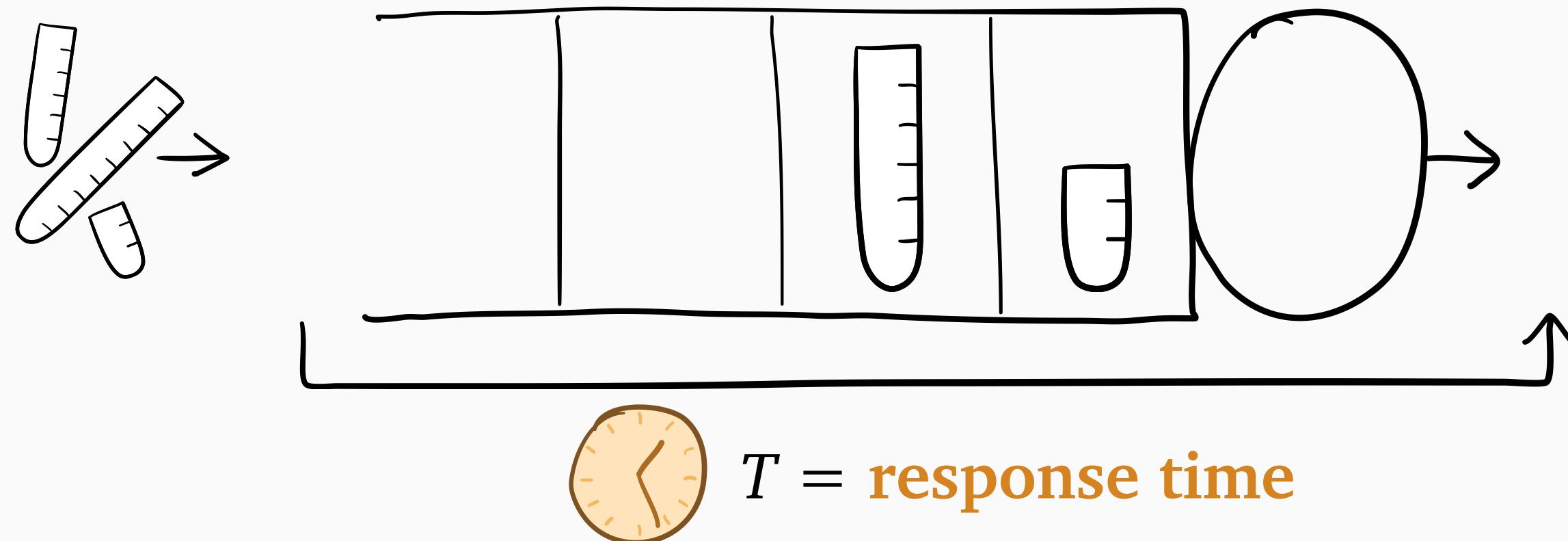


# How should we schedule jobs to minimize delay?

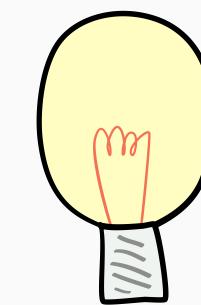


Minimize  $E[T]$ ?

# How should we schedule jobs to minimize delay?

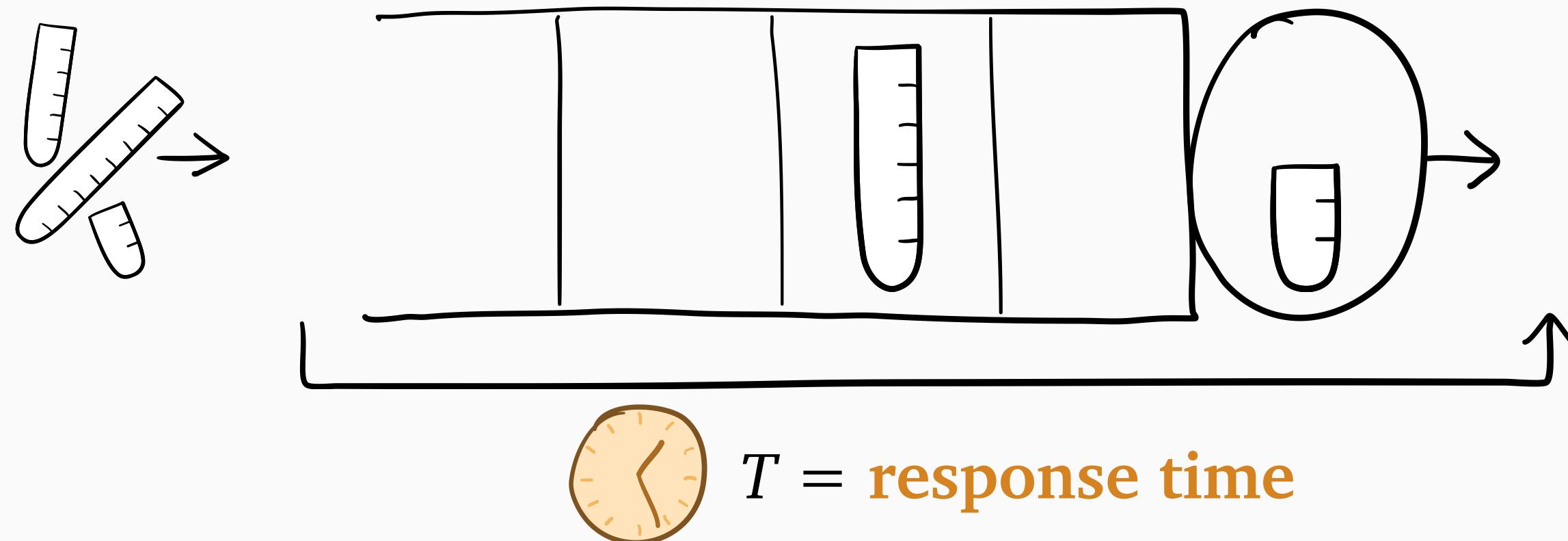


Minimize  $E[T]$ ?

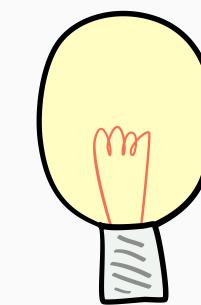


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

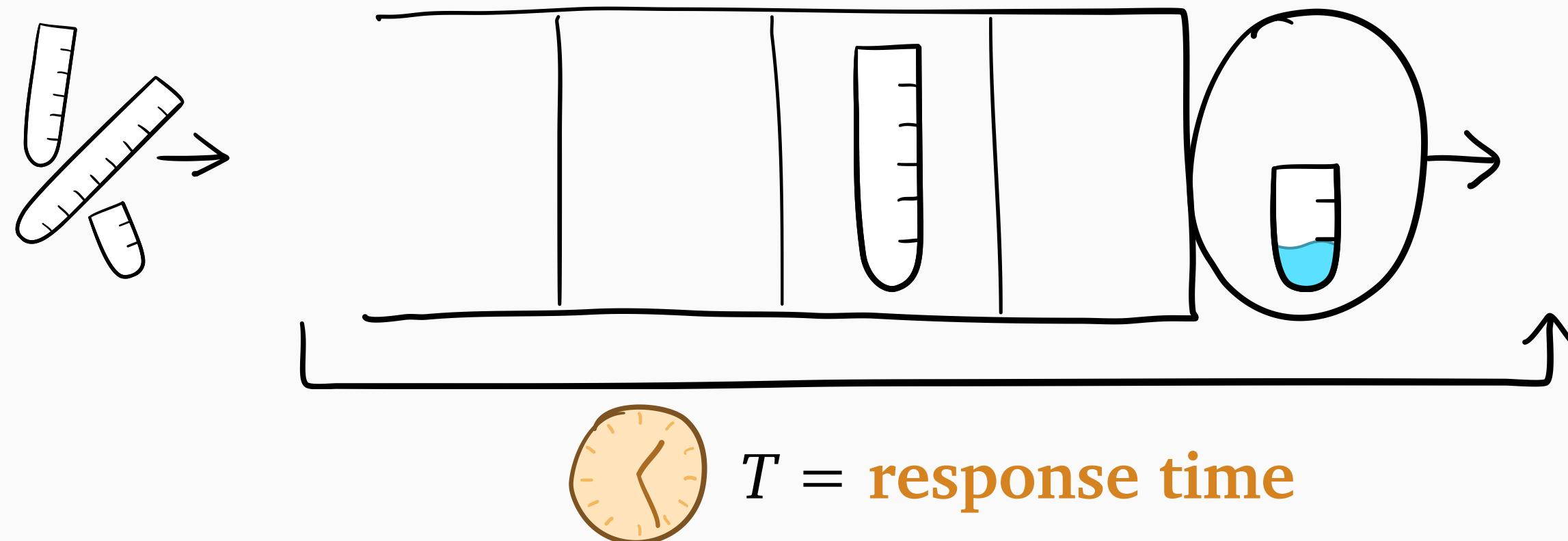


Minimize  $E[T]$ ?

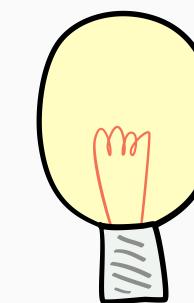


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

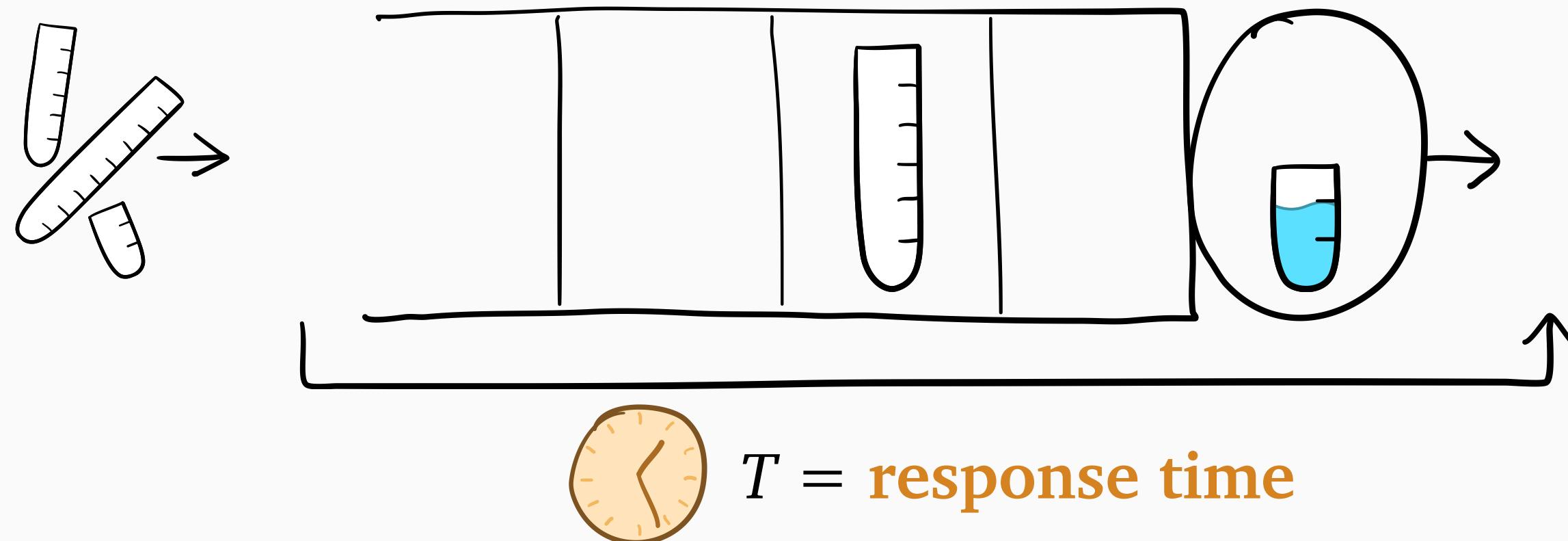


Minimize  $E[T]$ ?

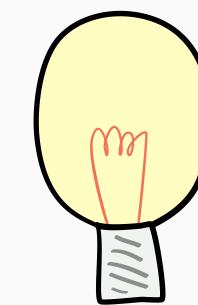


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

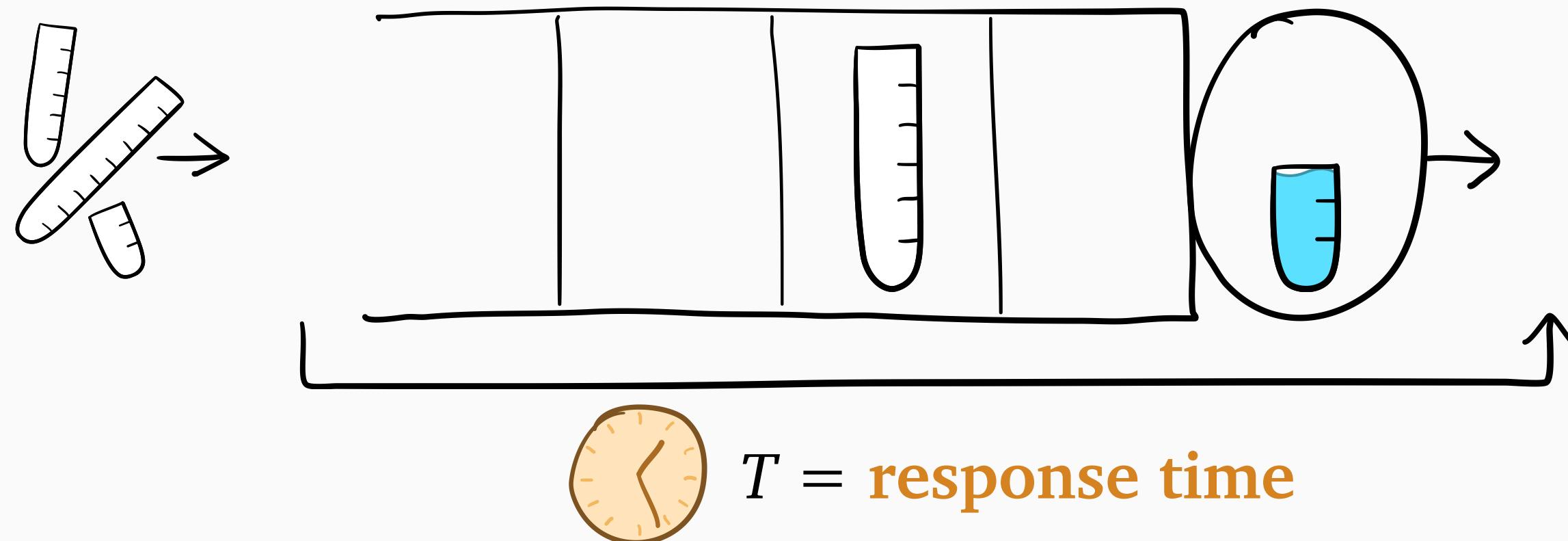


Minimize  $E[T]$ ?

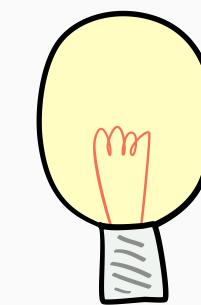


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

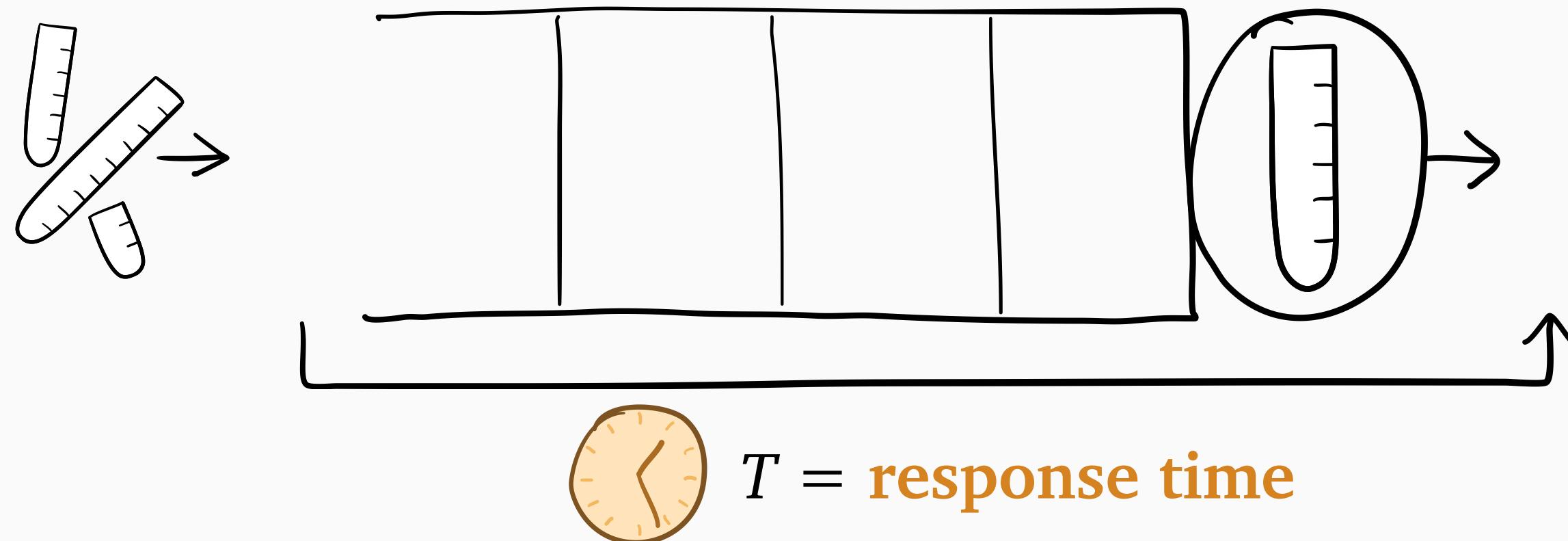


Minimize  $E[T]$ ?

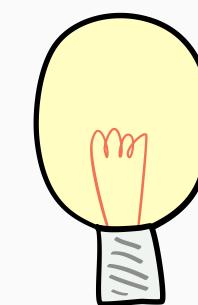


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?



Minimize  $E[T]$ ?

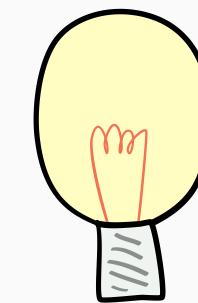


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

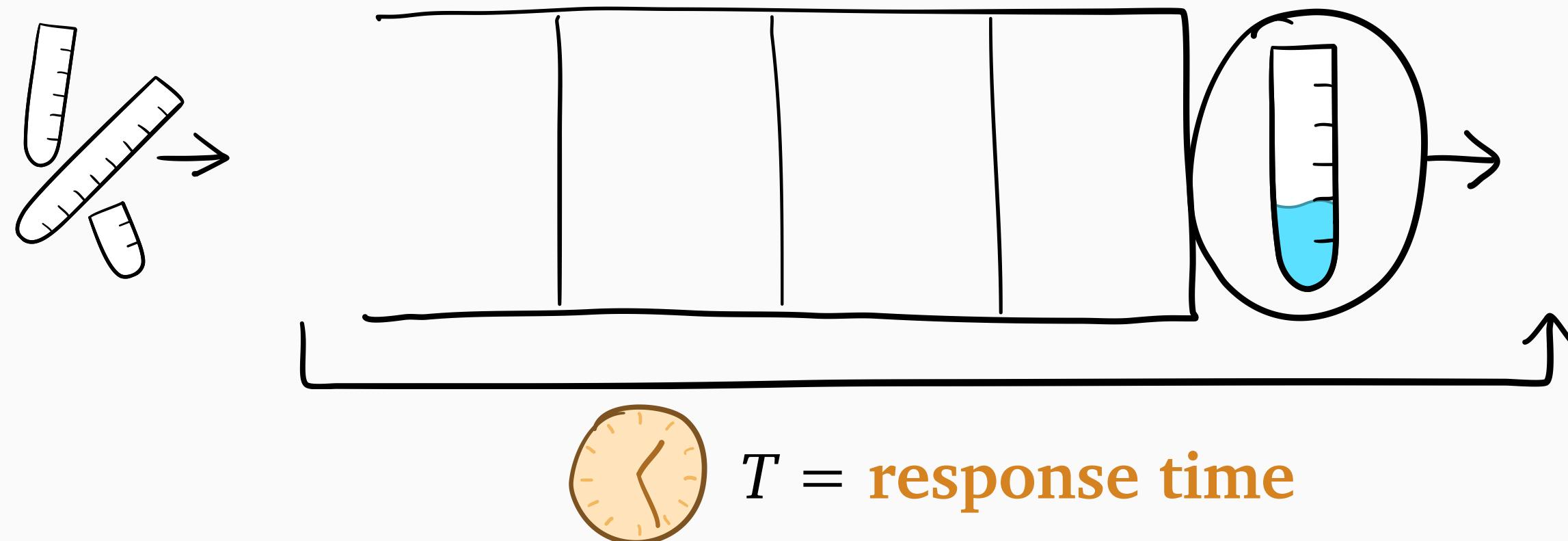


Minimize  $E[T]$ ?

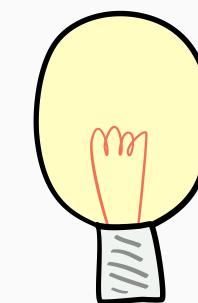


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

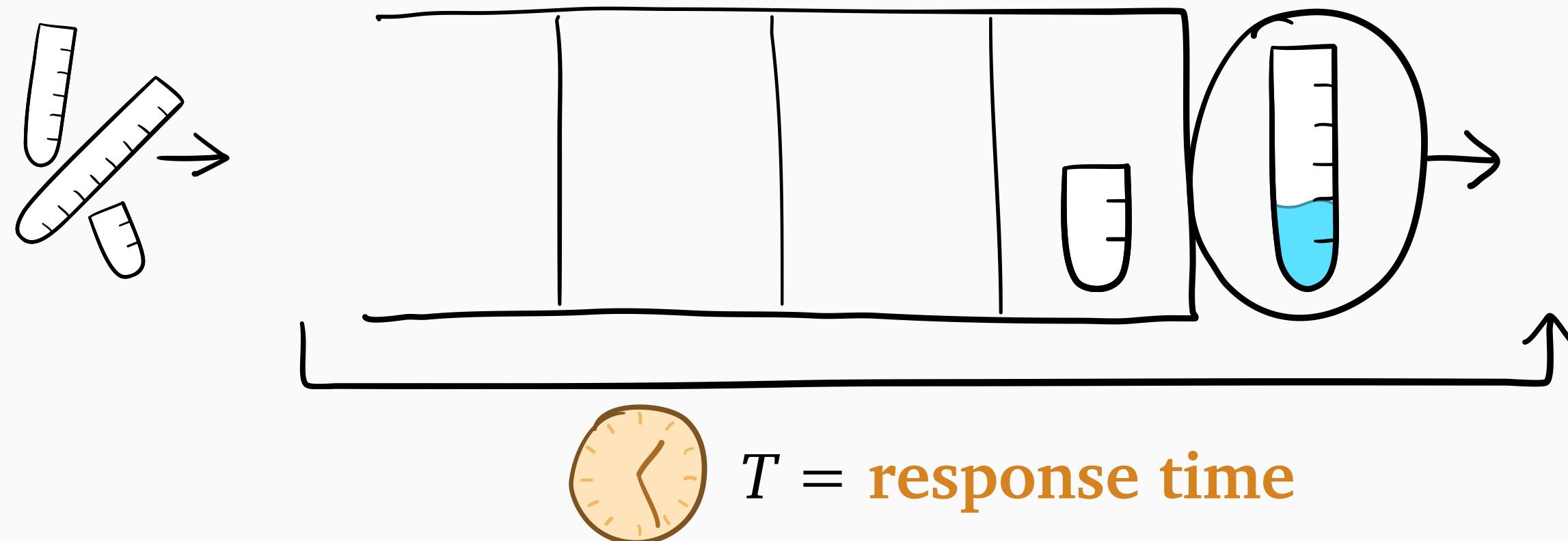


Minimize  $E[T]$ ?

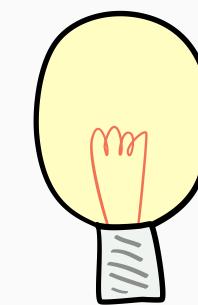


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

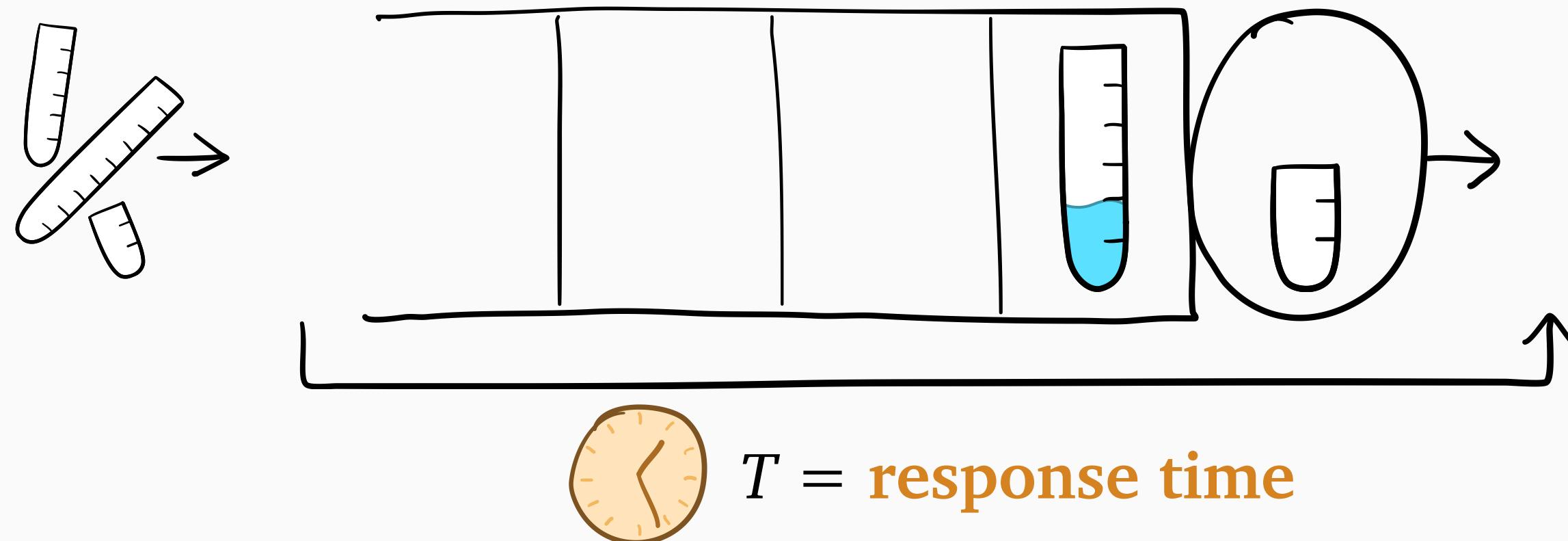


Minimize  $E[T]$ ?



Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

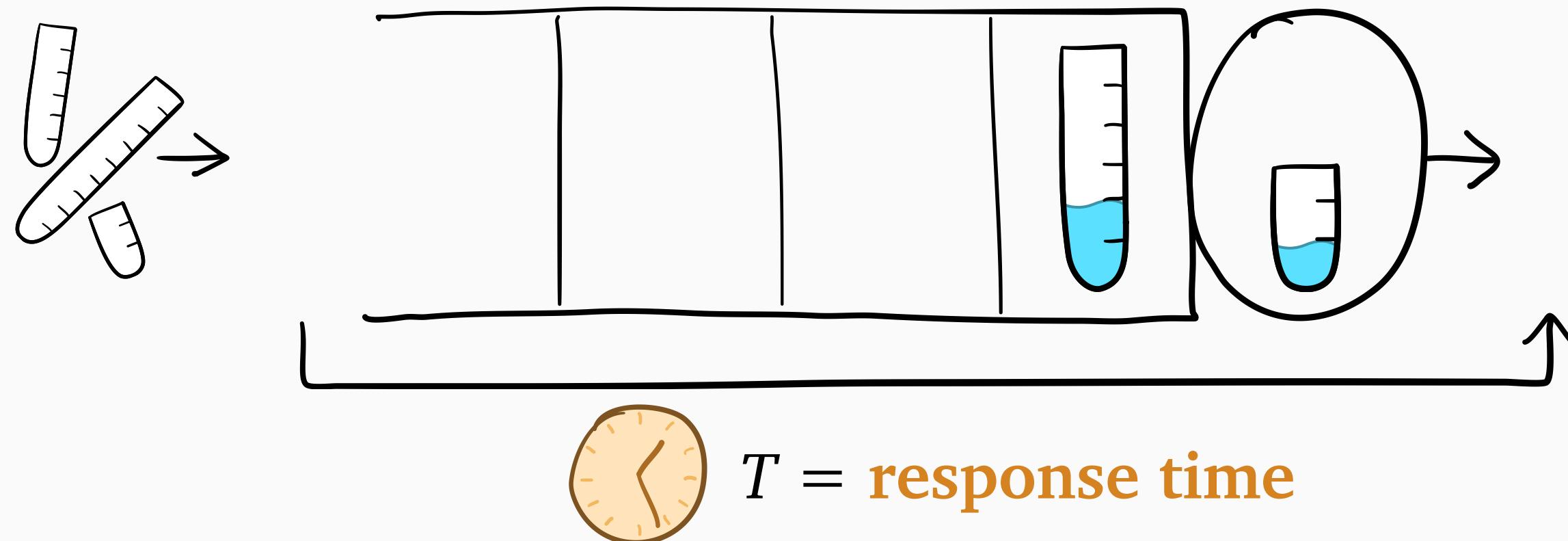


Minimize  $E[T]$ ?



Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

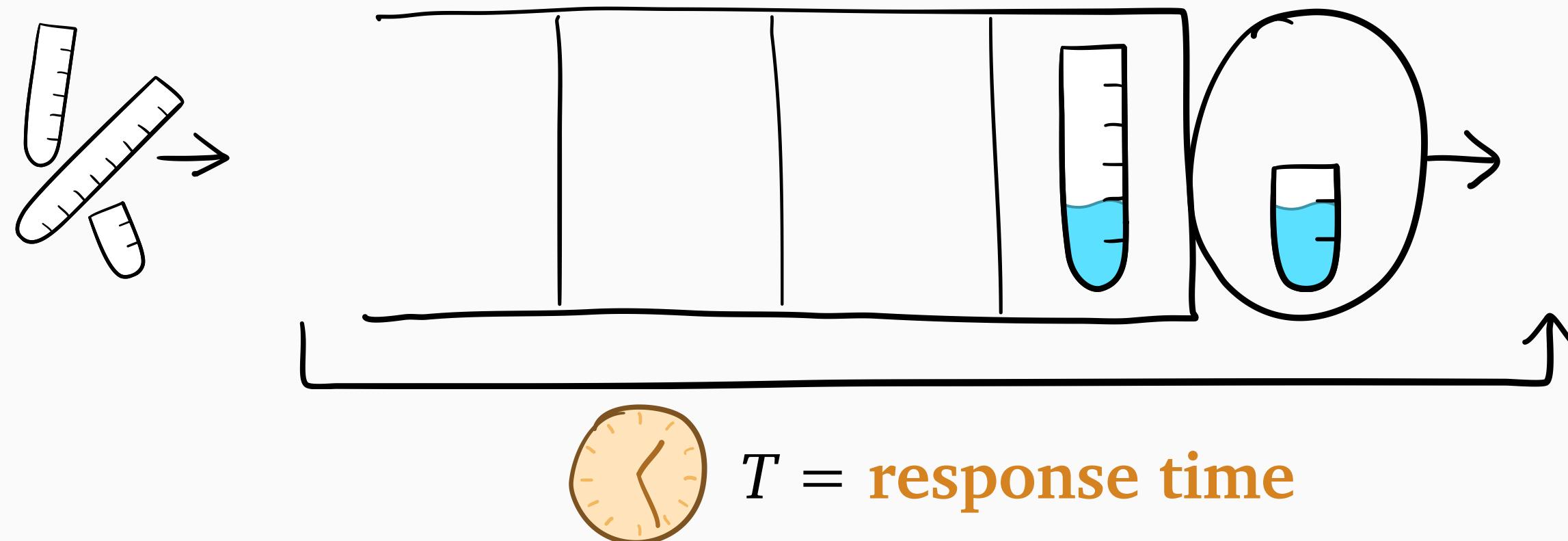


Minimize  $E[T]$ ?

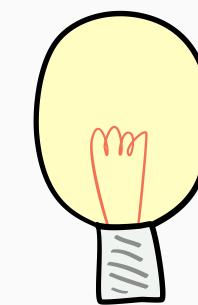


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?

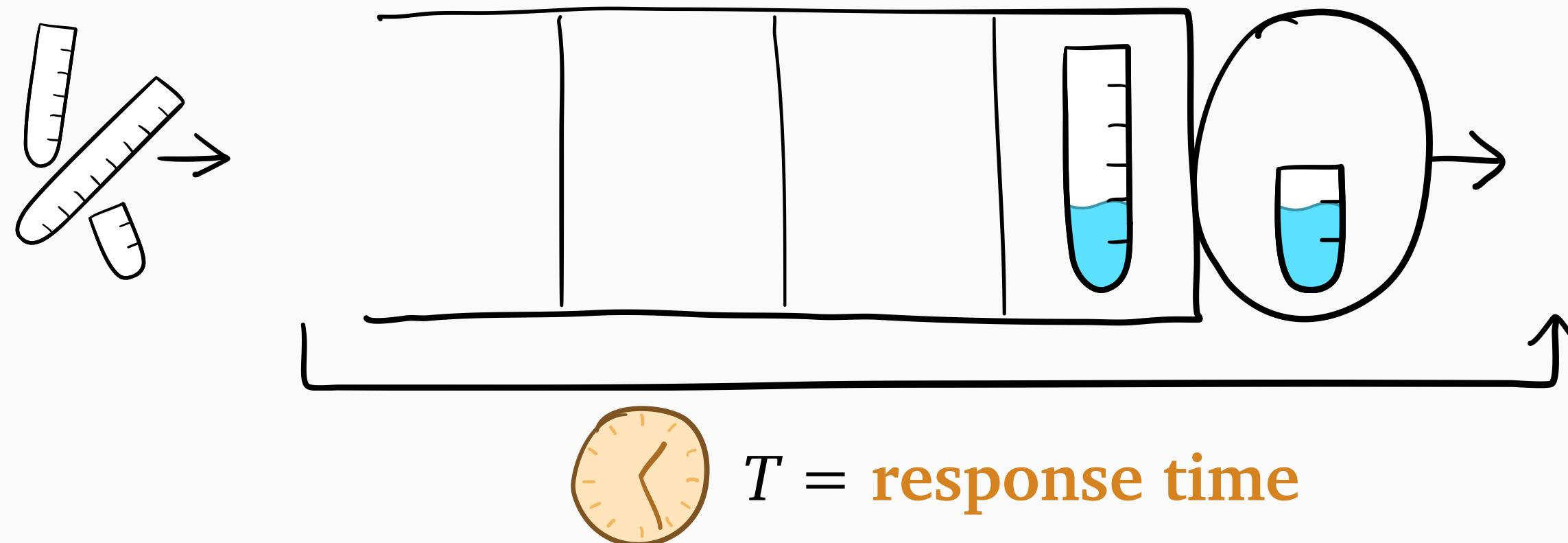


Minimize  $E[T]$ ?

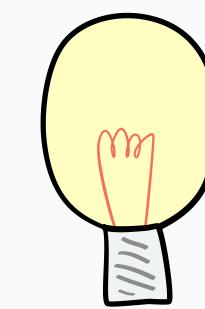


Serve short jobs  
before long jobs

# How should we schedule jobs to minimize delay?



Minimize  $E[T]$ ?



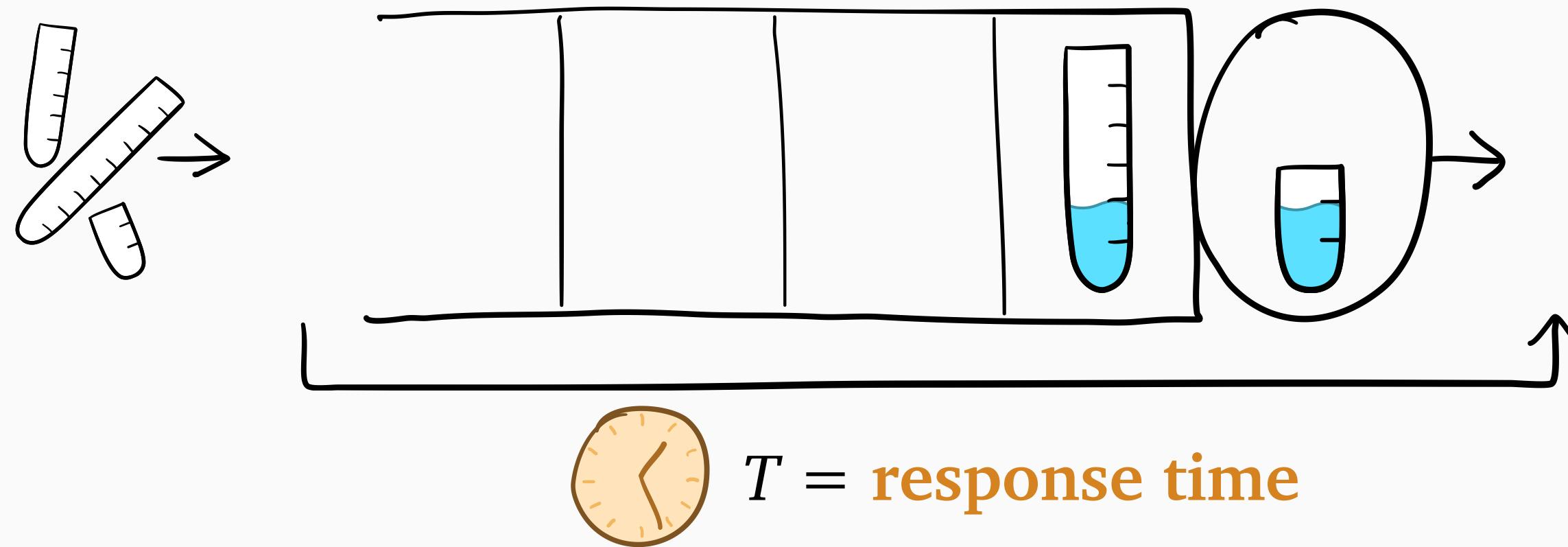
Serve short jobs  
before long jobs



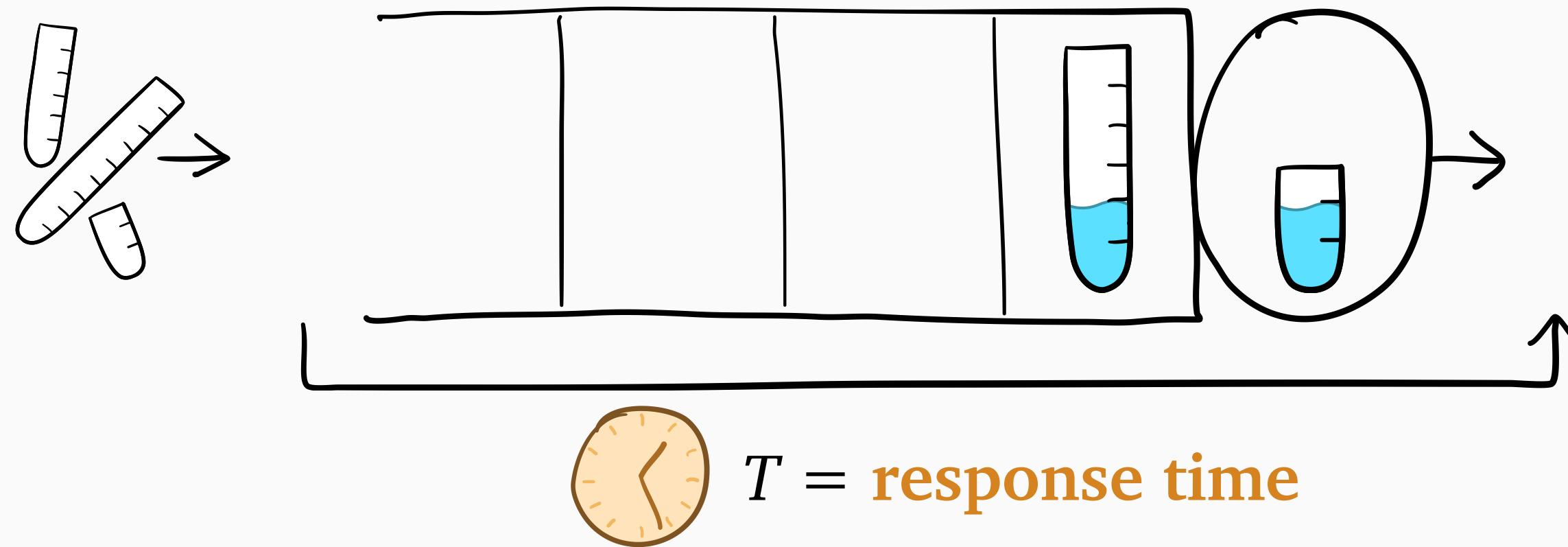
**SRPT**: minimizes  $E[T]$

shortest remaining  
processing time

# TCS vs. Queueing



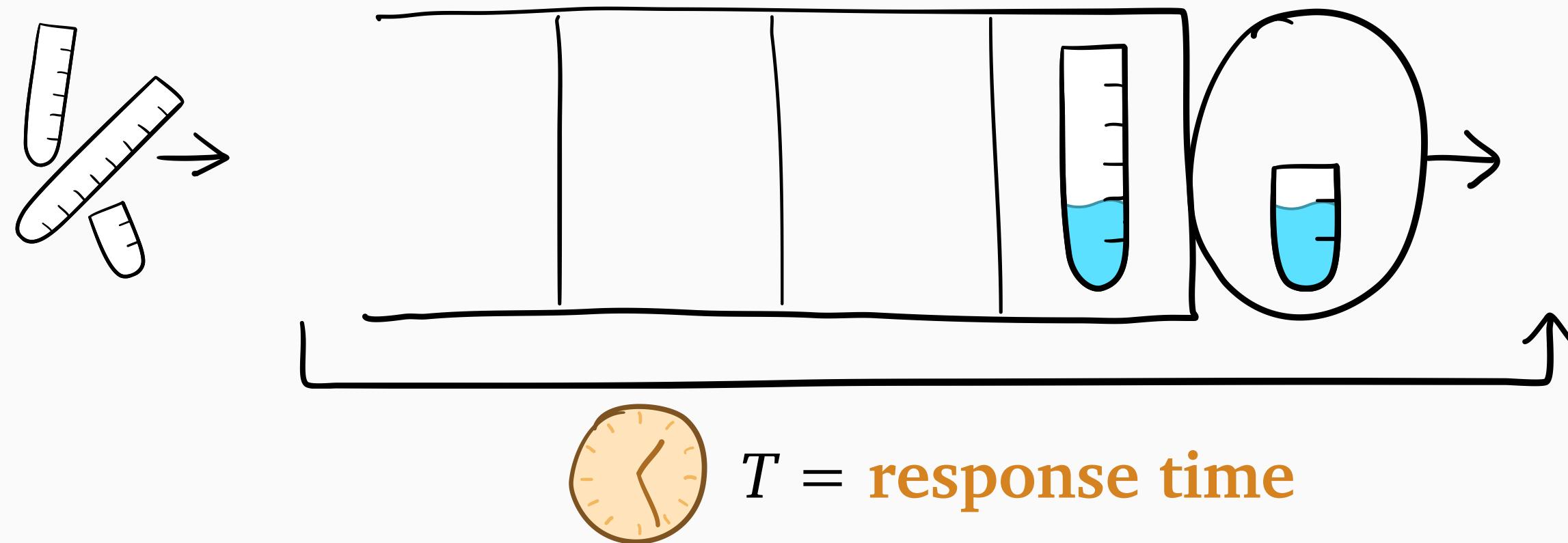
# TCS vs. Queueing



## TCS

$n$  arbitrary arrivals  
 $T$  is tuple of  $n$  times

# TCS vs. Queueing



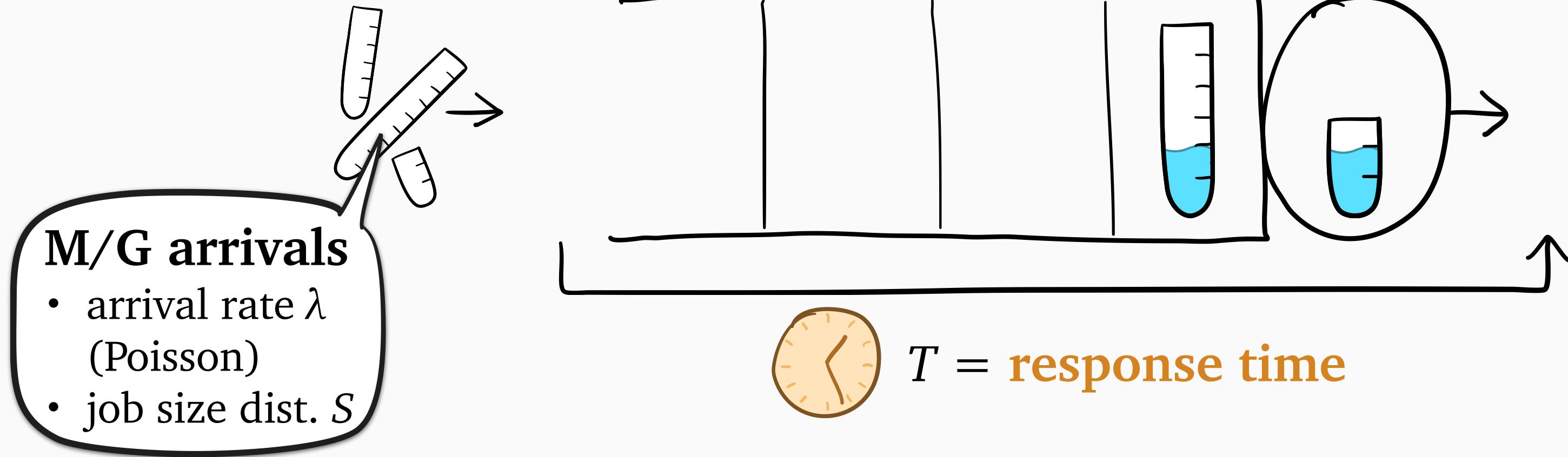
## TCS

$n$  arbitrary arrivals  
 $T$  is tuple of  $n$  times

## Queueing

infinite stochastic sequence of arrivals  
 $T$  is a limiting distribution

# TCS vs. Queueing



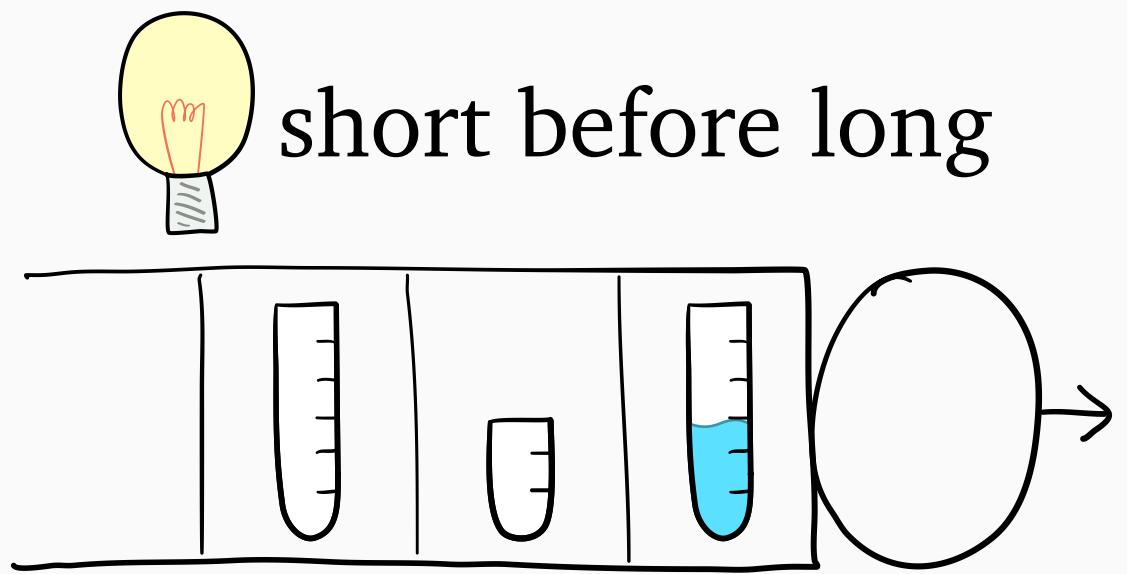
## TCS

$n$  arbitrary arrivals  
 $T$  is tuple of  $n$  times

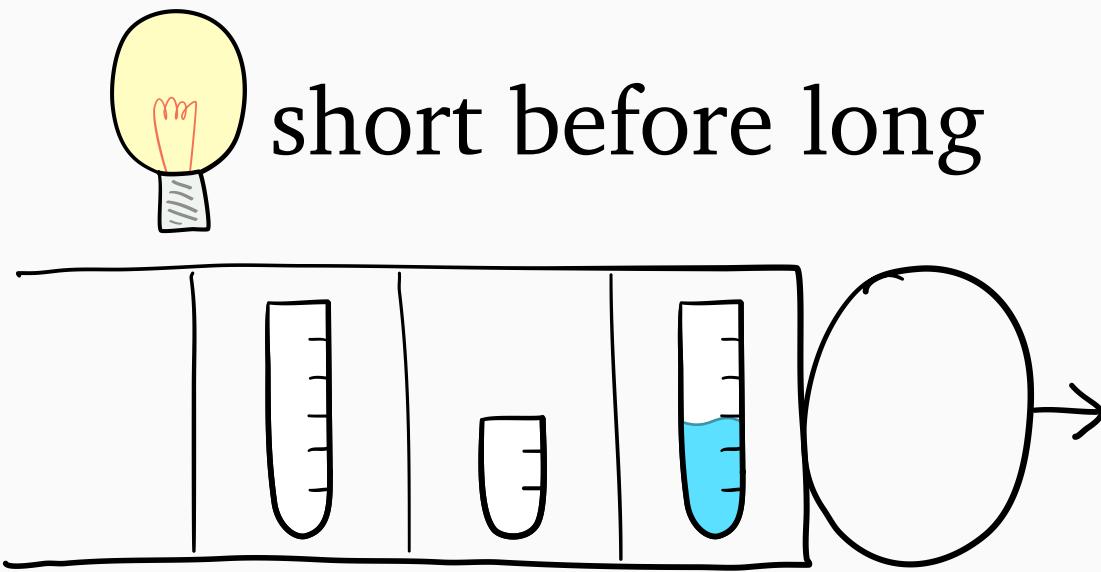
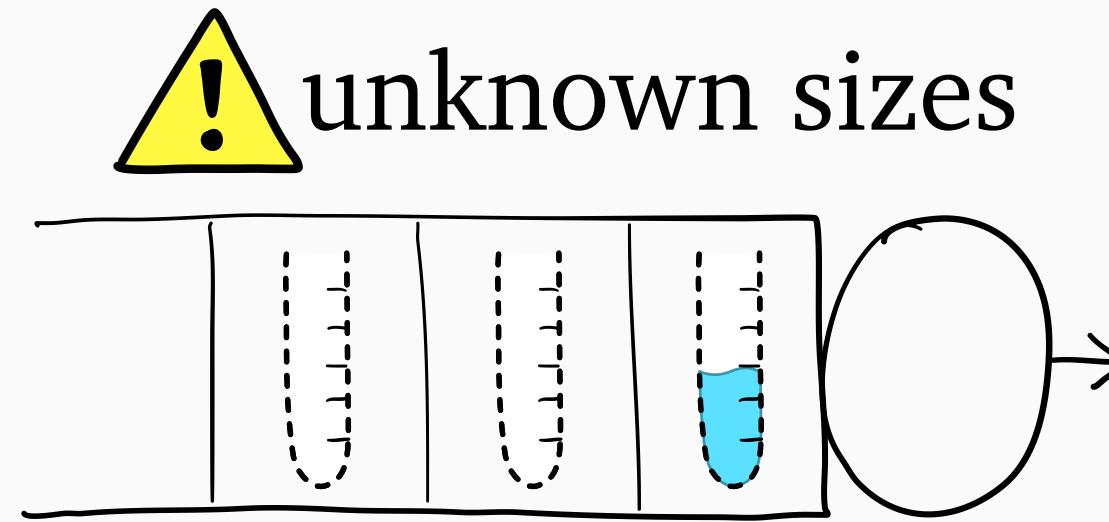
## Queueing

infinite stochastic sequence of arrivals  
 $T$  is a limiting distribution

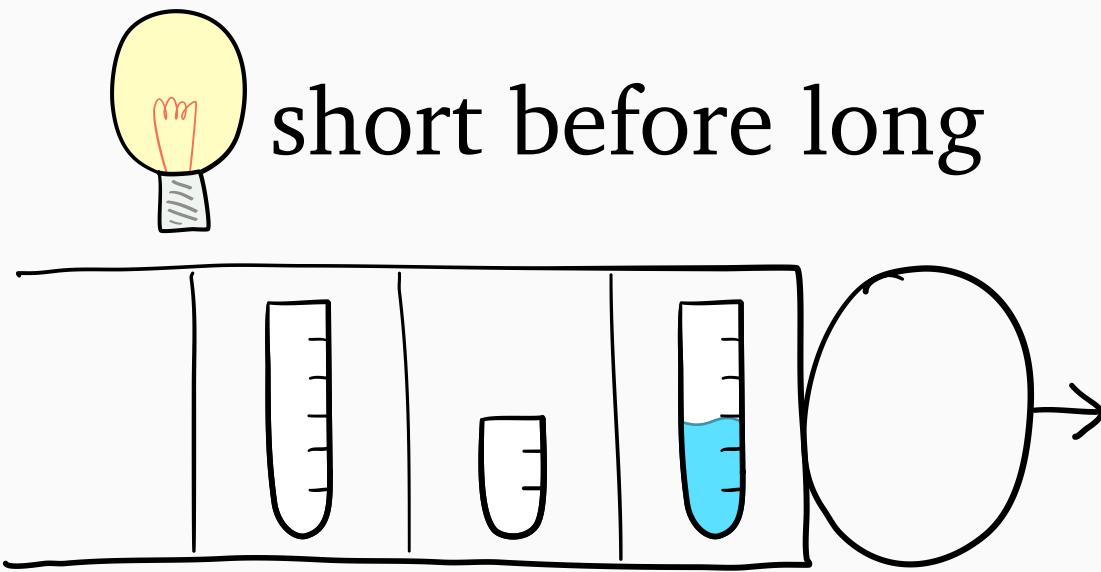
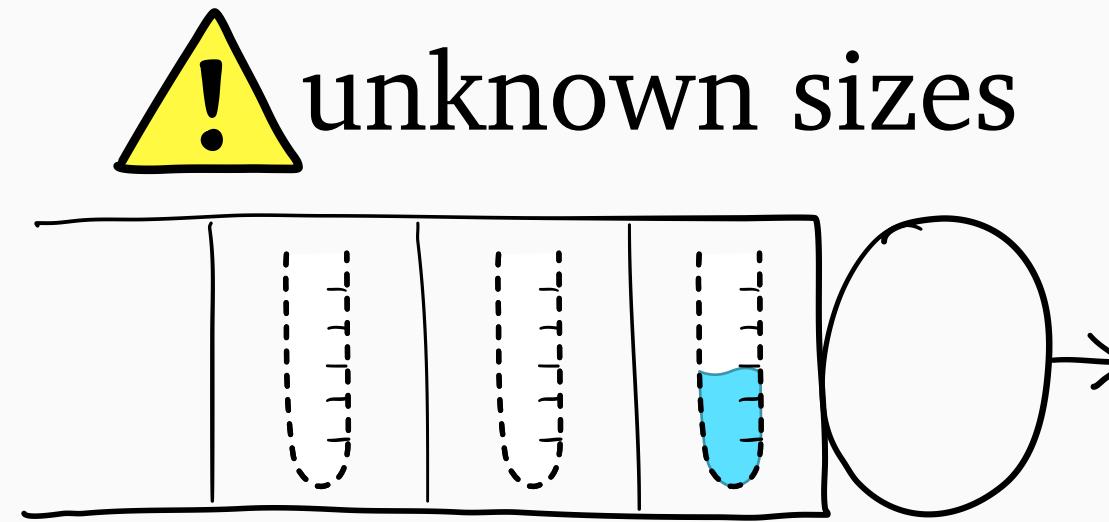
# Job size uncertainty



# Job size uncertainty

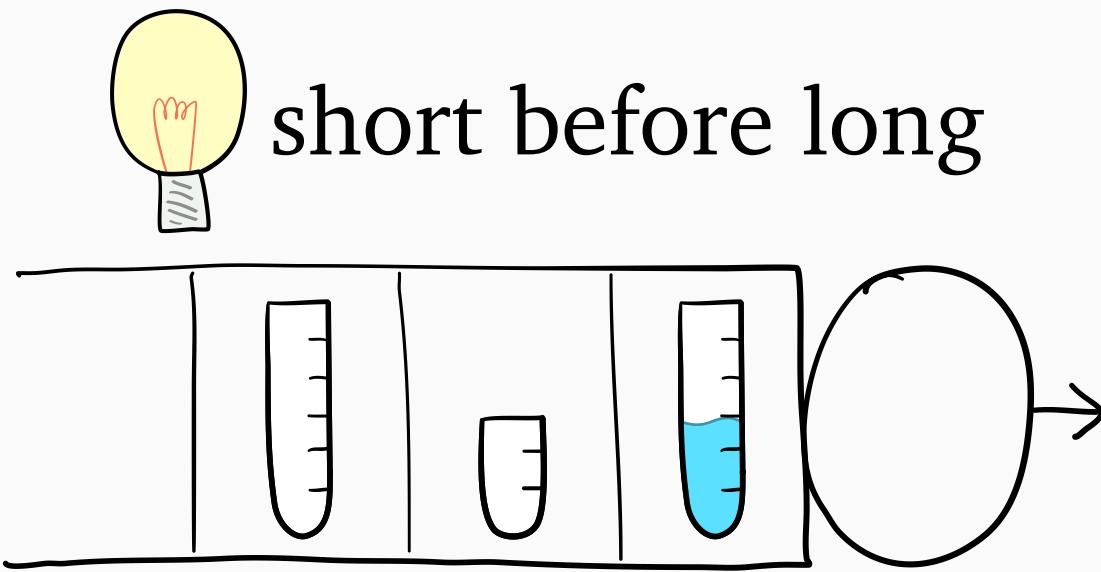
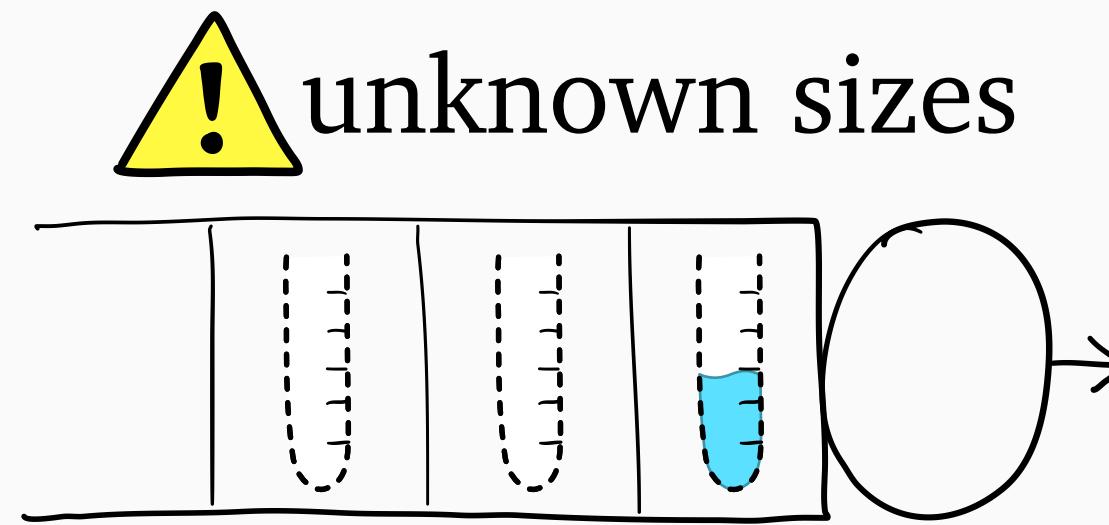


# Job size uncertainty



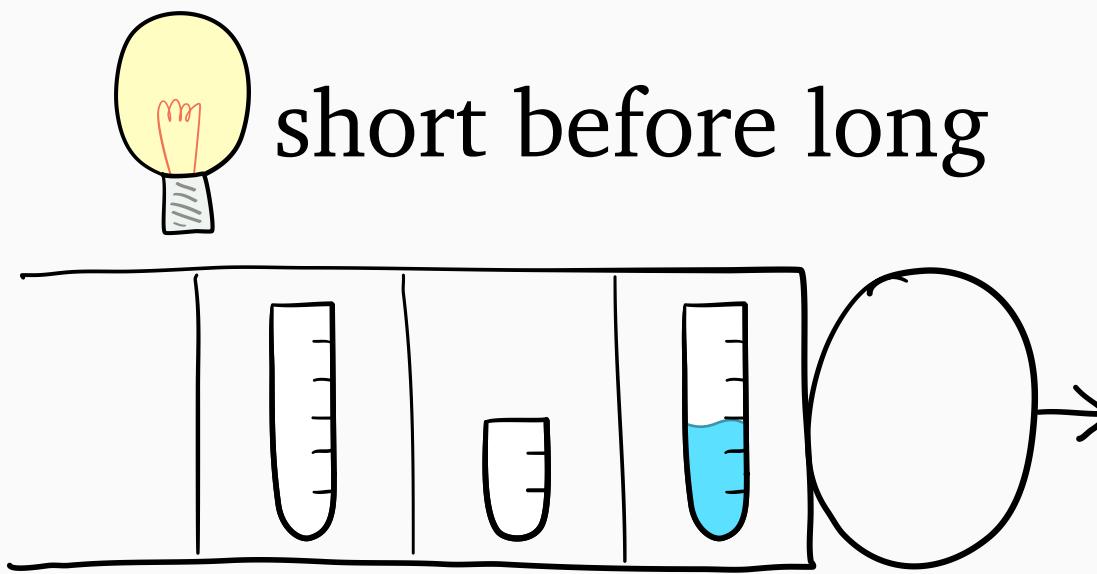
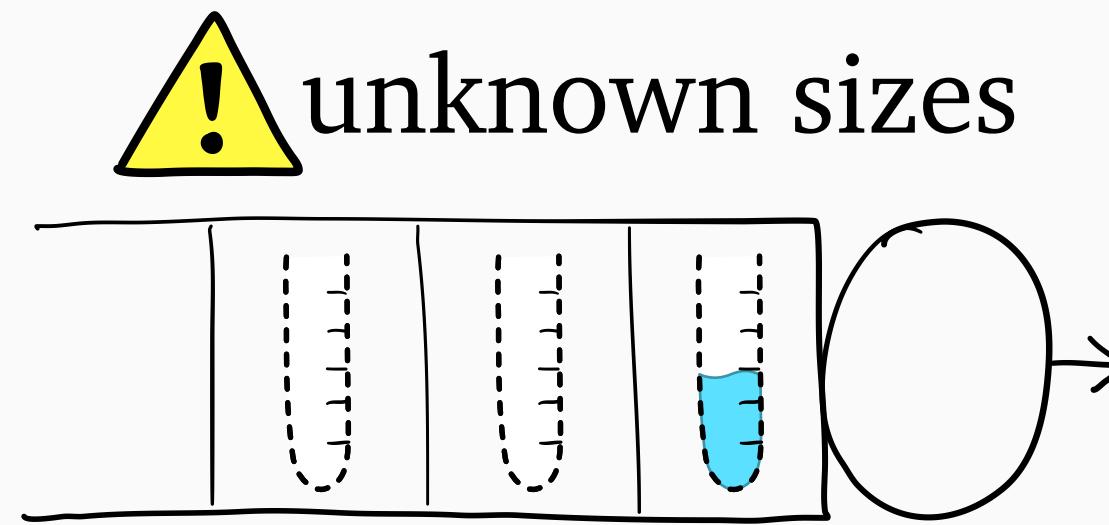
What info can we use?

# Job size uncertainty



What info can we use?  
• job **ages**

# Job size uncertainty



What info can we use?

- job **ages**
- size distribution  $S$

# Scheduling with unknown job sizes



What info can we use?

- job **ages**
- size distribution  $S$

# Scheduling with unknown job sizes



What info can we use?

- job **ages**
- size distribution  $S$



**Gittins policy construction:**

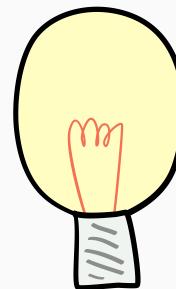
size distribution  $S \mapsto$  policy **Gittins**( $S$ )

# Scheduling with unknown job sizes



What info can we use?

- job **ages**
- size distribution  $S$



**Gittins policy construction:**

size distribution  $S \mapsto$  policy **Gittins**( $S$ )

**age  $a$**   $\mapsto$  priority **rank**( $a$ )

# Outline of Part 1



What is **Gittins**?

main focus



Why are **Gittins** (and **SRPT**) optimal?



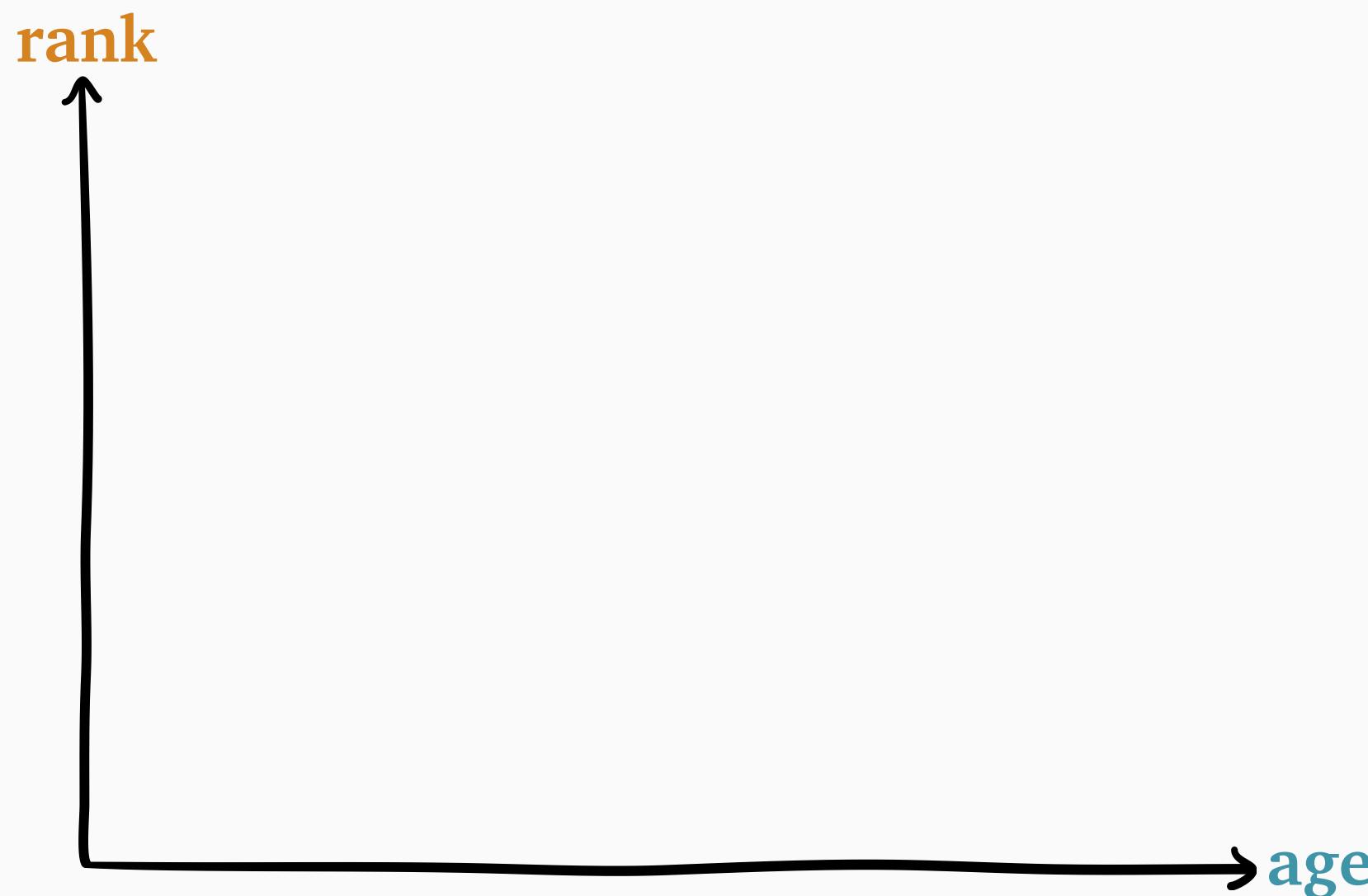
**Predictions:** what if we don't know  
exact distributions (or sizes)?

# Scheduling with **rank** functions

# Scheduling with **rank** functions

**SERPT**

shortest *expected* remaining processing time

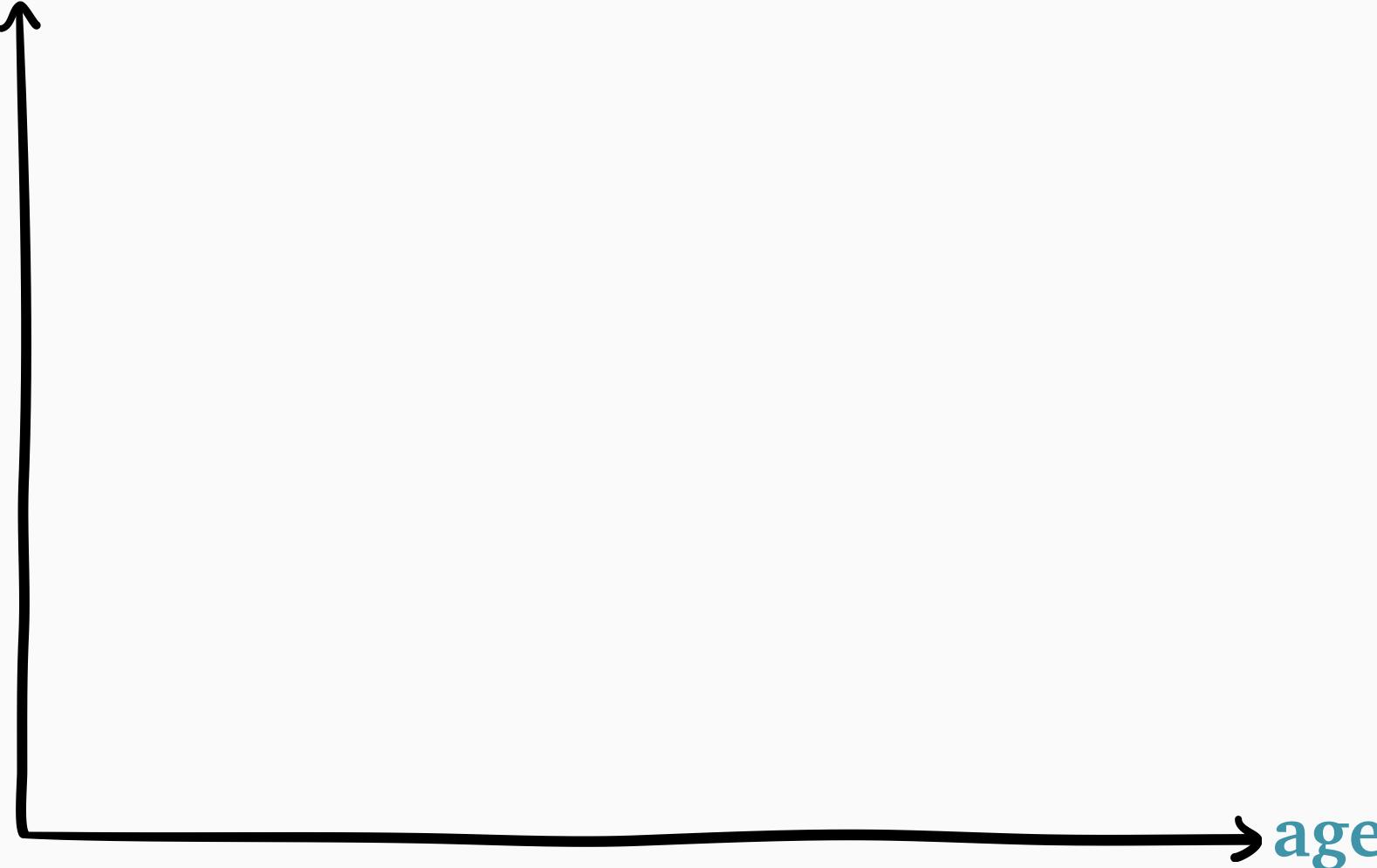


# Scheduling with **rank** functions

**SERPT**

shortest *expected* remaining processing time

$$\text{rank}(a) = E[S - a \mid S > a]$$

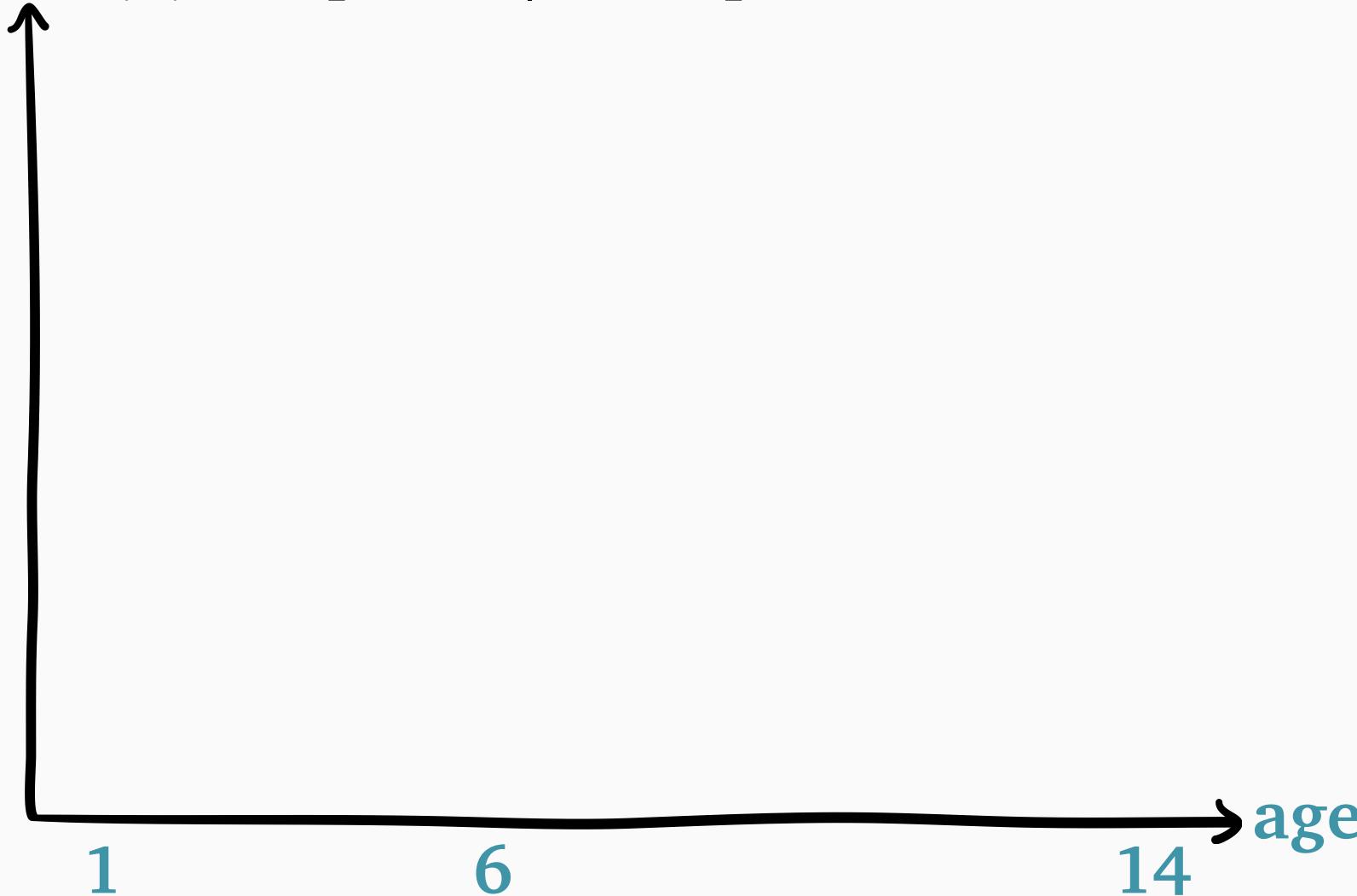


# Scheduling with **rank** functions

## SERPT

shortest *expected* remaining processing time

$$\text{rank}(a) = E[S - a \mid S > a]$$



Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

# Scheduling with **rank** functions

**SERPT**

shortest *expected* remaining processing time

$$\text{rank}(a) = E[S - a \mid S > a]$$



Job size distribution:

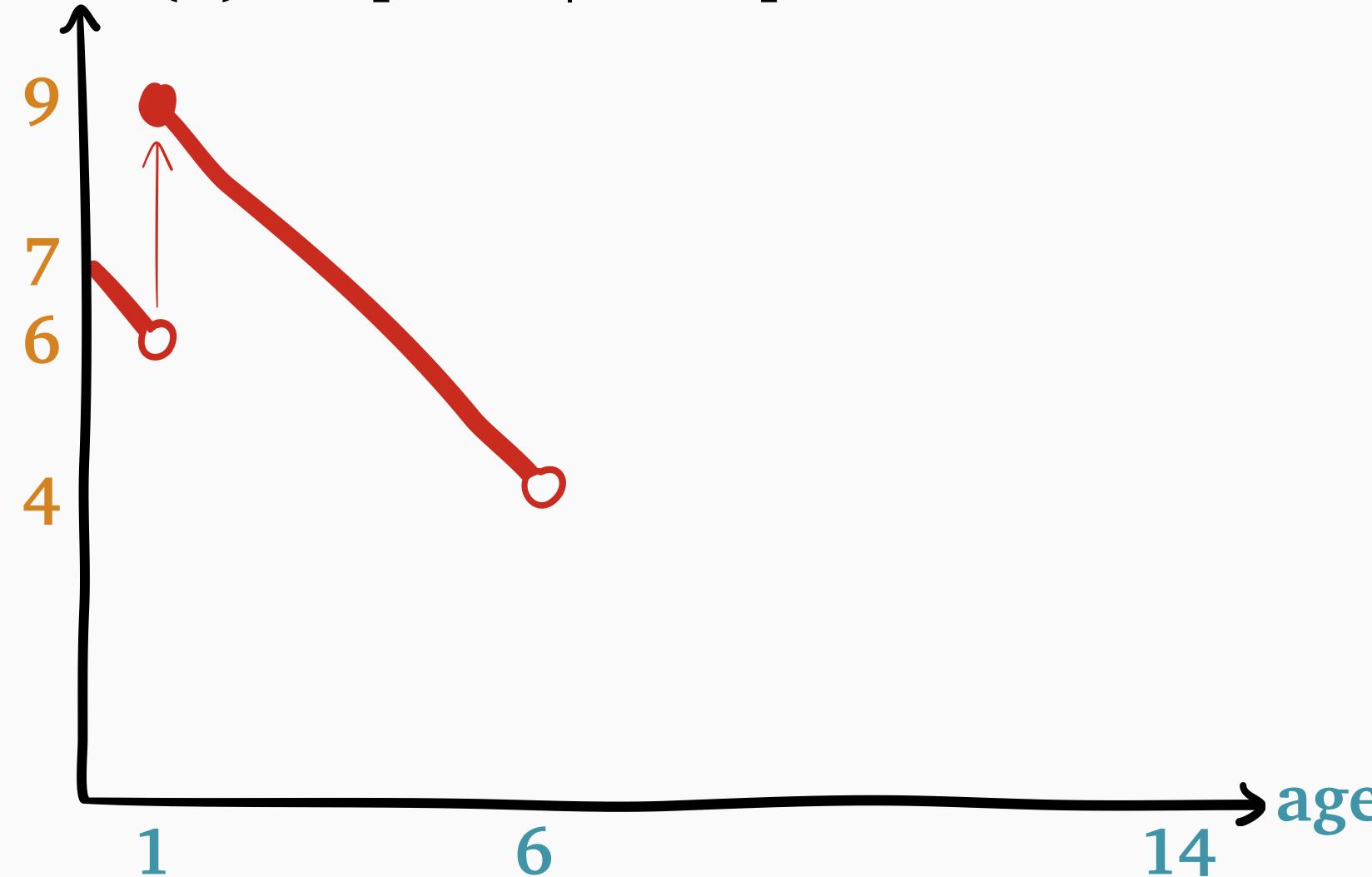
$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

# Scheduling with **rank** functions

**SERPT**

shortest *expected* remaining processing time

$$\text{rank}(a) = E[S - a \mid S > a]$$



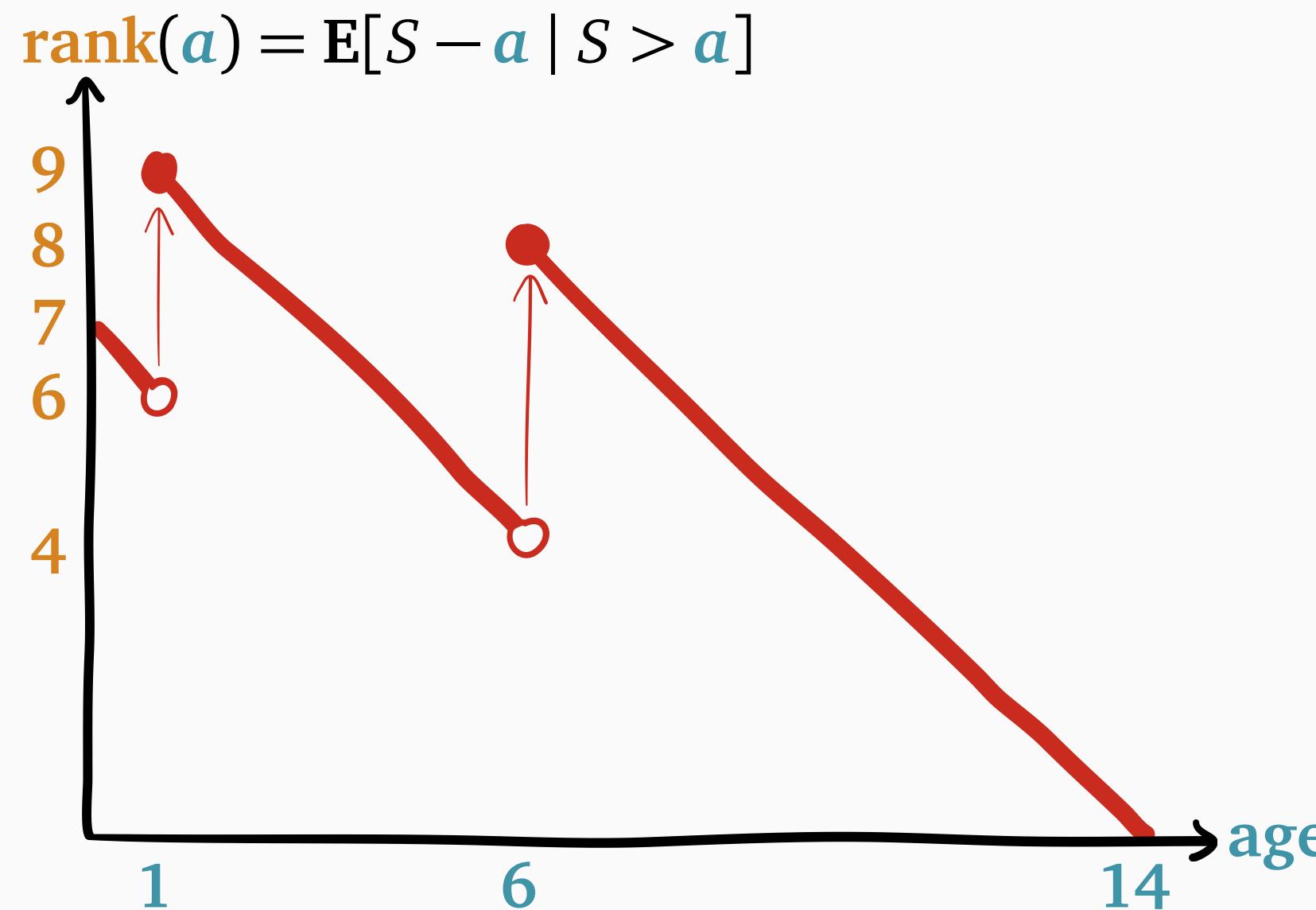
Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

# Scheduling with **rank** functions

**SERPT**

shortest *expected* remaining processing time



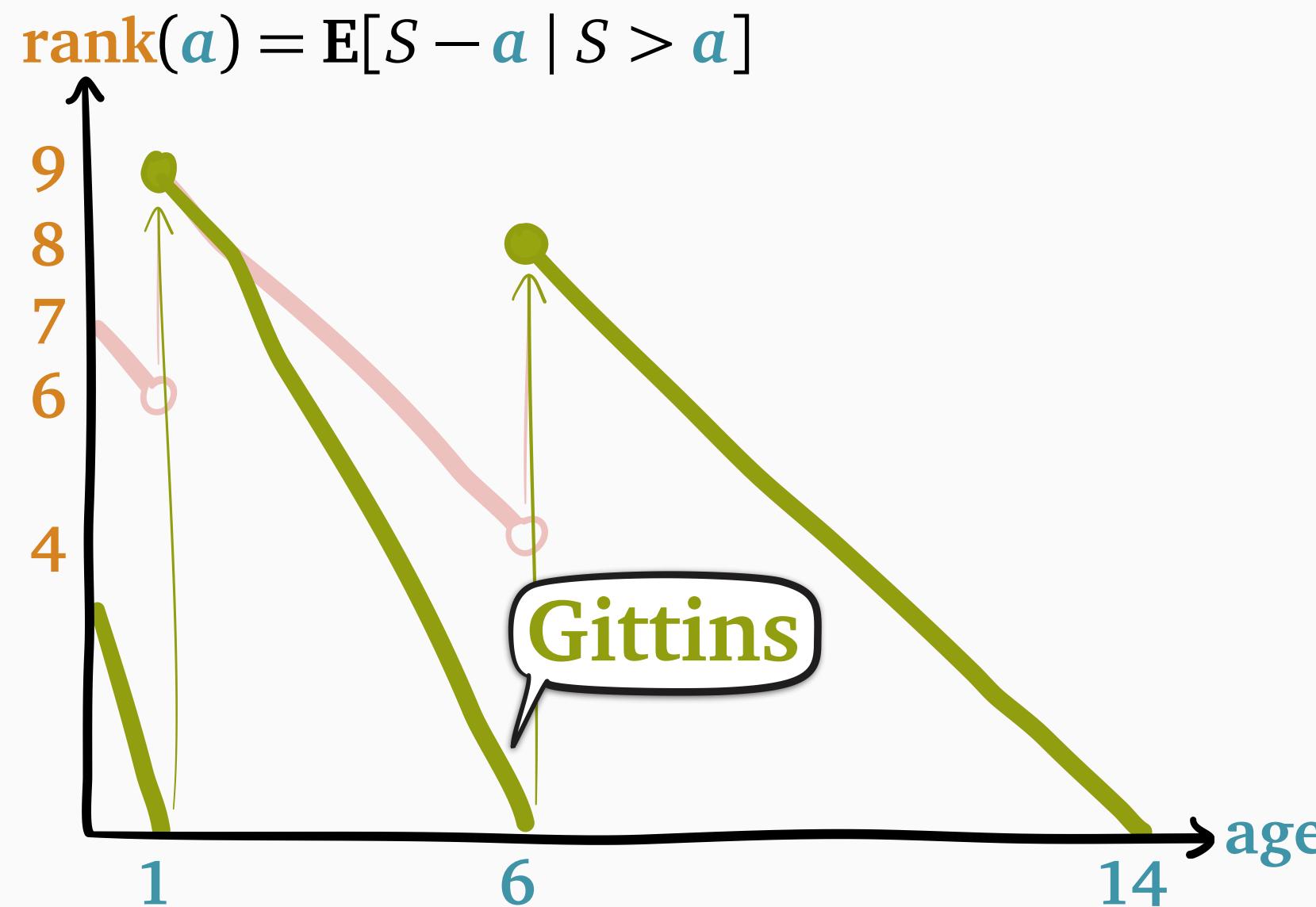
Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

# Scheduling with **rank** functions

**SERPT**

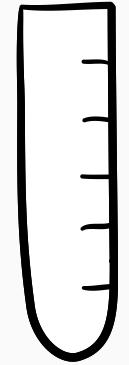
shortest *expected* remaining processing time



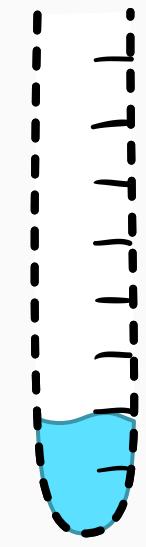
Job size distribution:

$$S = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$$

# Defining the Gittins rank

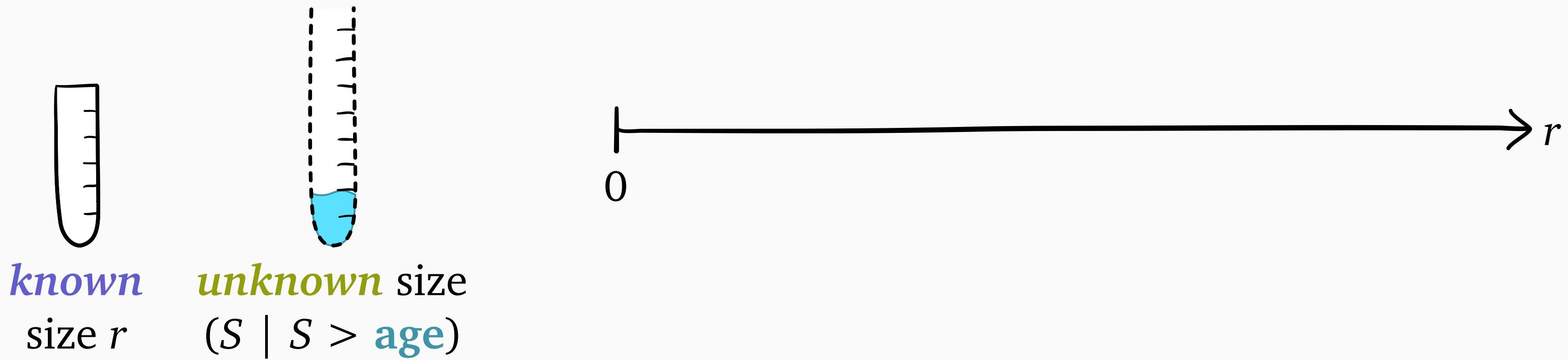


*known*  
size  $r$

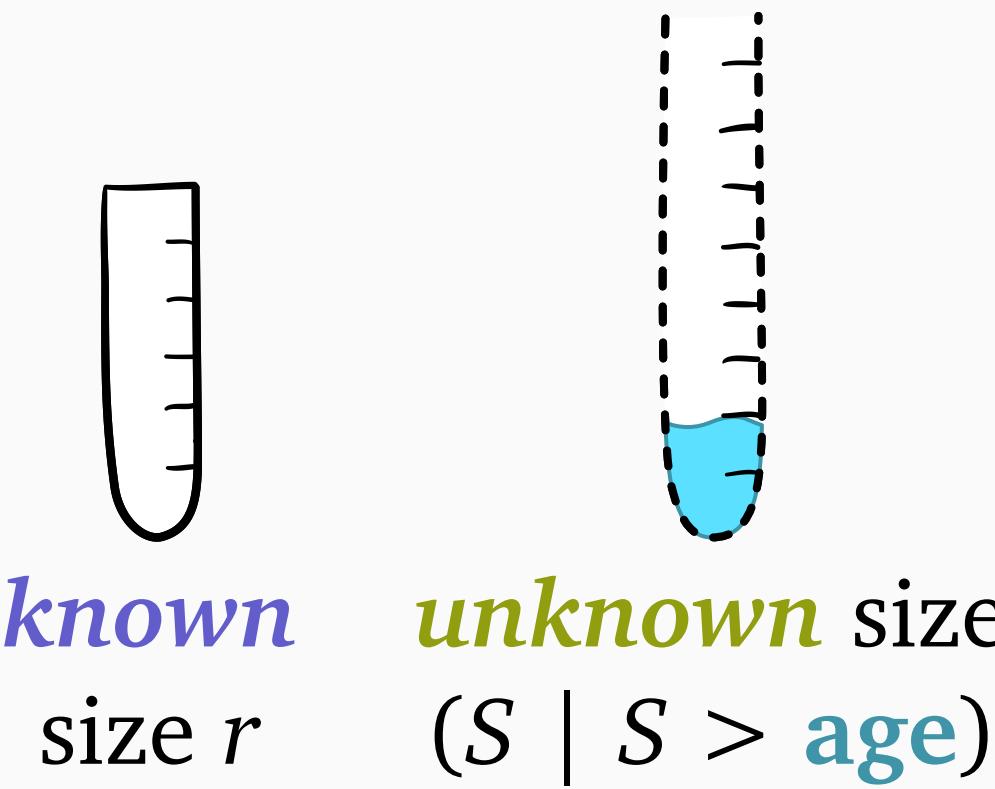
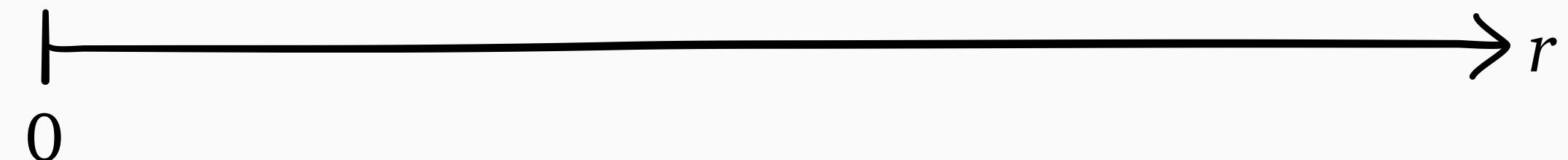


*unknown* size  
 $(S \mid S > \text{age})$

# Defining the **Gittins rank**



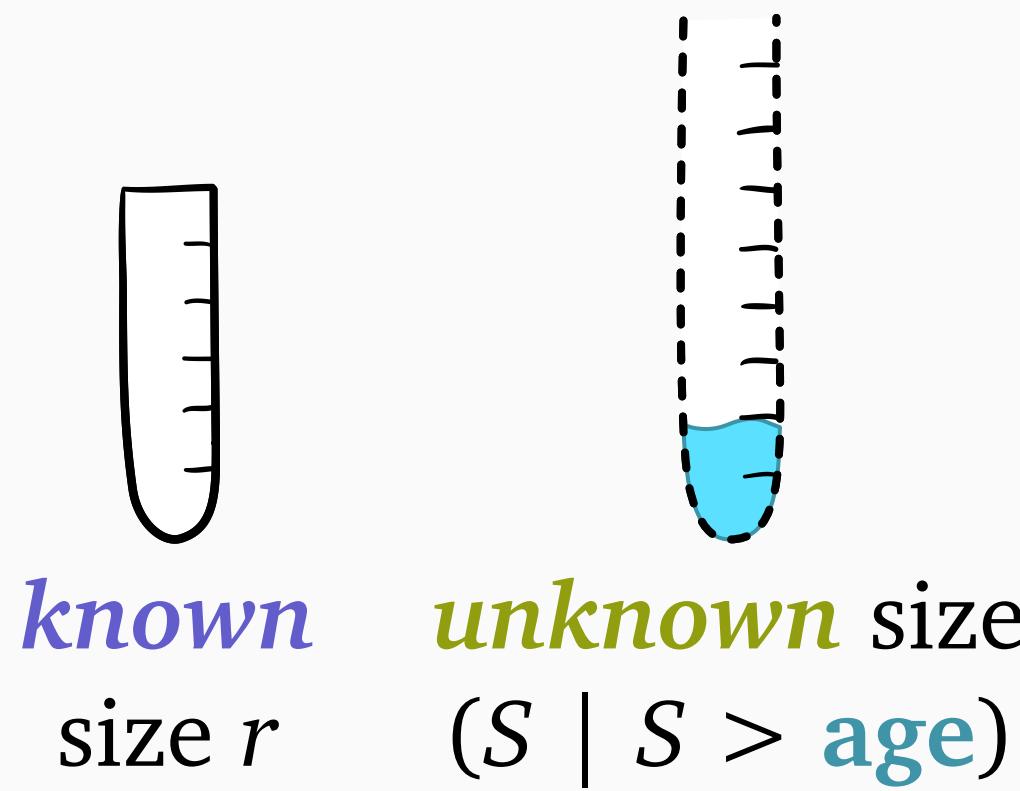
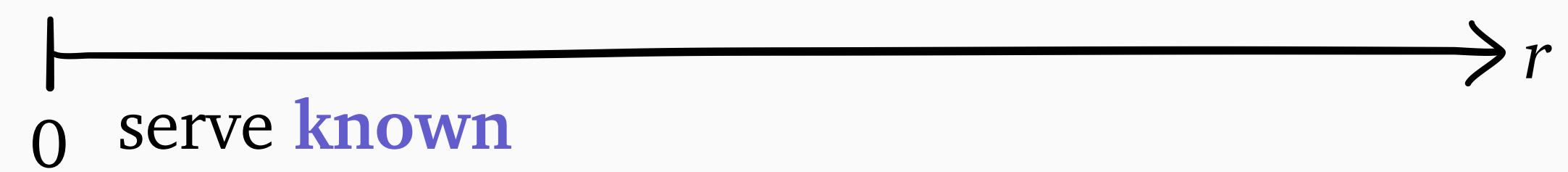
# Defining the **Gittins rank**



?

**Key question:** for which  $r$  should we serve **unknown**?

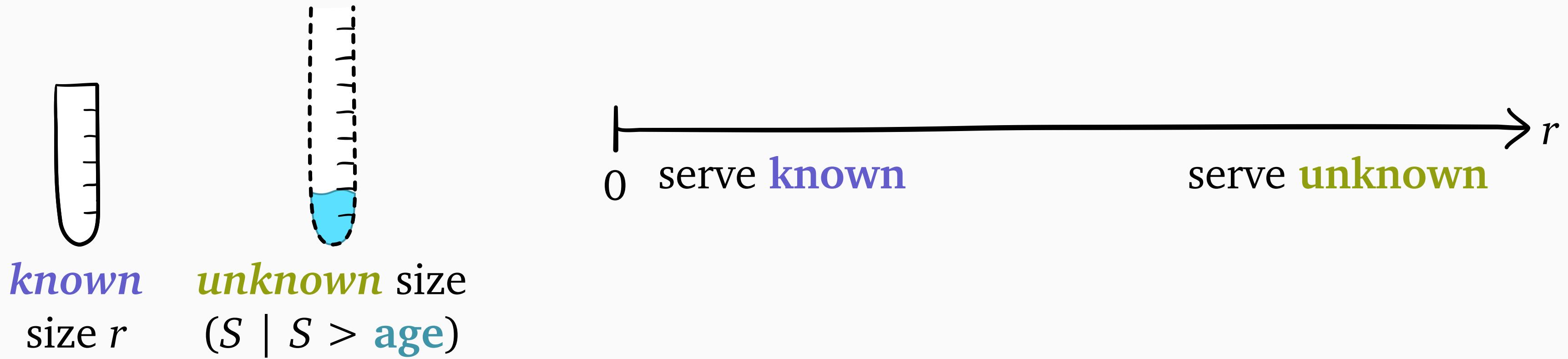
# Defining the **Gittins rank**



?

Key question: for which  $r$  should we serve **unknown**?

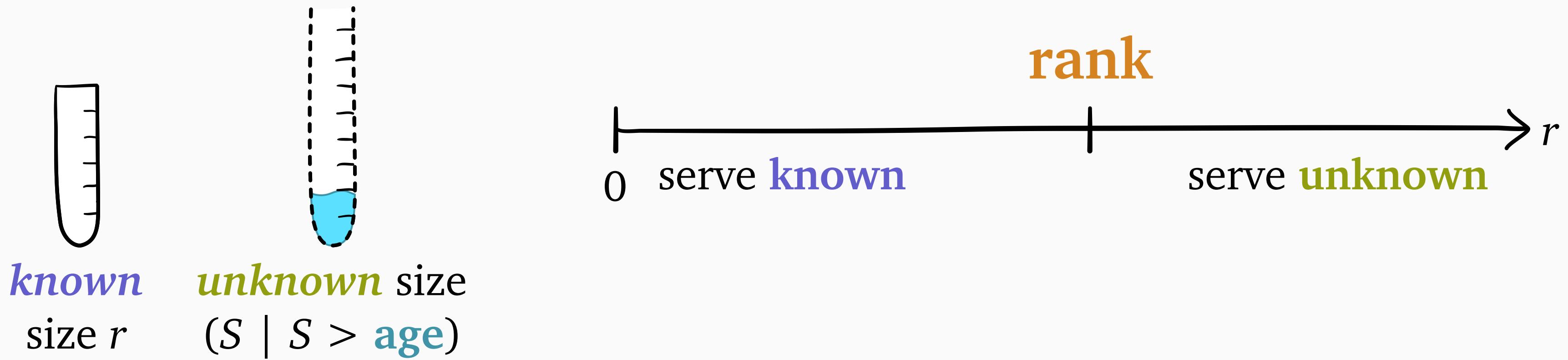
# Defining the **Gittins rank**



?

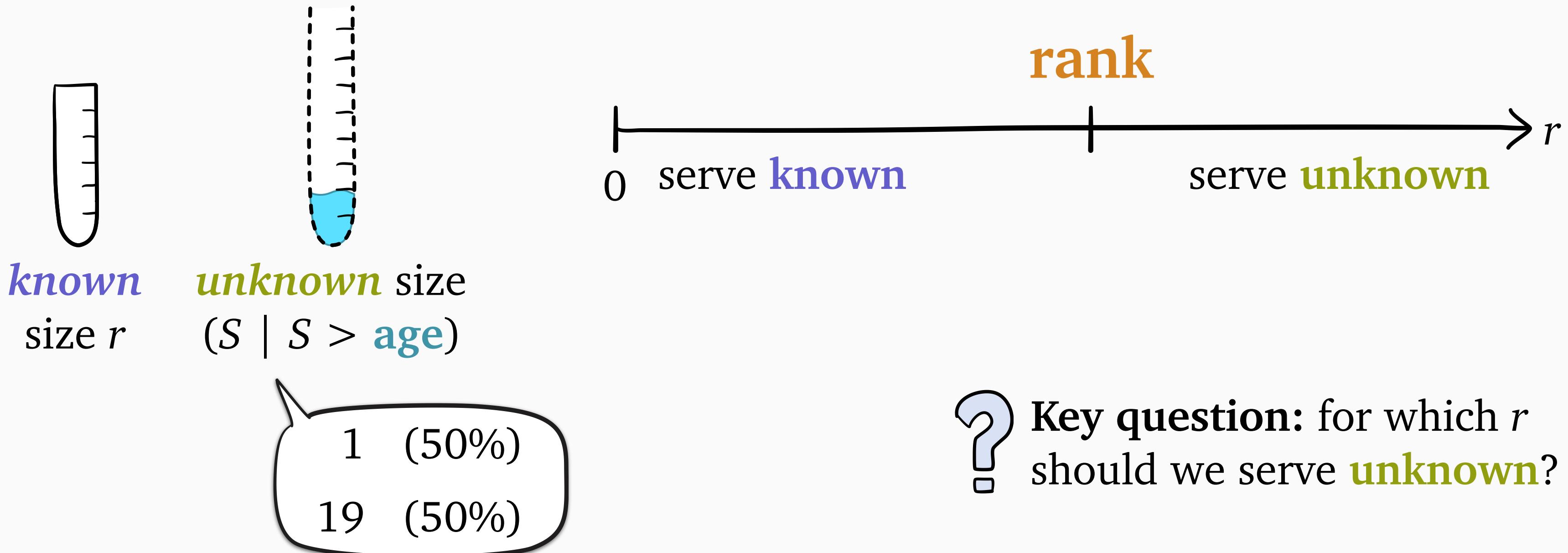
**Key question:** for which  $r$  should we serve **unknown**?

# Defining the **Gittins rank**

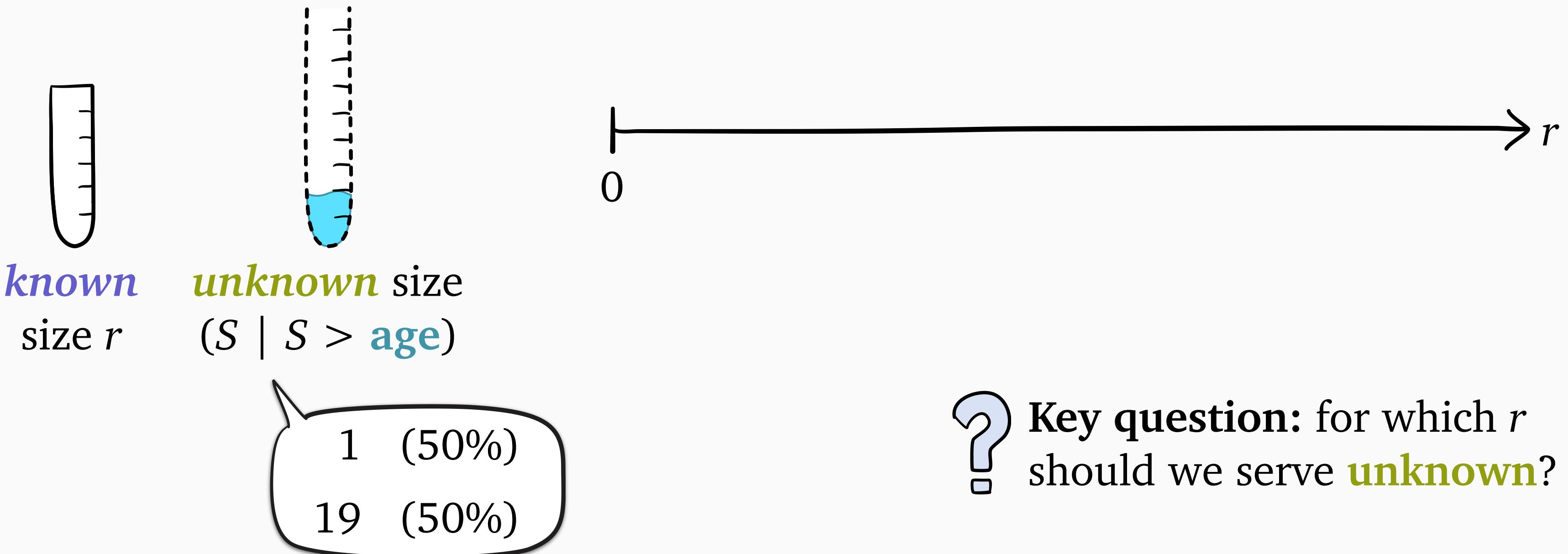


Key question: for which  $r$  should we serve **unknown**?

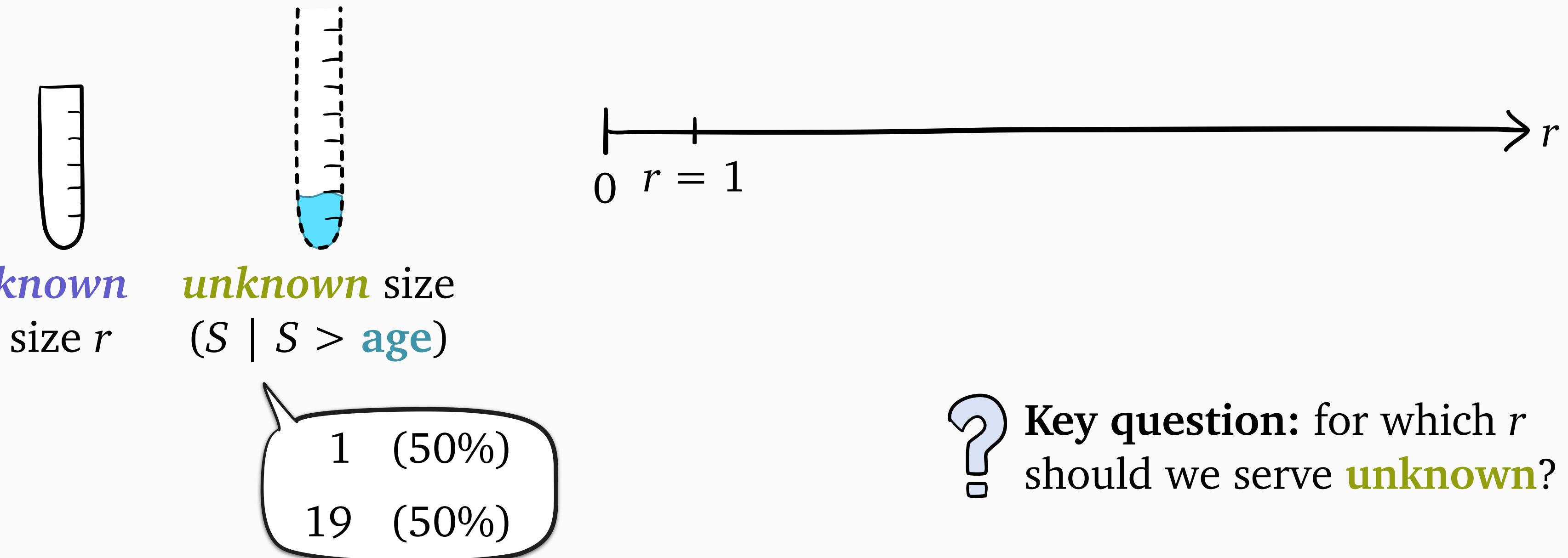
# Defining the Gittins rank



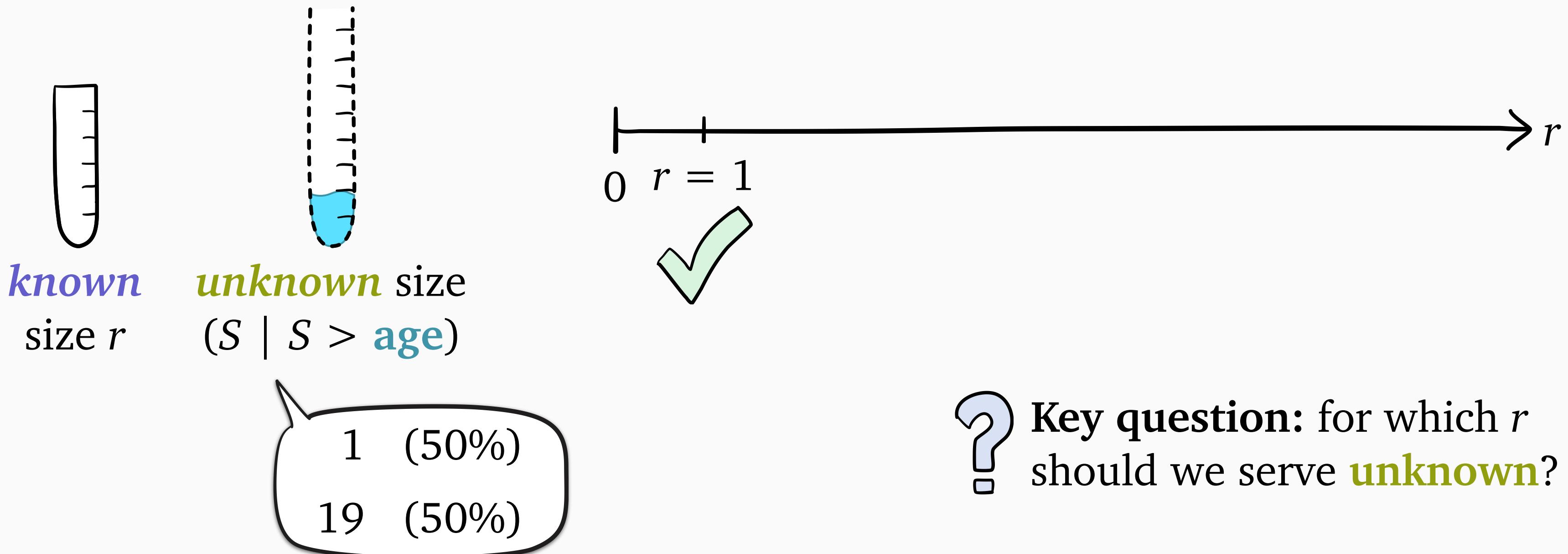
# Defining the **Gittins rank**



# Defining the **Gittins rank**



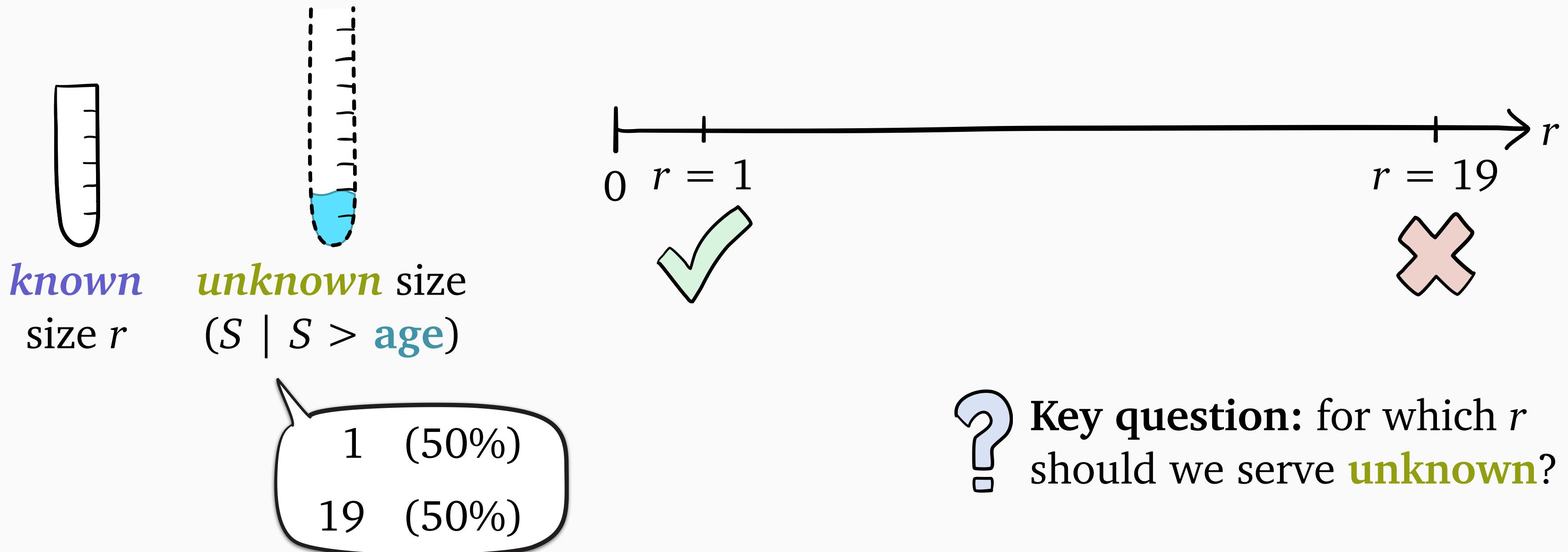
# Defining the **Gittins rank**



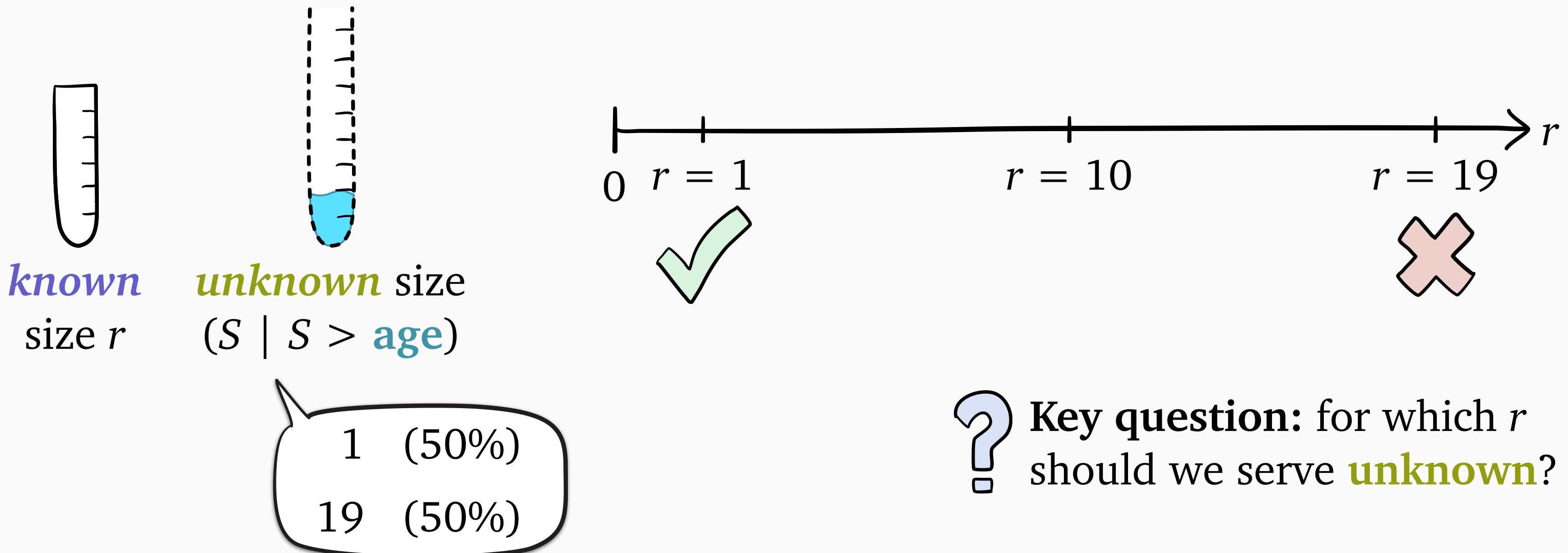
# Defining the **Gittins rank**



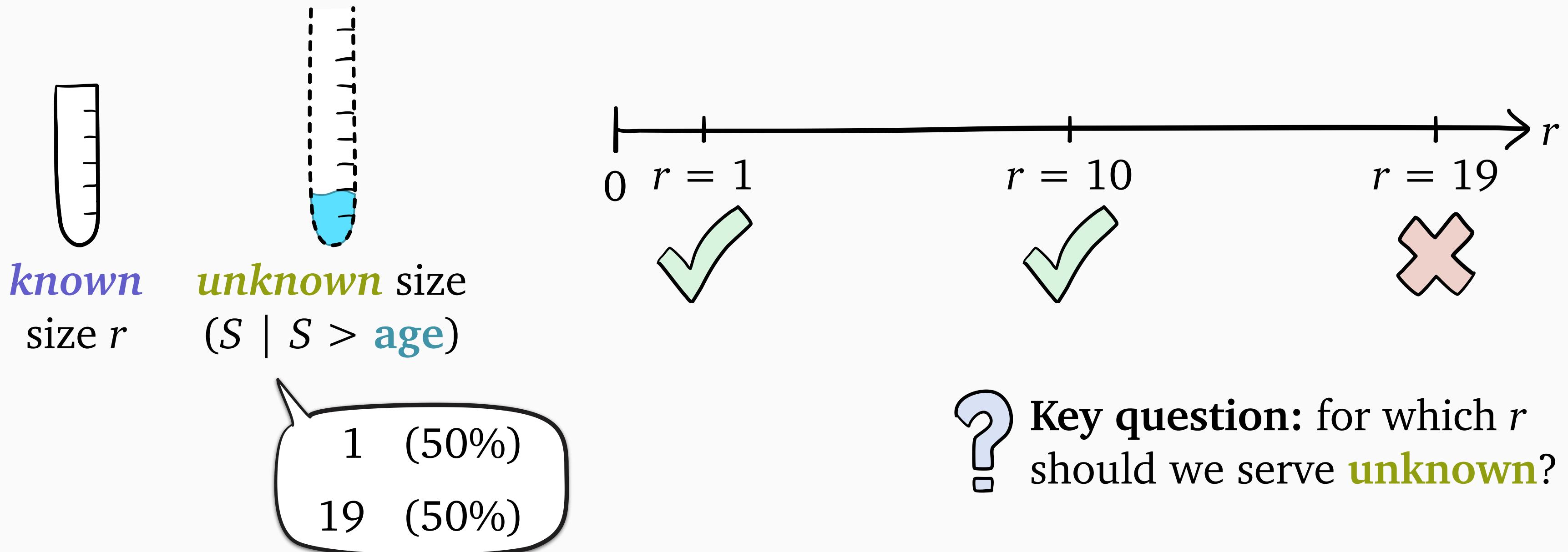
# Defining the **Gittins rank**



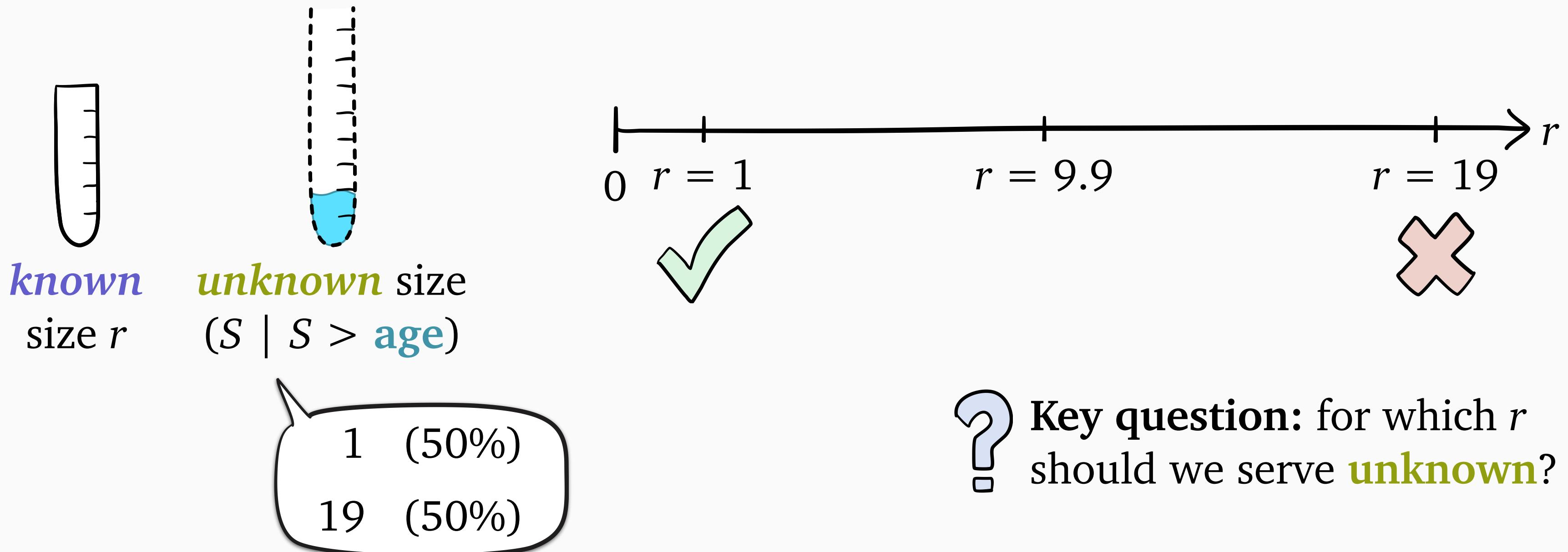
# Defining the **Gittins rank**



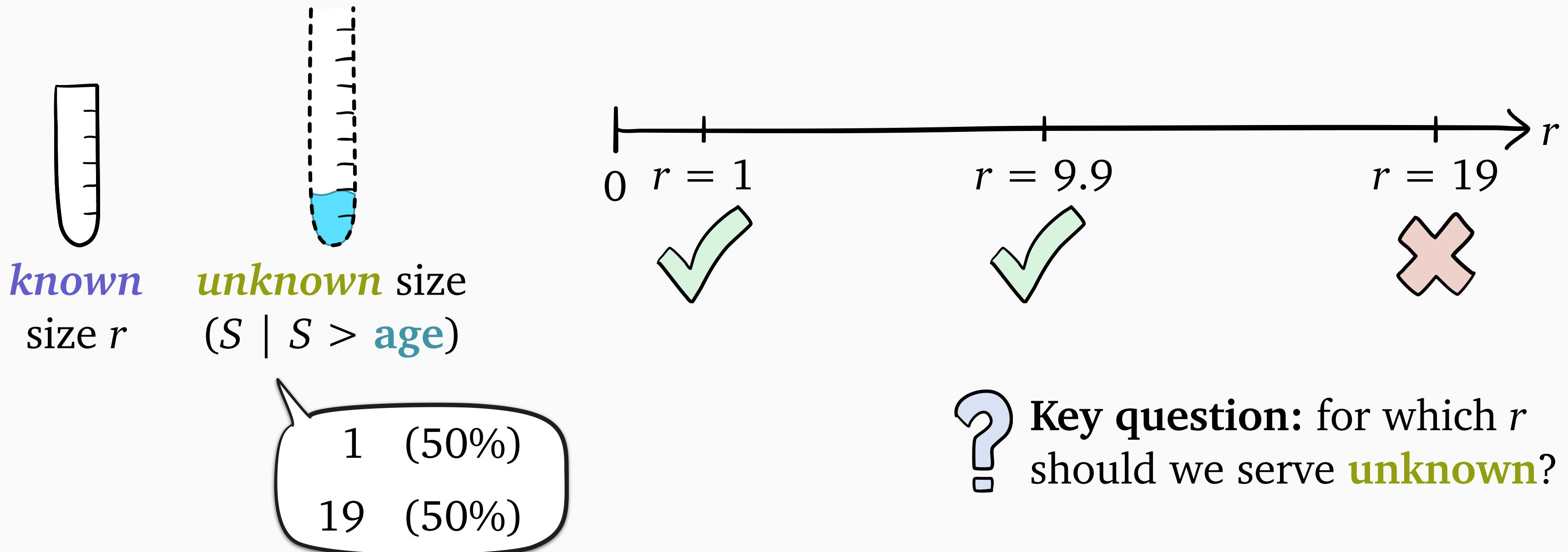
# Defining the **Gittins rank**



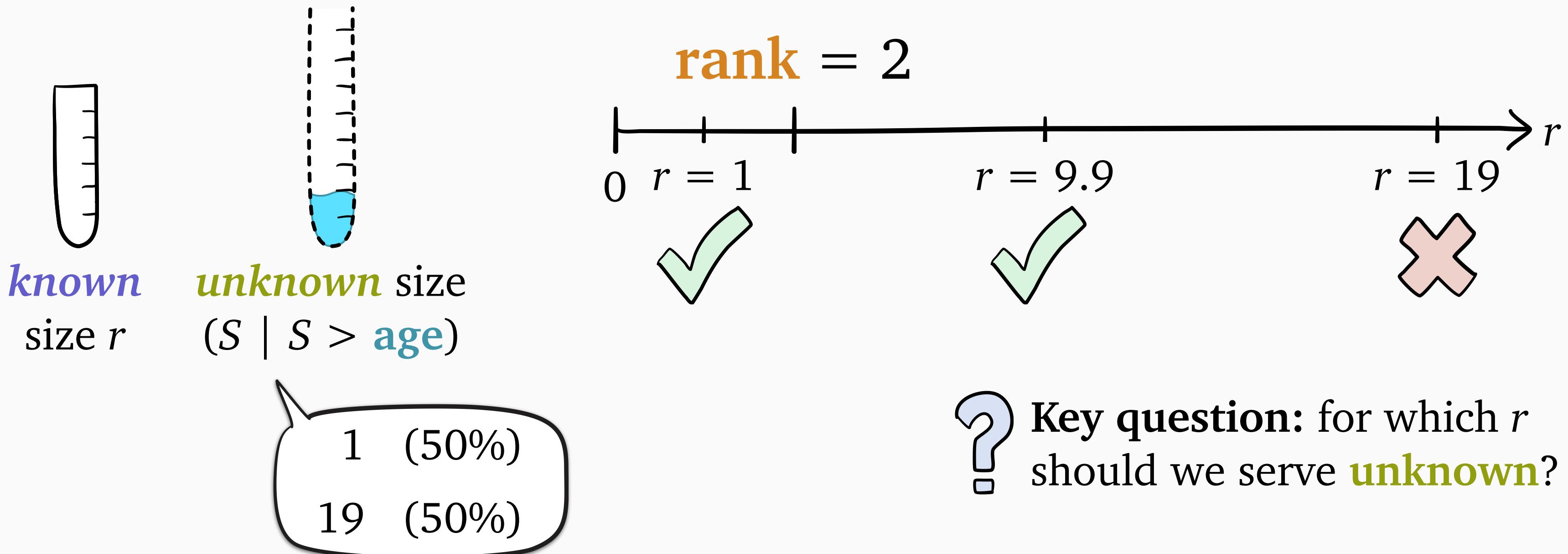
# Defining the **Gittins rank**



# Defining the **Gittins rank**



# Defining the **Gittins rank**



# How to prove **SRPT** is optimal?

# How to prove **SRPT** is optimal?

**Little's law:**  $E[N] = \lambda E[T]$

# How to prove **SRPT** is optimal?

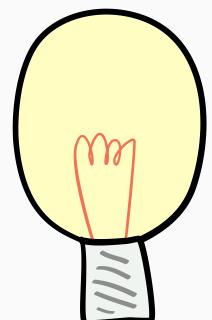
Little's law:  $E[N] = \lambda E[T]$

# jobs present

# How to prove **SRPT** is optimal?

Little's law:  $E[N] = \lambda E[T]$

# jobs present

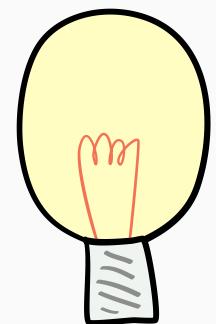


Reward each time  
we complete a job

# How to prove **SRPT** is optimal?

**Little's law:**  $E[N] = \lambda E[T]$

# jobs present



Reward each time  
we complete a job

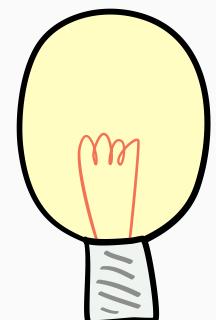


Rewards aren't  
immediate

# How to prove **SRPT** is optimal?

**Little's law:**  $E[N] = \lambda E[T]$

# jobs present



Reward each time  
we complete a job



Rewards aren't  
immediate

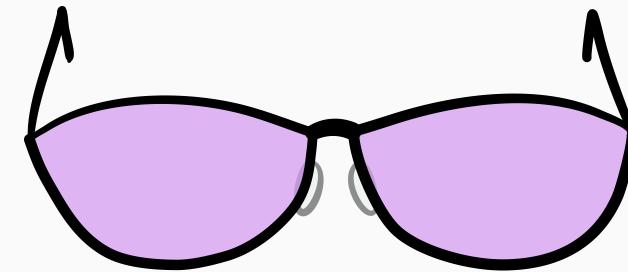


Write  $N$  in terms of  
“smoother” quantity?

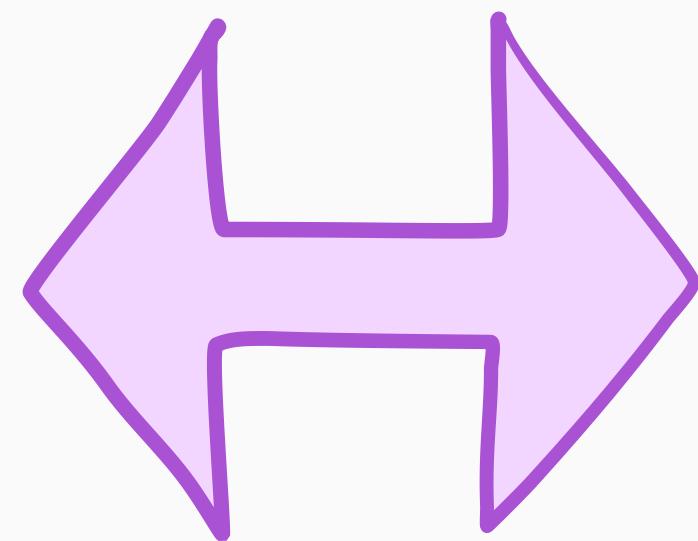
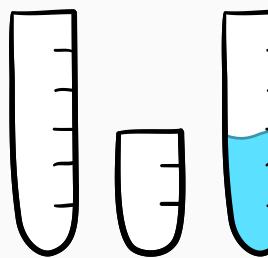


# WINE

Work Integral Number Equality



$r$ -work  $W(r)$

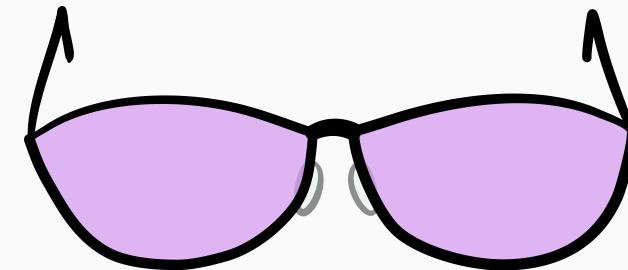


number of jobs  $N$

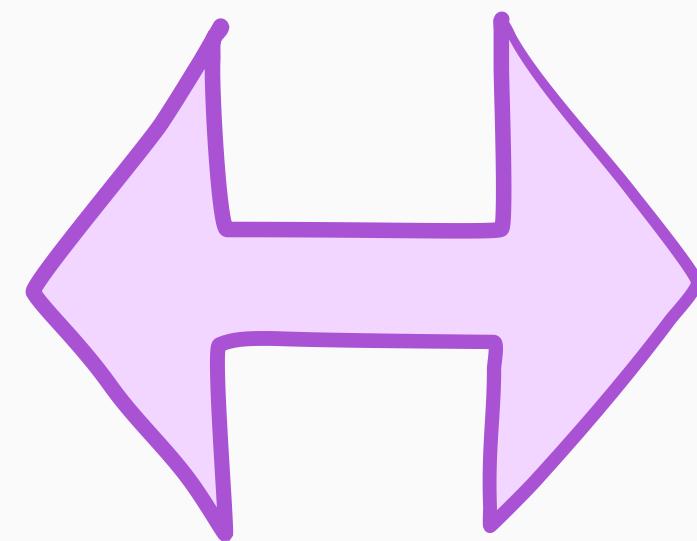
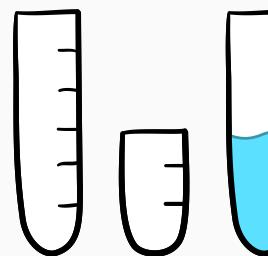


# WINE

Work Integral Number Equality



$r$ -work  $W(r)$



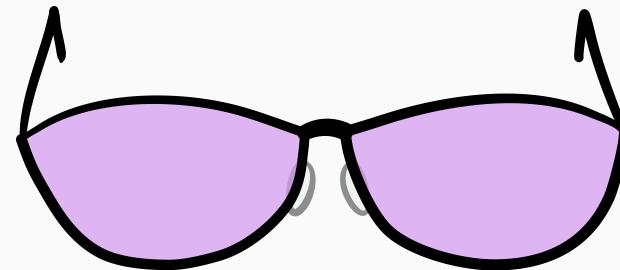
number of jobs  $N$

$E[T]$  bounds for **SRPT** and **Gittins** in:

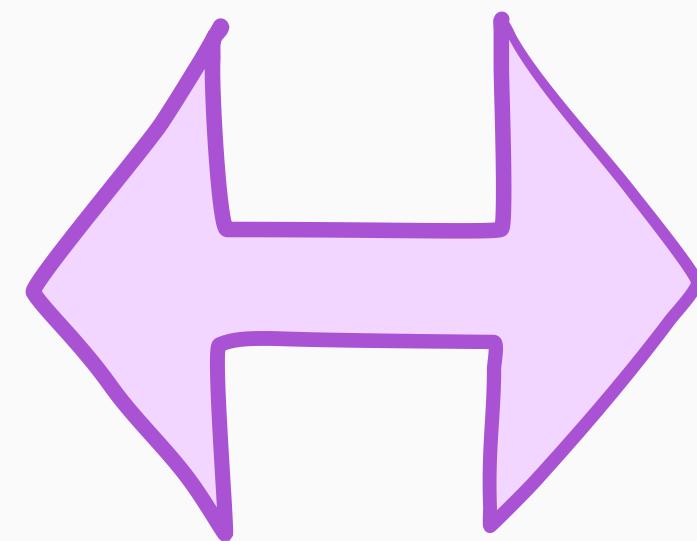
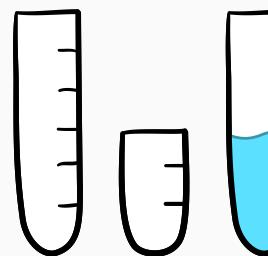


# WINE

Work Integral Number Equality



$r$ -work  $W(r)$



number of jobs  $N$

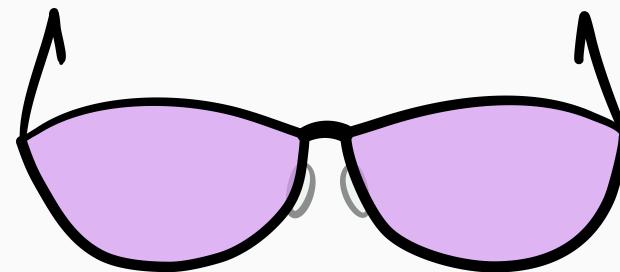
$E[T]$  bounds for **SRPT** and **Gittins** in:

- **M/G/k** and **G/G/k**

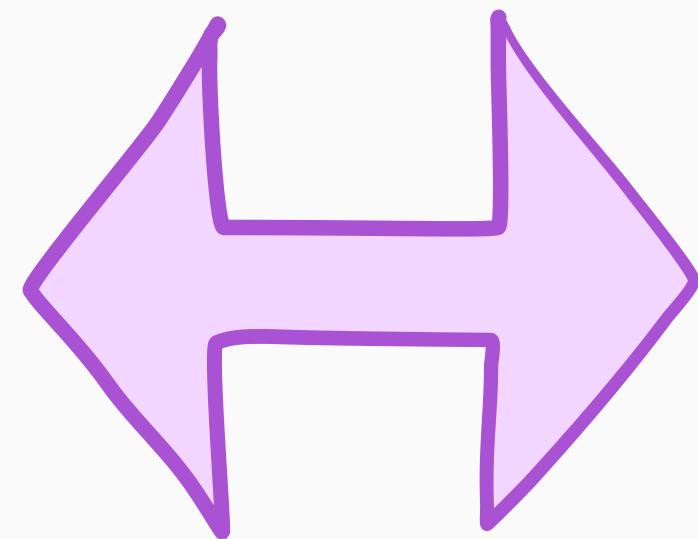
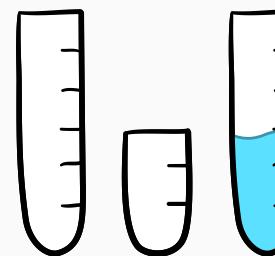


# WINE

Work Integral Number Equality



$r$ -work  $W(r)$



number of jobs  $N$

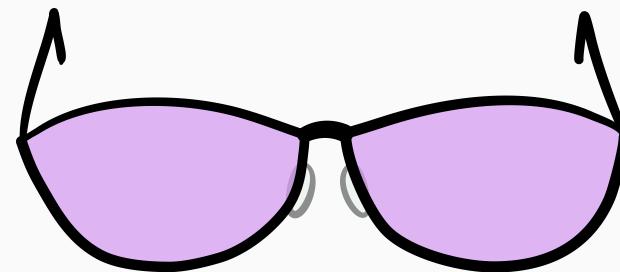
$E[T]$  bounds for **SRPT** and **Gittins** in:

- **M/G/k** and **G/G/k**
- systems with **multiserver jobs**

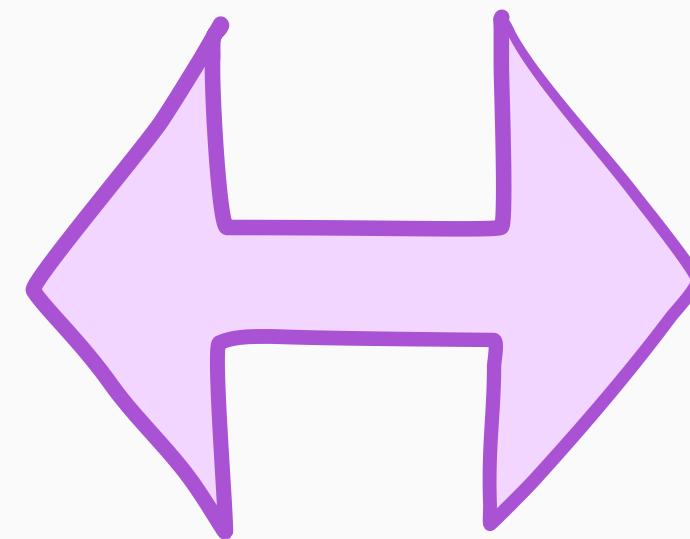
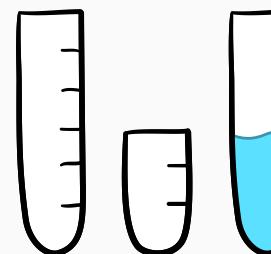


# WINE

Work Integral Number Equality



$r$ -work  $W(r)$



number of jobs  $N$

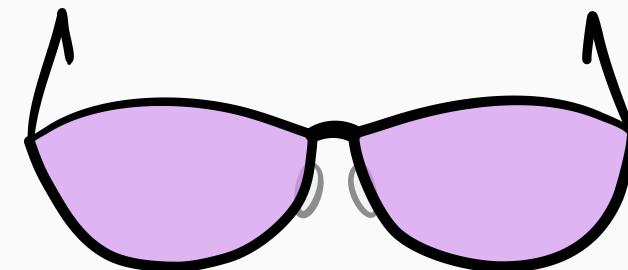
$E[T]$  bounds for **SRPT** and **Gittins** in:

- **M/G/k** and **G/G/k**
- systems with **multiserver jobs**
- systems with **noisy size estimates**

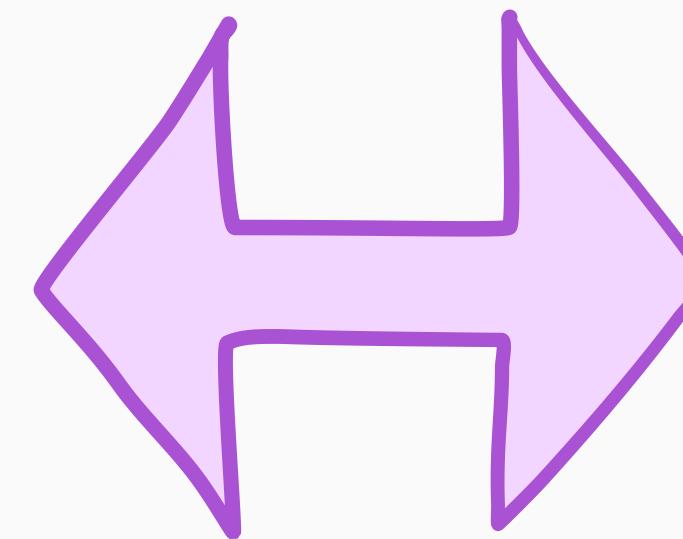
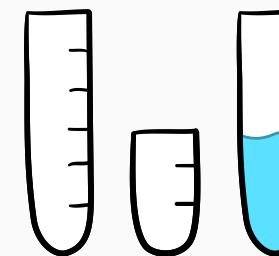


# WINE

## Work Integral Number Equality



$r$ -work  $W(r)$



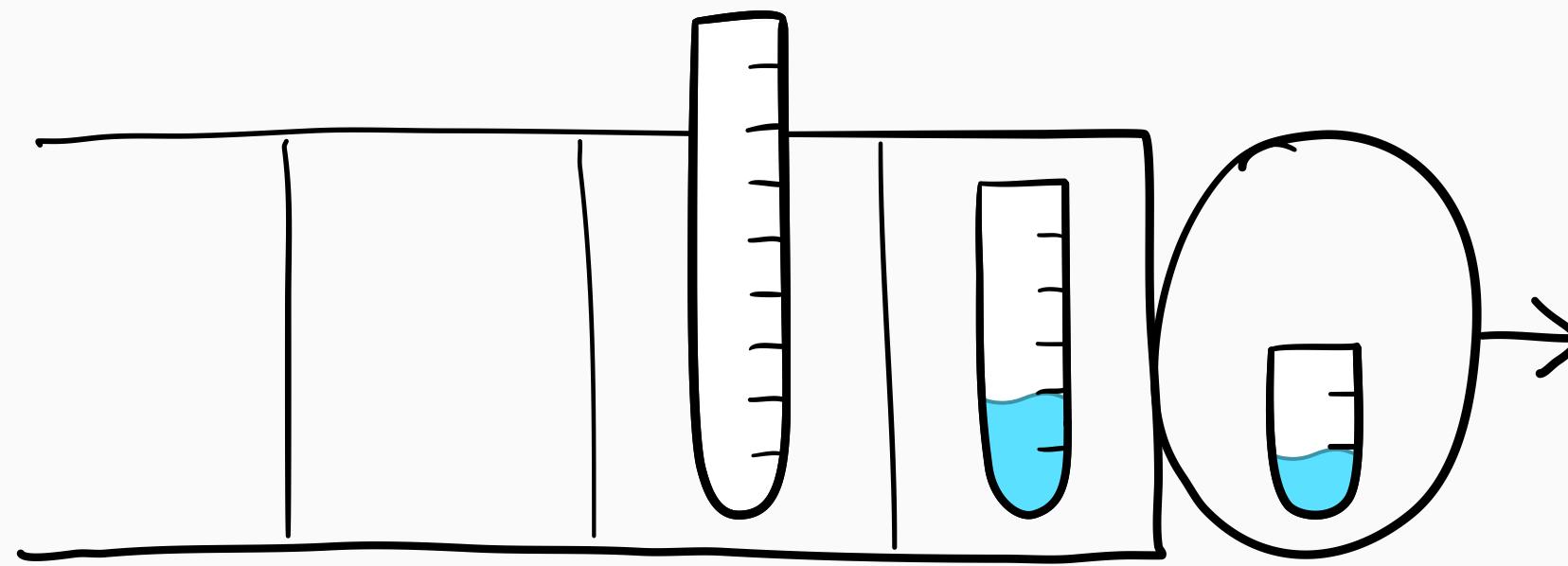
number of jobs  $N$

$E[T]$  bounds for **SRPT** and **Gittins** in:

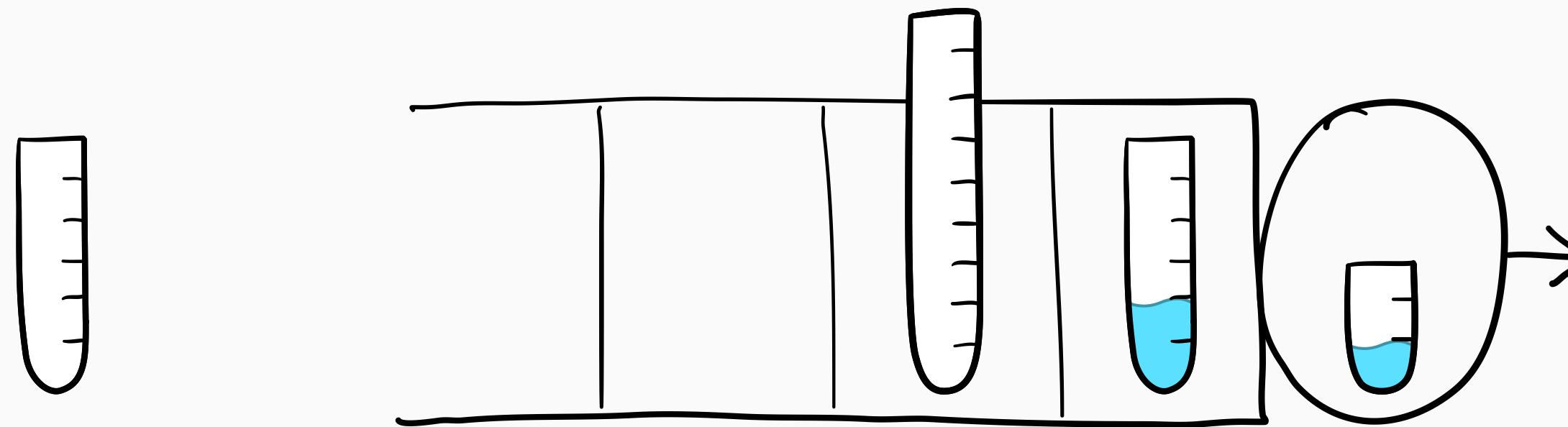
- **M/G/k** and **G/G/k**
- systems with **multiserver jobs**
- systems with **noisy size estimates**
- systems with **unknown size distribution**



# Key quantity: *r*-work

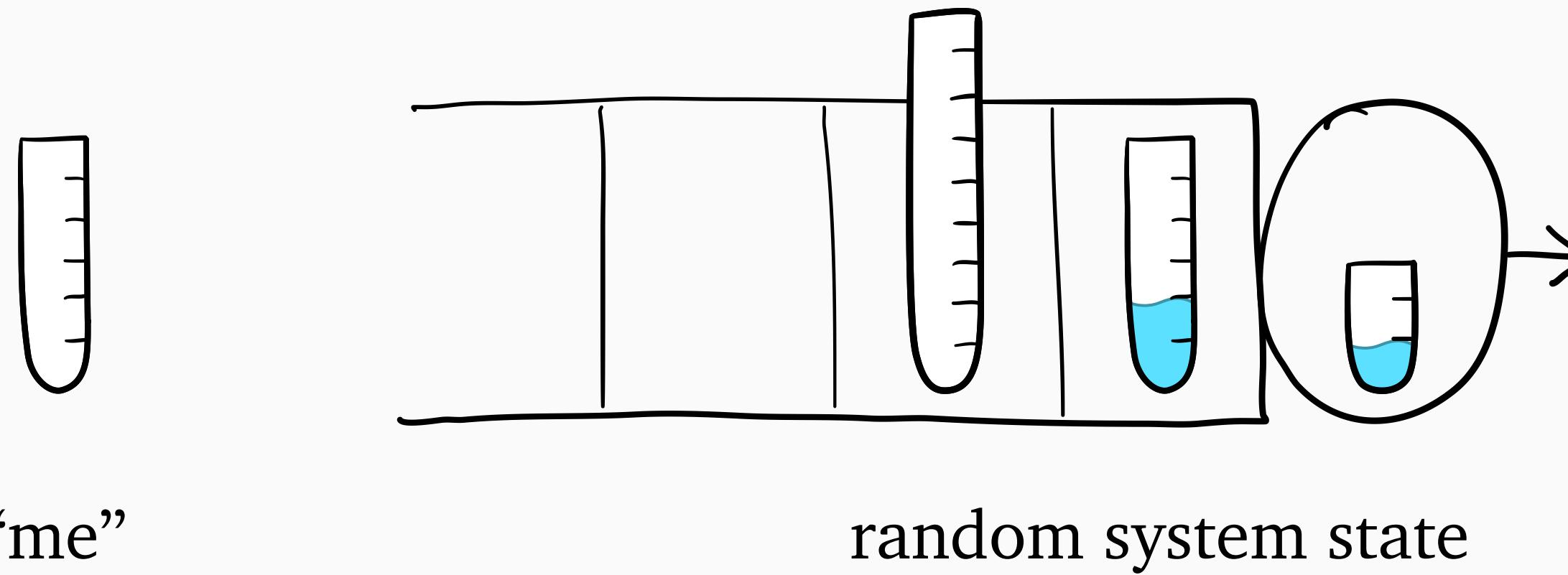


# Key quantity: *r*-work

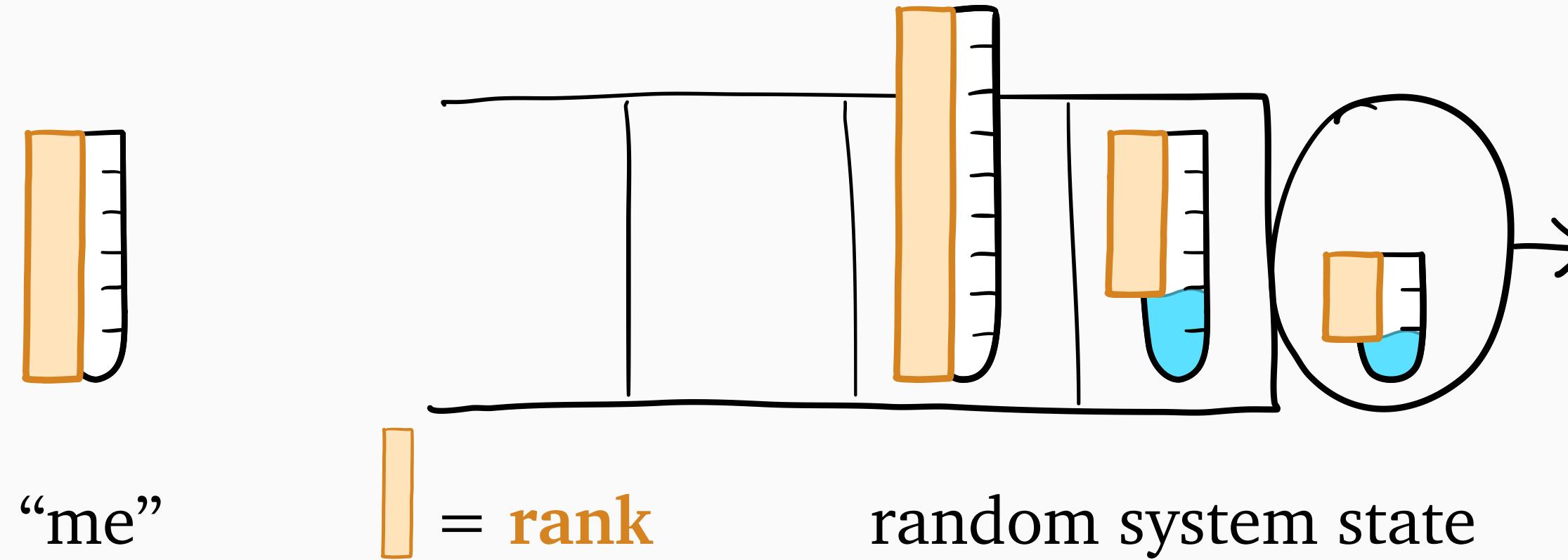


“me”

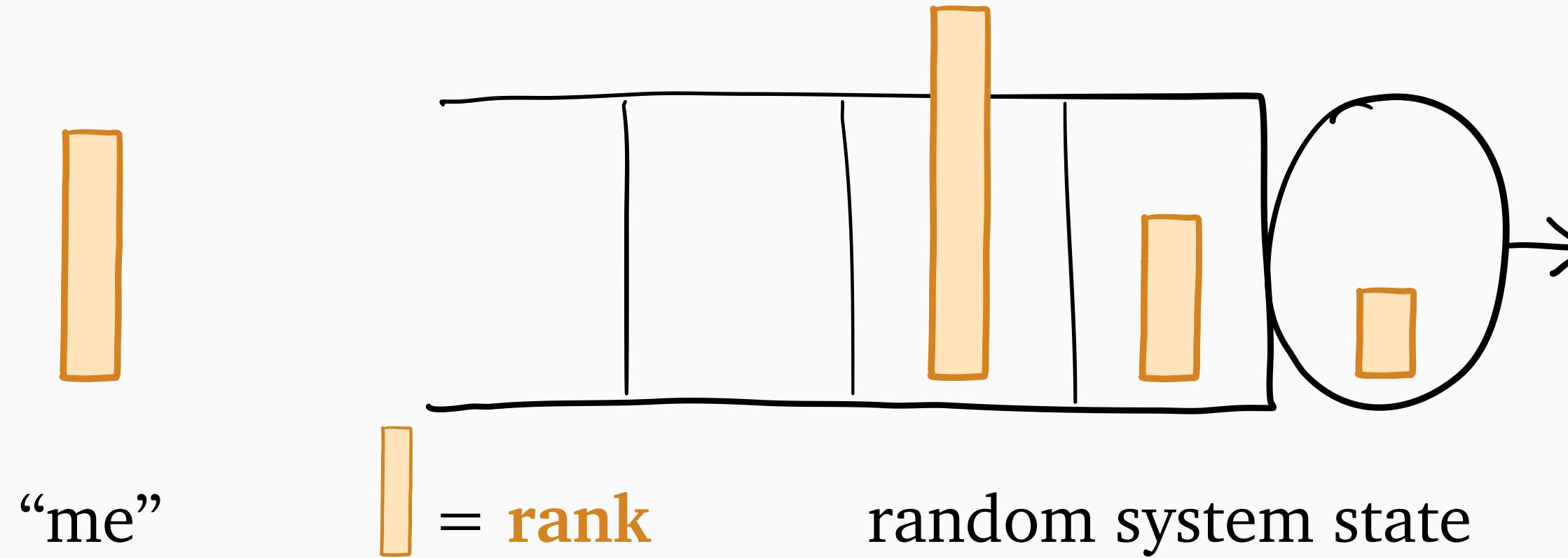
# Key quantity: *r*-work



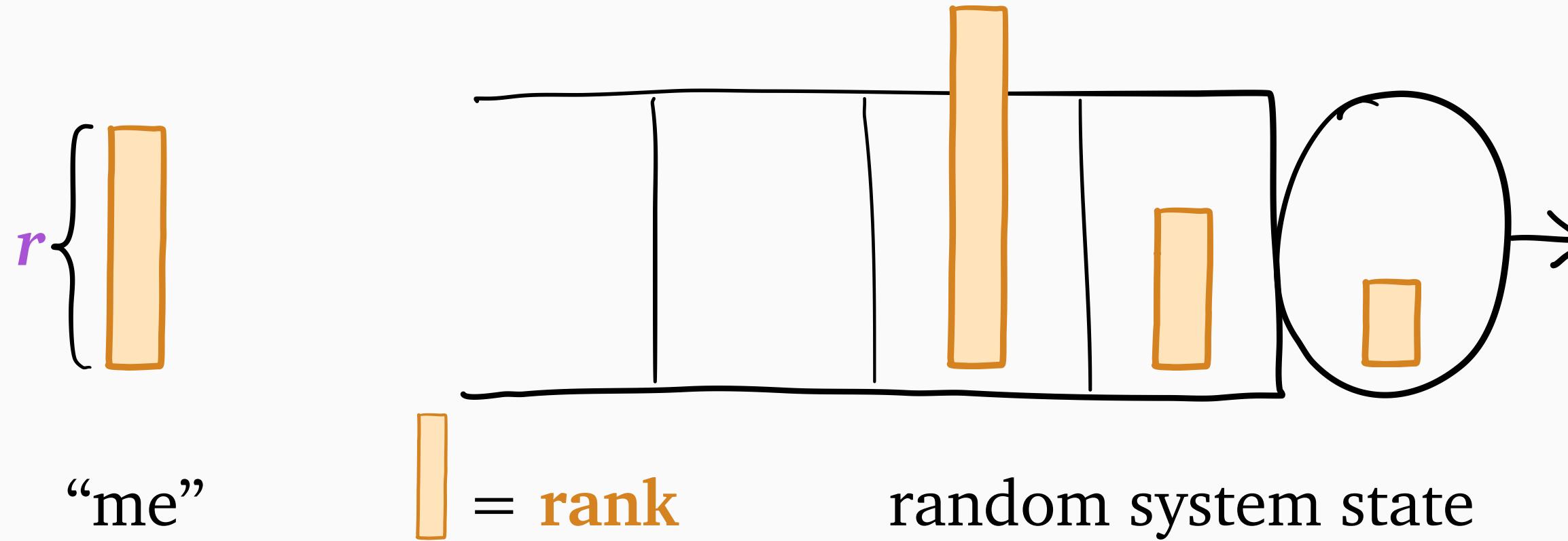
# Key quantity: *r*-work



# Key quantity: *r*-work



# Key quantity: $r$ -work

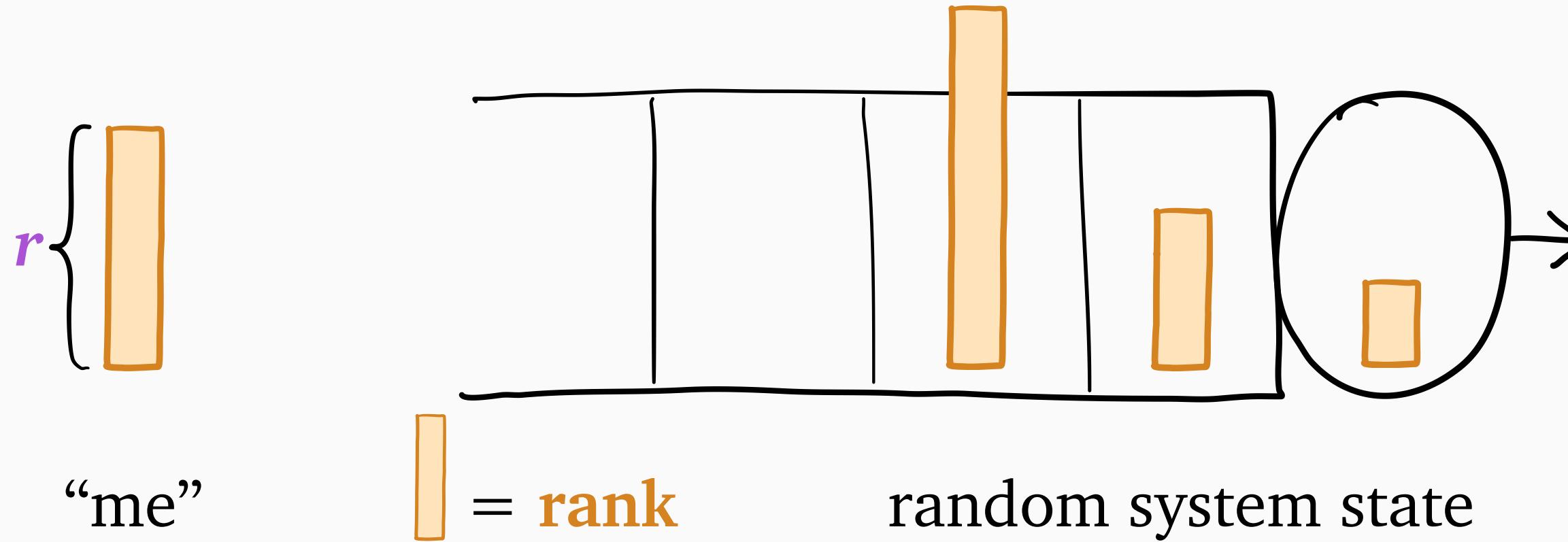


Key quantity:

$W(r)$  = work relevant to job of rank  $r$

$r$ -work

# Key quantity: $r$ -work



Key quantity:

$W(r)$  = work relevant to job of rank  $r$

$r$ -work



# Key quantity: $r$ -work

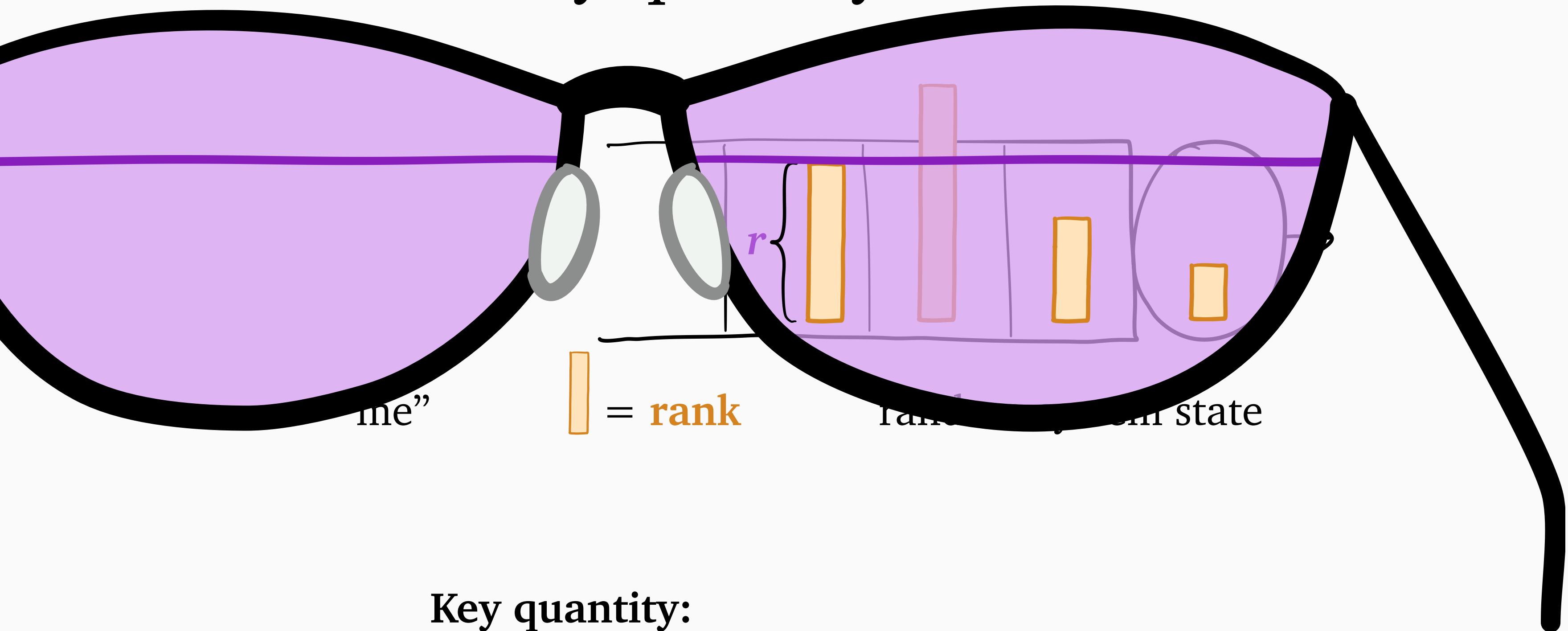


## Key quantity:

$W(r)$  = work relevant to job of rank  $r$

## **r-work**

# Key quantity: $r$ -work

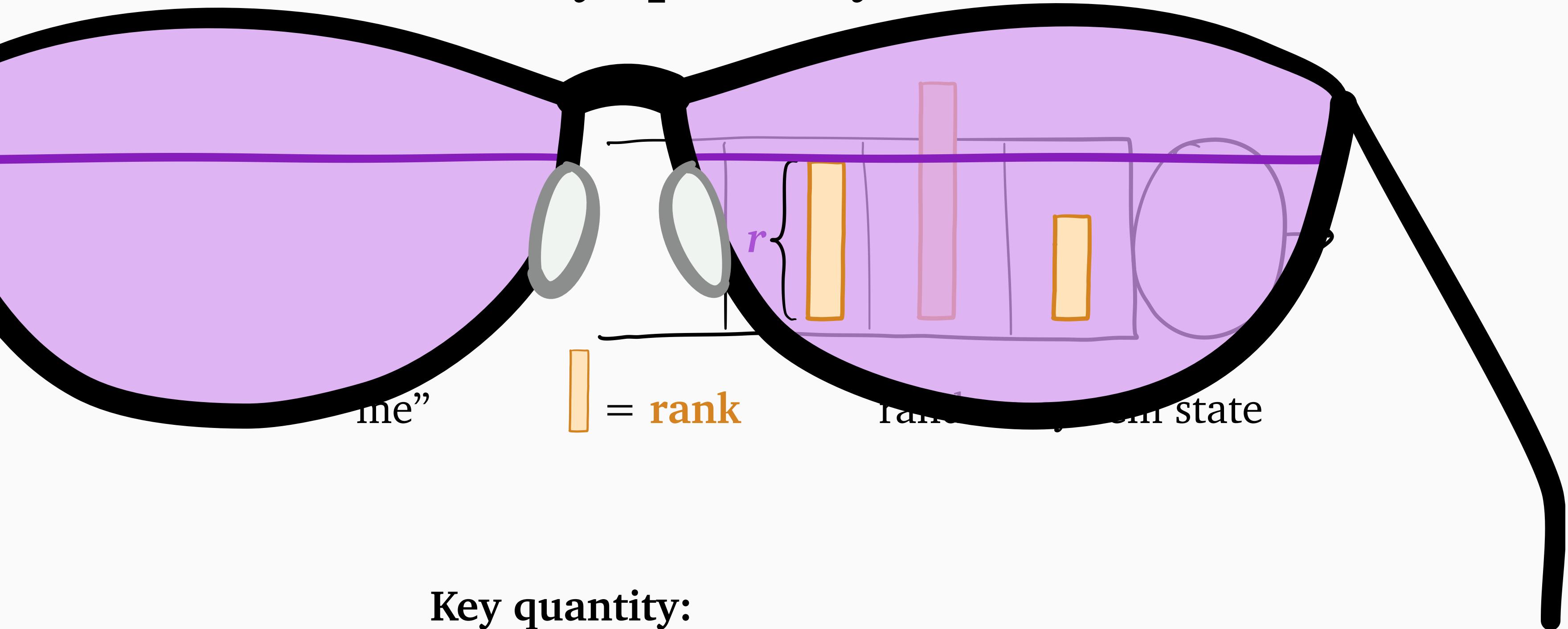


Key quantity:

$W(r)$  = work relevant to job of **rank  $r$**

**$r$ -work**

# Key quantity: $r$ -work

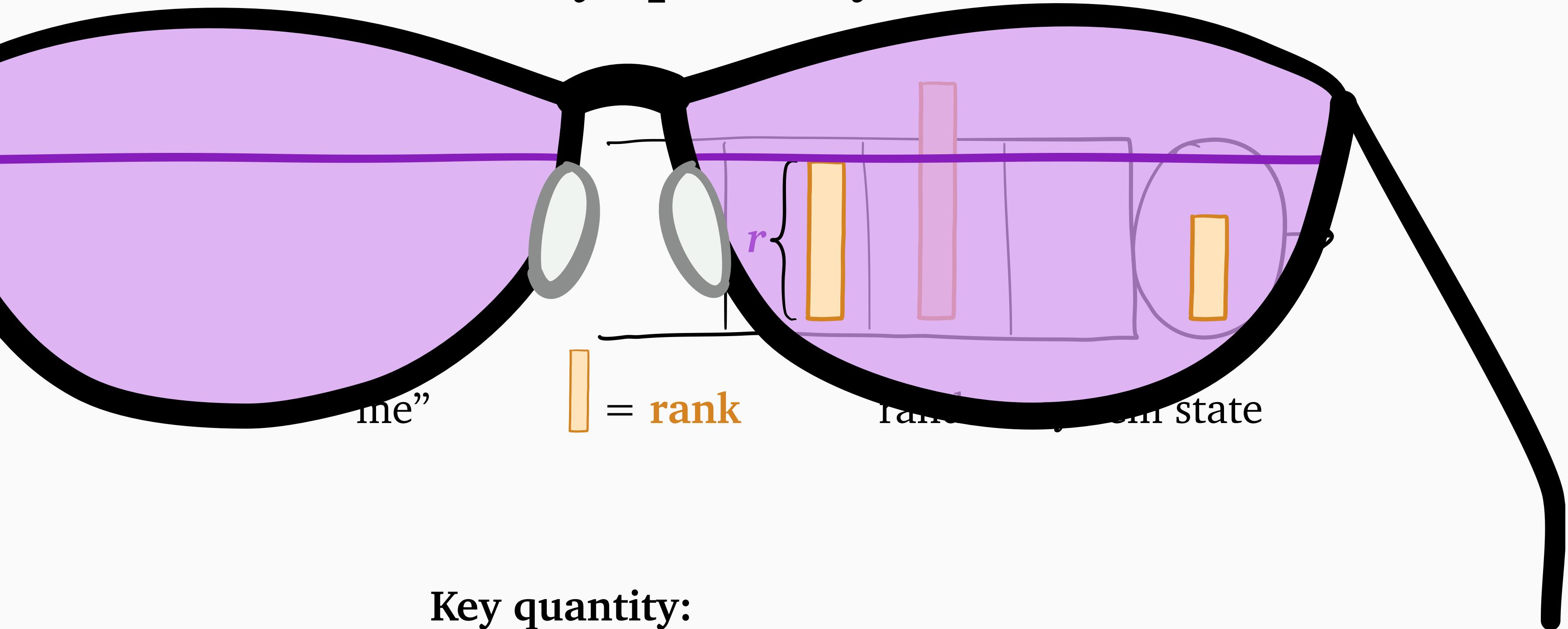


Key quantity:

$W(r)$  = work relevant to job of **rank  $r$**

**$r$ -work**

# Key quantity: $r$ -work

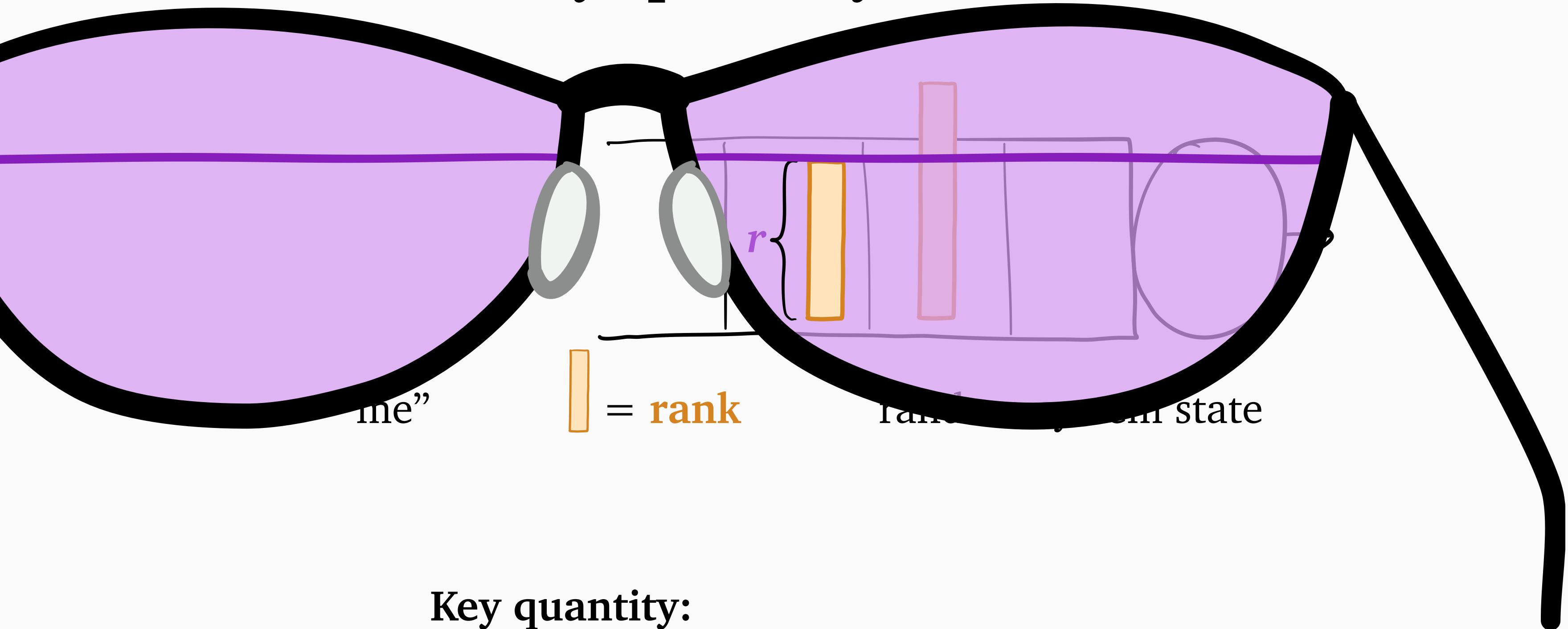


Key quantity:

$W(r)$  = work relevant to job of rank  $r$

$r$ -work

# Key quantity: $r$ -work

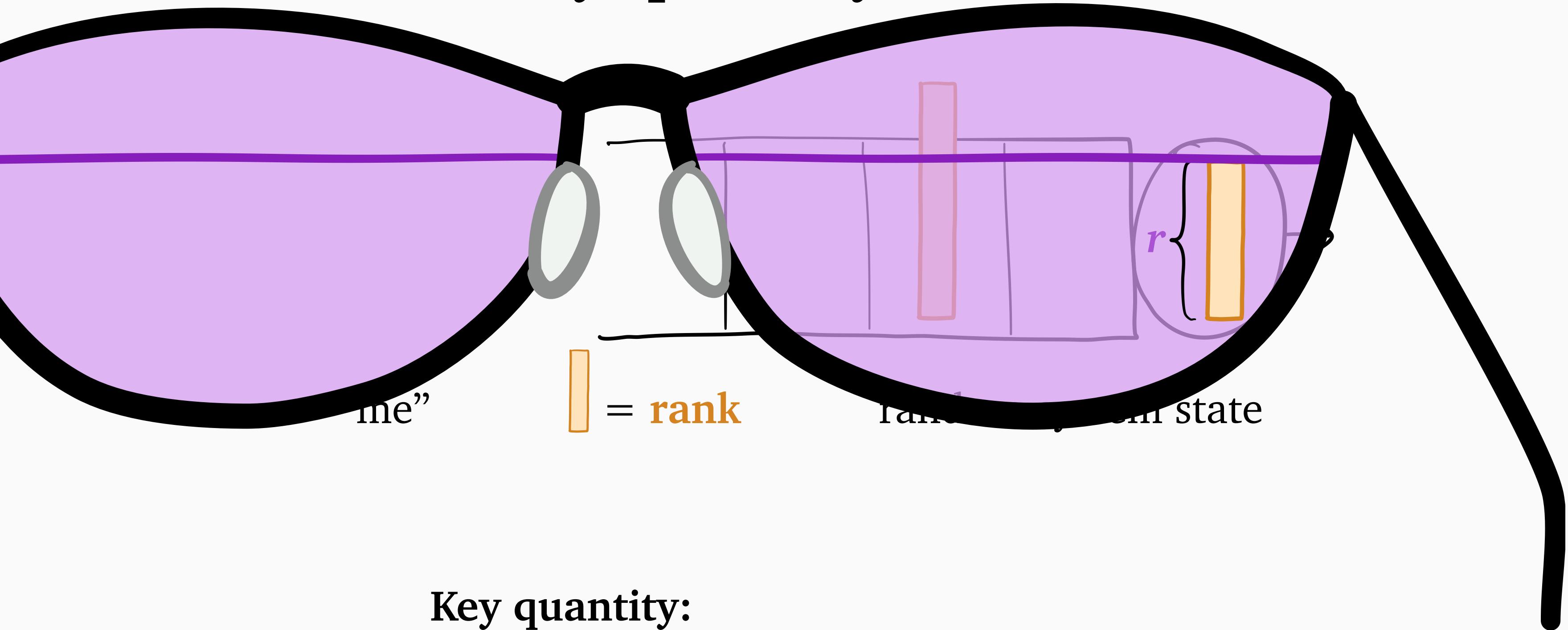


Key quantity:

$W(r)$  = work relevant to job of rank  $r$

$r$ -work

# Key quantity: $r$ -work



Key quantity:

$W(r)$  = work relevant to job of rank  $r$

$r$ -work

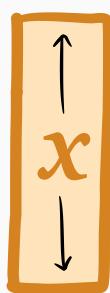
# Defining one job's $r$ -work

$W(r)$  = work relevant to **rank  $r$**

# Defining one job's $\textcolor{violet}{r}$ -work

$W(\textcolor{violet}{r})$  = work relevant to **rank  $r$**

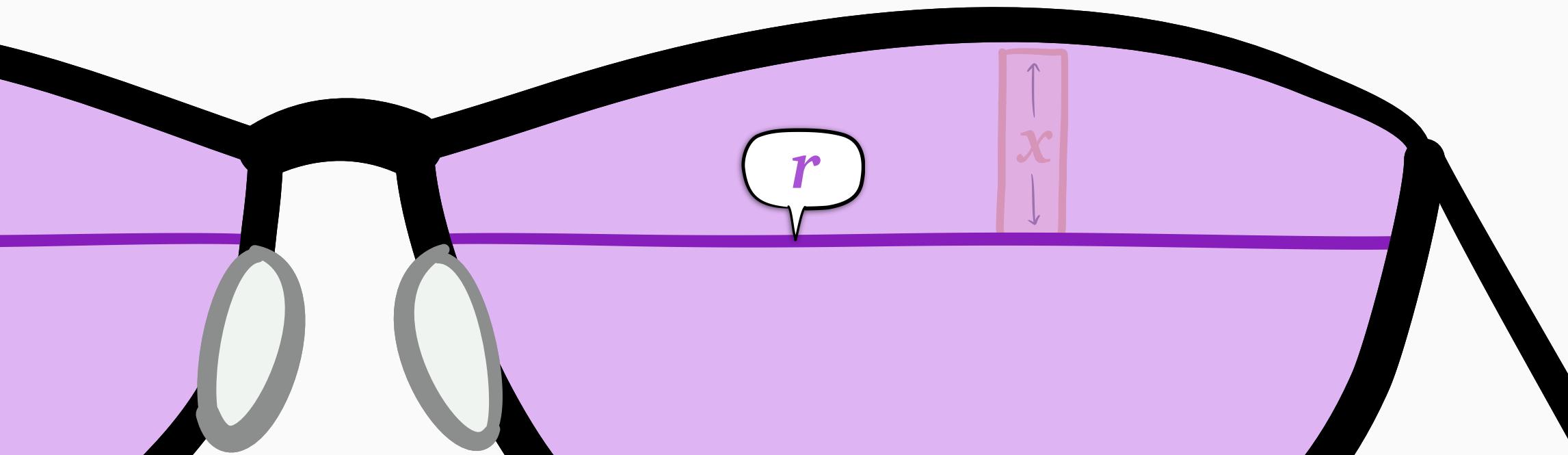
$w_{\textcolor{brown}{x}}(\textcolor{violet}{r})$  =  $\textcolor{violet}{r}$ -work of *single job* of rem. size  $\textcolor{brown}{x}$  = {



# Defining one job's $r$ -work

$W(r)$  = work relevant to **rank  $r$**

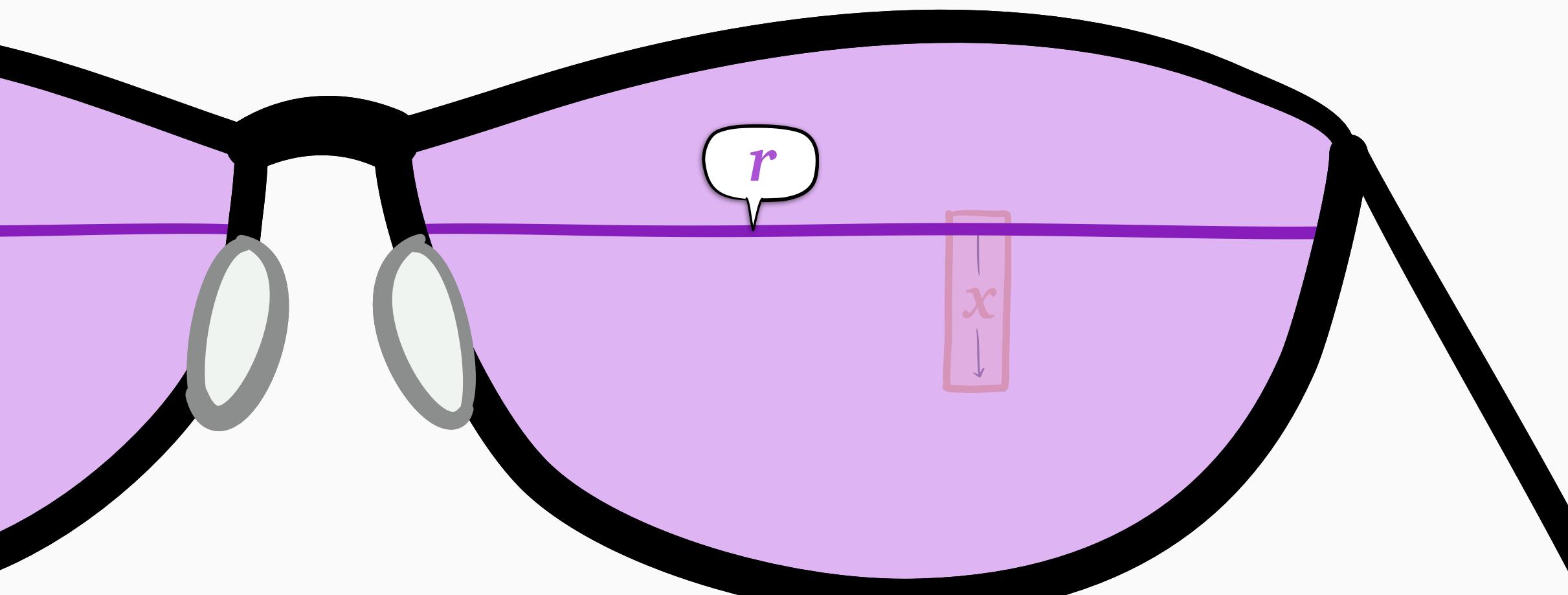
$w_x(r)$  =  $r$ -work of *single job* of rem. size  $x$  = {



# Defining one job's $r$ -work

$W(r)$  = work relevant to **rank  $r$**

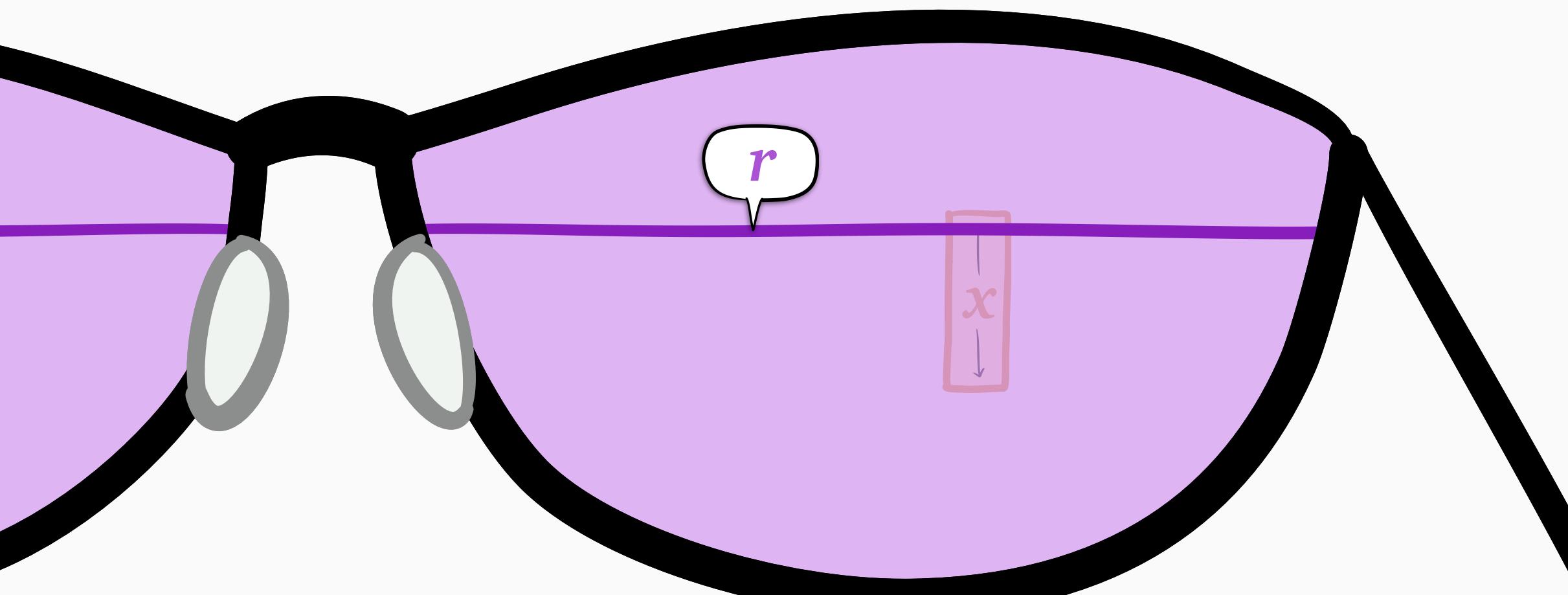
$w_x(r)$  =  $r$ -work of *single job* of rem. size  $x$  = {



# Defining one job's $\textcolor{violet}{r}$ -work

$W(\textcolor{violet}{r})$  = work relevant to **rank  $r$**

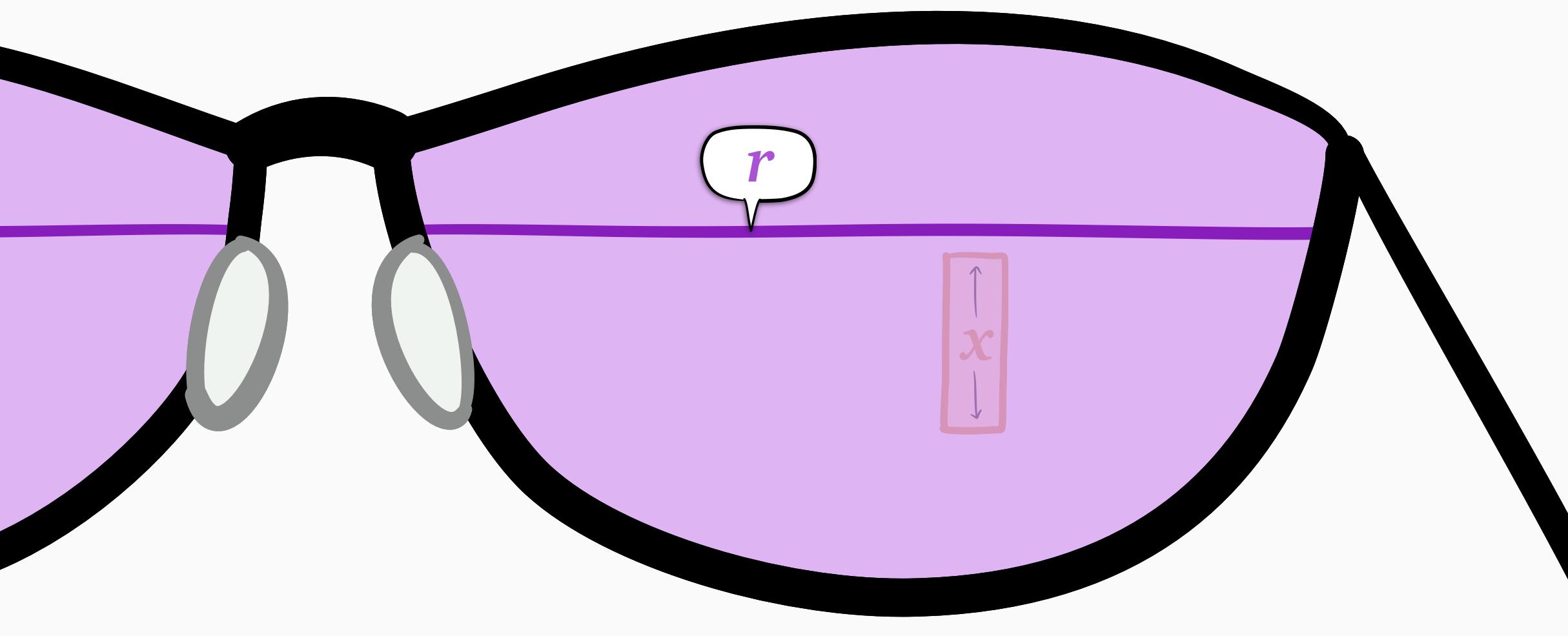
$w_{\textcolor{brown}{x}}(\textcolor{violet}{r})$  =  $\textcolor{violet}{r}$ -work of *single job* of rem. size  $\textcolor{brown}{x}$  =  $\begin{cases} 0 & \text{if } \textcolor{violet}{r} < \textcolor{brown}{x} \\ \dots & \dots \end{cases}$



# Defining one job's $r$ -work

$W(r)$  = work relevant to **rank  $r$**

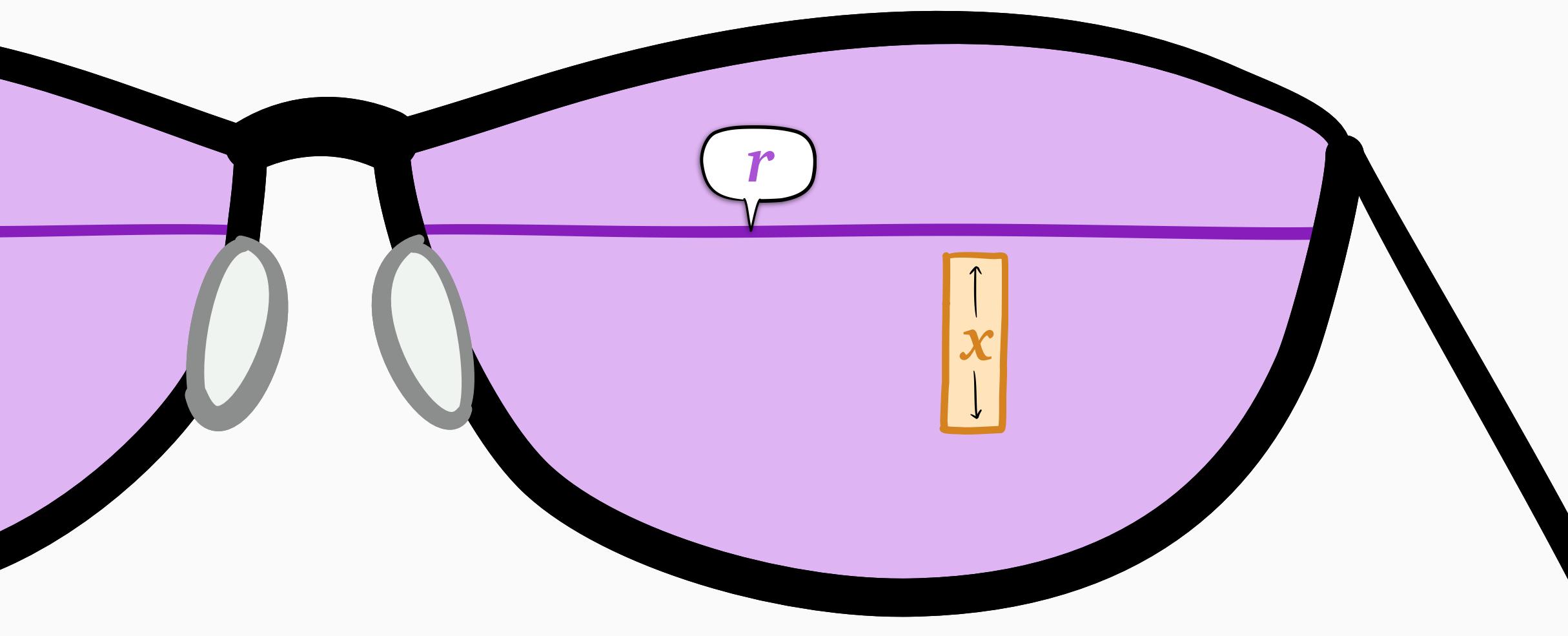
$w_x(r)$  =  $r$ -work of *single job* of rem. size  $x$  =  $\begin{cases} 0 & \text{if } r < x \\ \end{cases}$



# Defining one job's $r$ -work

$W(r)$  = work relevant to **rank  $r$**

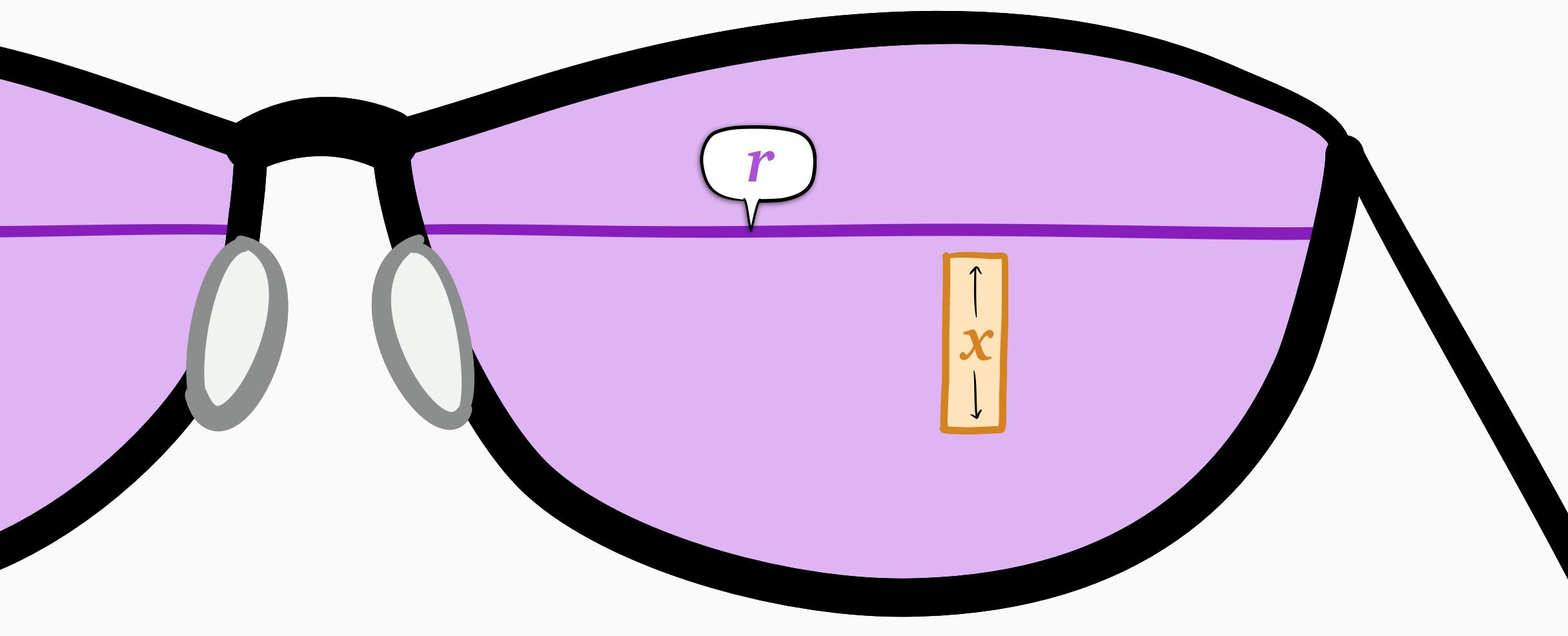
$w_x(r)$  =  $r$ -work of *single job* of rem. size  $x$  =  $\begin{cases} 0 & \text{if } r < x \\ \end{cases}$



# Defining one job's $r$ -work

$W(r)$  = work relevant to **rank  $r$**

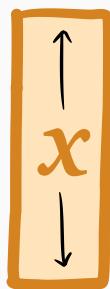
$w_x(r)$  =  $r$ -work of *single job* of rem. size  $x$  = 
$$\begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$



# Defining one job's $\textcolor{violet}{r}$ -work

$W(\textcolor{violet}{r})$  = work relevant to **rank  $r$**

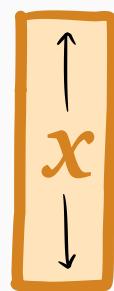
$w_{\textcolor{brown}{x}}(\textcolor{violet}{r})$  =  $\textcolor{violet}{r}$ -work of *single job* of rem. size  $\textcolor{brown}{x}$  = 
$$\begin{cases} 0 & \text{if } \textcolor{violet}{r} < \textcolor{brown}{x} \\ \textcolor{brown}{x} & \text{if } \textcolor{violet}{r} \geq \textcolor{brown}{x} \end{cases}$$



# Defining one job's $r$ -work

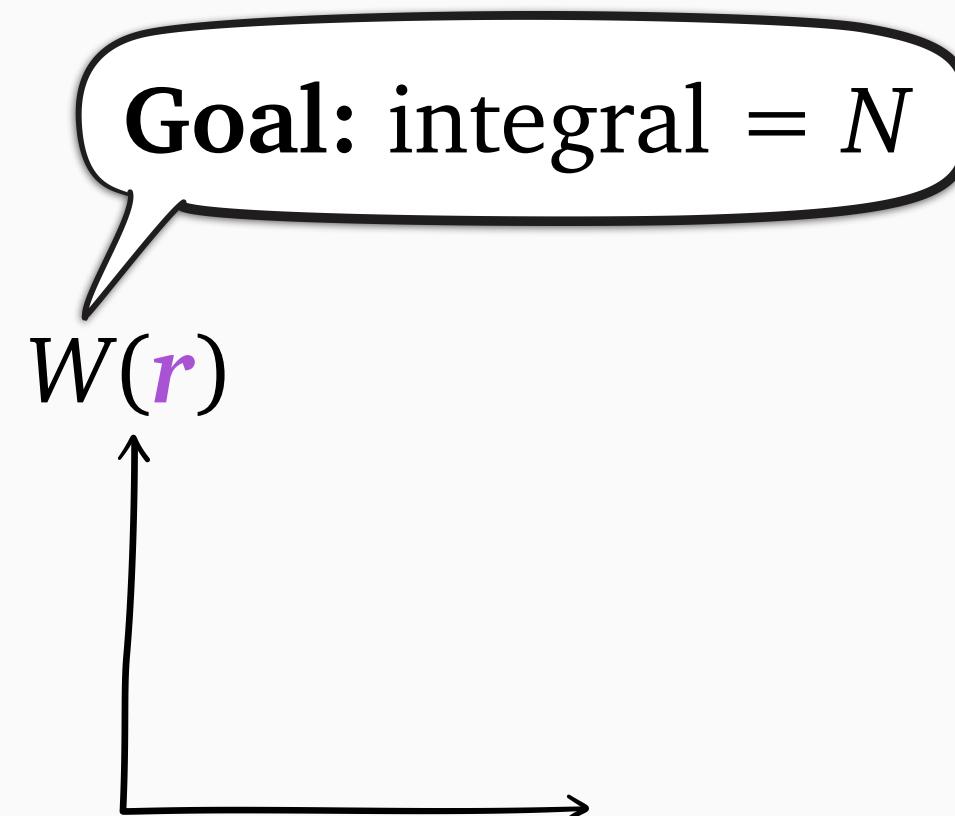
$W(r)$  = work relevant to **rank  $r$**   
= total  $r$ -work of all jobs

$w_x(r)$  =  $r$ -work of *single job* of rem. size  $x$  = 
$$\begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

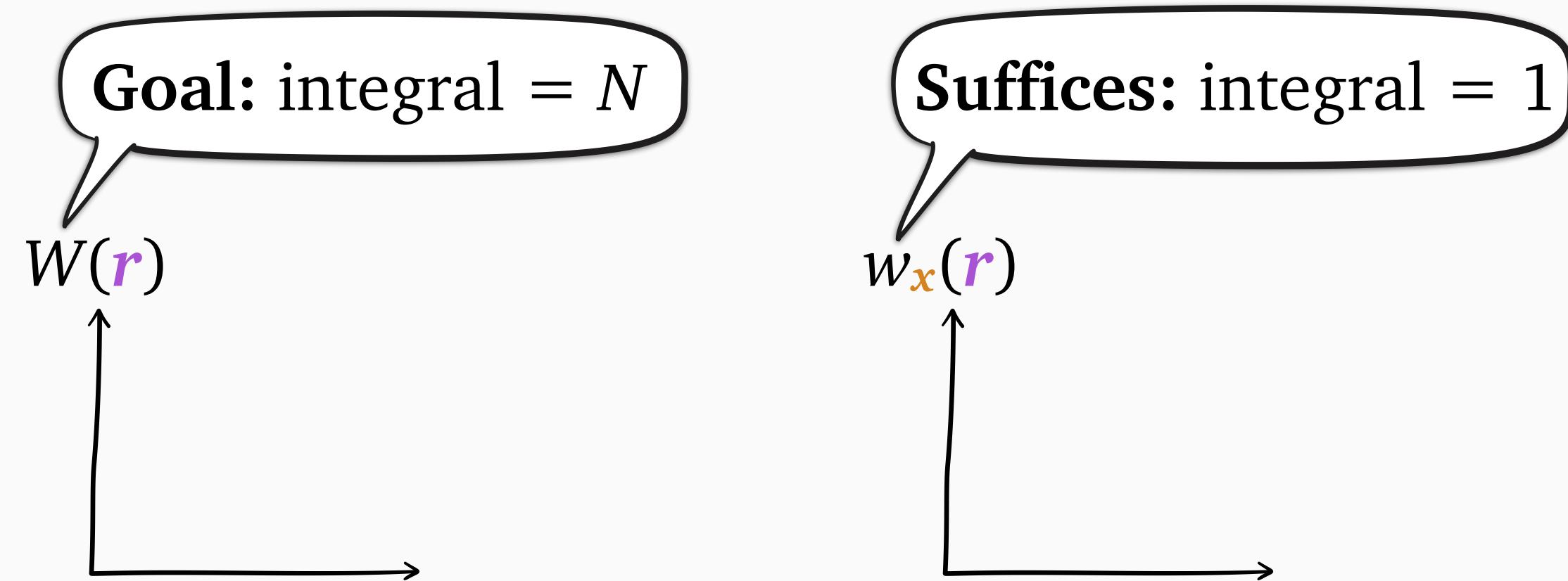


# From $r$ -work to number of jobs

# From $r$ -work to number of jobs

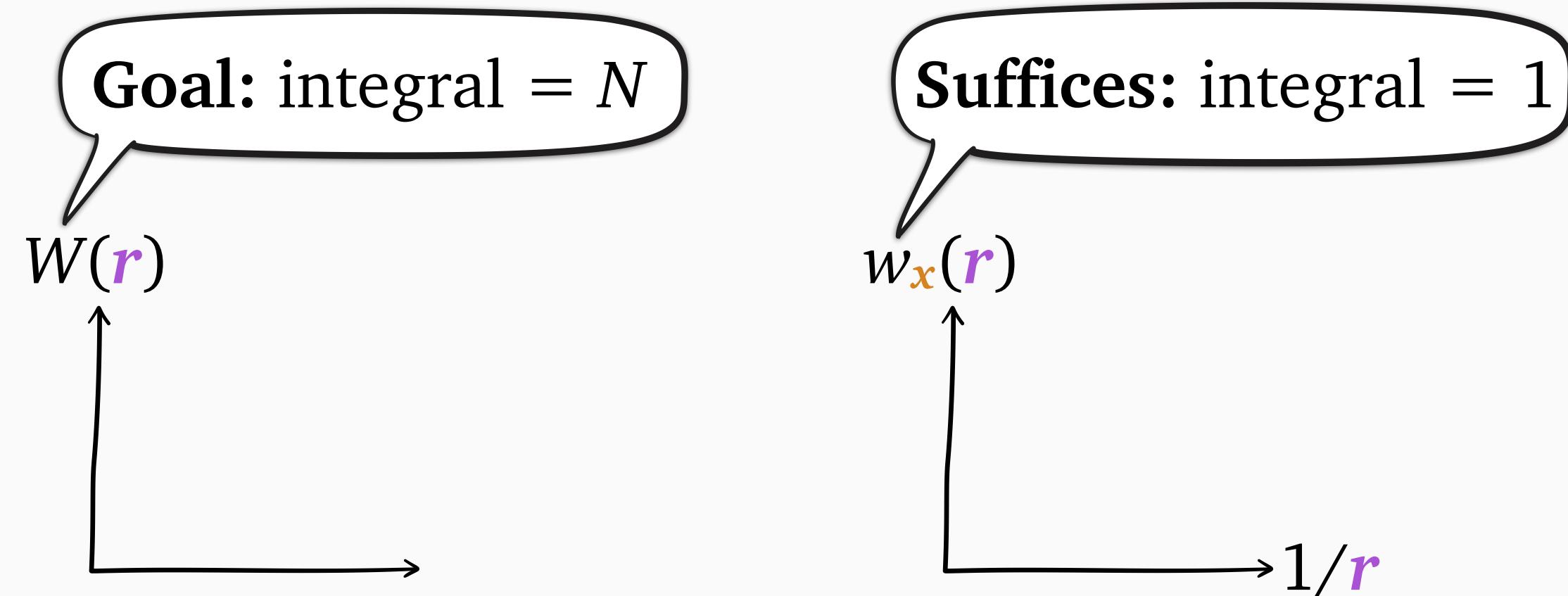


# From $r$ -work to number of jobs



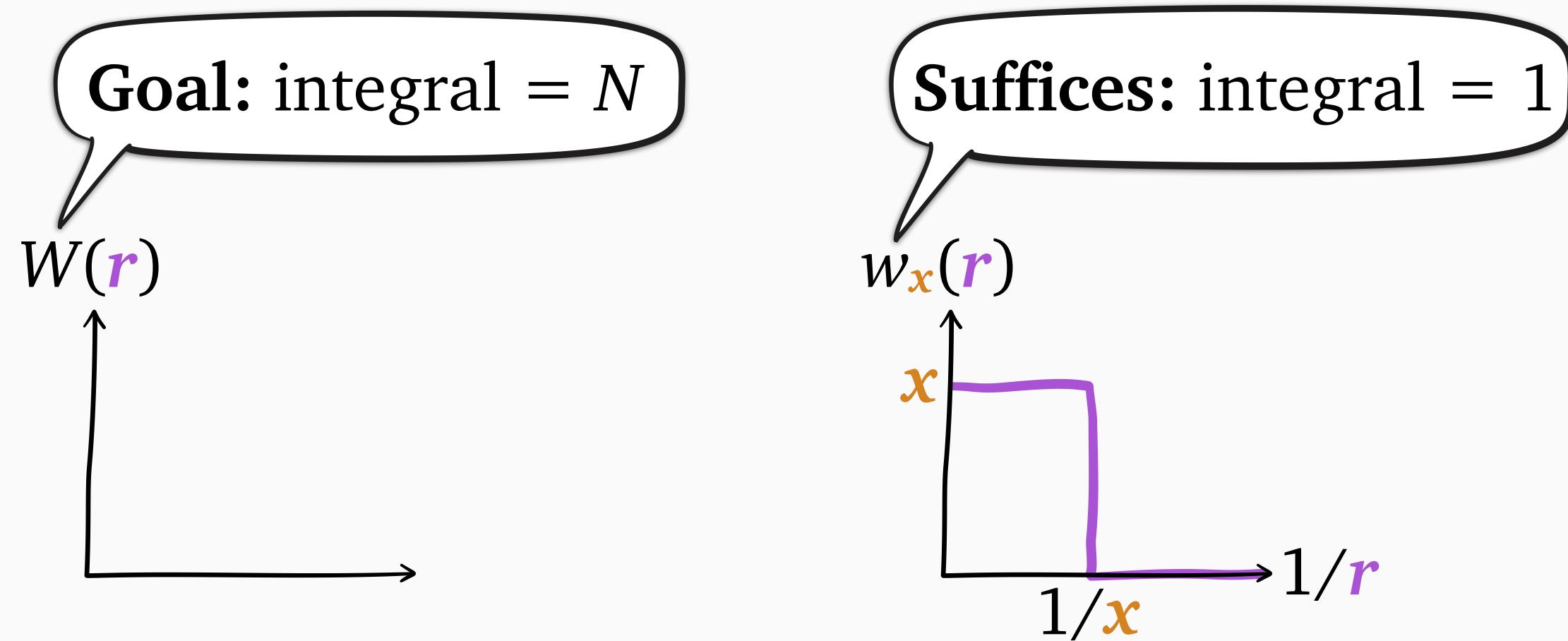
$$w_x(r) = \text{ } r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

# From $r$ -work to number of jobs



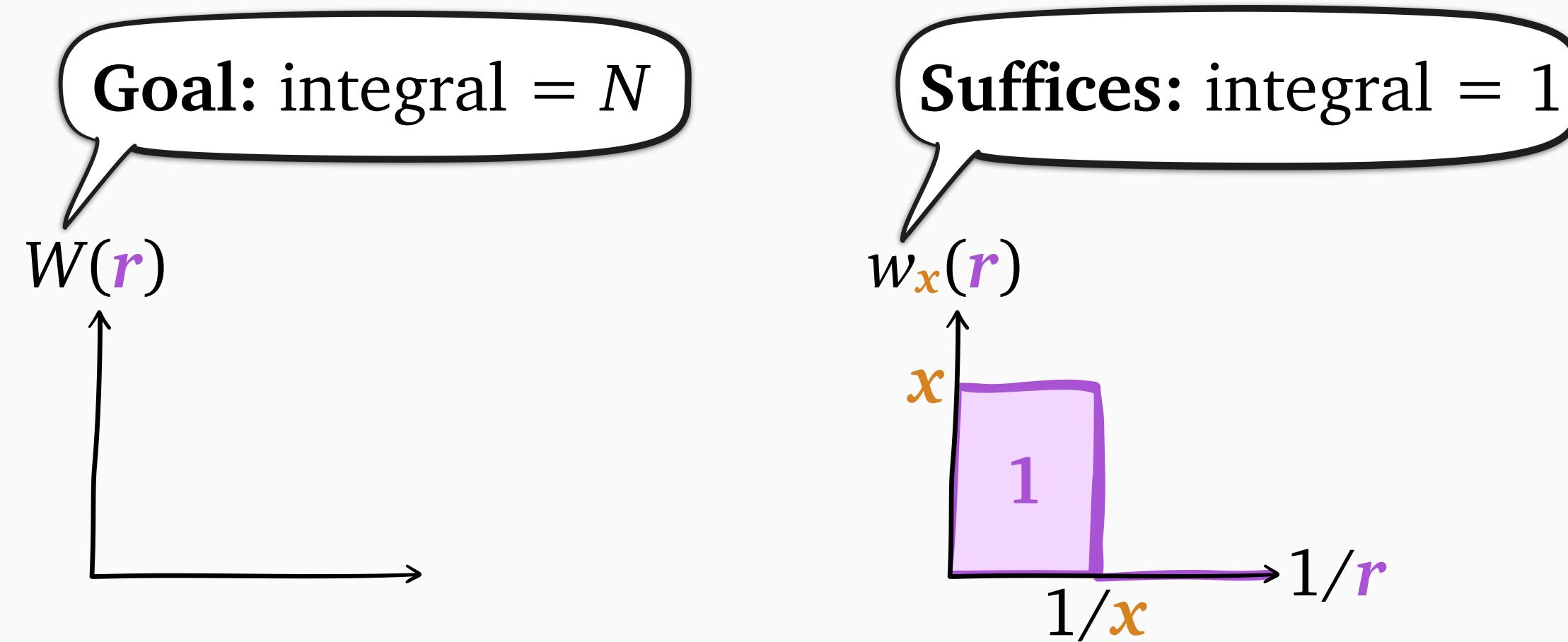
$$w_x(r) = r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

# From $r$ -work to number of jobs



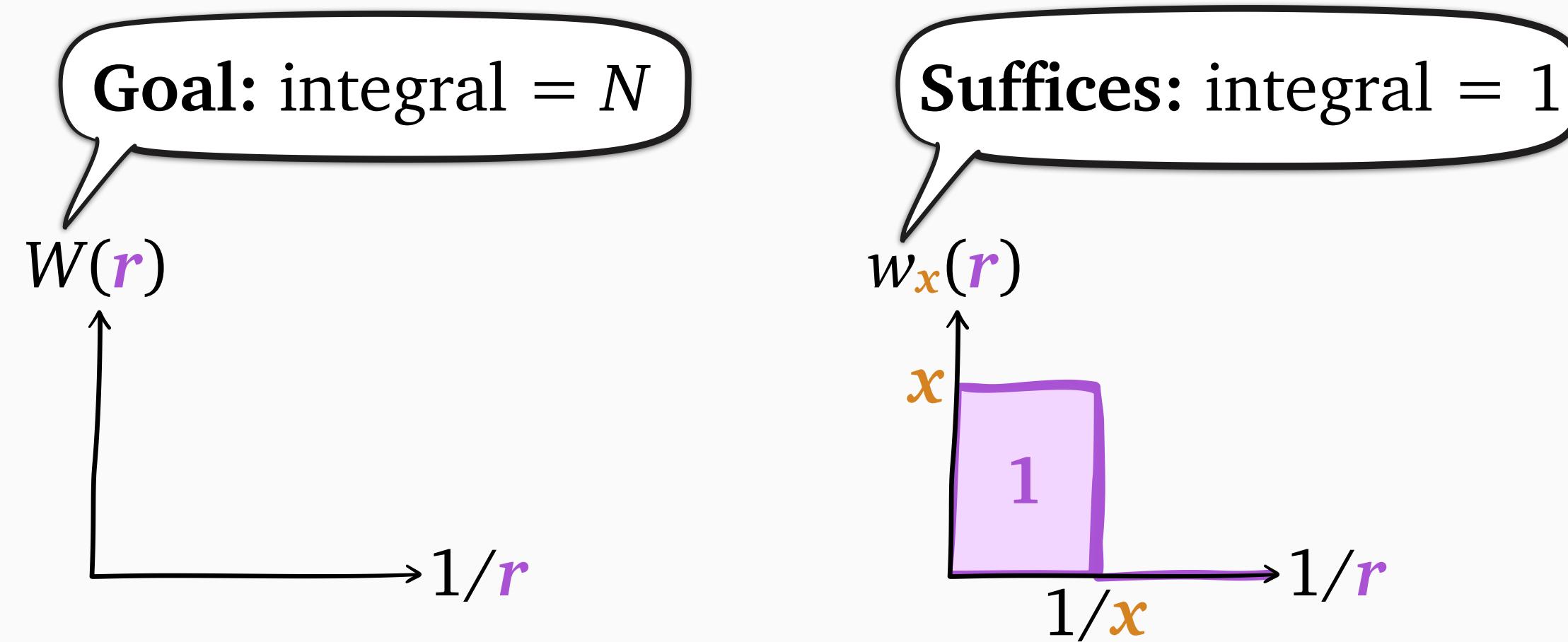
$$w_x(r) = r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

# From $r$ -work to number of jobs



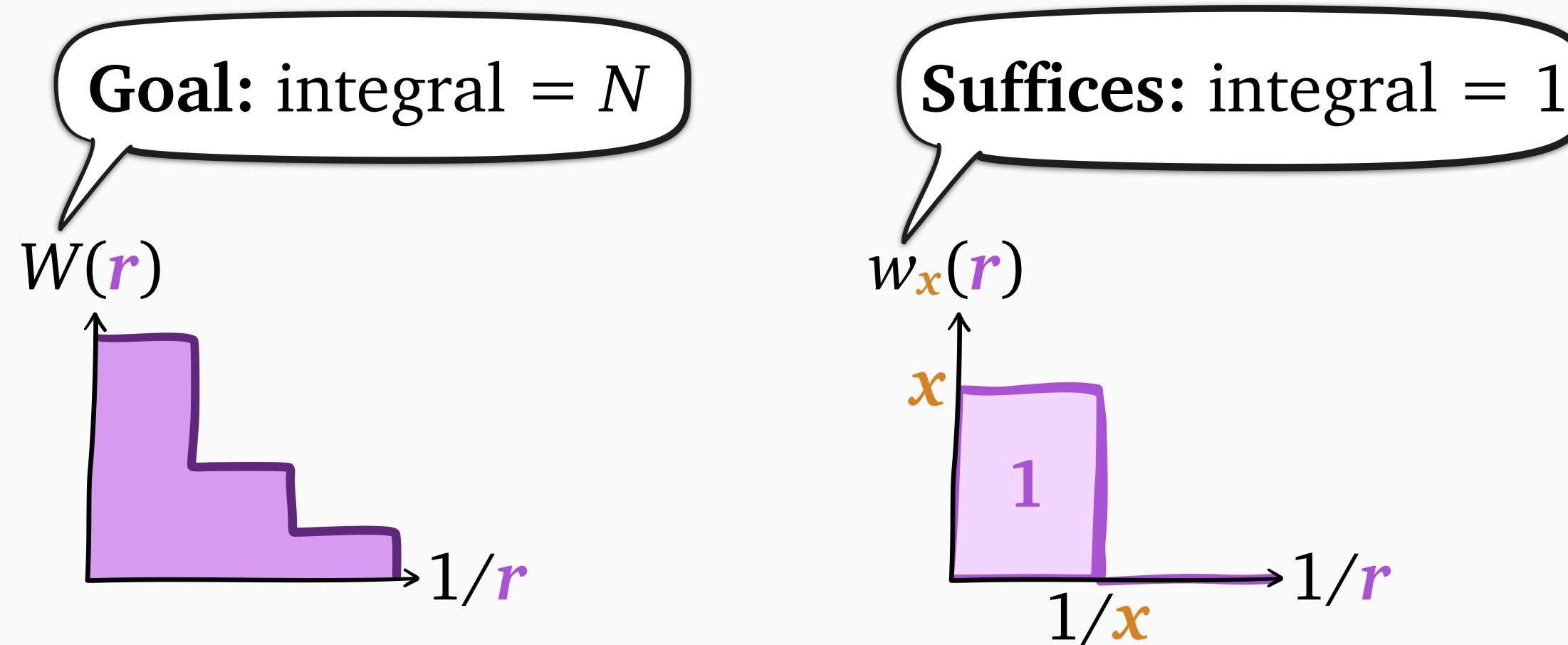
$$w_x(r) = r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

# From $r$ -work to number of jobs



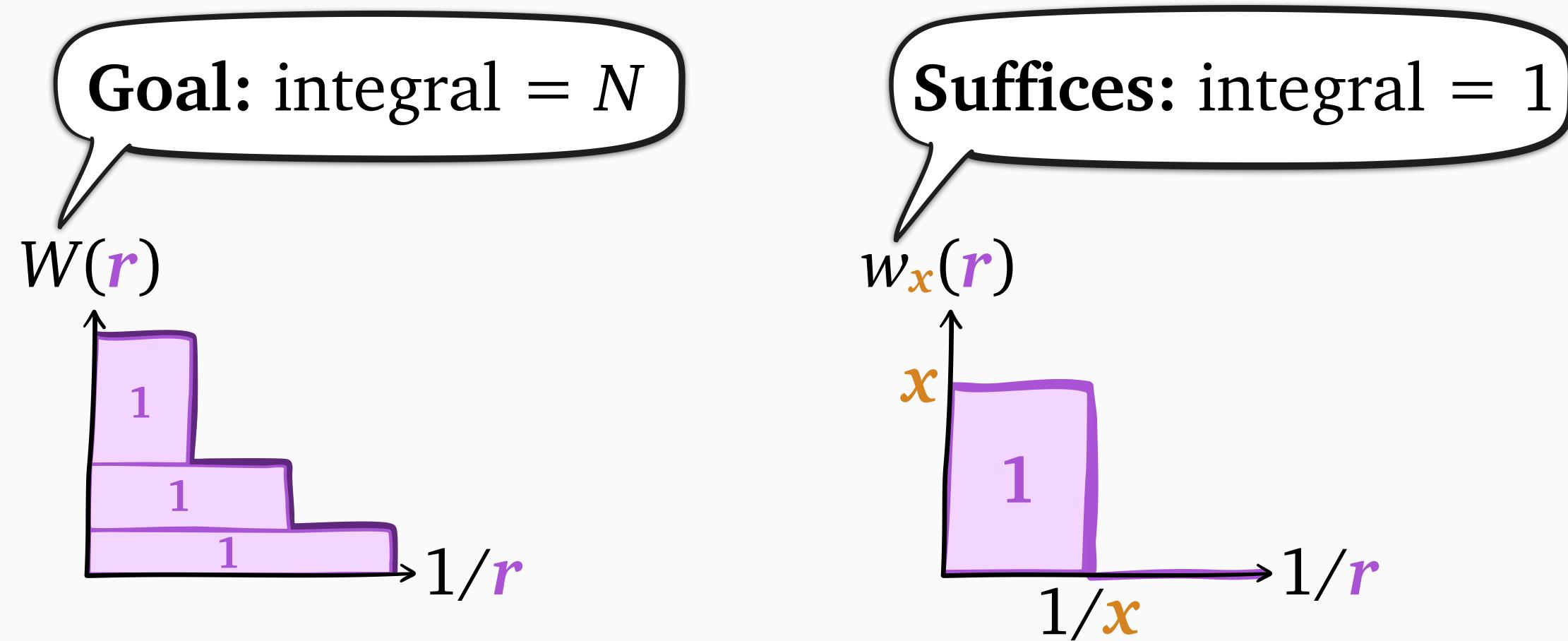
$$w_x(r) = r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

# From $r$ -work to number of jobs



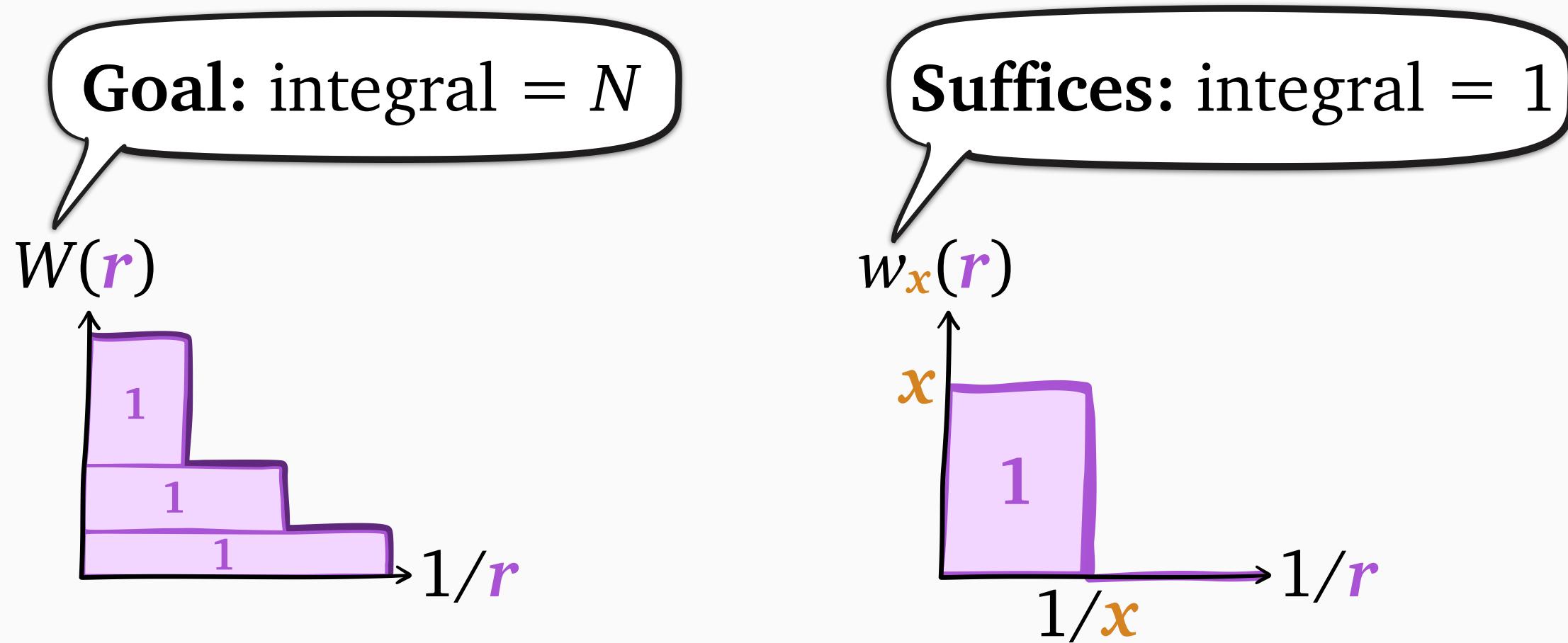
$$w_x(r) = r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

# From $r$ -work to number of jobs



$$w_x(r) = r\text{-work of job of rem. size } x = \begin{cases} 0 & \text{if } r < x \\ x & \text{if } r \geq x \end{cases}$$

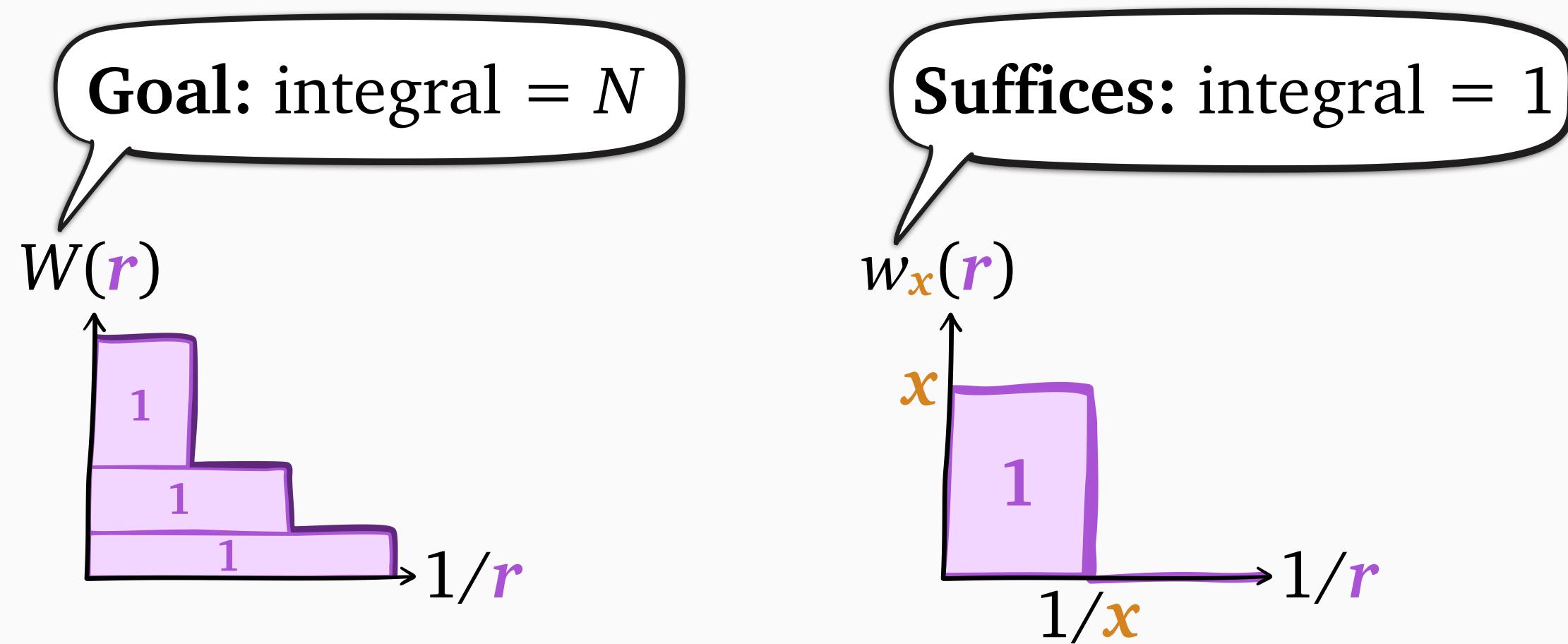
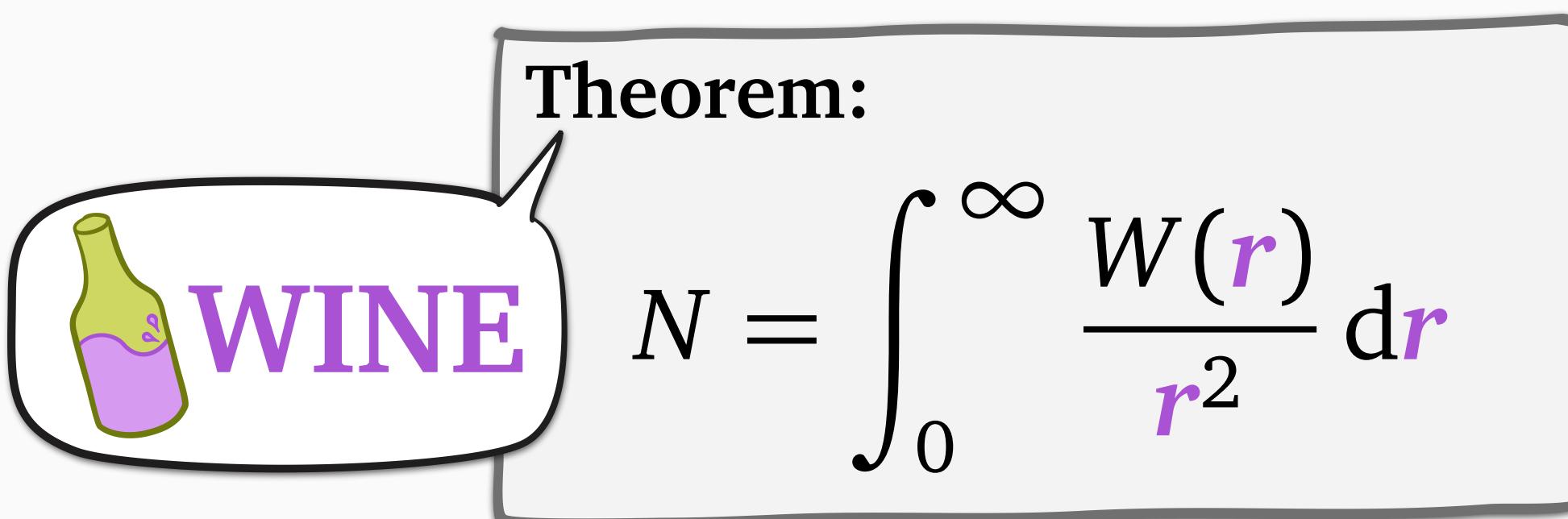
# From $r$ -work to number of jobs



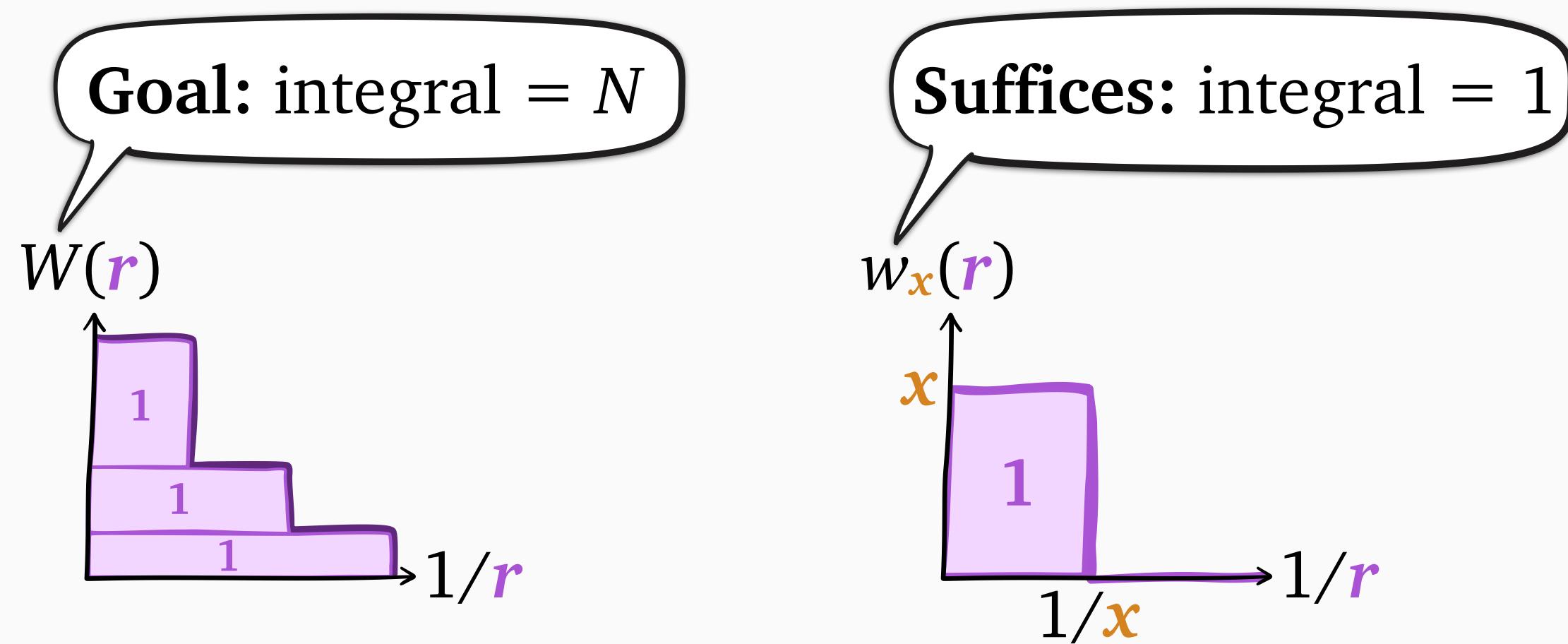
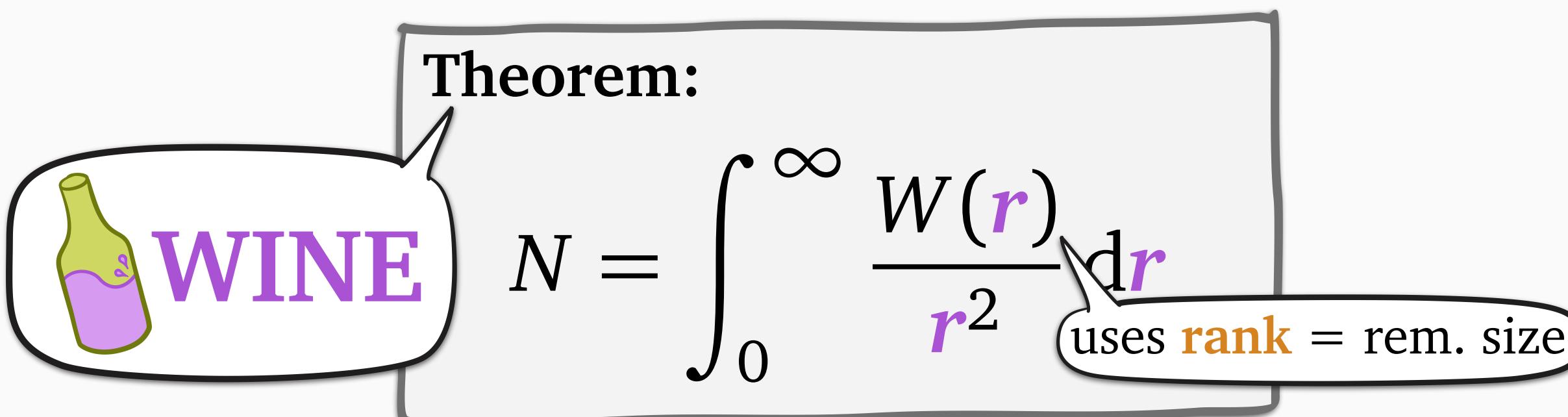
Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

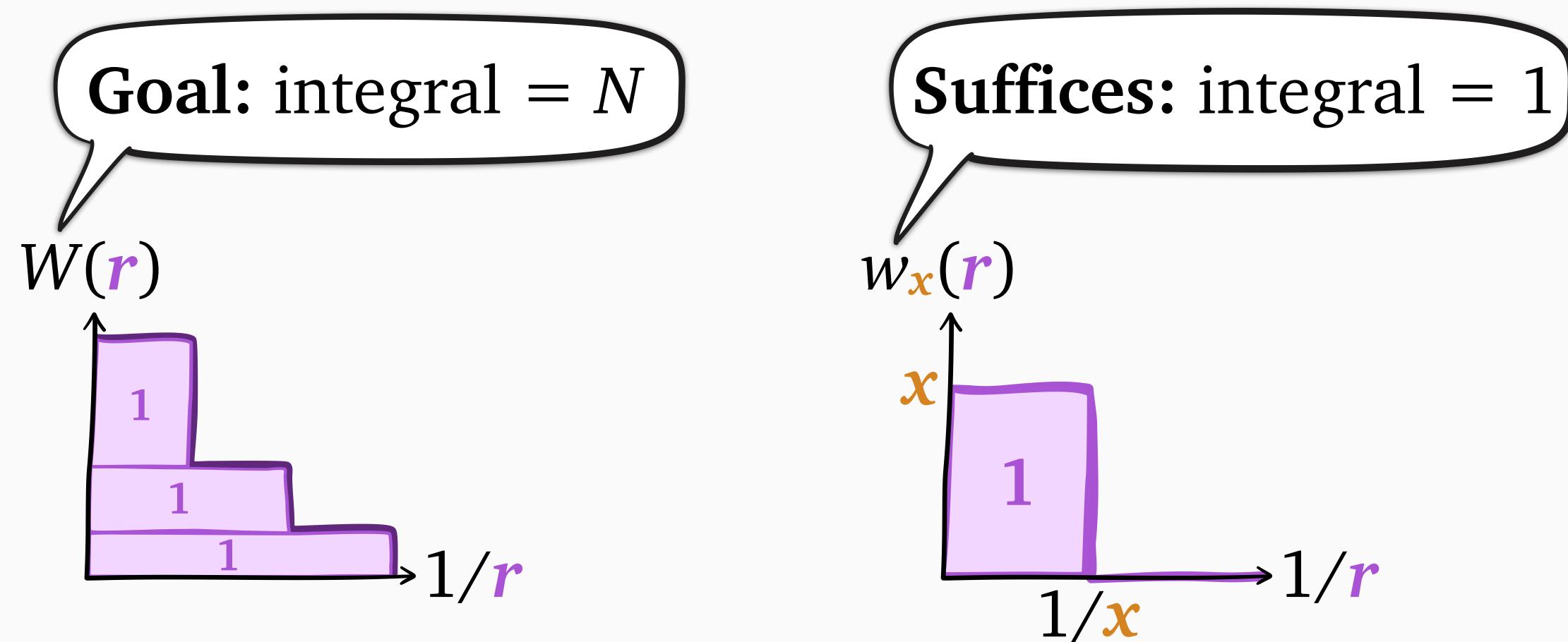
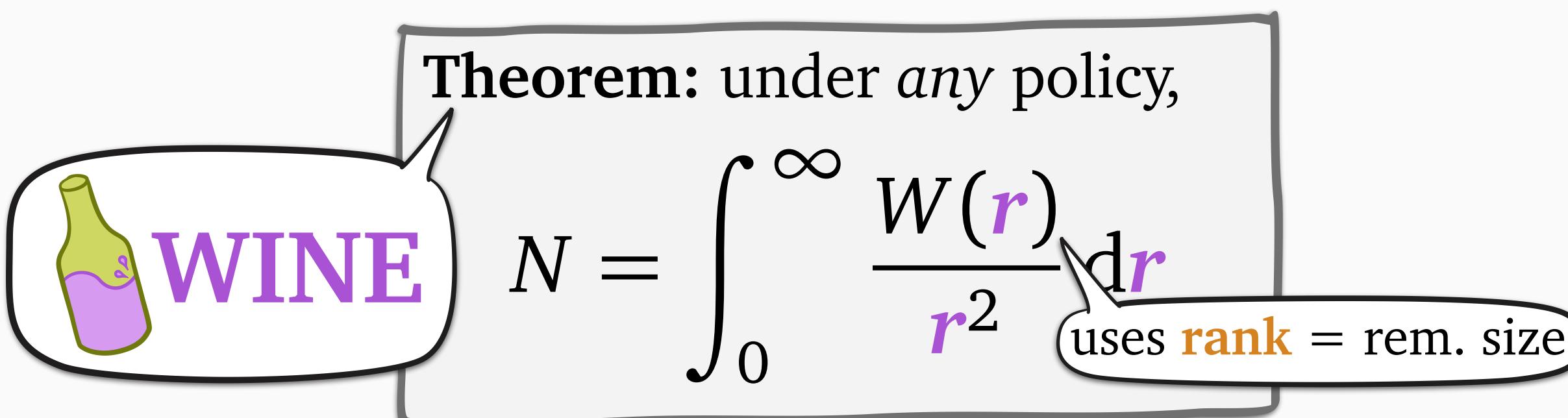
# From $r$ -work to number of jobs



# From $r$ -work to number of jobs



# From $r$ -work to number of jobs



# How does **WINE** help?



**Theorem:**

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

# How does **WINE** help?



**Theorem:**

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

How to minimize  $W(r)$ ?

# How does **WINE** help?



**Theorem:**

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

How to minimize  $W(r)$ ?

*Prioritize jobs with  $rank \leq r$*

# How does WINE help?



Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

How to minimize  $W(r)$ ?

Prioritize jobs with  $rank \leq r$

To do for all  $r$ :  
*always serve job of minimum rank*

# How does WINE help?



Theorem:

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

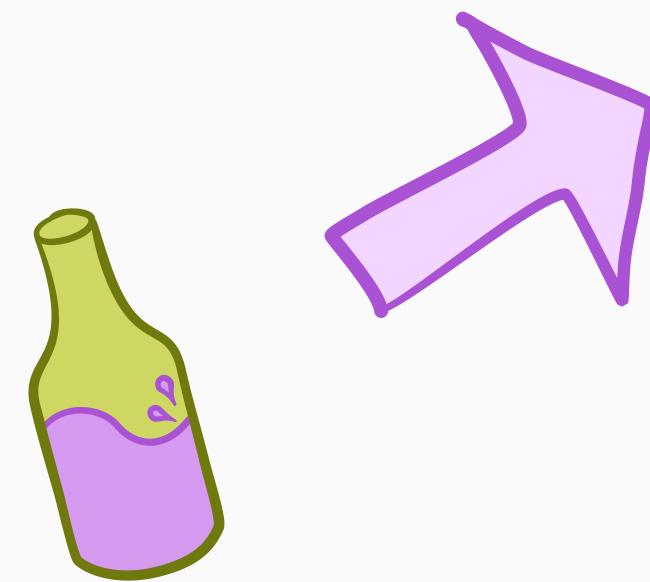
How to minimize  $W(r)$ ?

Prioritize jobs with  $rank \leq r$

To do for all  $r$ :  
*always serve job of minimum rank*



under Poisson arrivals



**SRPT-flavored WINE:**

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$



**SRPT-flavored WINE:**

$$N = \int_0^\infty \frac{W(\mathbf{r})}{\mathbf{r}^2} d\mathbf{r}$$

**Gittins-flavored WINE:**

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(\mathbf{r})]}{\mathbf{r}^2} d\mathbf{r}$$



**SRPT-flavored WINE:**

$$N = \int_0^\infty \frac{W(\mathbf{r})}{\mathbf{r}^2} d\mathbf{r}$$

**Gittins-flavored WINE:**

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(\mathbf{r})]}{\mathbf{r}^2} d\mathbf{r}$$

**Lemma:** using **Gittins**-flavored  $\mathbf{r}$ -work,

$$1 = \int_0^\infty \frac{\mathbf{E}[\text{one job's } \mathbf{r}\text{-work} \mid \text{job's state}]}{\mathbf{r}^2} d\mathbf{r}$$



**SRPT-flavored WINE:**

$$N = \int_0^\infty \frac{W(r)}{r^2} dr$$

**Gittins-flavored WINE:**

$$E[N] = \int_0^\infty \frac{E[W(r)]}{r^2} dr$$

Related to *achievable region method*  
[Bertsimas & Niño-Mora]

**Lemma:** using **Gittins**-flavored  $r$ -work,

$$1 = \int_0^\infty \frac{E[\text{one job's } r\text{-work} \mid \text{job's state}]}{r^2} dr$$

# Robustness of Gittins

$$\mathbf{E}[N] = \int_0^\infty \frac{\mathbf{E}[W(\textcolor{violet}{r})]}{r^2} dr$$

# Robustness of Gittins

$$\mathbb{E}[N] = \int_0^\infty \frac{\mathbb{E}[W(\textcolor{violet}{r})]}{r^2} dr$$

**Corollary:** if **rank** function is within  $c$  factor of **Gittins**'s, then  $\mathbb{E}[N]$  is within  $c^2$  of optimal

# Robustness of Gittins

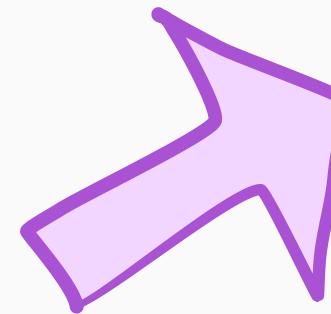
$$\mathbb{E}[N] = \int_0^\infty \frac{\mathbb{E}[W(\textcolor{violet}{r})]}{r^2} dr$$

**Corollary:** if **rank** function is within  $c$  factor of **Gittins**'s, then  $\mathbb{E}[N]$  is within  $c^2$  of optimal

*Proof:* change of variables in integral

# Robustness of Gittins

$$\mathbb{E}[N] = \int_0^\infty \frac{\mathbb{E}[W(\mathbf{r})]}{\mathbf{r}^2} d\mathbf{r}$$



robustness to noisy  
job size predictions  
[Scully et al., 2022]

**Corollary:** if **rank** function is within  $c$  factor of **Gittins**'s, then  $\mathbb{E}[N]$  is within  $c^2$  of optimal

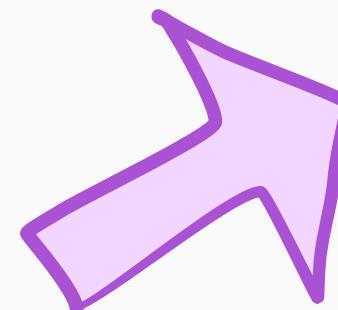
*Proof:* change of variables in integral

# Robustness of Gittins

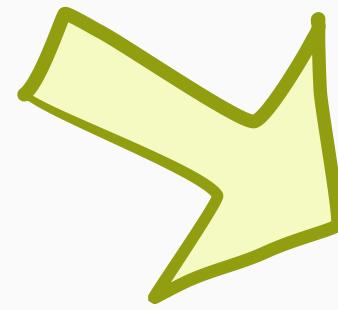
$$E[N] = \int_0^\infty \frac{E[W(r)]}{r^2} dr$$

**Corollary:** if **rank** function is within  $c$  factor of **Gittins**'s, then  $E[N]$  is within  $c^2$  of optimal

*Proof:* change of variables in integral



robustness to noisy  
job size predictions  
[Scully et al., 2022]

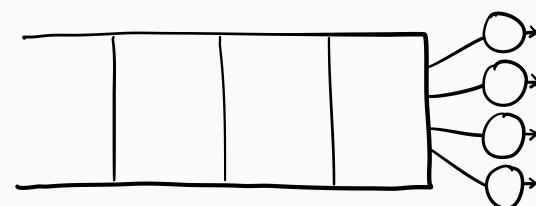


can substitute  $n$  samples  
for true distribution  $S$   
[Ramakrishna et al., 2025]



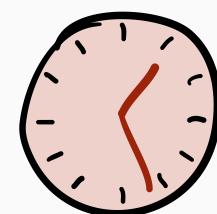
*Part I*

# Handling job size uncertainty



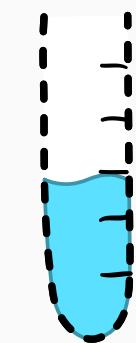
*Part II*

# Analyzing multiserver scheduling



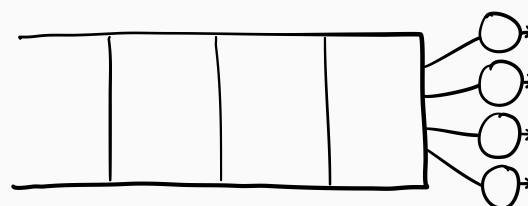
*Part III*

# Optimizing tail metrics



*Part I*

# Handling job size uncertainty



*Part II*

Queueing for **TCS**

*Use **WINE** to analyze **Gittins**  
with arbitrary release dates?*

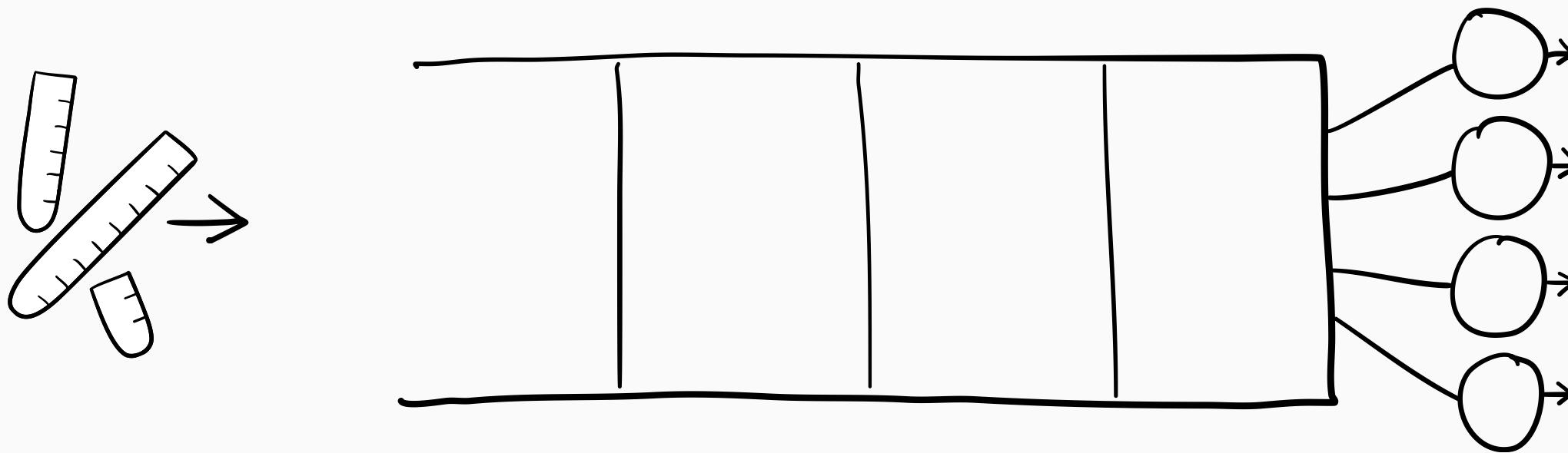
# Analyzing multiserver scheduling



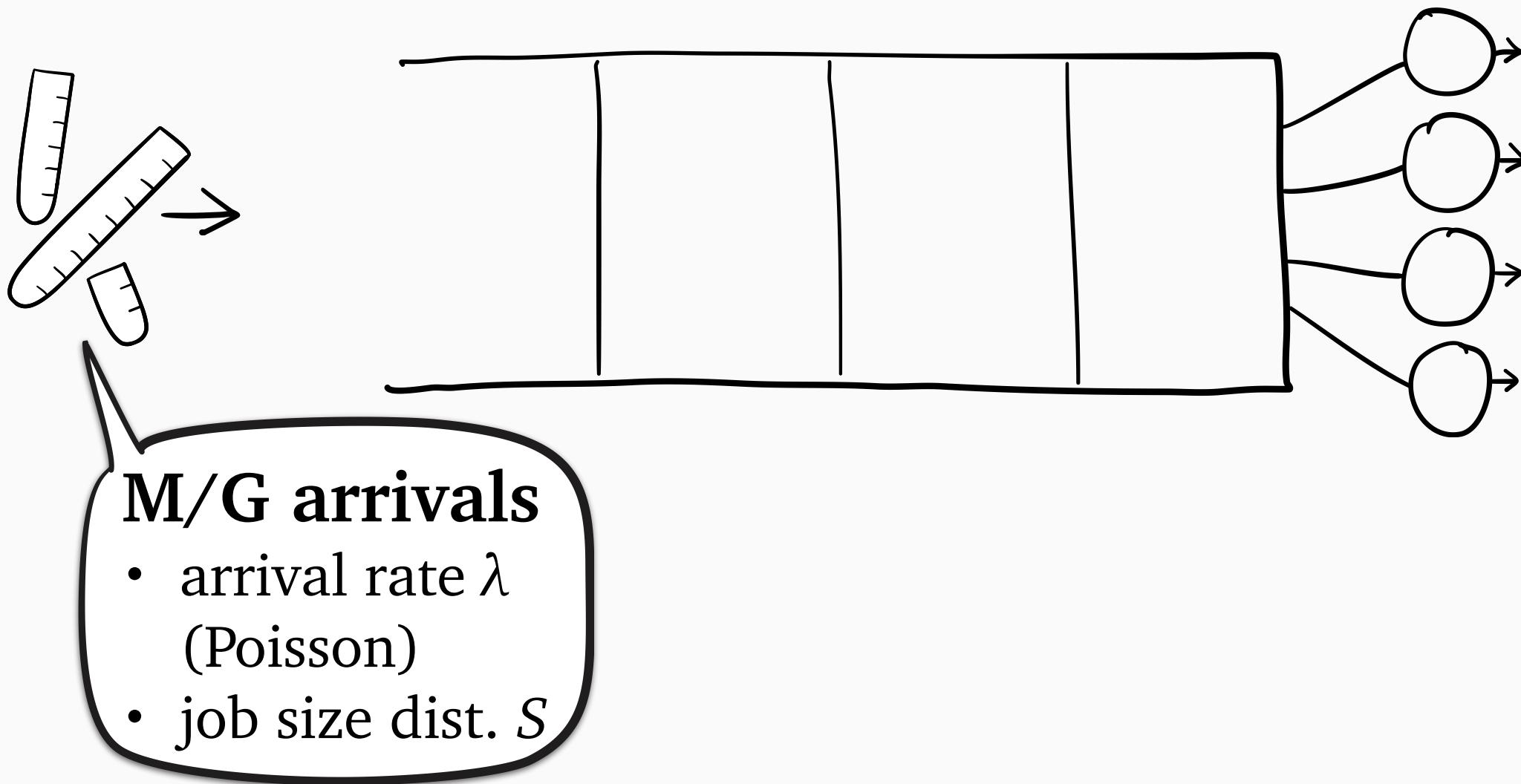
*Part III*

# Optimizing tail metrics

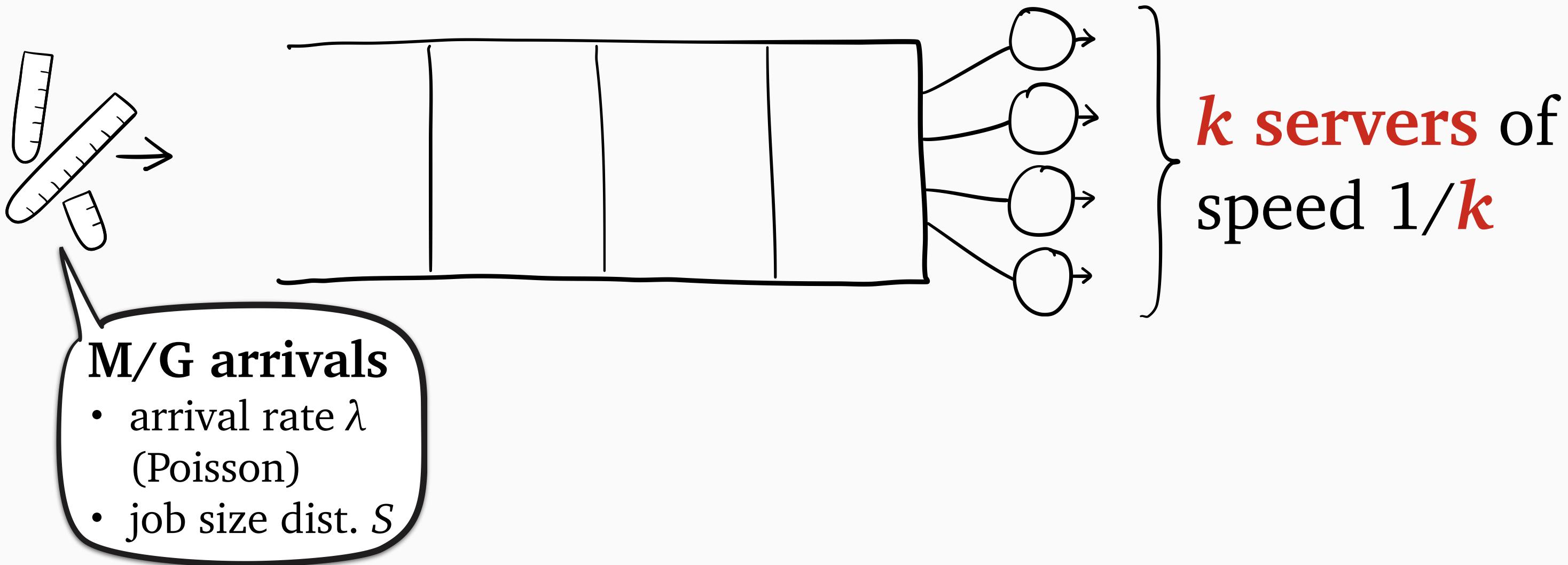
# Scheduling in the $M/G/k$



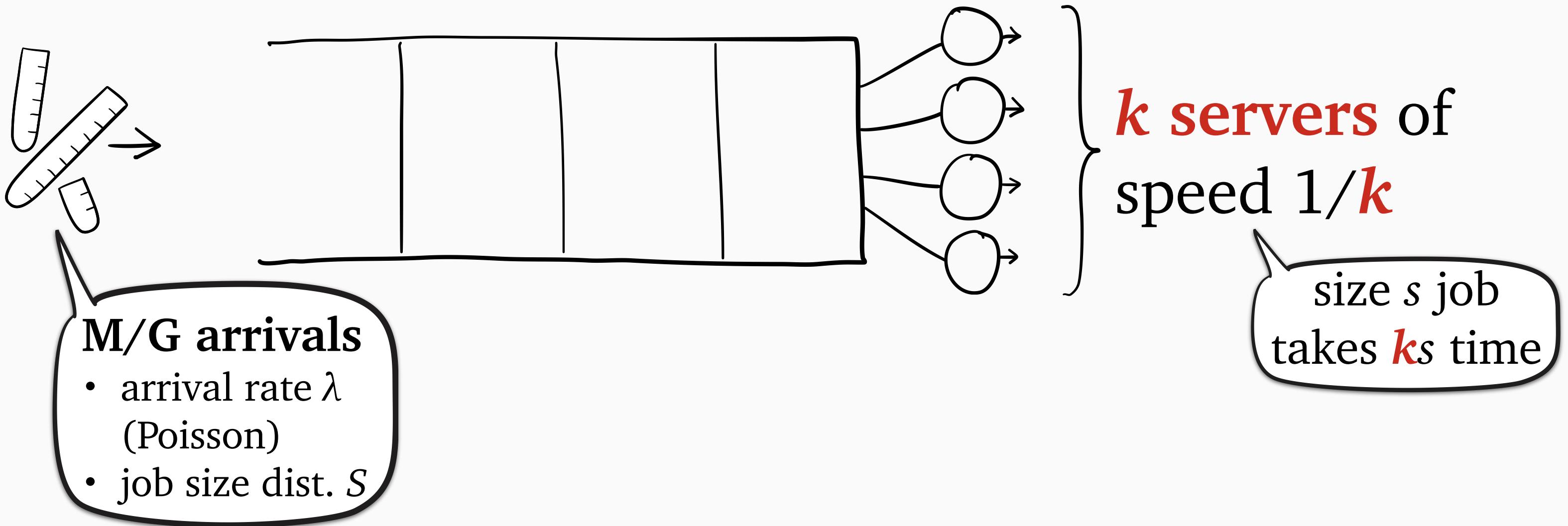
# Scheduling in the $M/G/k$



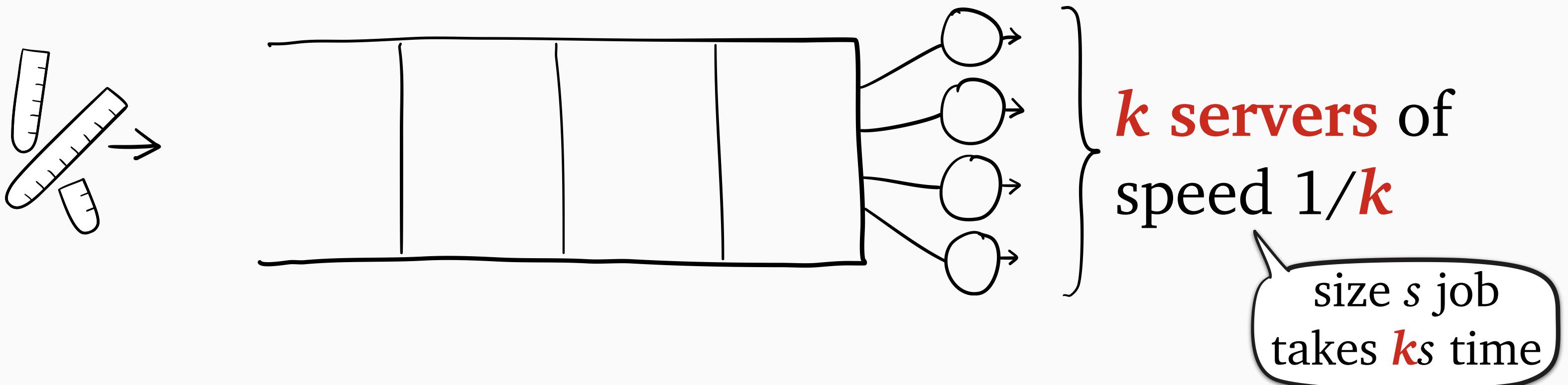
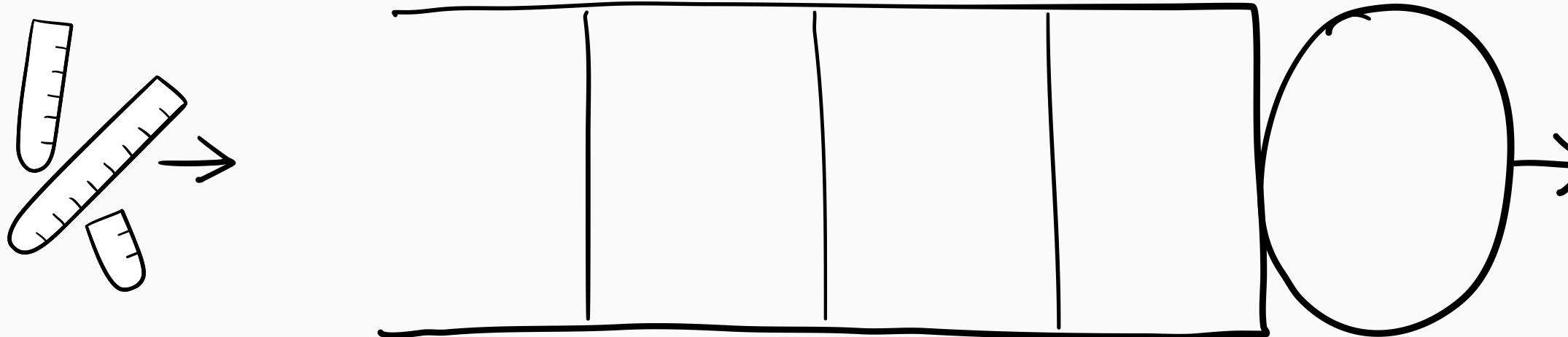
# Scheduling in the $M/G/k$



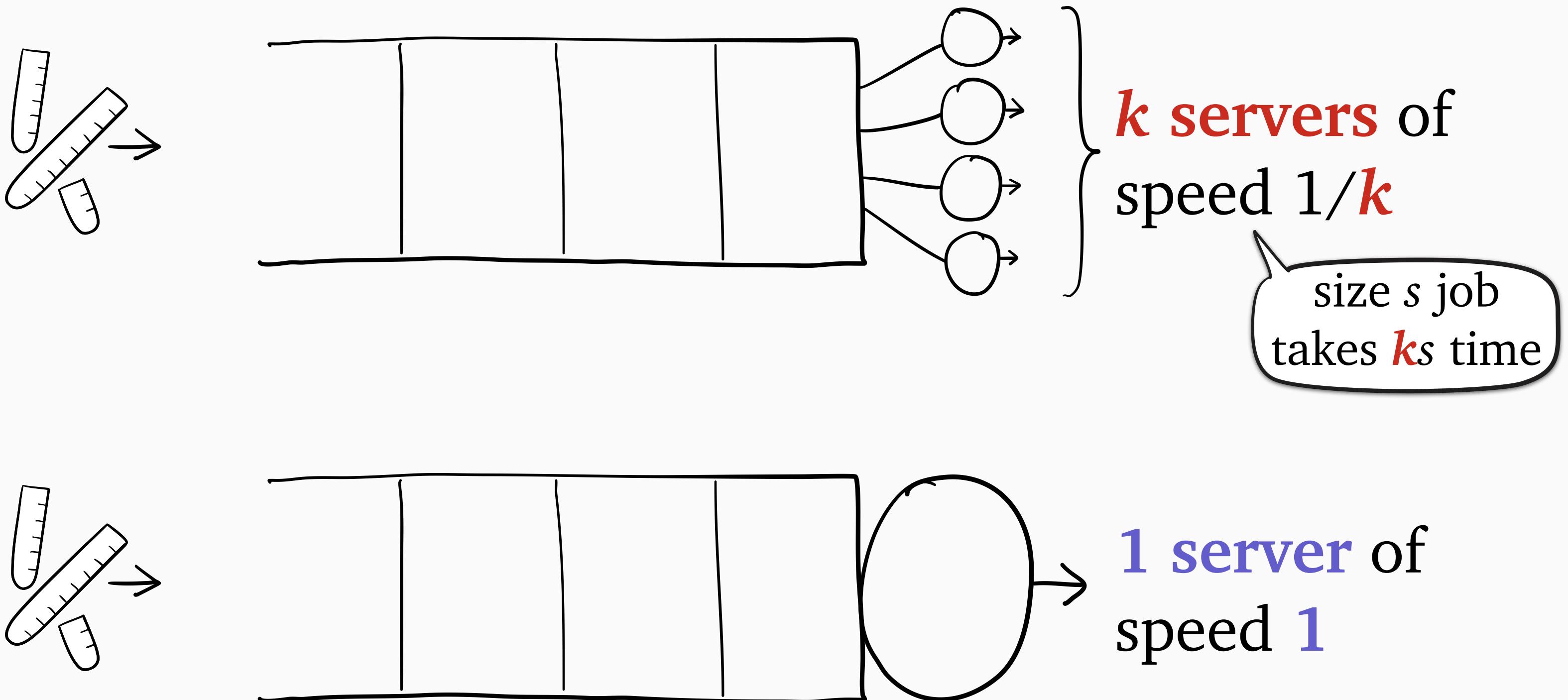
# Scheduling in the $M/G/k$



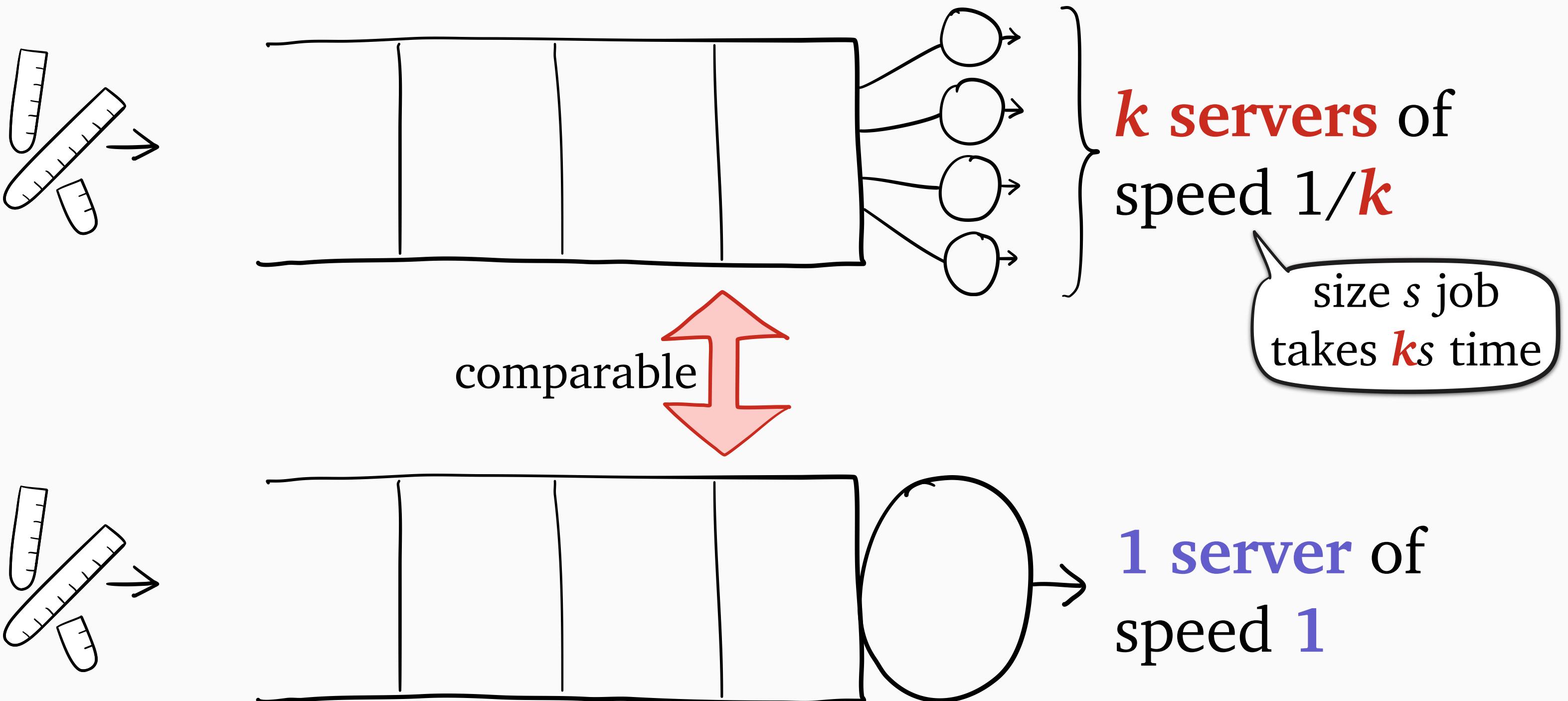
# Scheduling in the $M/G/k$



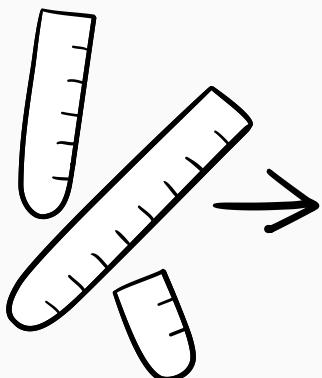
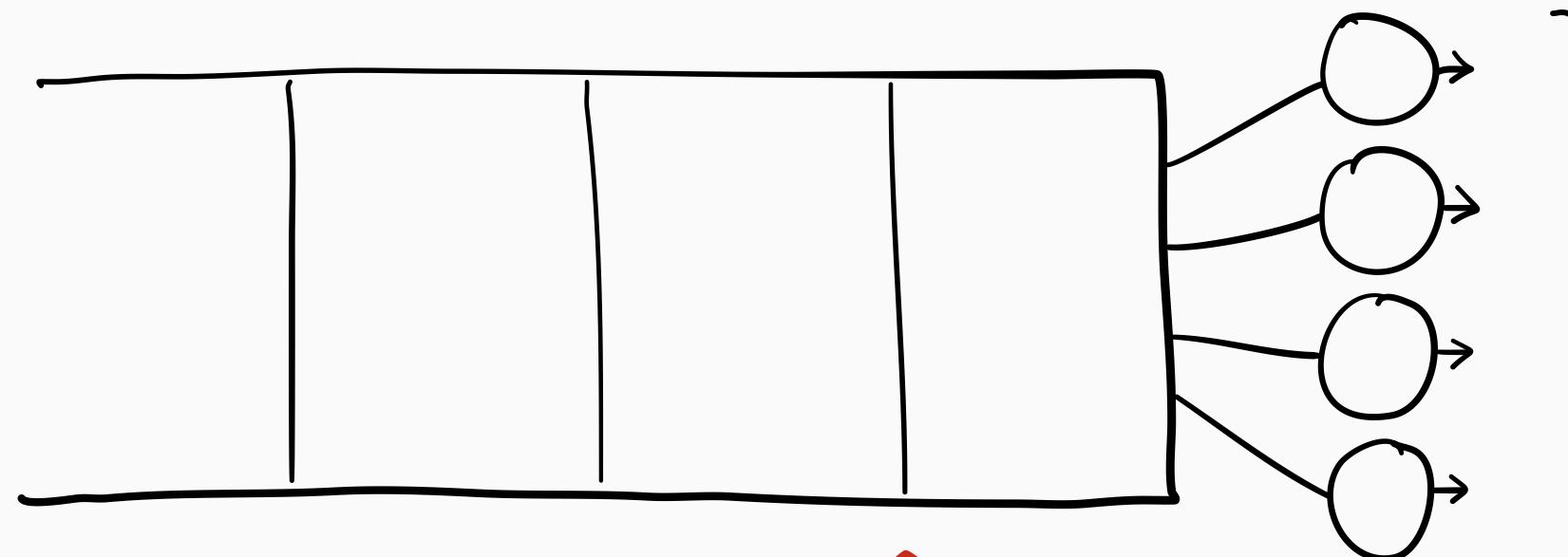
# Scheduling in the $M/G/k$



# Scheduling in the $M/G/k$



# Scheduling in the $M/G/k$

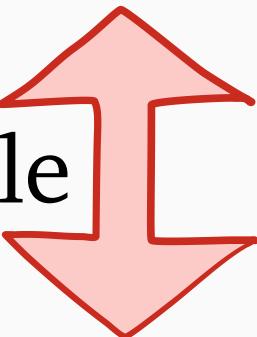
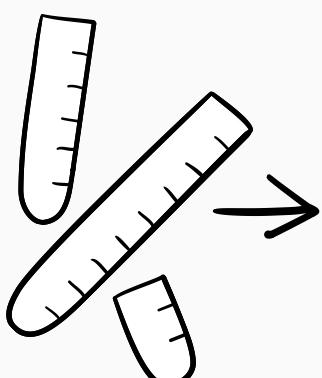
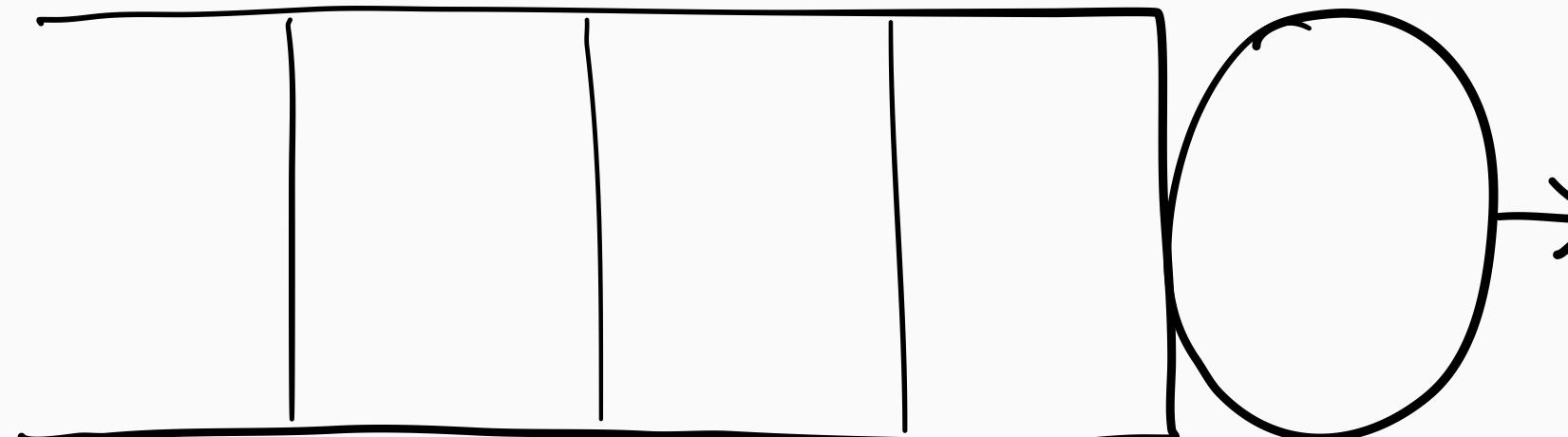


! bin-packing aspect

**$k$  servers** of speed  $1/k$

size  $s$  job takes  **$ks$**  time

comparable



**1 server** of speed 1



Q: Are **SRPT** and **Gittins**  
still good in the **M/G/k**?



Q: Are **SRPT** and **Gittins** still good in the **M/G/k**?



A: Yes, especially in the *heavy traffic limit*

$$\rho = \lambda \mathbf{E}[S] \rightarrow 1$$



Q: Are **SRPT** and **Gittins** still good in the **M/G/k**?



A: Yes, especially in the *heavy traffic limit*

$$\rho = \lambda E[S] \rightarrow 1$$

**Theorem:** for **SRPT** and **Gittins**,

$$E[T_{\mathbf{k}}] \leq E[T_1] + (k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)$$



Q: Are **SRPT** and **Gittins** still good in the **M/G/k**?



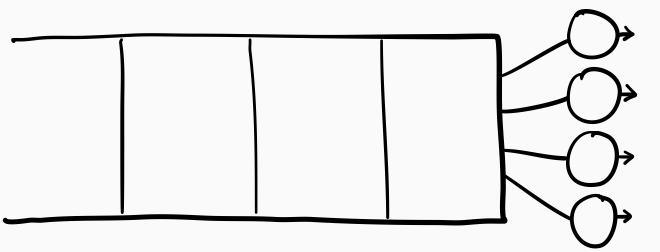
A: Yes, especially in the *heavy traffic limit*

$$\rho = \lambda \mathbf{E}[S] \rightarrow 1$$

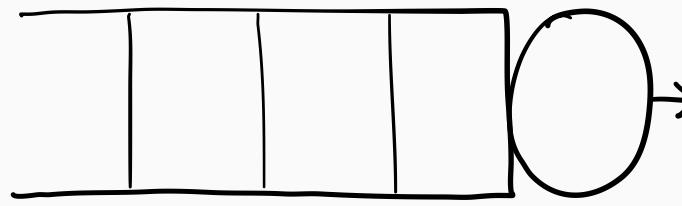
**Theorem:** for **SRPT** and **Gittins**,

$$\mathbf{E}[T_{\mathbf{k}}] \leq \mathbf{E}[T_{\mathbf{1}}] + \underbrace{(k-1) \cdot O\left(\log \frac{1}{1-\rho}\right)}_{\mathbf{E}[S^2(\log S)^+] < \infty \Rightarrow o(\mathbf{E}[T_{\mathbf{1}}])}$$

SRPT-**k**

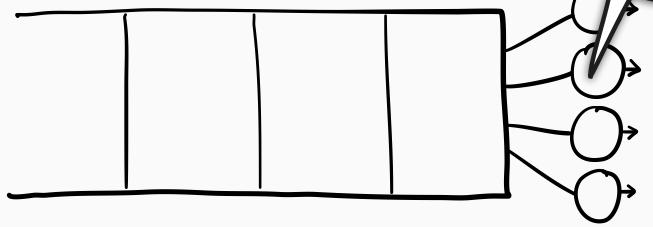


SRPT-**1**

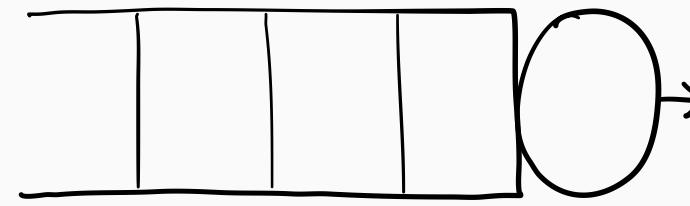


SRPT- $\mathbf{k}$

$\mathbf{k}$  servers,  
speed  $1/\mathbf{k}$

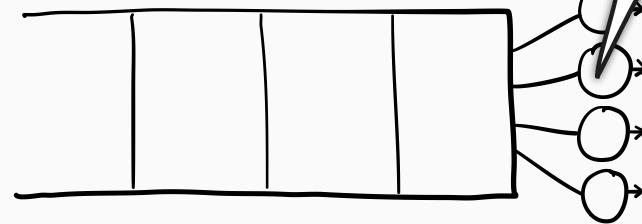


SRPT-1

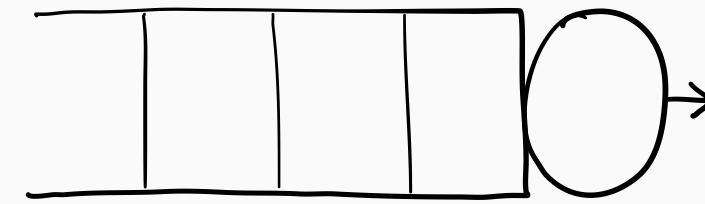
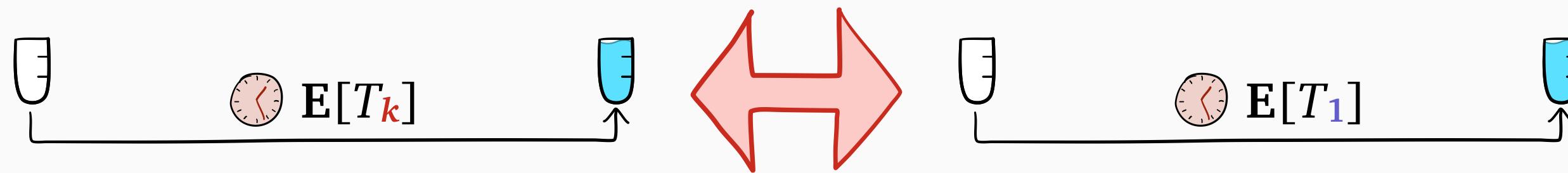


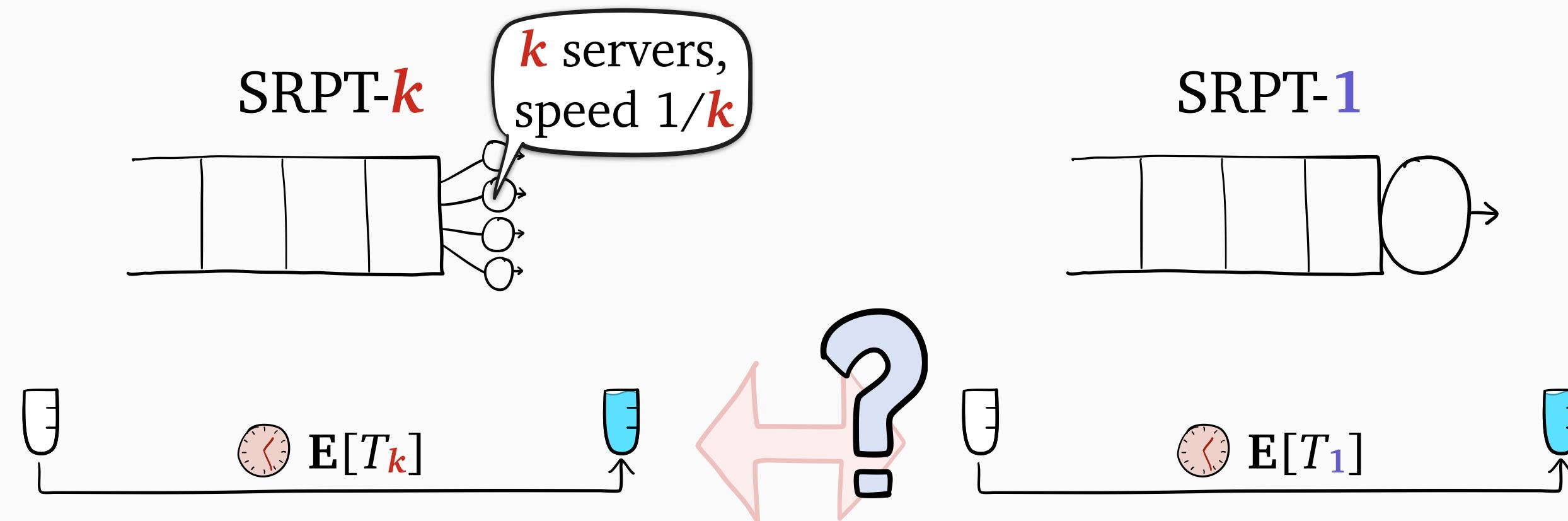
SRPT- $\mathbf{k}$

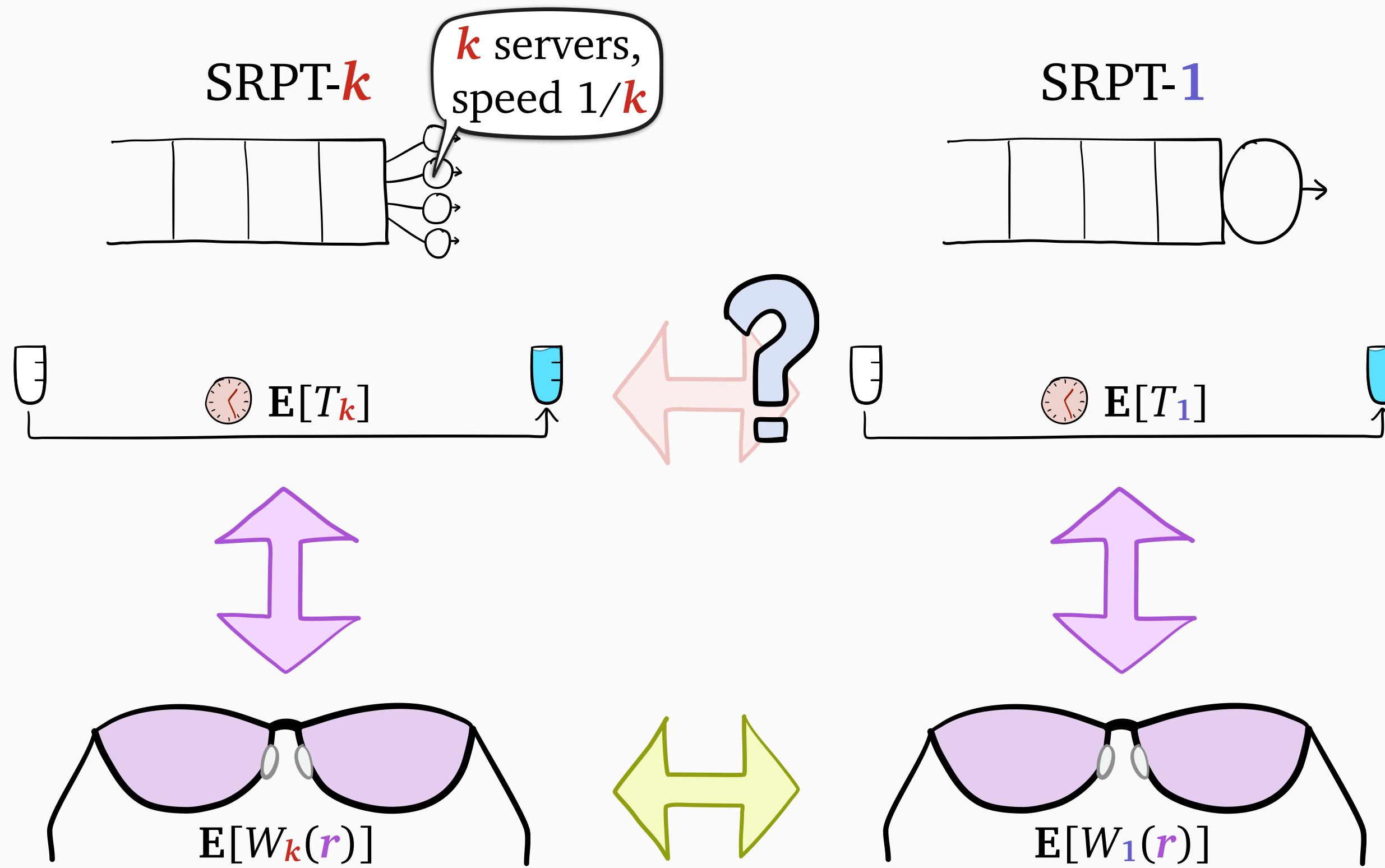
$\mathbf{k}$  servers,  
speed  $1/\mathbf{k}$

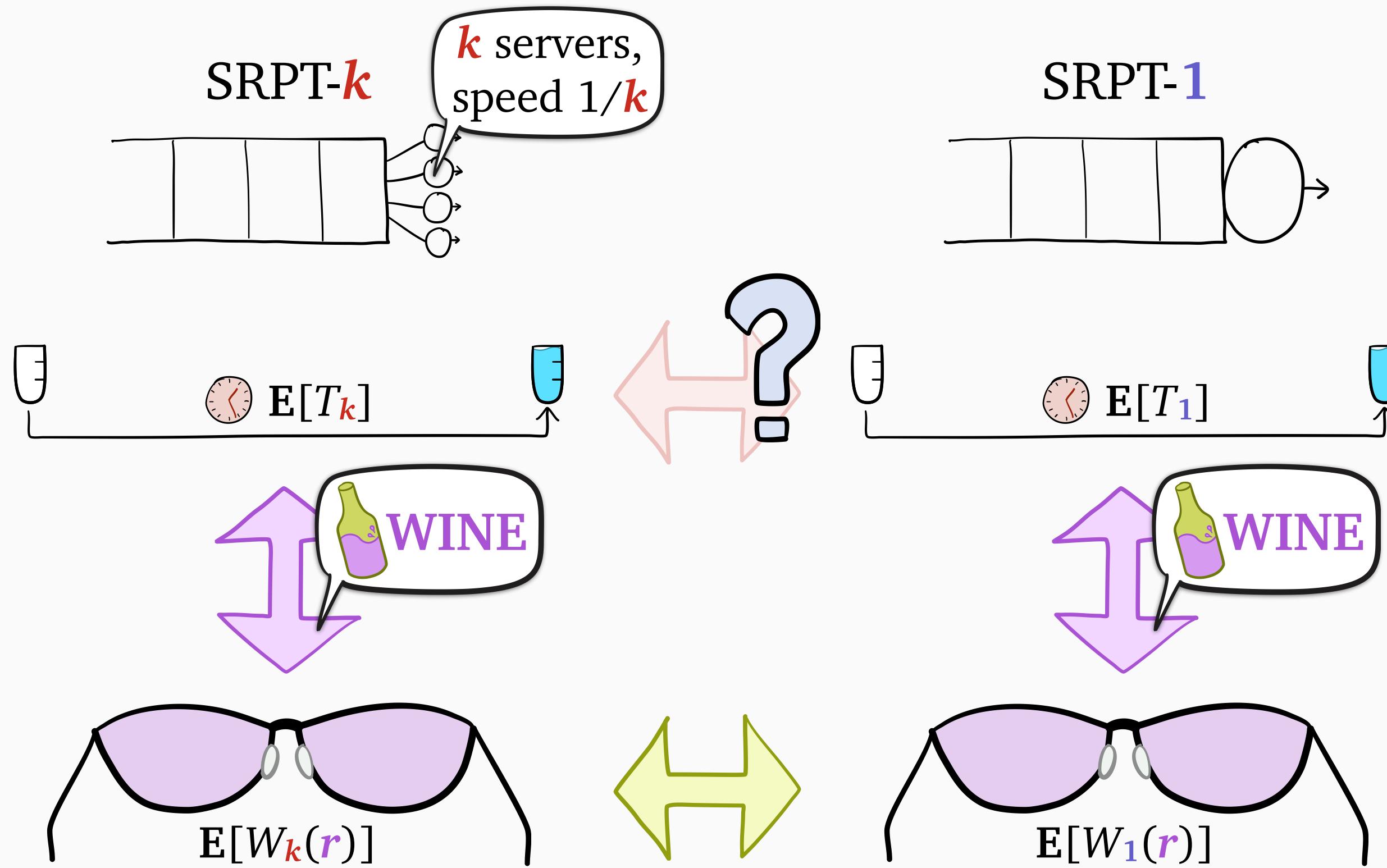


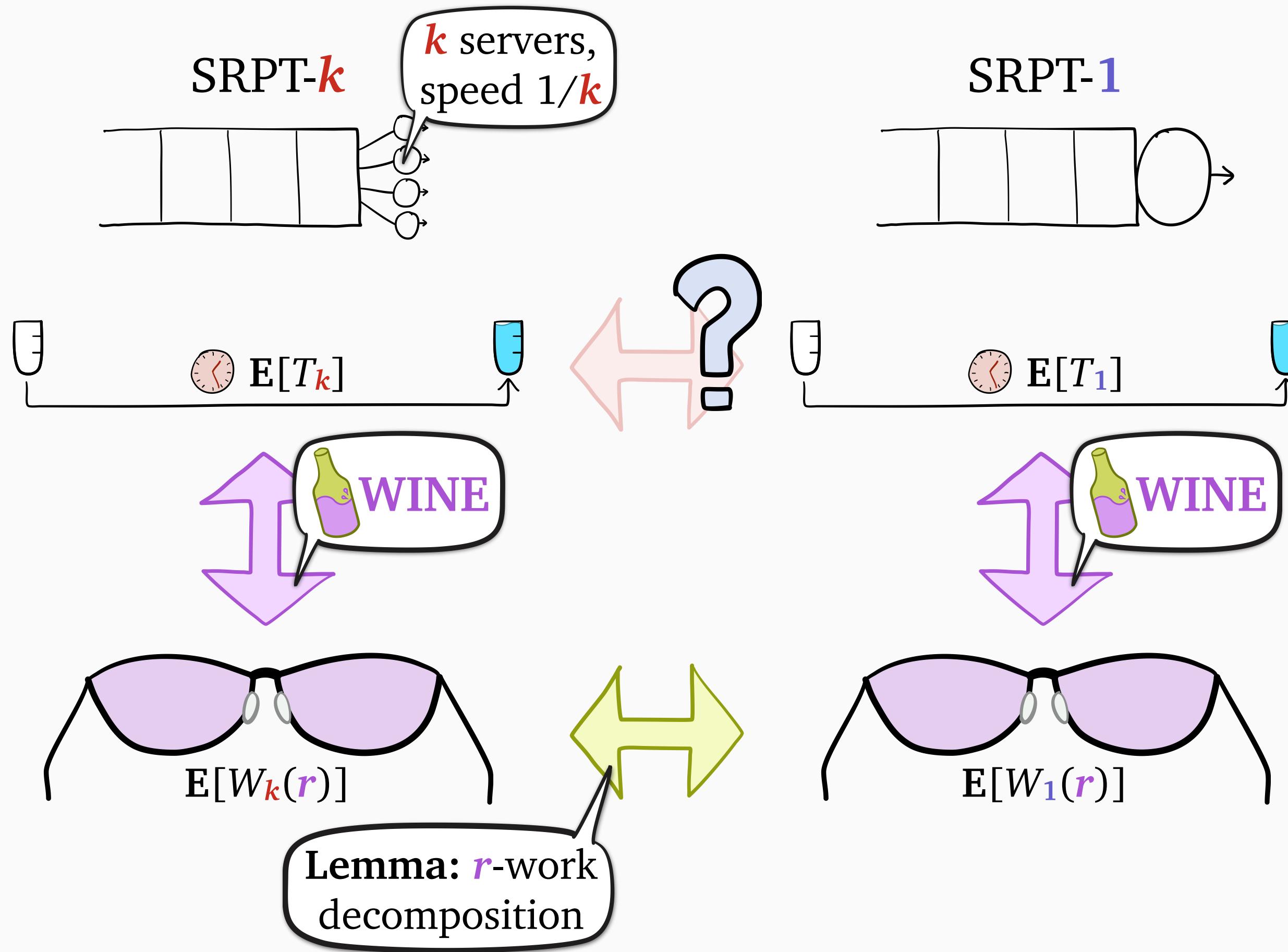
SRPT-1





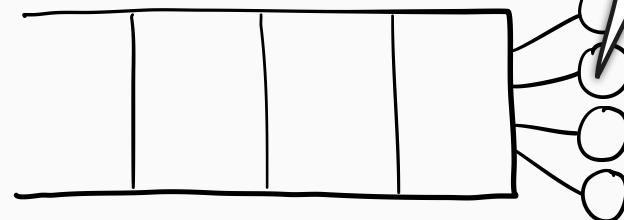




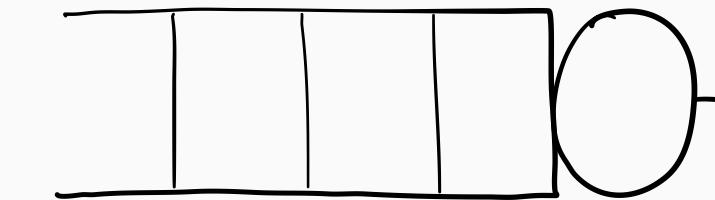


SRPT- $\mathbf{k}$

$\mathbf{k}$  servers,  
speed  $1/\mathbf{k}$

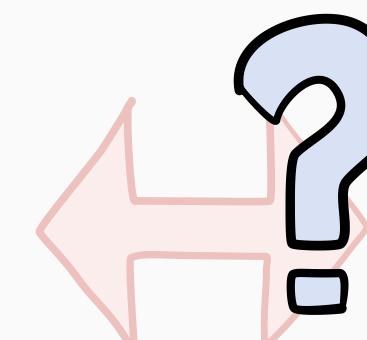
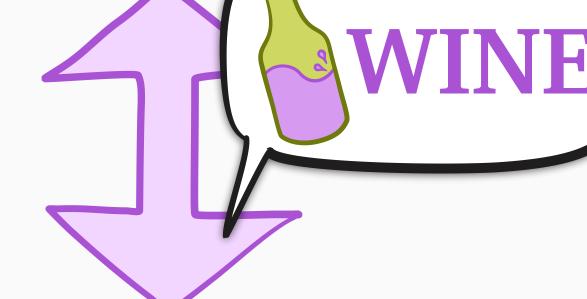


SRPT-1



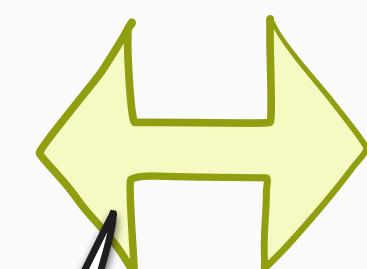
$E[T_{\mathbf{k}}]$

$E[T_1]$



$E[W_{\mathbf{k}}(\mathbf{r})]$

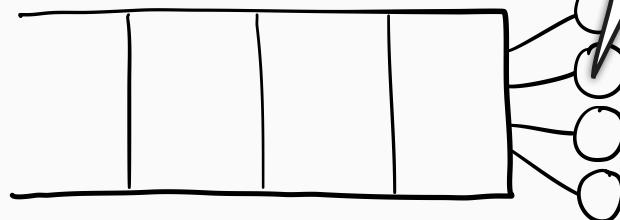
$E[W_1(\mathbf{r})]$



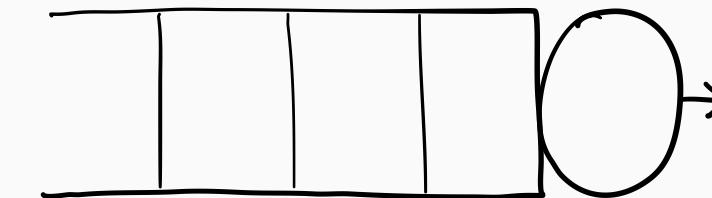
Lemma:  $\mathbf{r}$ -work  
decomposition

SRPT- $\mathbf{k}$

$\mathbf{k}$  servers,  
speed  $1/\mathbf{k}$



SRPT-1



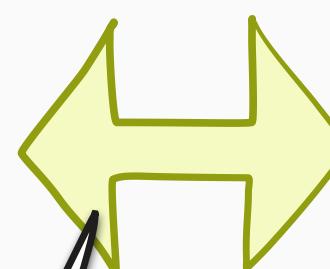
$E[T_k]$

$E[T_1]$

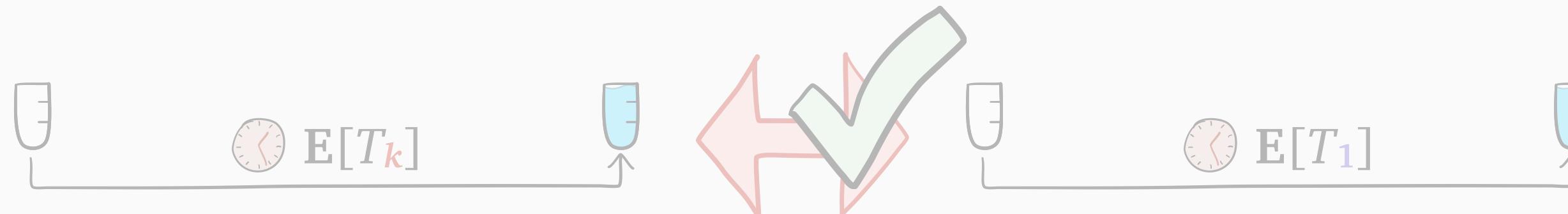
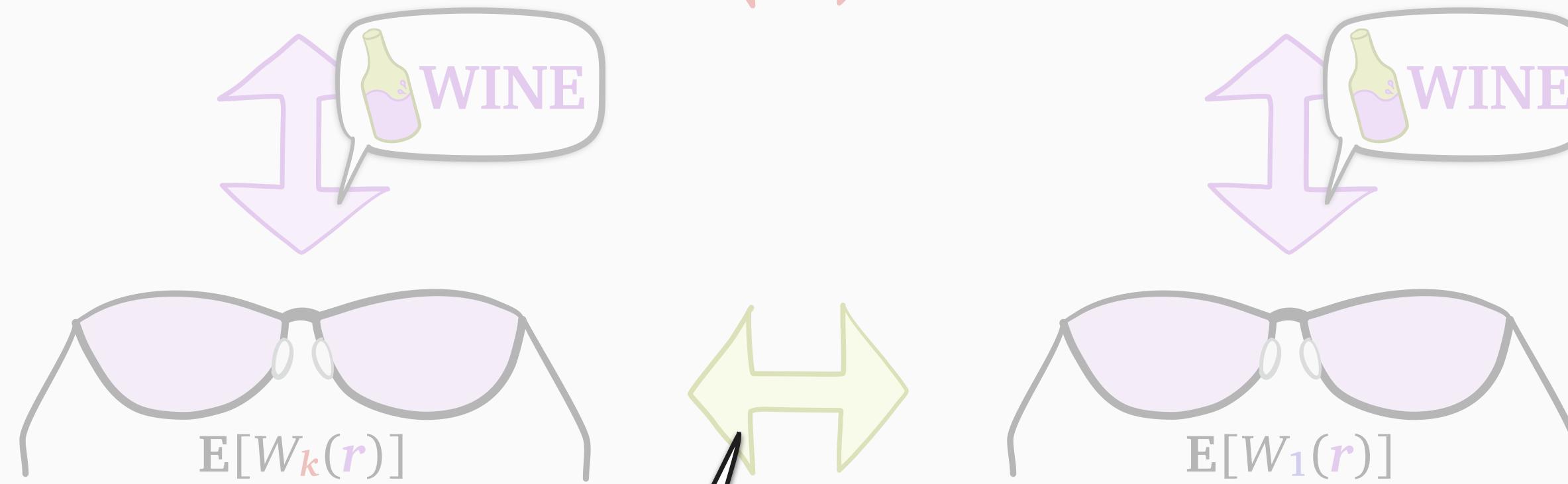


$E[W_k(r)]$

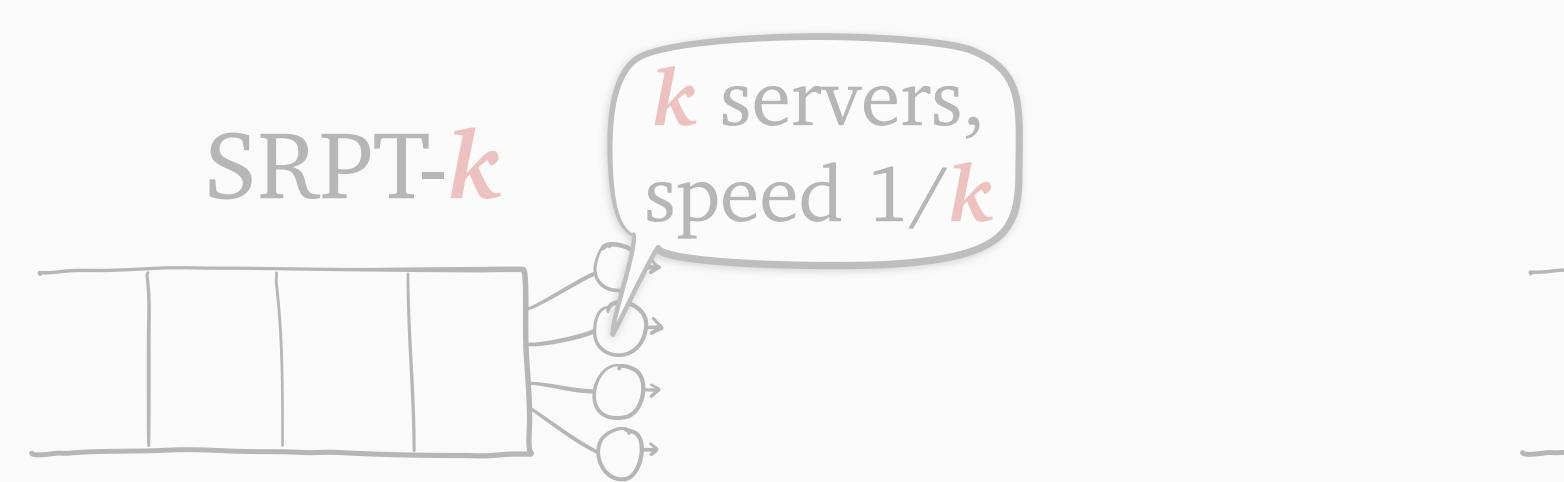
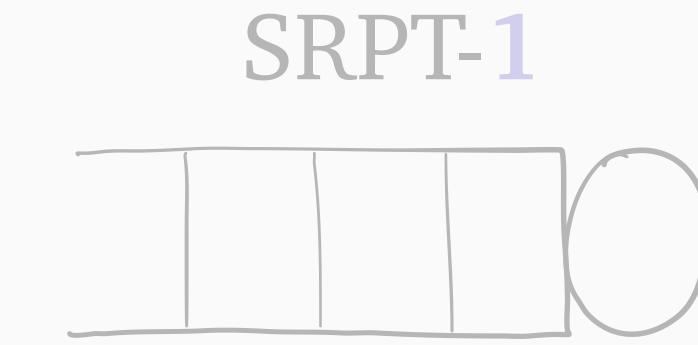
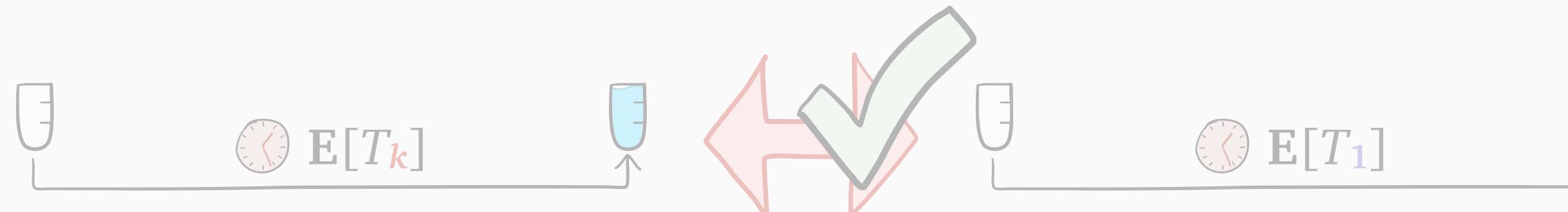
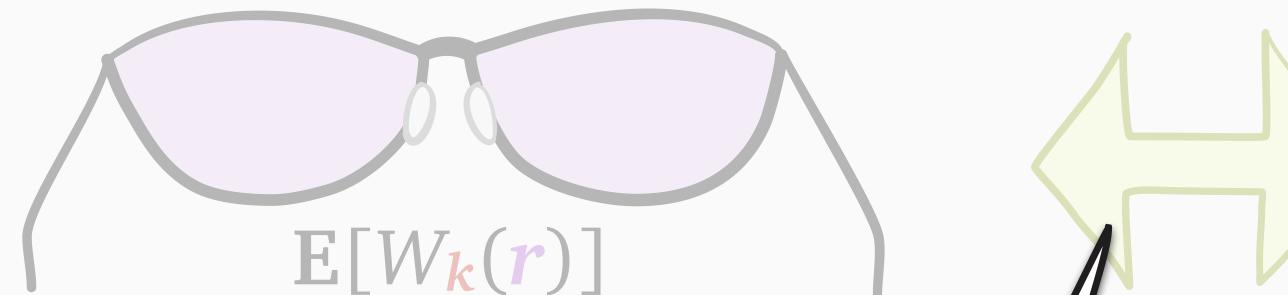
$E[W_1(r)]$



Lemma:  $r$ -work  
decomposition

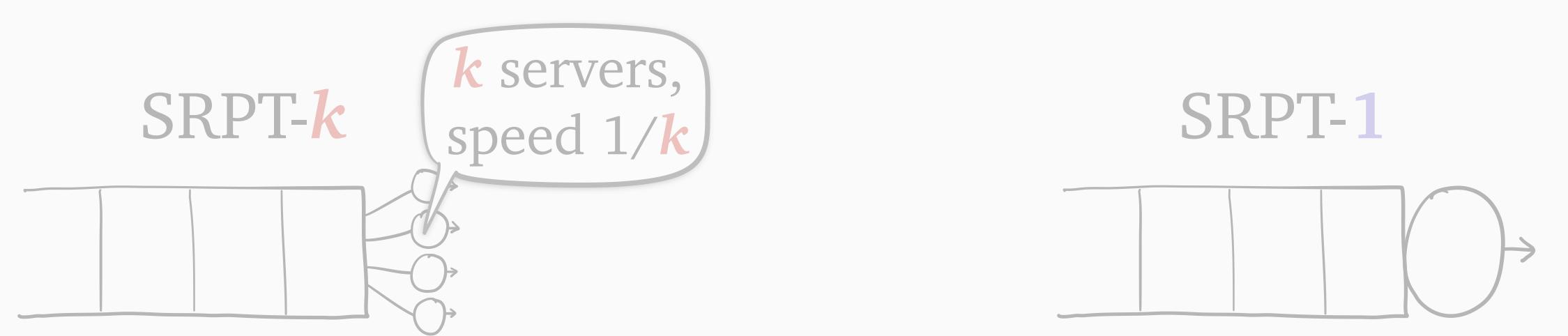
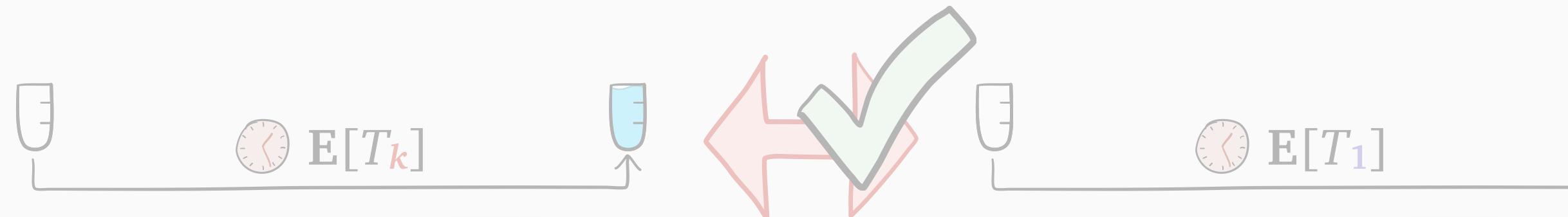
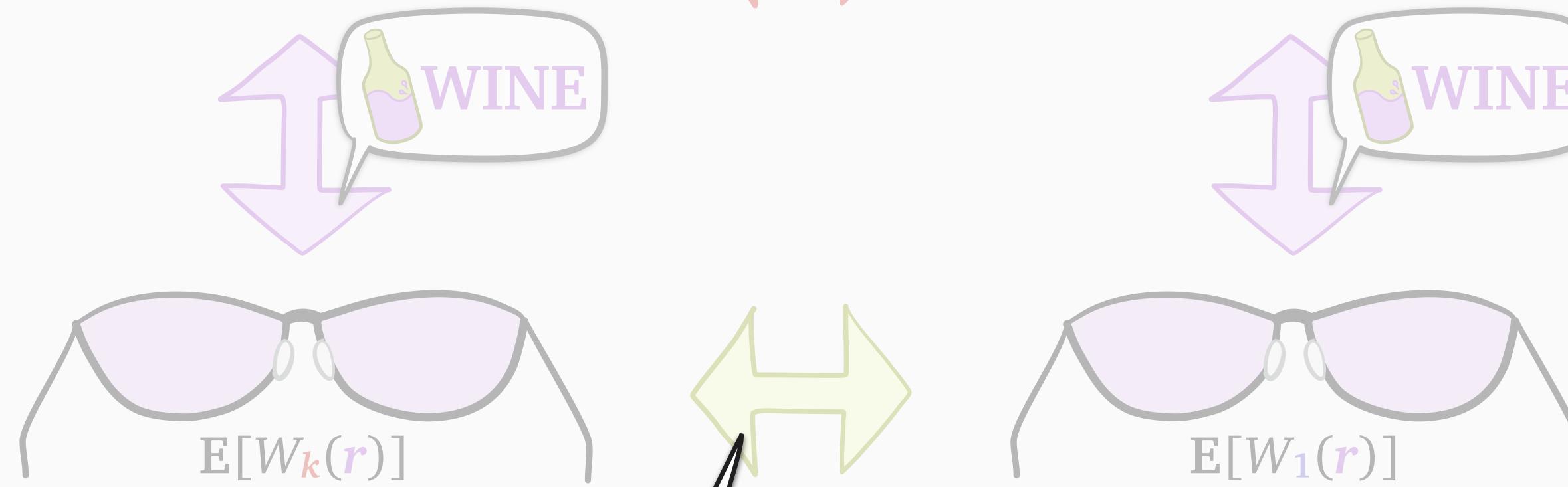


**Lemma:  $r$ -work  
decomposition**



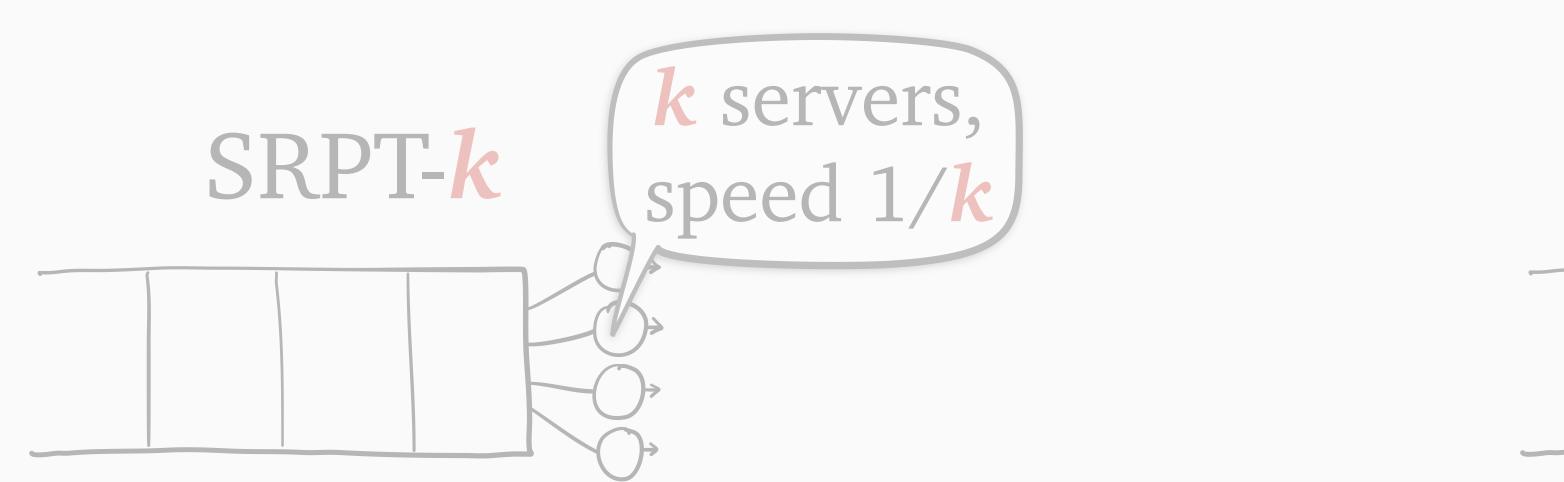
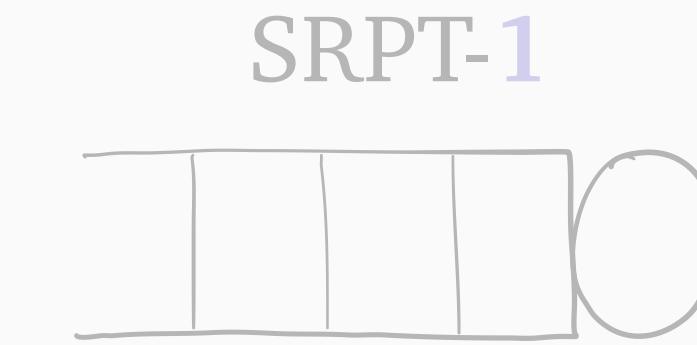
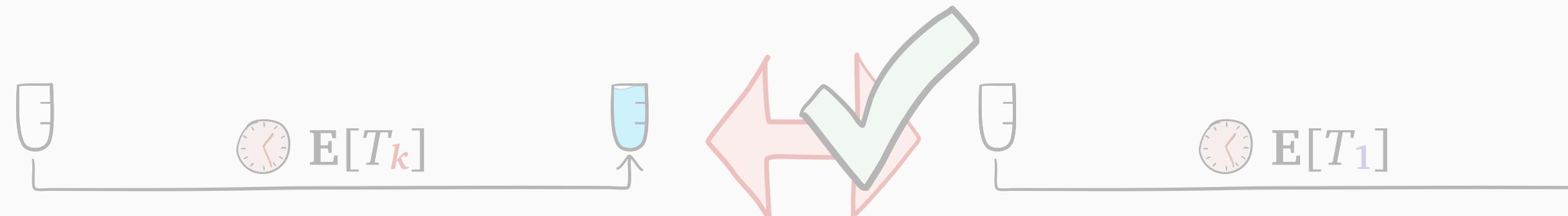
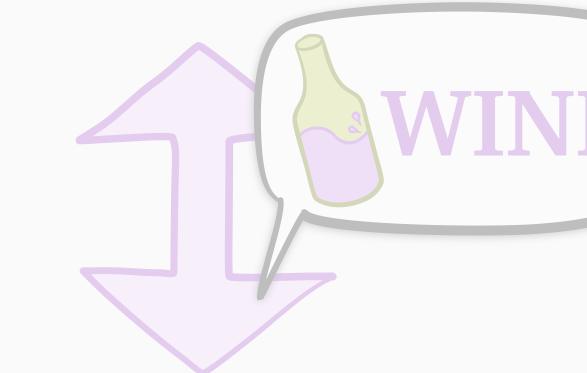
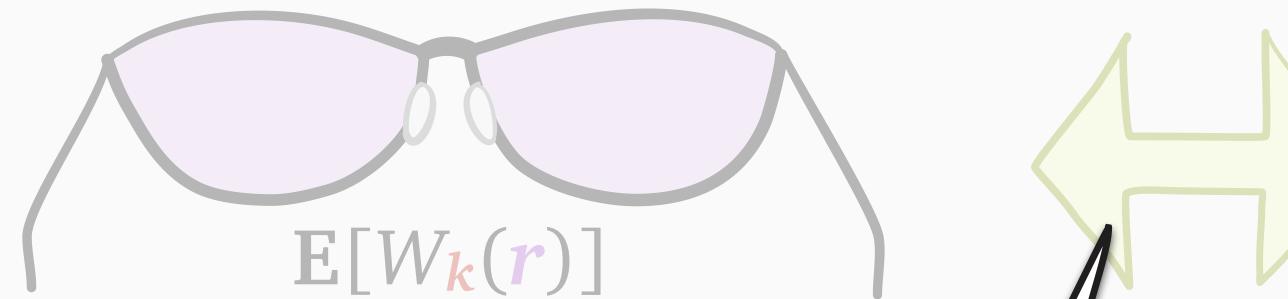
**Lemma:**  $r$ -work  
decomposition

$$\text{E}[W_k(r)] = \text{E}[W_1(r)] + \text{"r-work of } k-1 \text{ jobs"}$$



**Lemma:**  $r$ -work  
decomposition

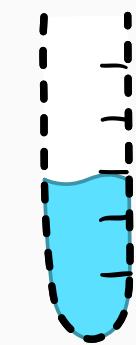
$$\begin{aligned}
 \text{E}[W_k(r)] &= \text{E}[W_1(r)] + \text{“}r\text{-work of } k-1 \text{ jobs”} \\
 &\leq \text{E}[W_1(r)] + (k-1)r
 \end{aligned}$$



**Lemma:**  $r$ -work  
decomposition

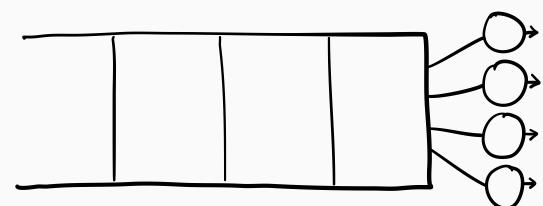
$$\begin{aligned}
 \text{E}[W_k(r)] &= \text{E}[W_1(r)] + \text{“}r\text{-work of } k-1 \text{ jobs”} \\
 &\leq \text{E}[W_1(r)] + (k-1)r
 \end{aligned}$$

can improve



*Part I*

# Handling job size uncertainty



*Part II*

# Analyzing multiserver scheduling



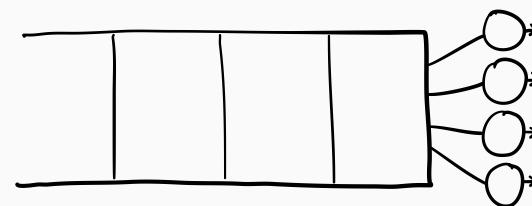
*Part III*

# Optimizing tail metrics



*Part I*

# Handling job size uncertainty

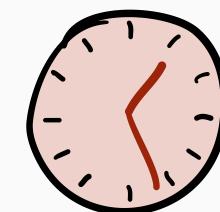


*Part II*

# Analyzing multiserver scheduling

Queueing for TCS

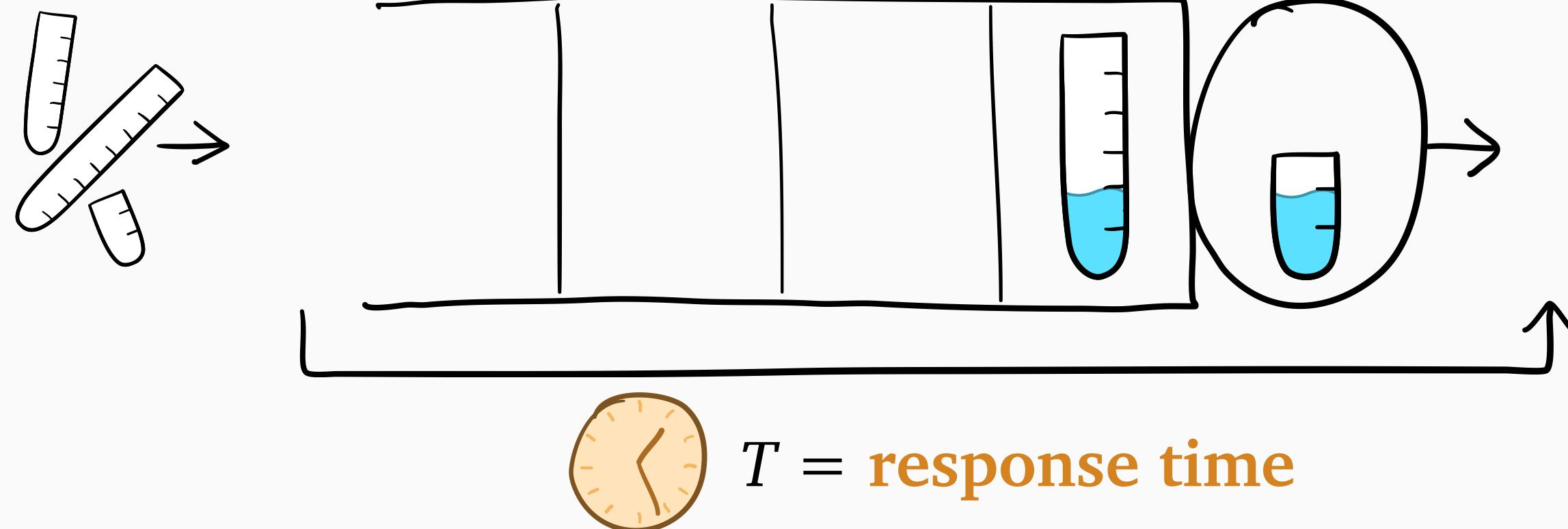
Use *WINE* to analyze SRPT- $k$   
with arbitrary release dates?



*Part III*

# Optimizing tail metrics

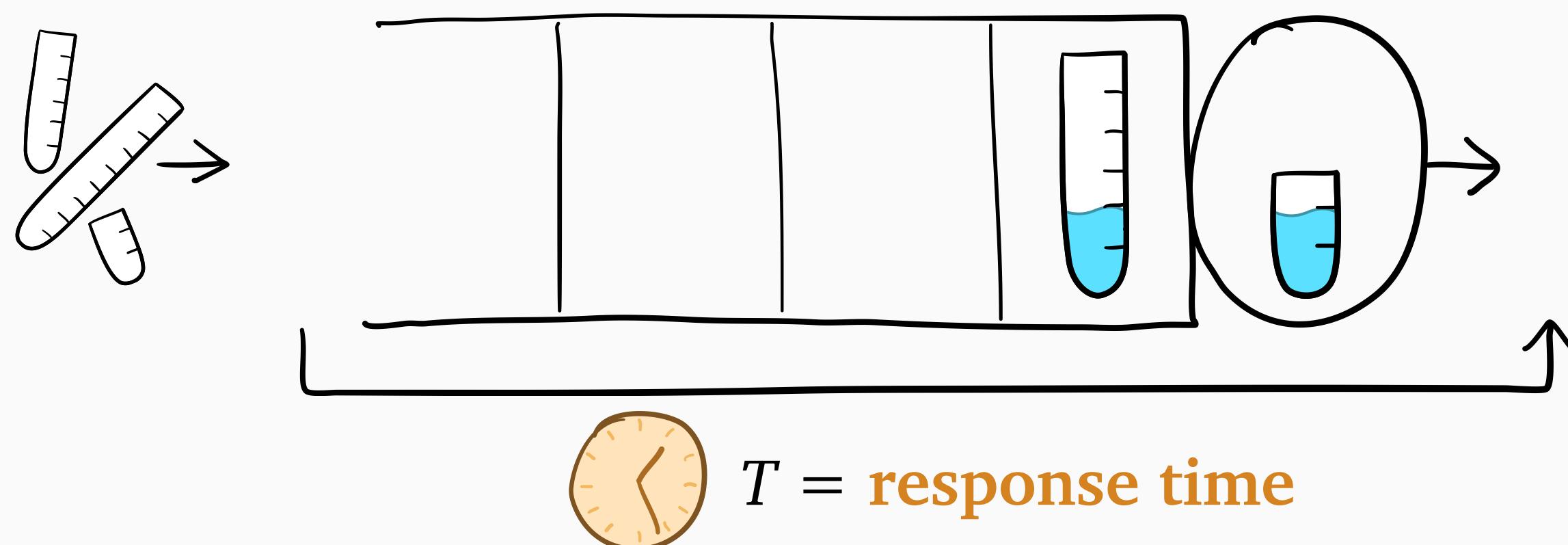
# Tail metrics



# Tail metrics



Minimize  $\begin{cases} \mathbf{P}[T > t] ? \\ \mathbf{E}[(T - t)^+] ? \\ \text{quantiles of } T ? \end{cases}$



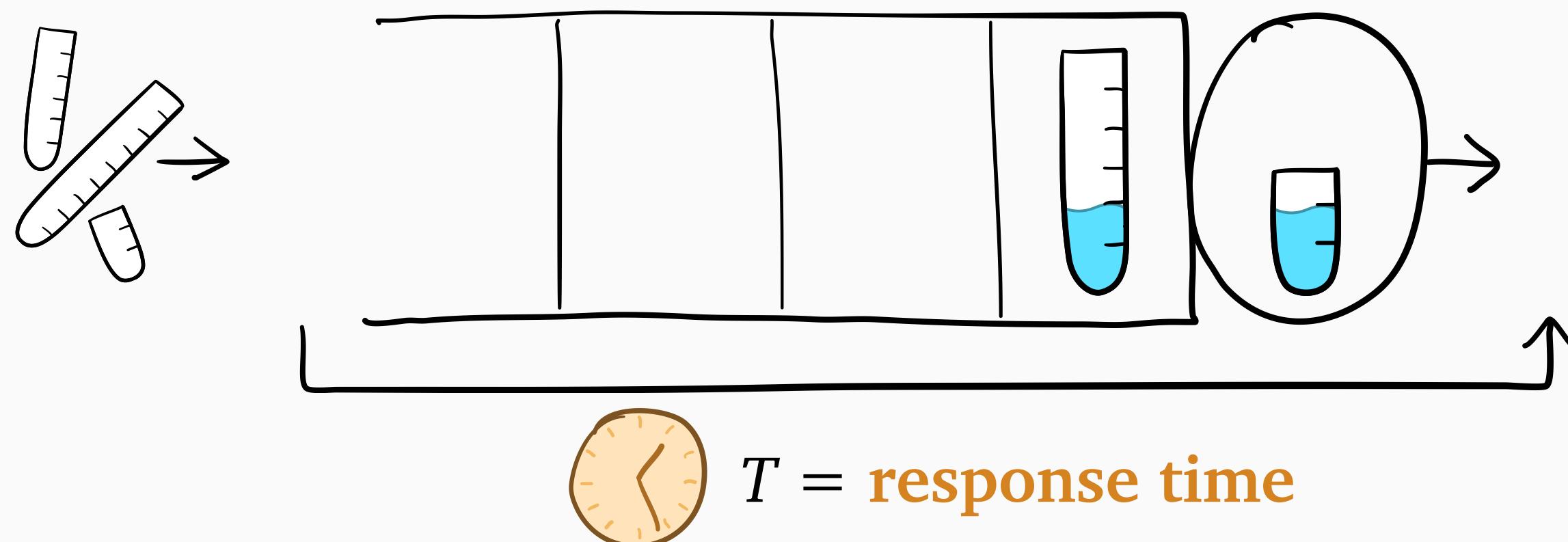
# Tail metrics



Minimize  $\begin{cases} \mathbb{P}[T > t]? \\ \mathbb{E}[(T - t)^+]? \\ \text{quantiles of } T? \end{cases}$



Practice: important



# Tail metrics



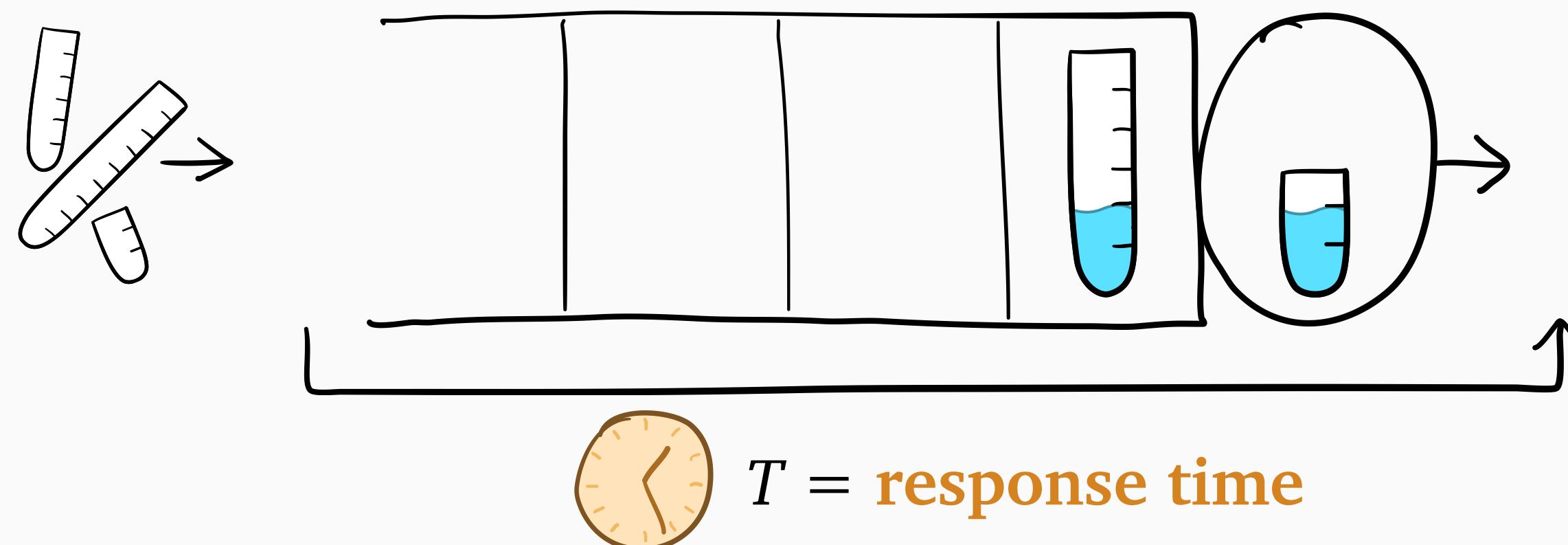
Minimize  $\begin{cases} \mathbb{P}[T > t]? \\ \mathbb{E}[(T - t)^+]? \\ \text{quantiles of } T? \end{cases}$



Practice: important



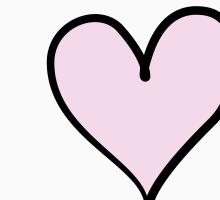
Theory: very hard



# Tail metrics



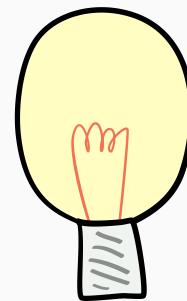
Minimize  $\begin{cases} \mathbb{P}[T > t]? \\ \mathbb{E}[(T - t)^+]? \\ \text{quantiles of } T? \end{cases}$



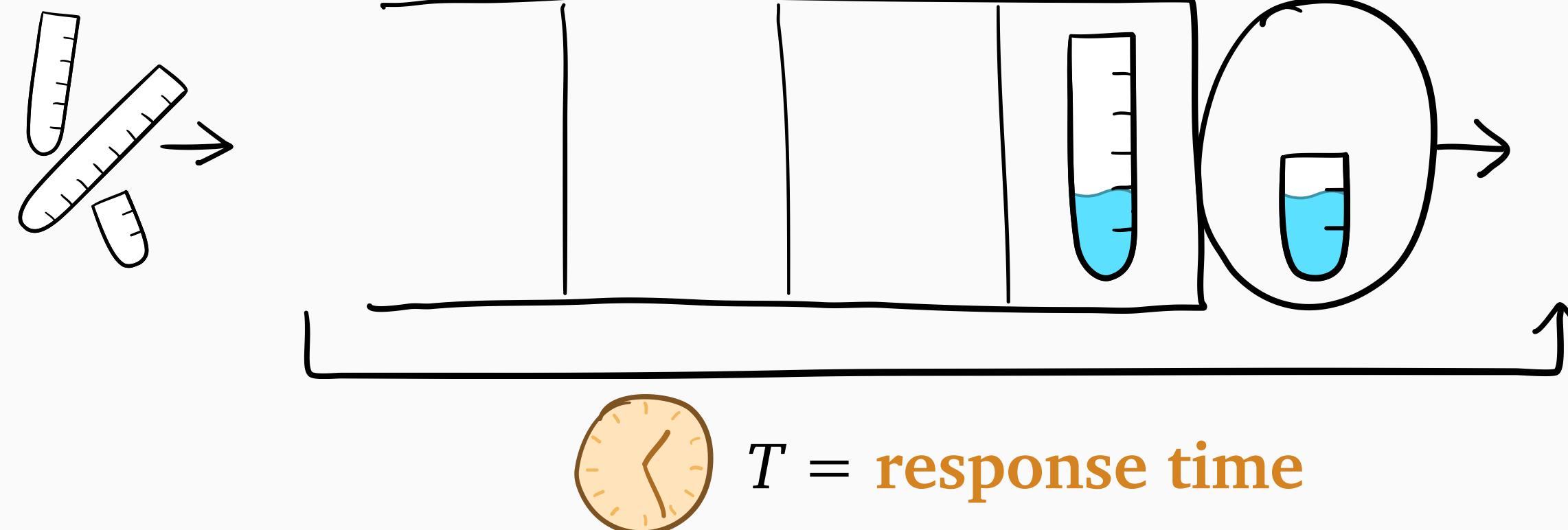
Practice: important



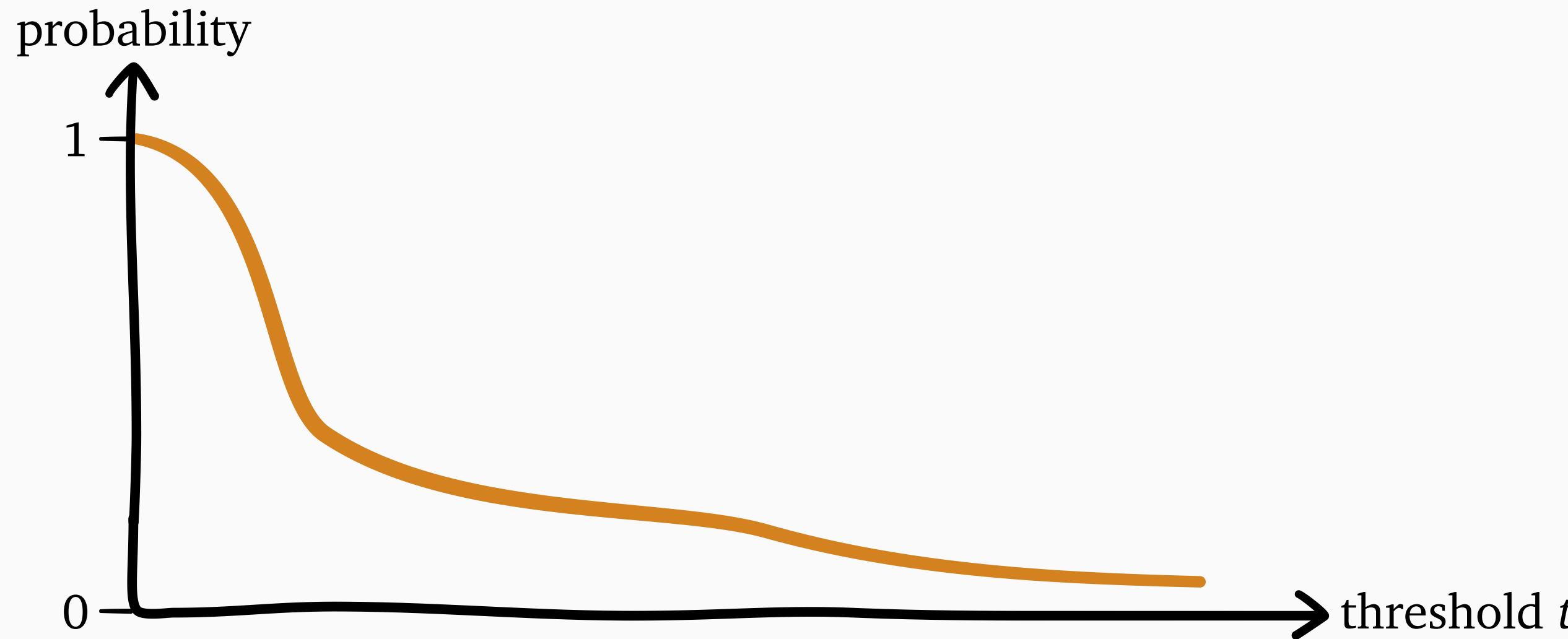
Theory: very hard



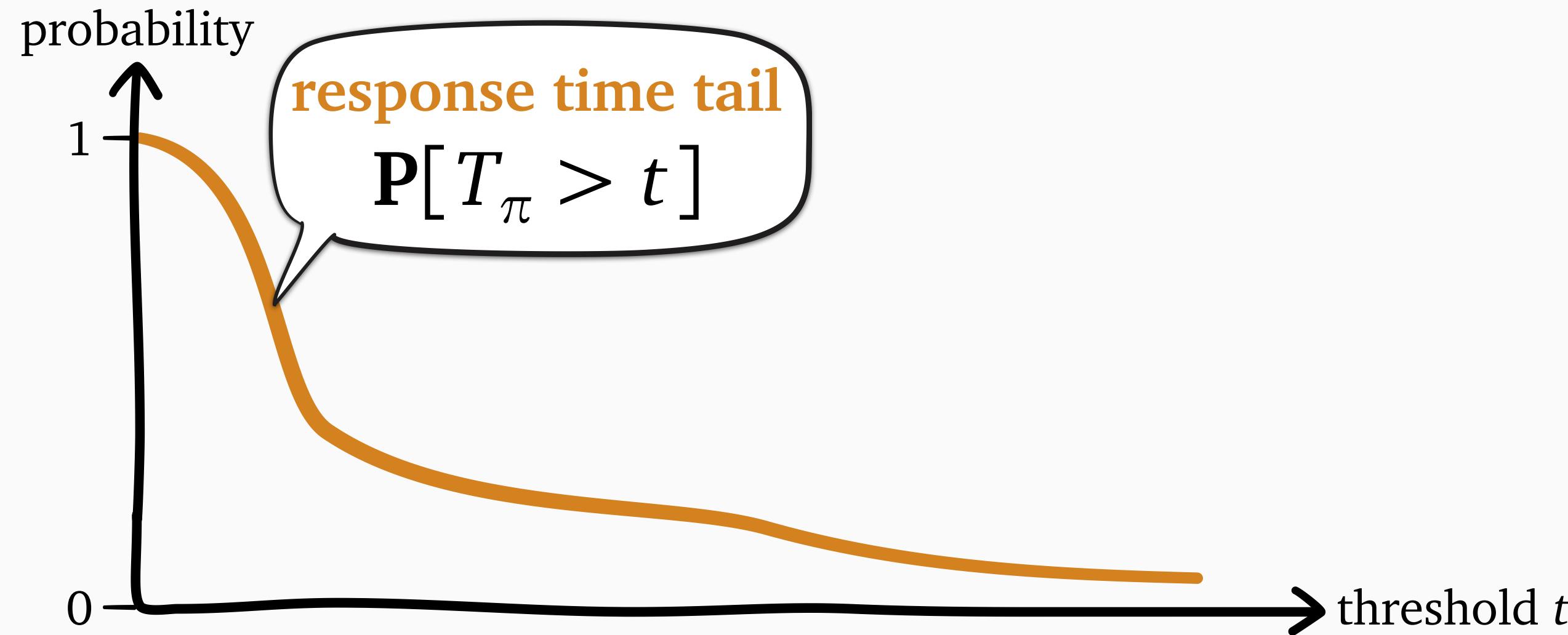
Tractable:  
study  $t \rightarrow \infty$   
asymptotics



# Asymptotic response time tail

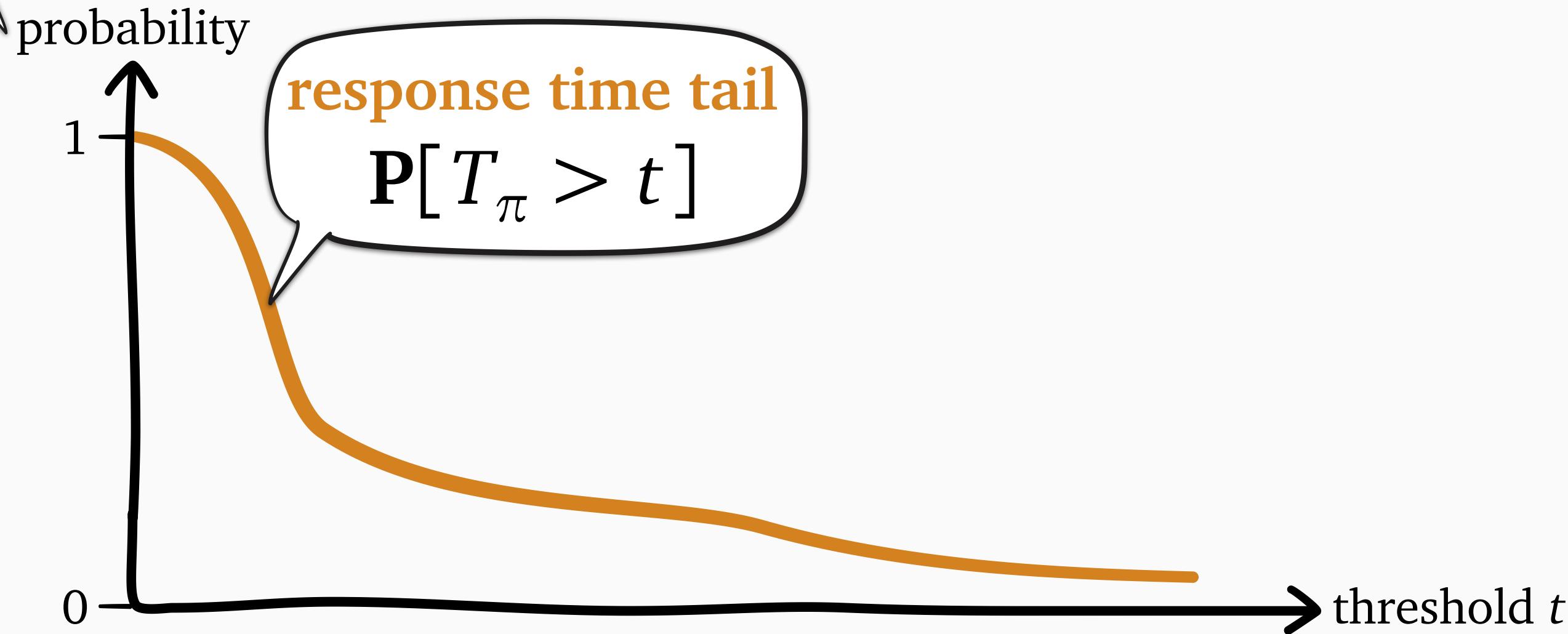


# Asymptotic response time tail



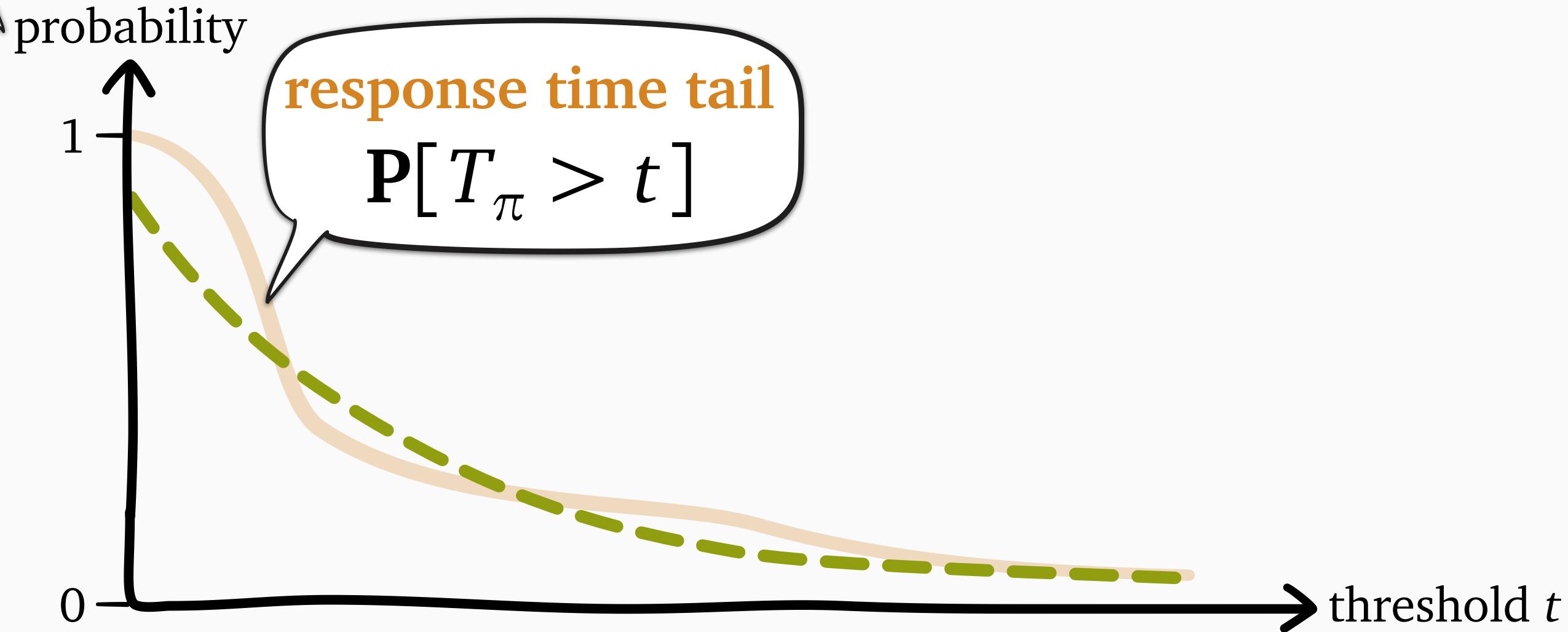
depends on  
policy  $\pi$

# Asymptotic response time tail



depends on  
policy  $\pi$

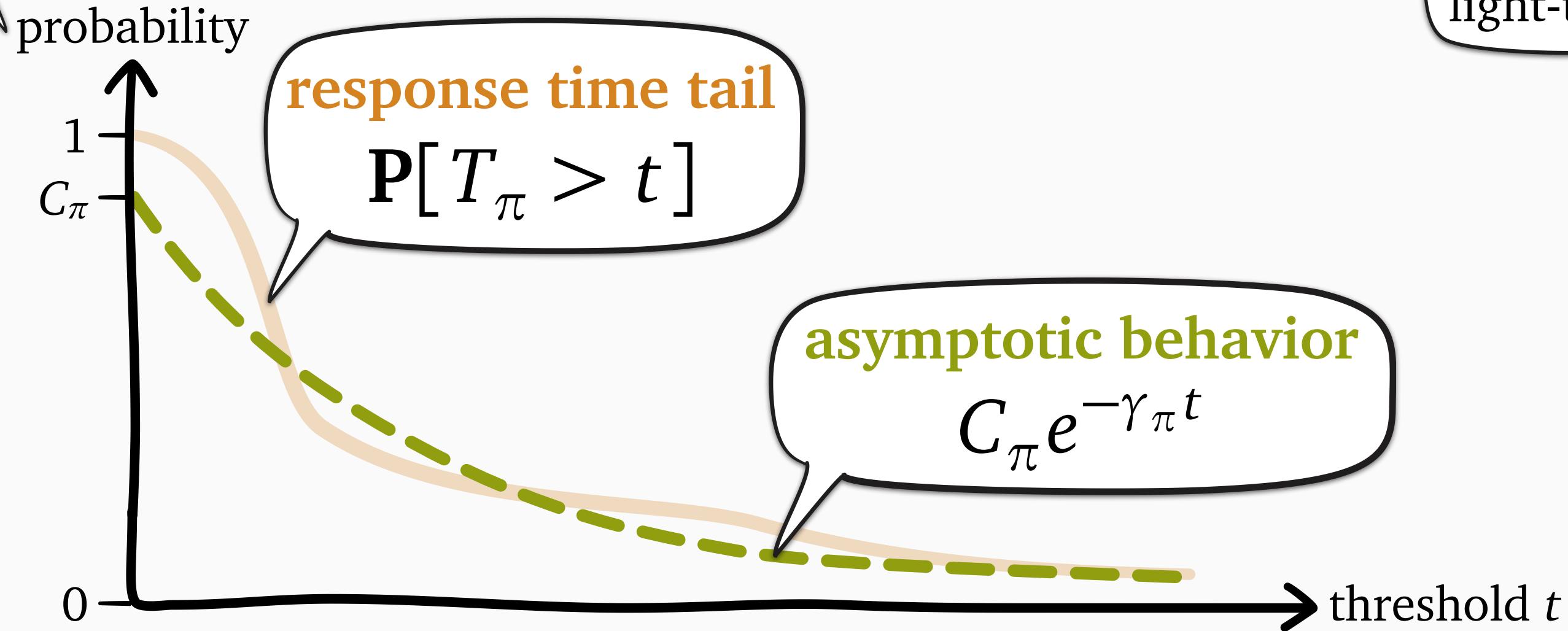
# Asymptotic response time tail



# Asymptotic response time tail

depends on  
policy  $\pi$

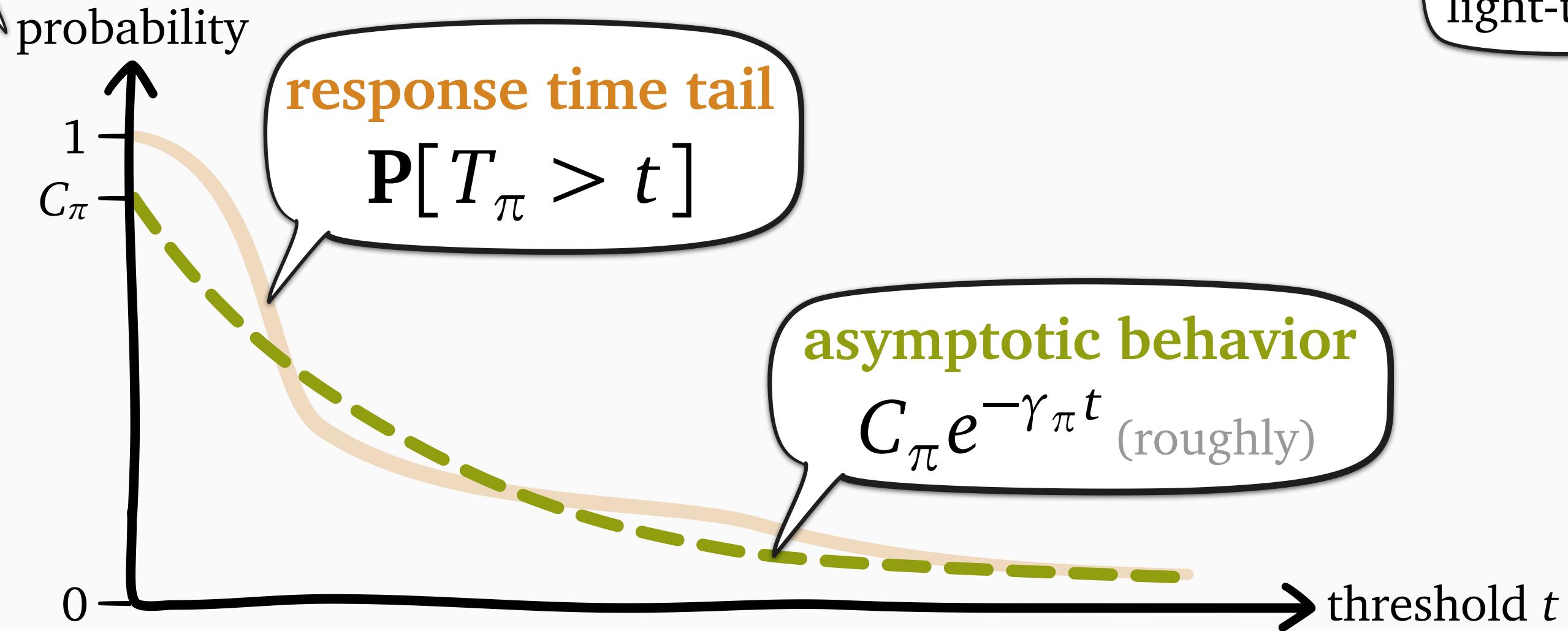
when  $S$  is  
light-tailed



# Asymptotic response time tail

depends on  
policy  $\pi$

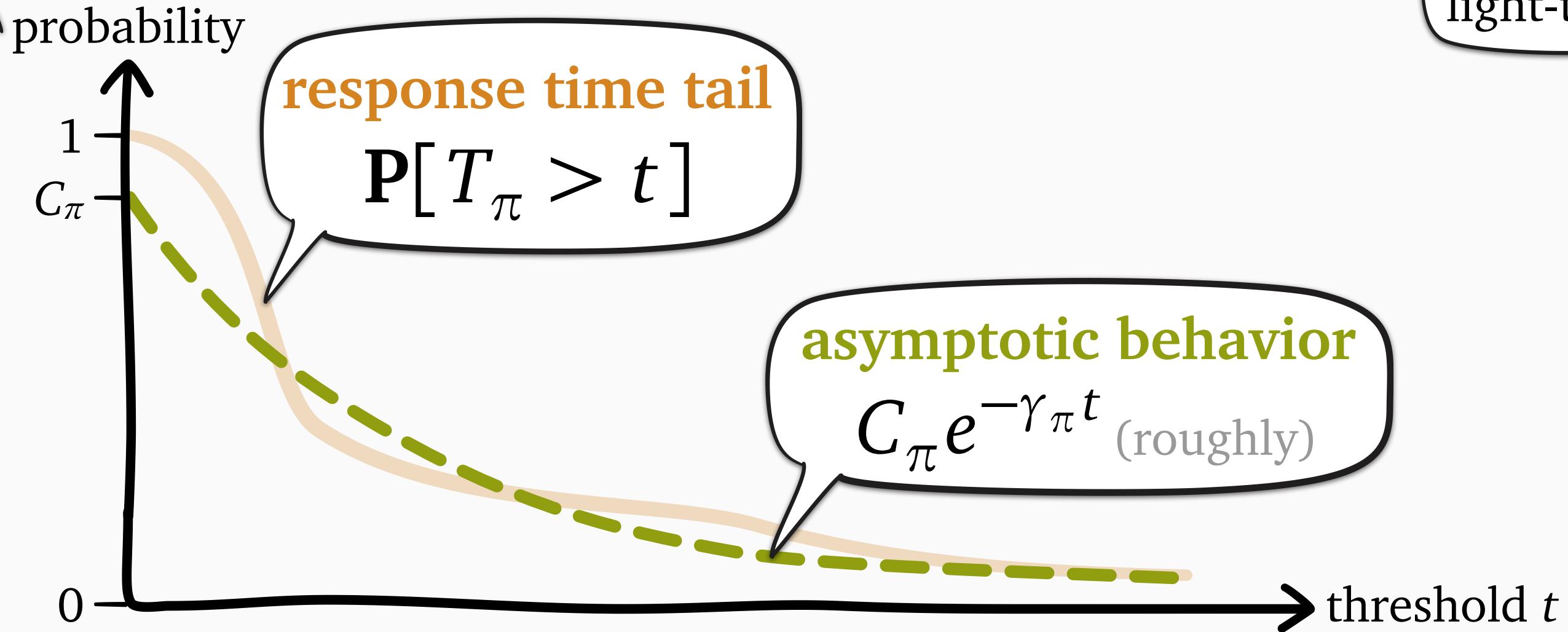
when  $S$  is  
light-tailed



# Asymptotic response time tail

depends on  
policy  $\pi$

when  $S$  is  
light-tailed



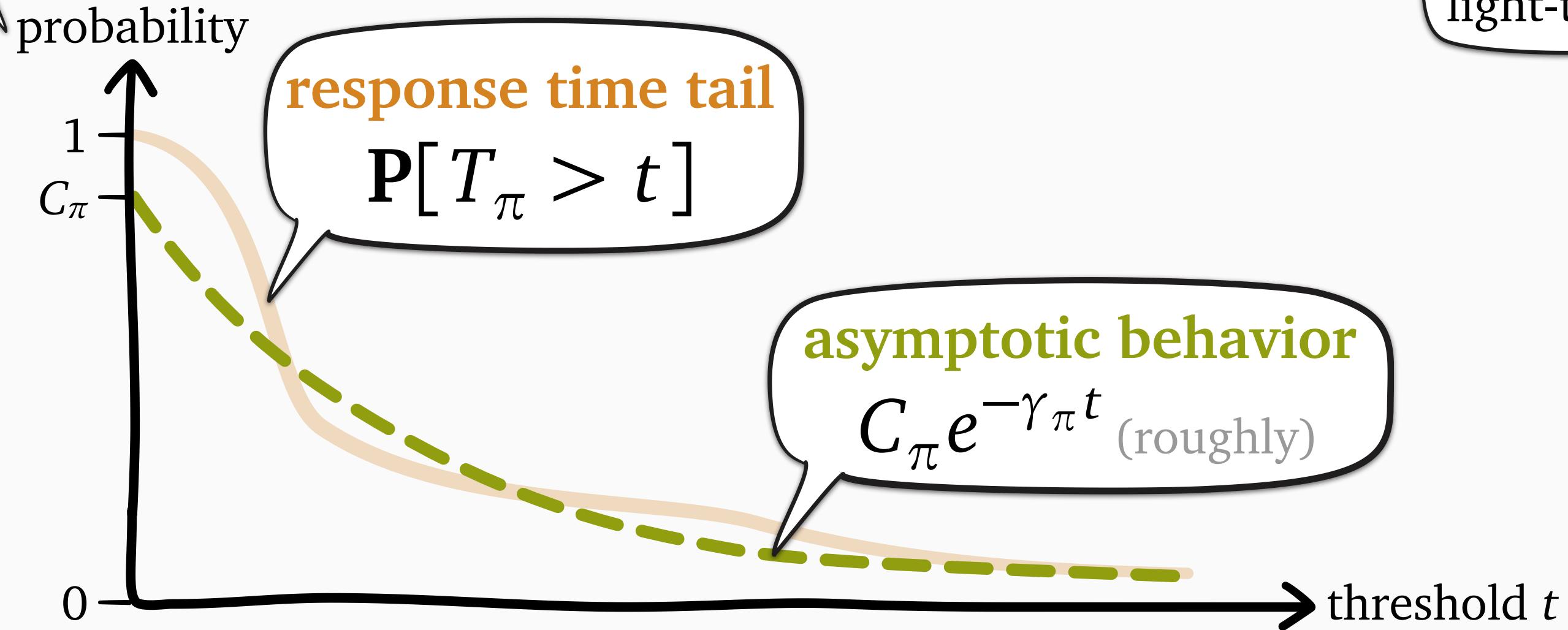
$\gamma_\pi$  = decay rate of  $\pi$

$C_\pi$  = tail constant of  $\pi$

# Asymptotic response time tail

depends on  
policy  $\pi$

when  $S$  is  
light-tailed



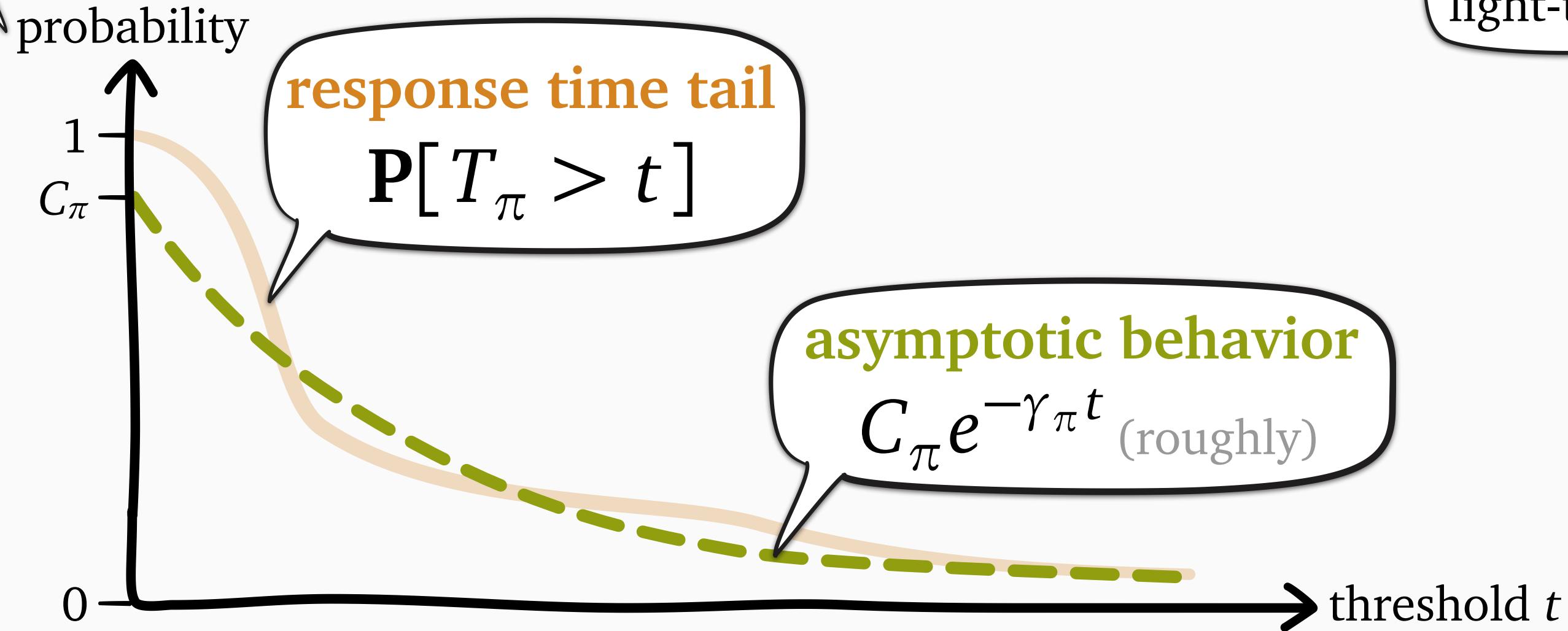
Weak optimality:  $\leftarrow$   
optimal  $\gamma_\pi$

$\gamma_\pi$  = decay rate of  $\pi$   
 $C_\pi$  = tail constant of  $\pi$

# Asymptotic response time tail

depends on policy  $\pi$

when  $S$  is light-tailed



Weak optimality:  
optimal  $\gamma_\pi$

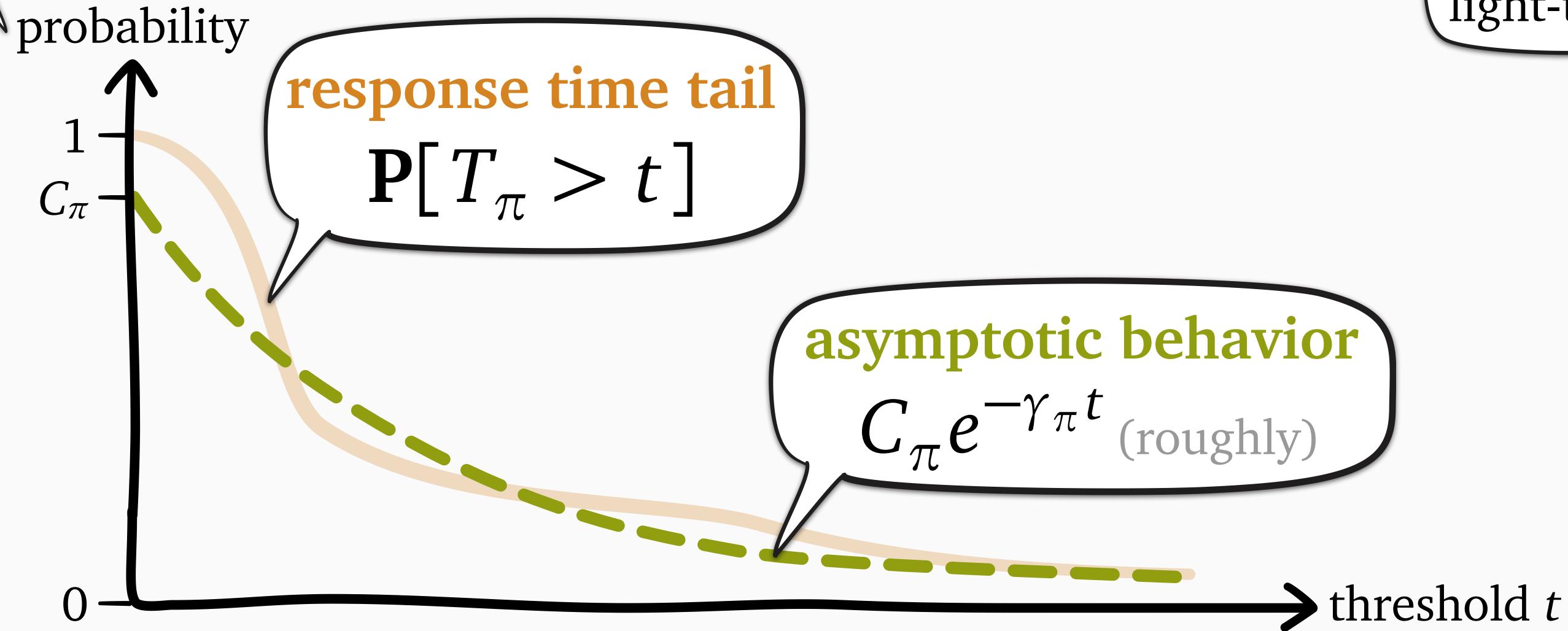
$\gamma_\pi$  = decay rate of  $\pi$   
 $C_\pi$  = tail constant of  $\pi$

Strong optimality:  
optimal  $\gamma_\pi$  and  $C_\pi$

# Asymptotic response time tail

depends on policy  $\pi$

when  $S$  is light-tailed



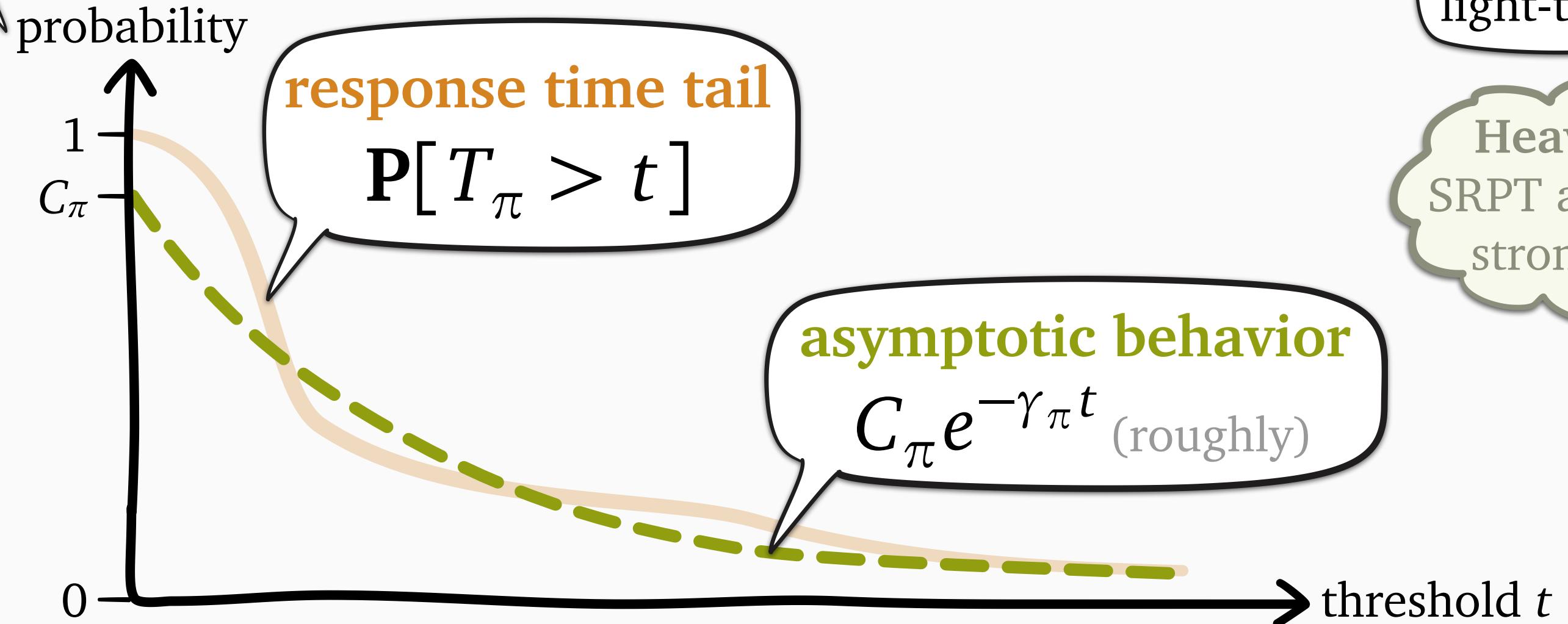
Weak optimality:  
optimal  $\gamma_\pi$

$\gamma_\pi$  = decay rate of  $\pi$   
 $C_\pi$  = tail constant of  $\pi$

Strong optimality:  
optimal  $\gamma_\pi$  and  $C_\pi$   
(roughly)

# Asymptotic response time tail

depends on policy  $\pi$

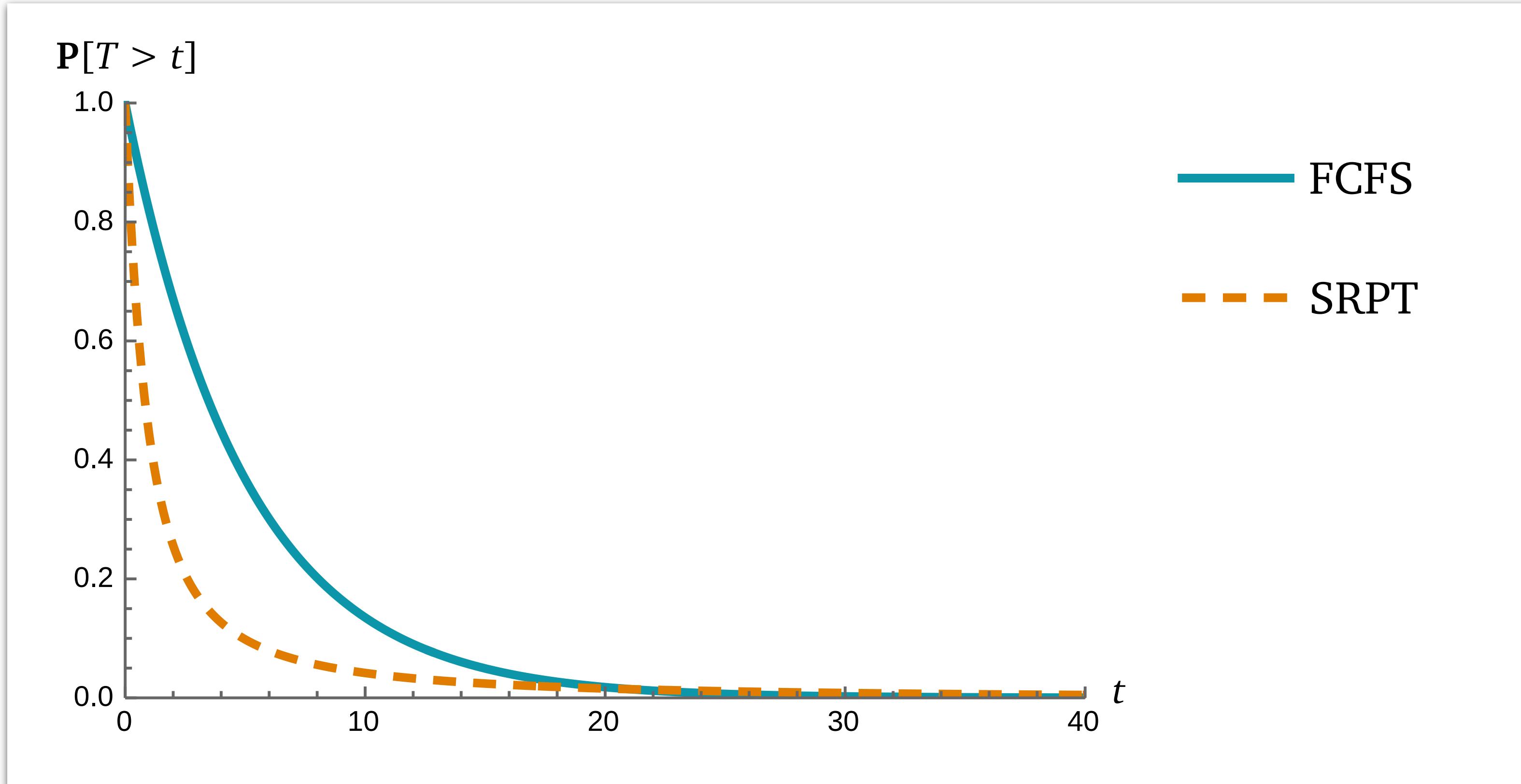


Weak optimality:  
optimal  $\gamma_\pi$

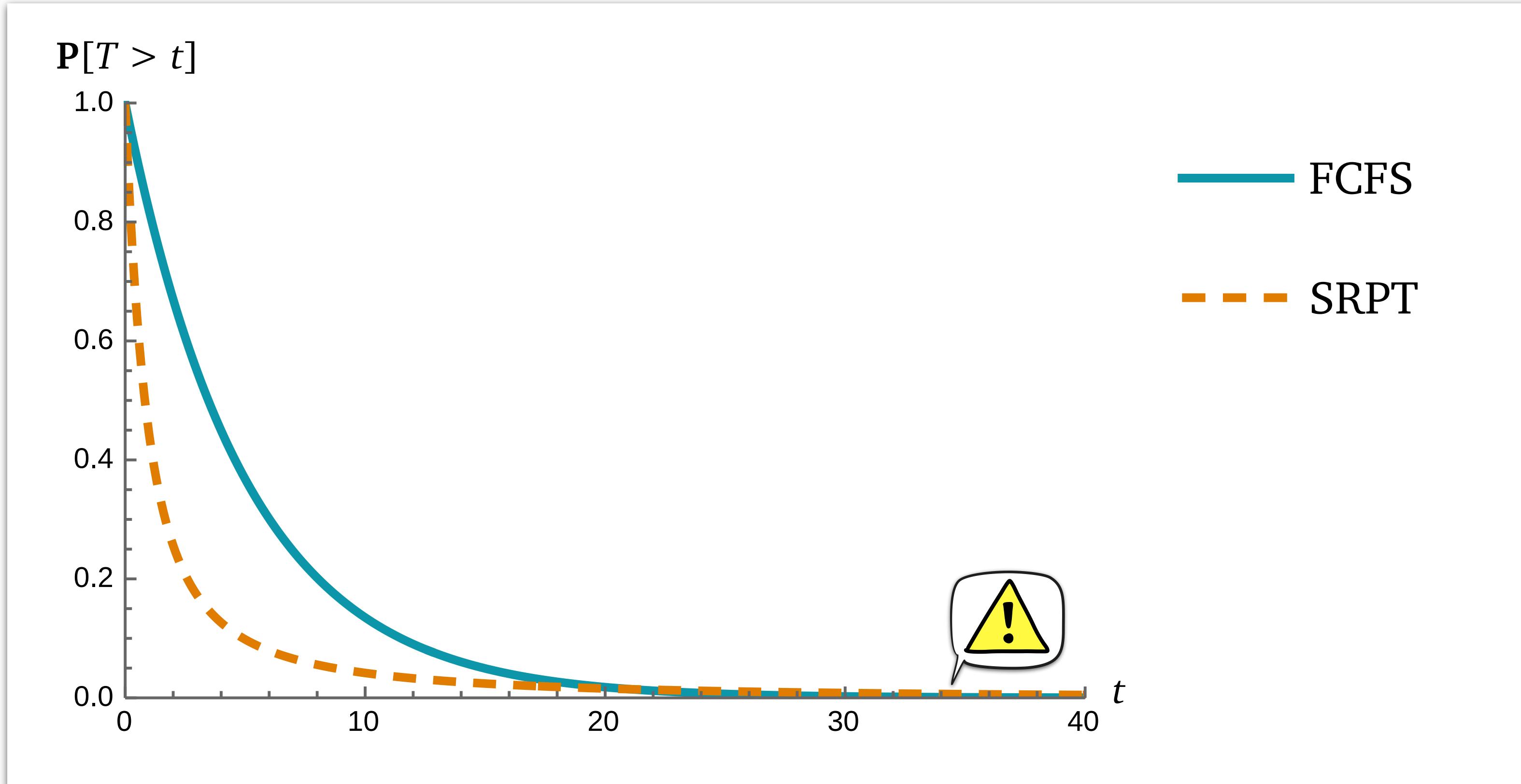
$\gamma_\pi$  = decay rate of  $\pi$   
 $C_\pi$  = tail constant of  $\pi$

Strong optimality:  
optimal  $\gamma_\pi$  and  $C_\pi$   
(roughly)

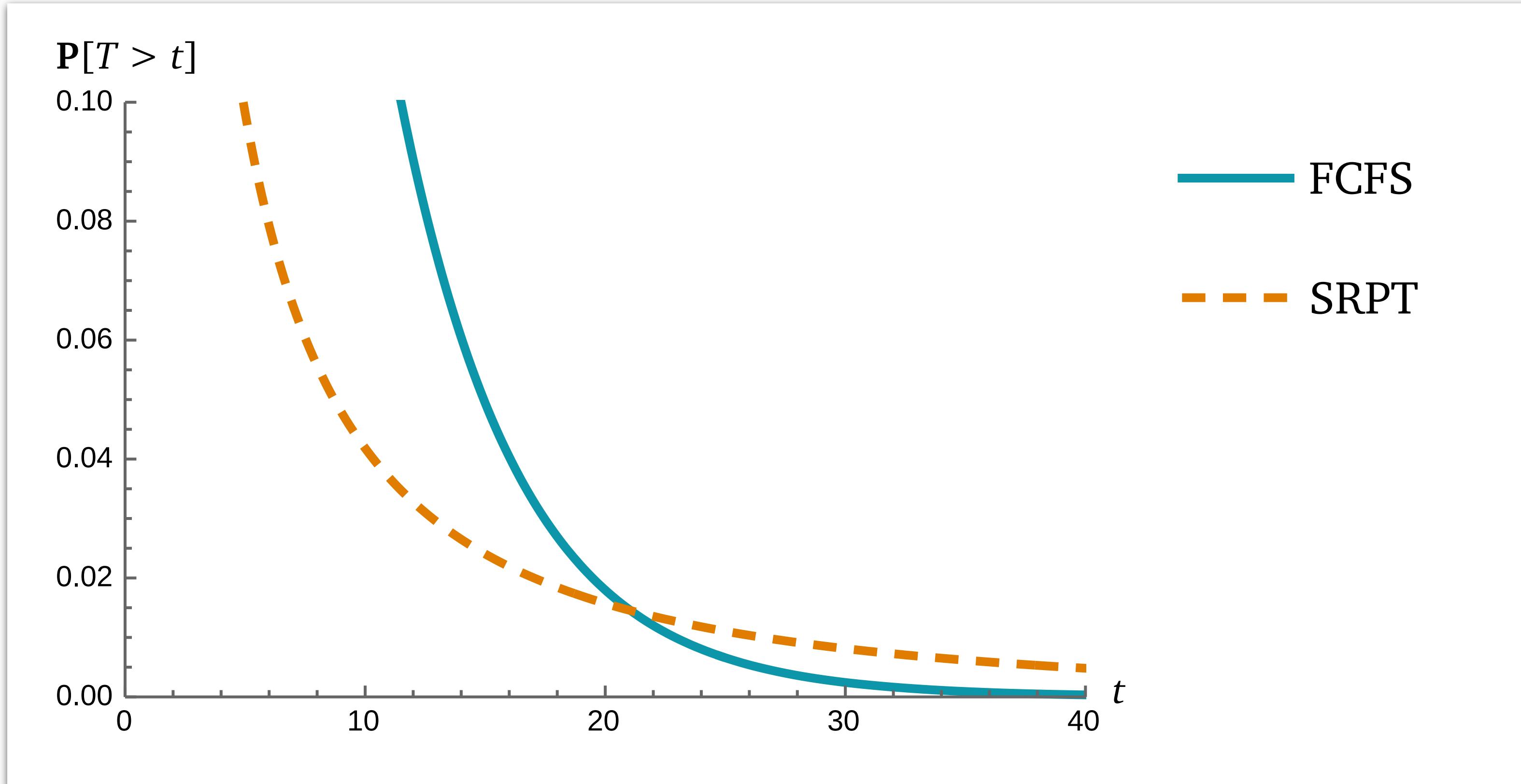
# Optimizing the decay rate $\gamma$



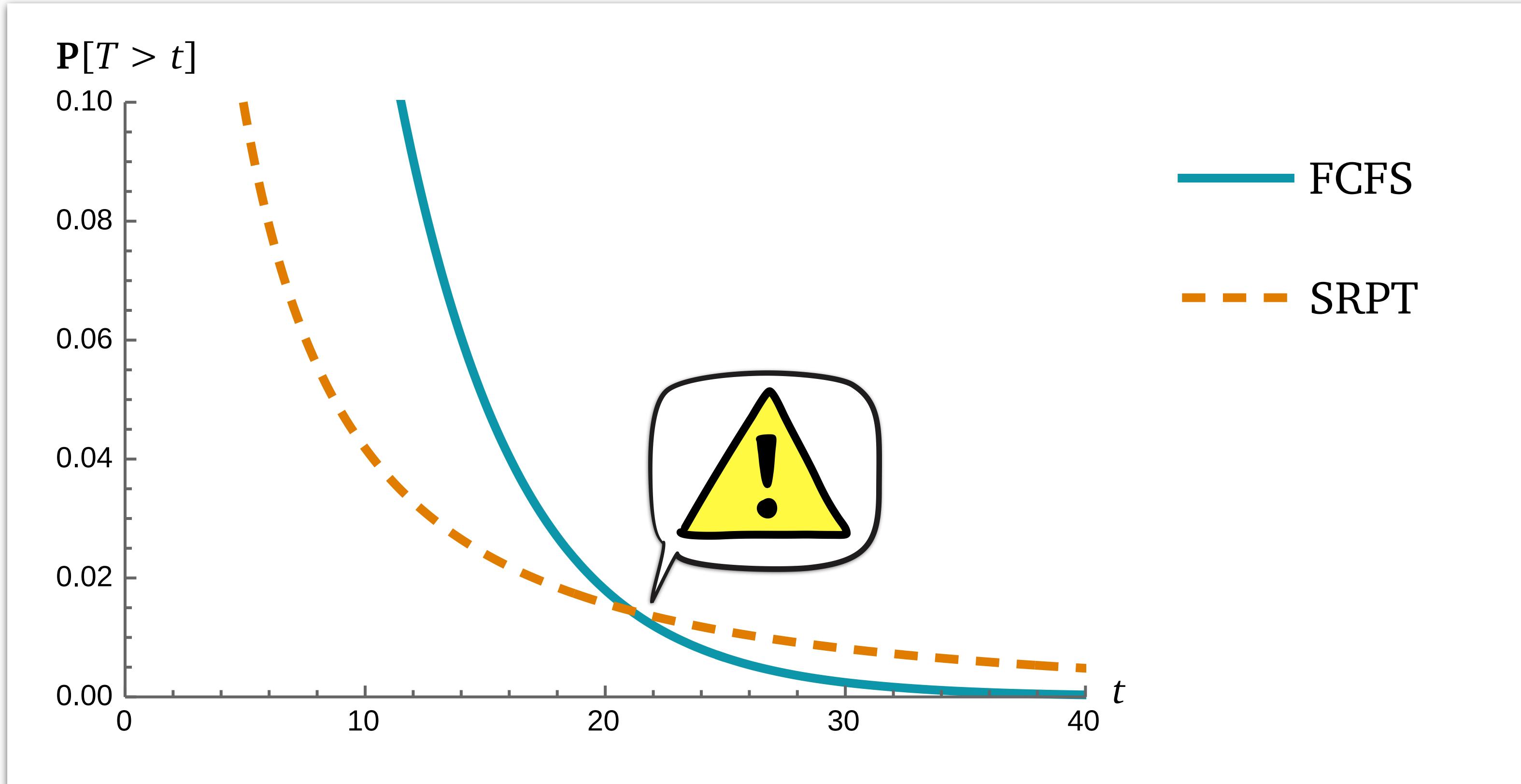
# Optimizing the decay rate $\gamma$



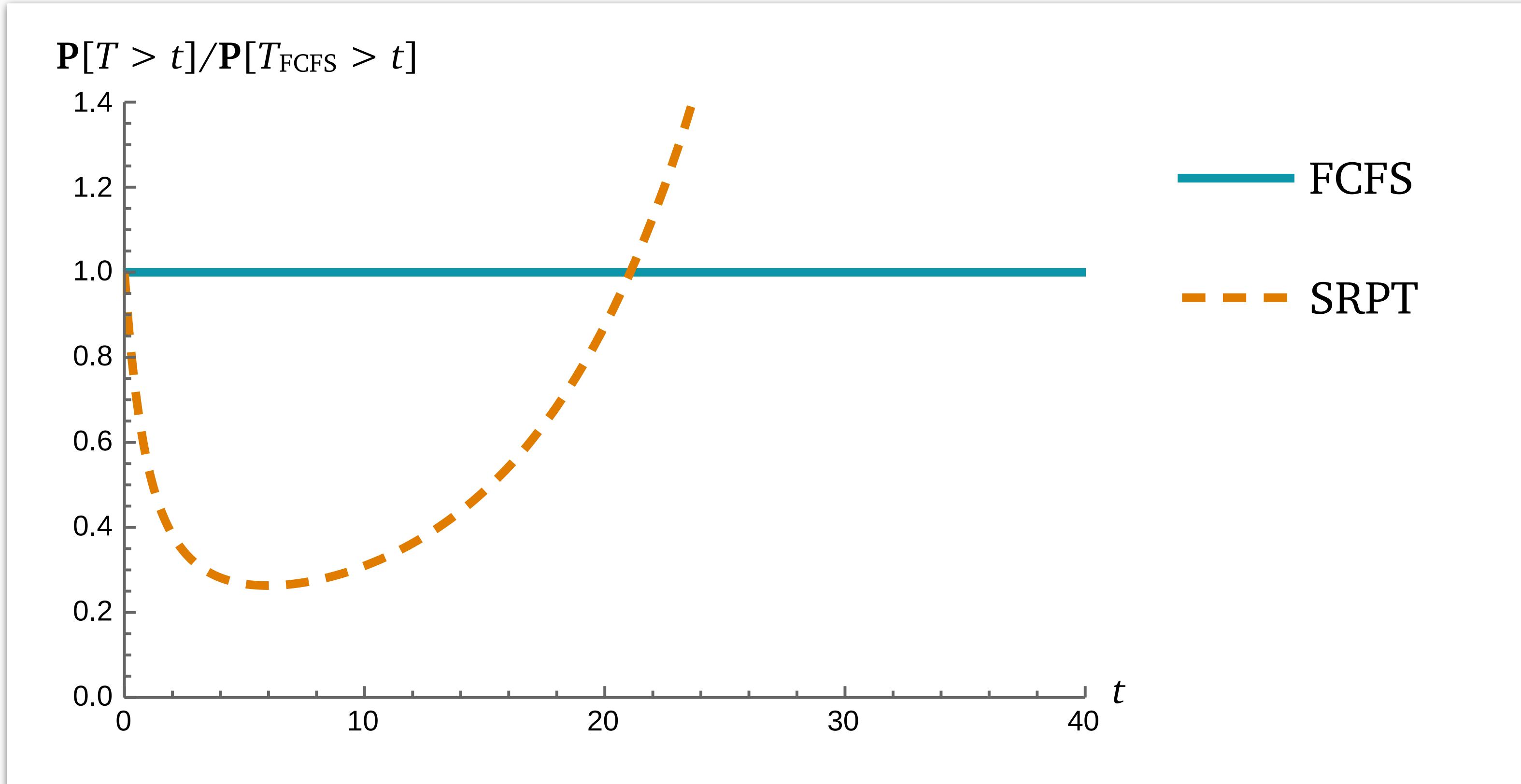
# Optimizing the decay rate $\gamma$



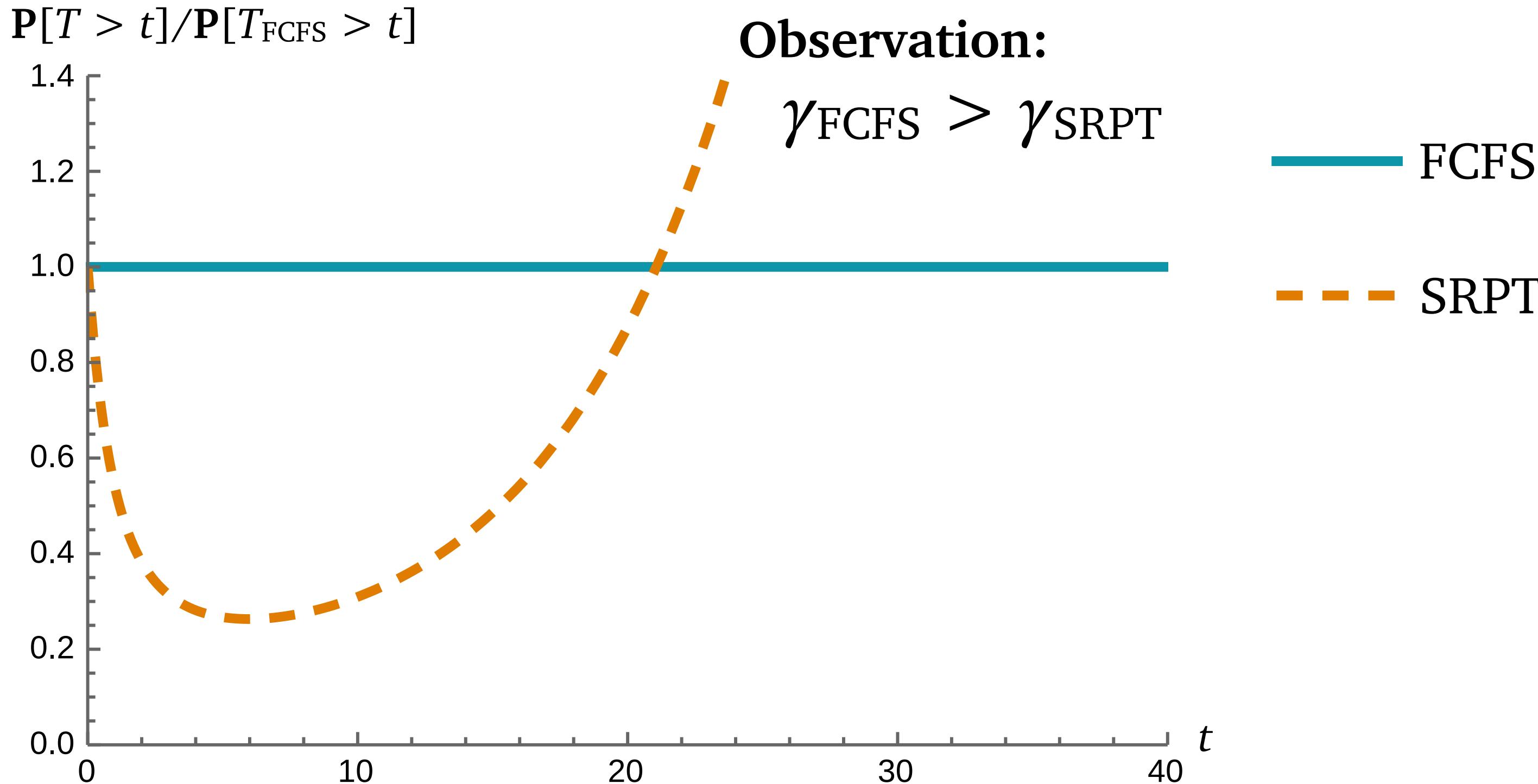
# Optimizing the decay rate $\gamma$



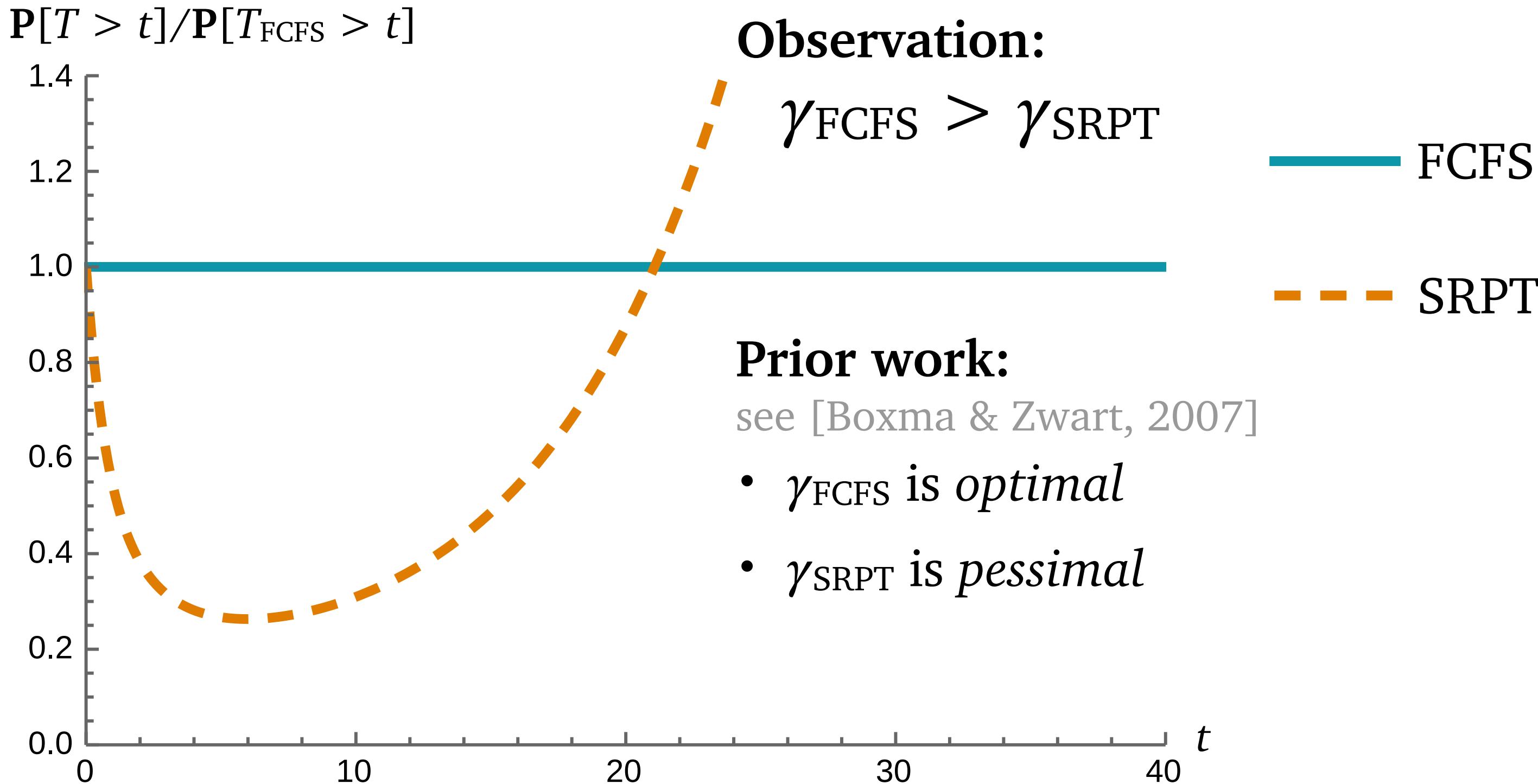
# Optimizing the decay rate $\gamma$



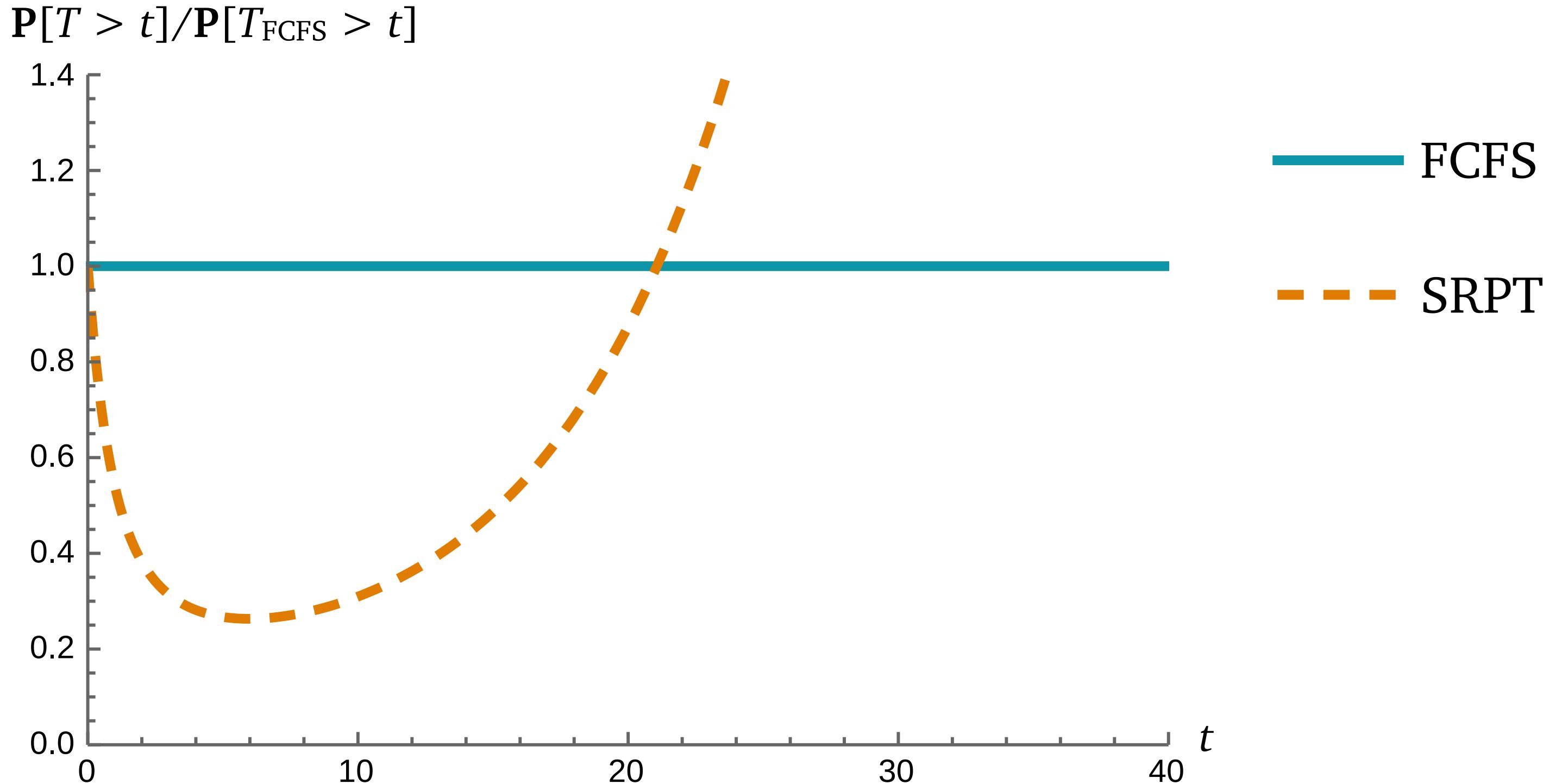
# Optimizing the decay rate $\gamma$



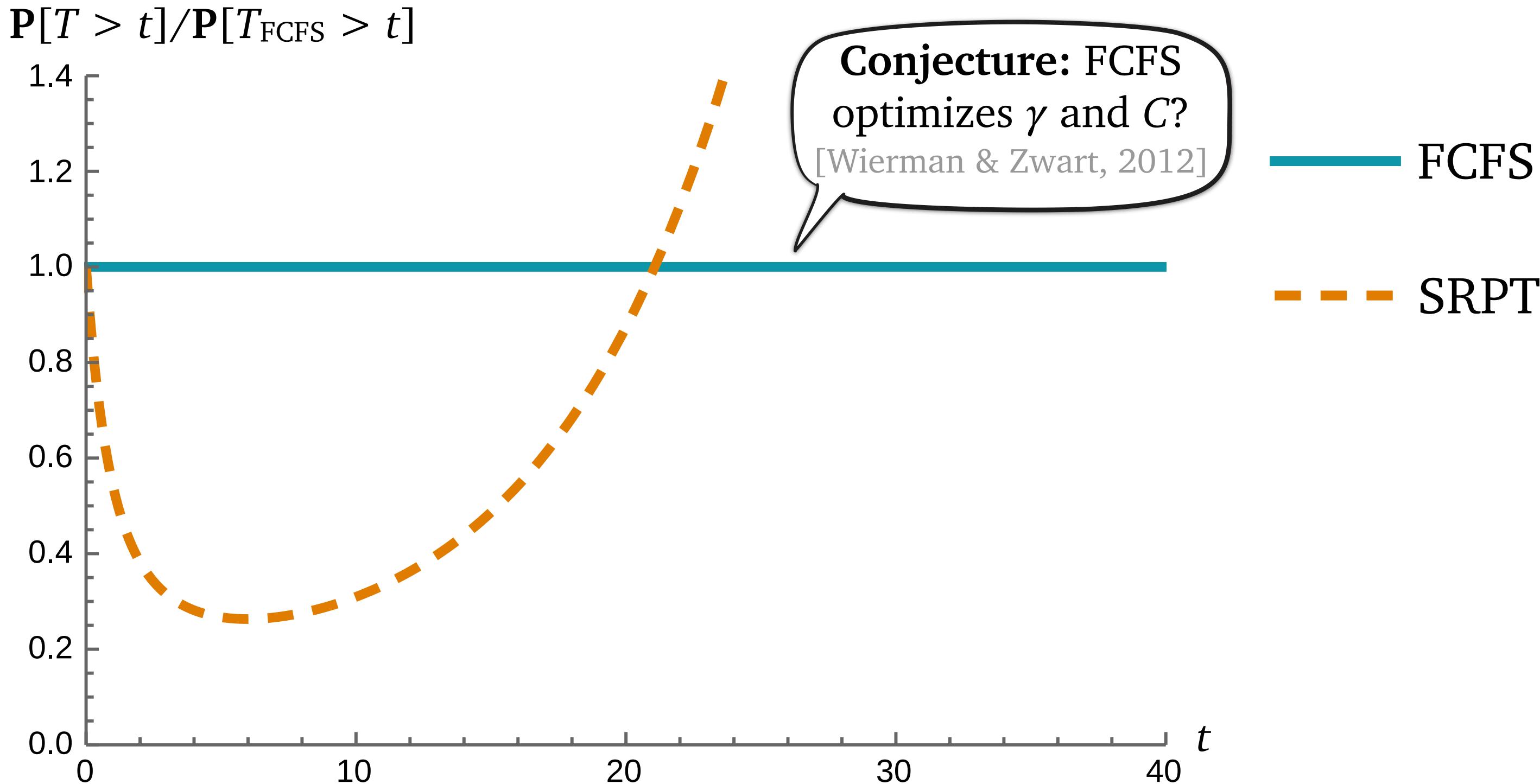
# Optimizing the decay rate $\gamma$



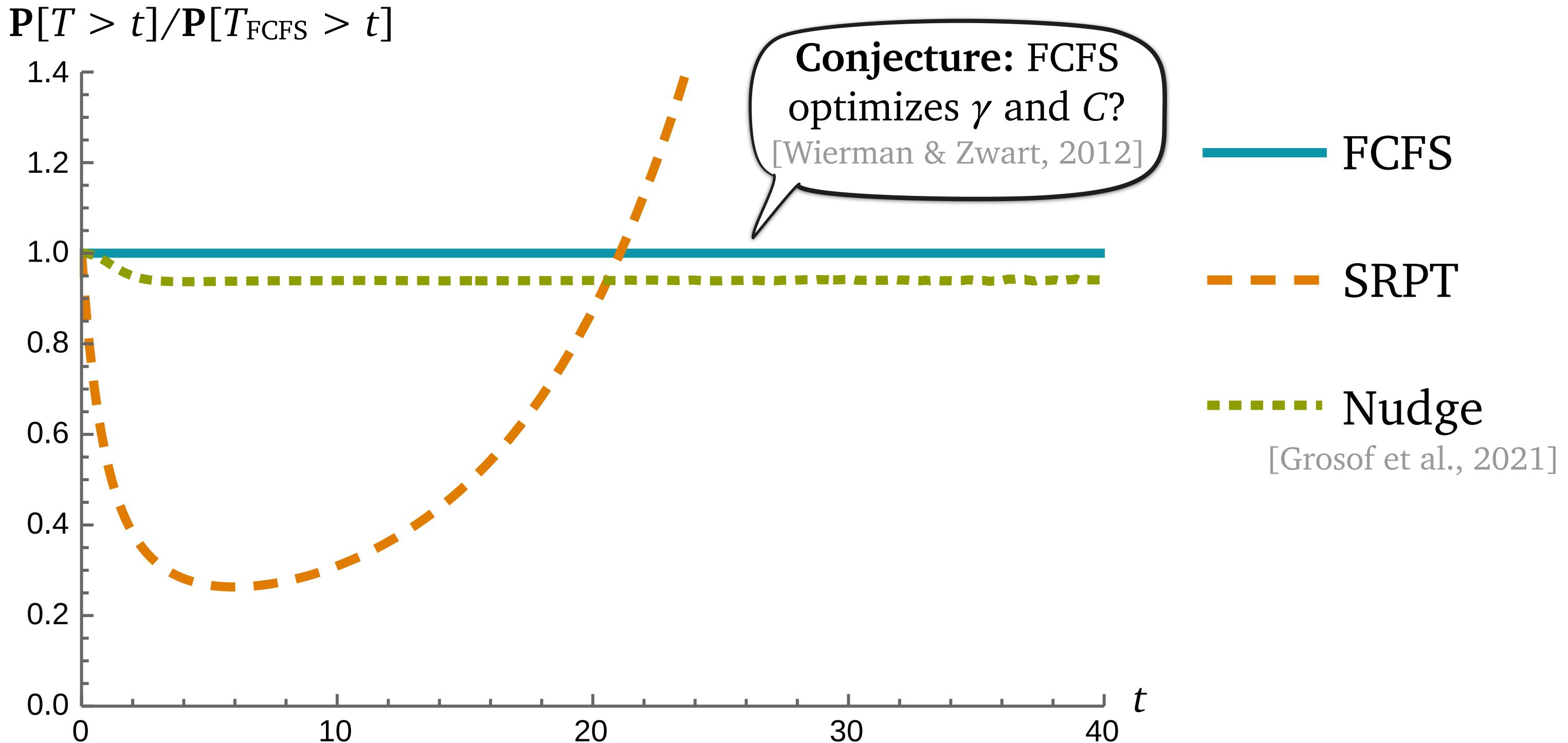
# Optimizing the tail constant $C$



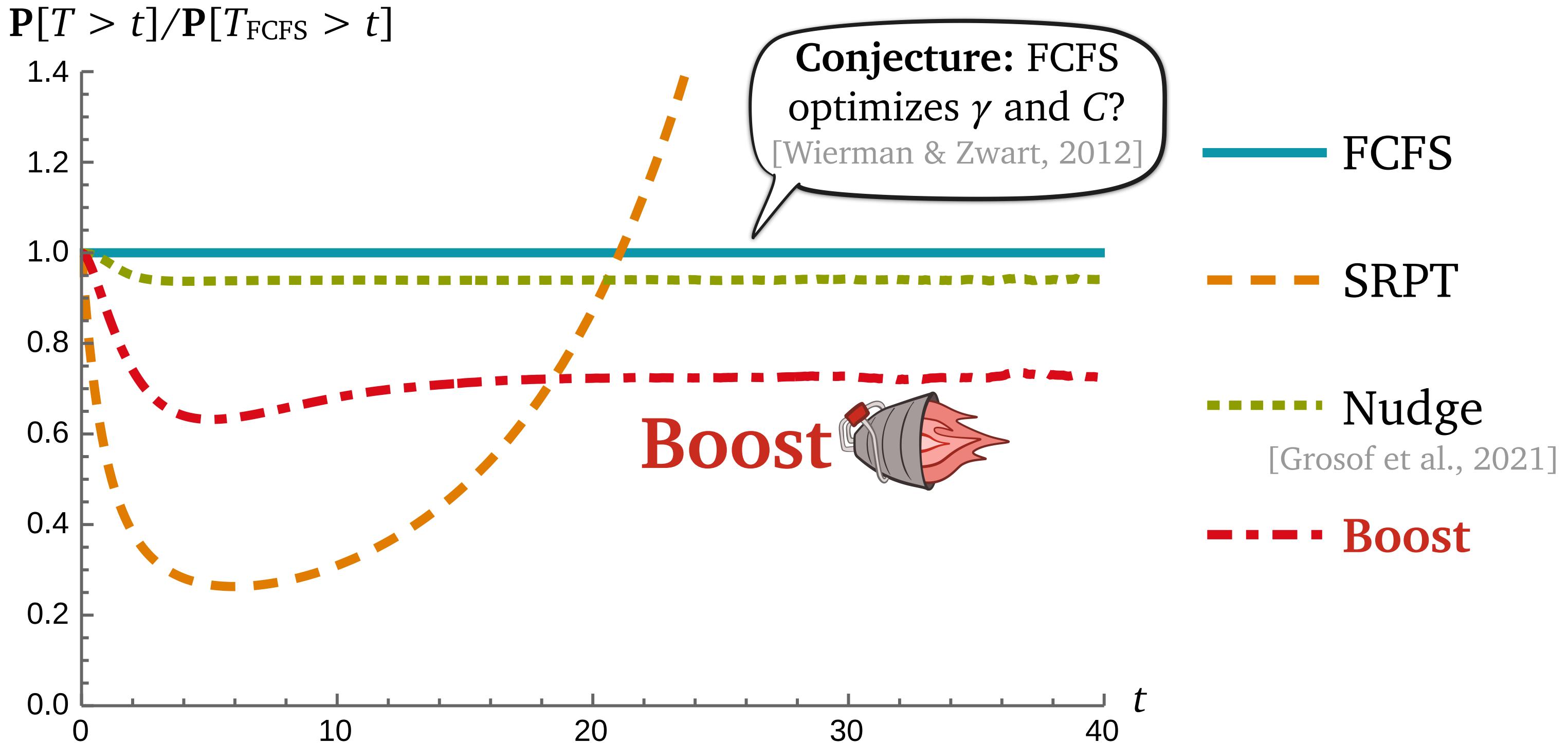
# Optimizing the tail constant $C$



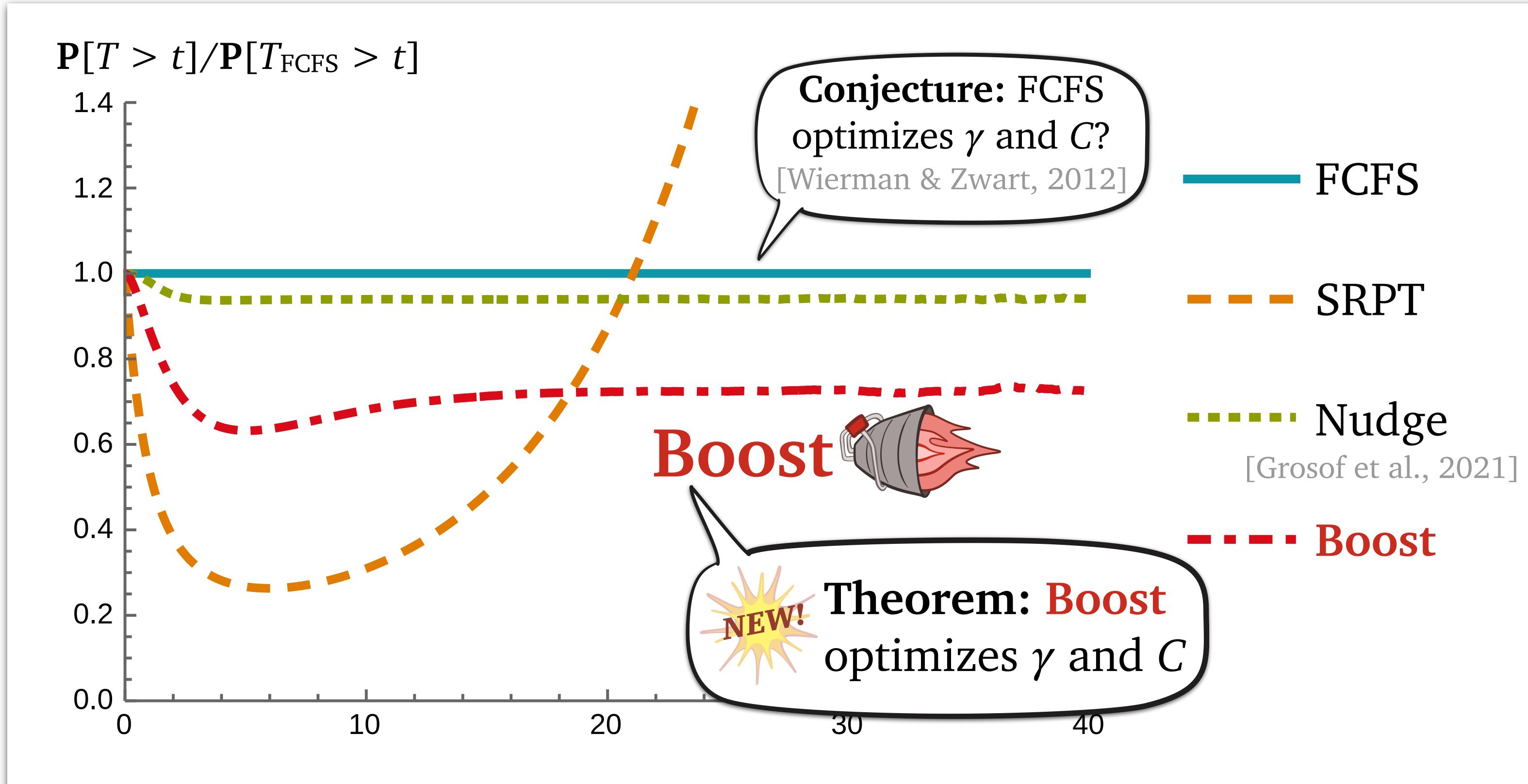
# Optimizing the tail constant $C$



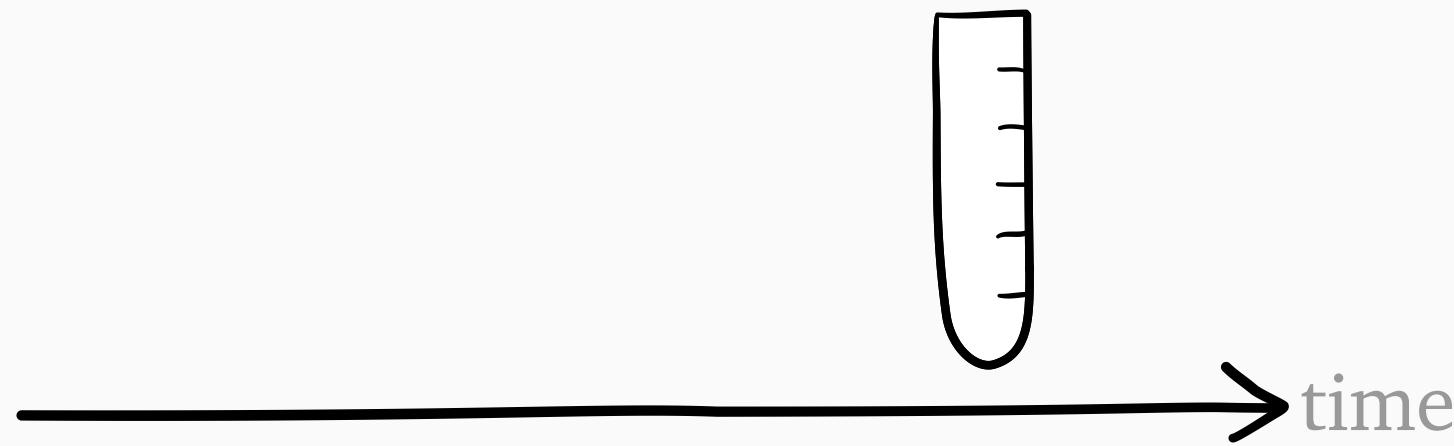
# Optimizing the tail constant $C$



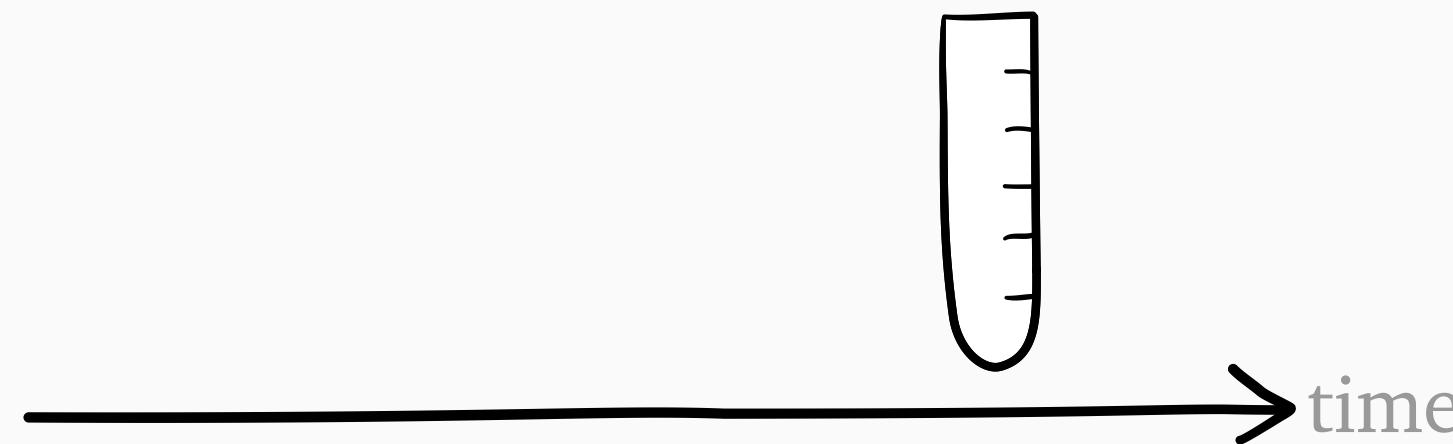
# Optimizing the tail constant $C$



# How **Boost** works

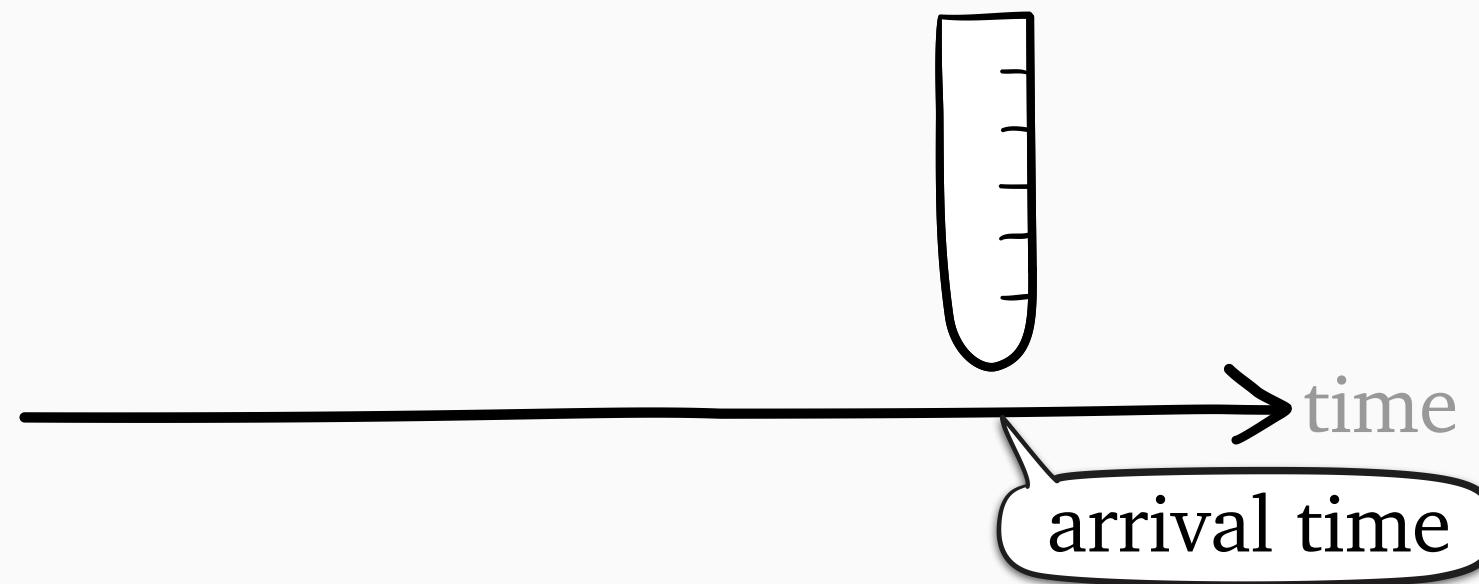


# How **Boost** works



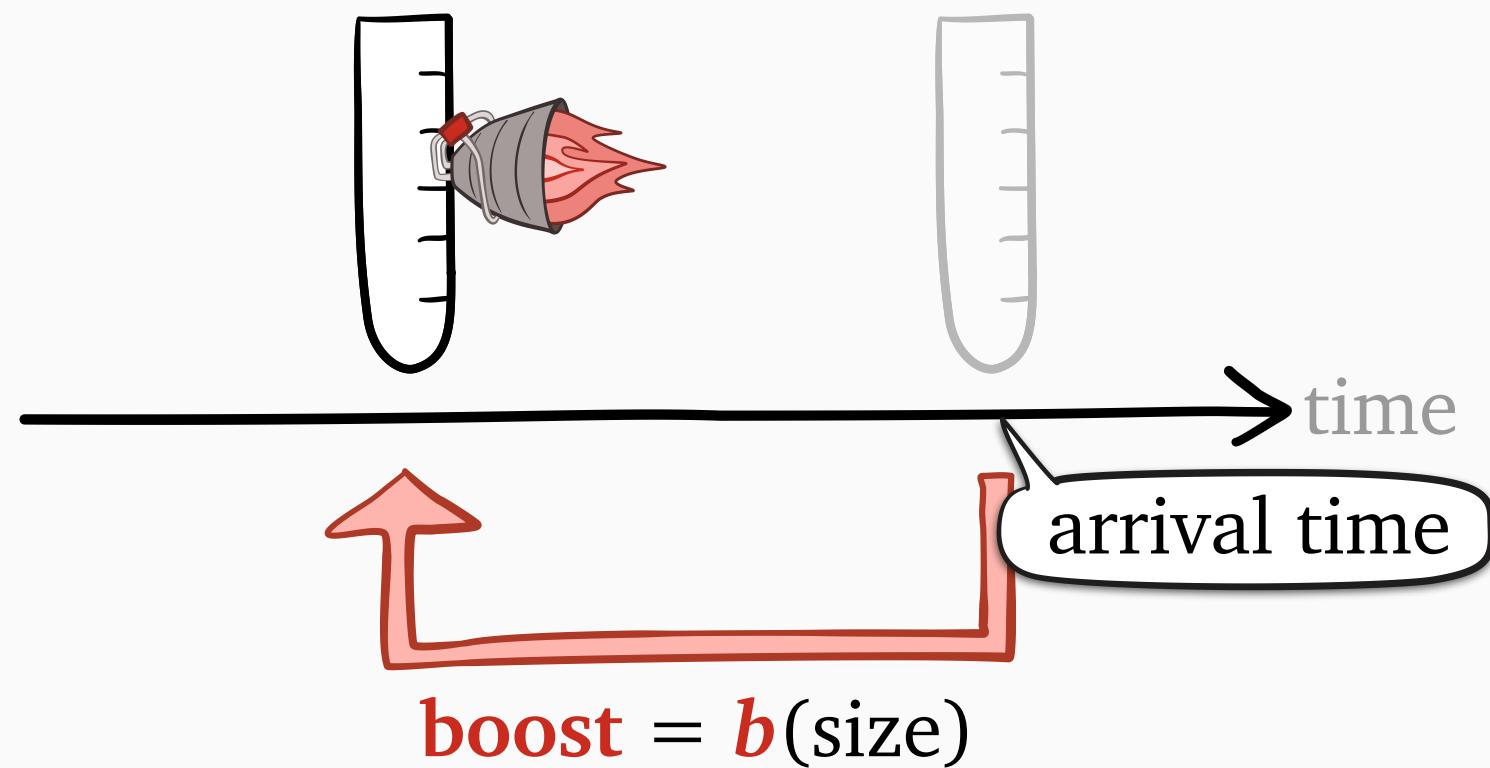
**boosted** arrival time  
= arrival time  $- b(\text{size})$

# How **Boost** works



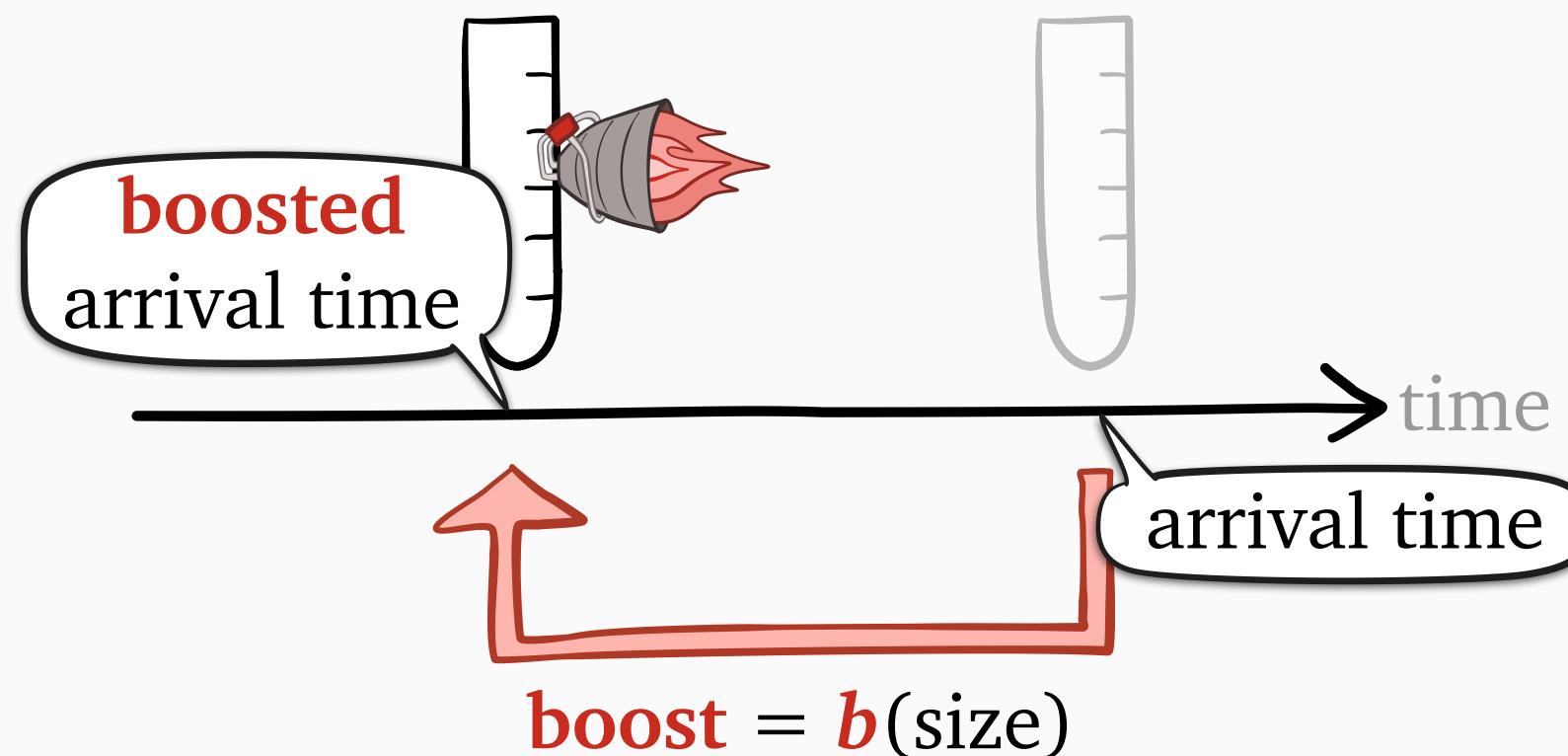
**boosted** arrival time  
= arrival time -  $b$ (size)

# How Boost works



**boosted** arrival time  
= arrival time -  $b(\text{size})$

# How Boost works

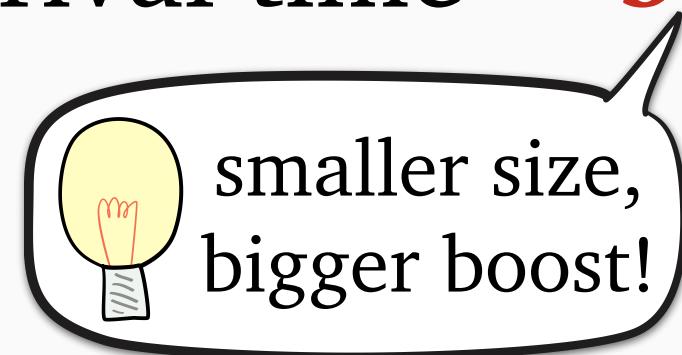


**boosted** arrival time  
= arrival time -  $b(\text{size})$

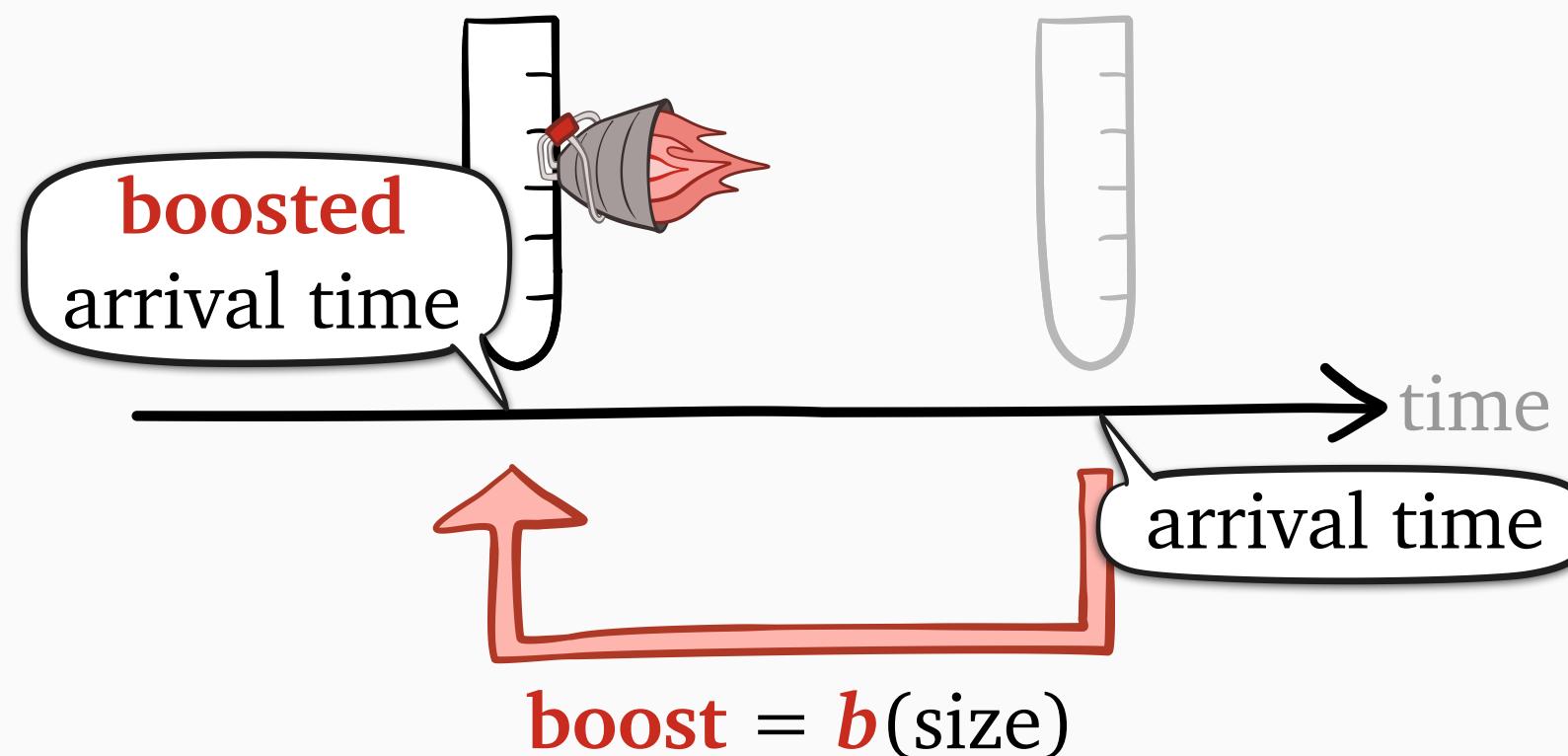
# How Boost works



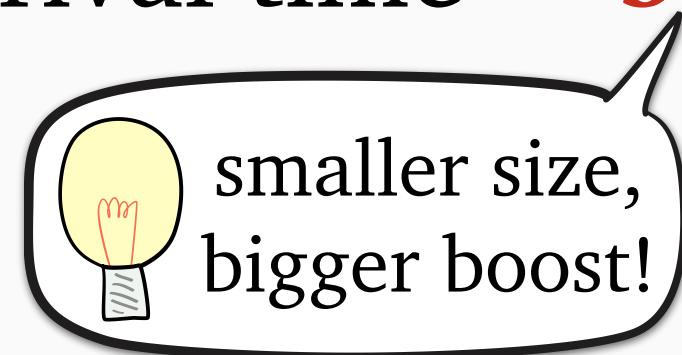
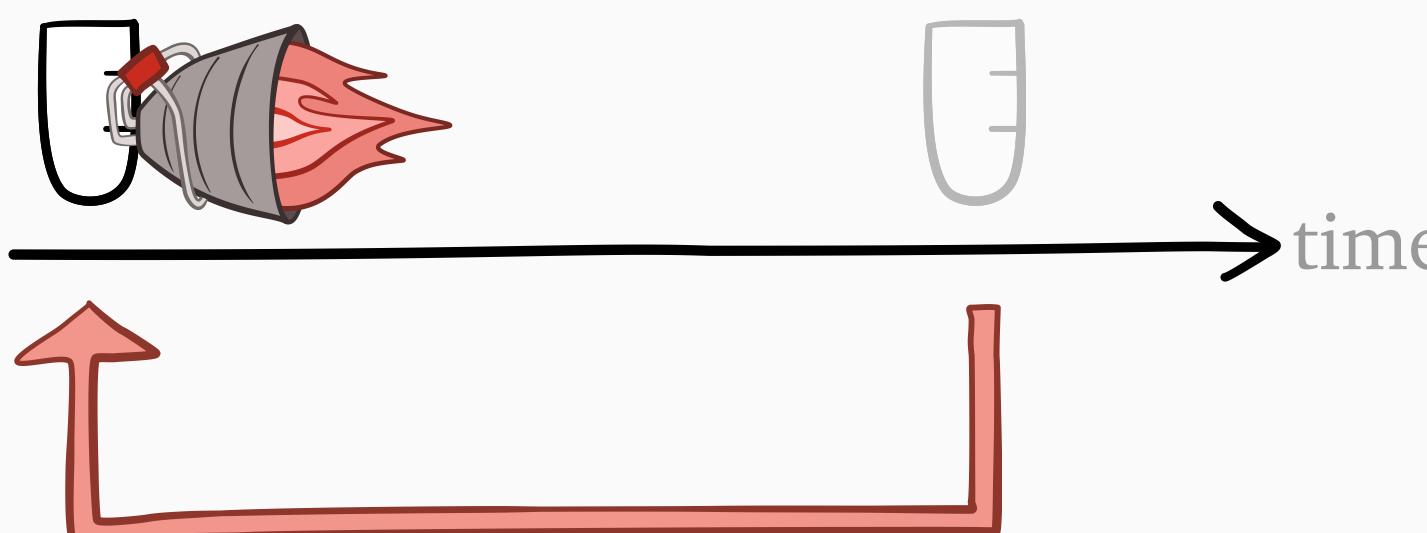
**boosted** arrival time  
= arrival time -  $b(\text{size})$



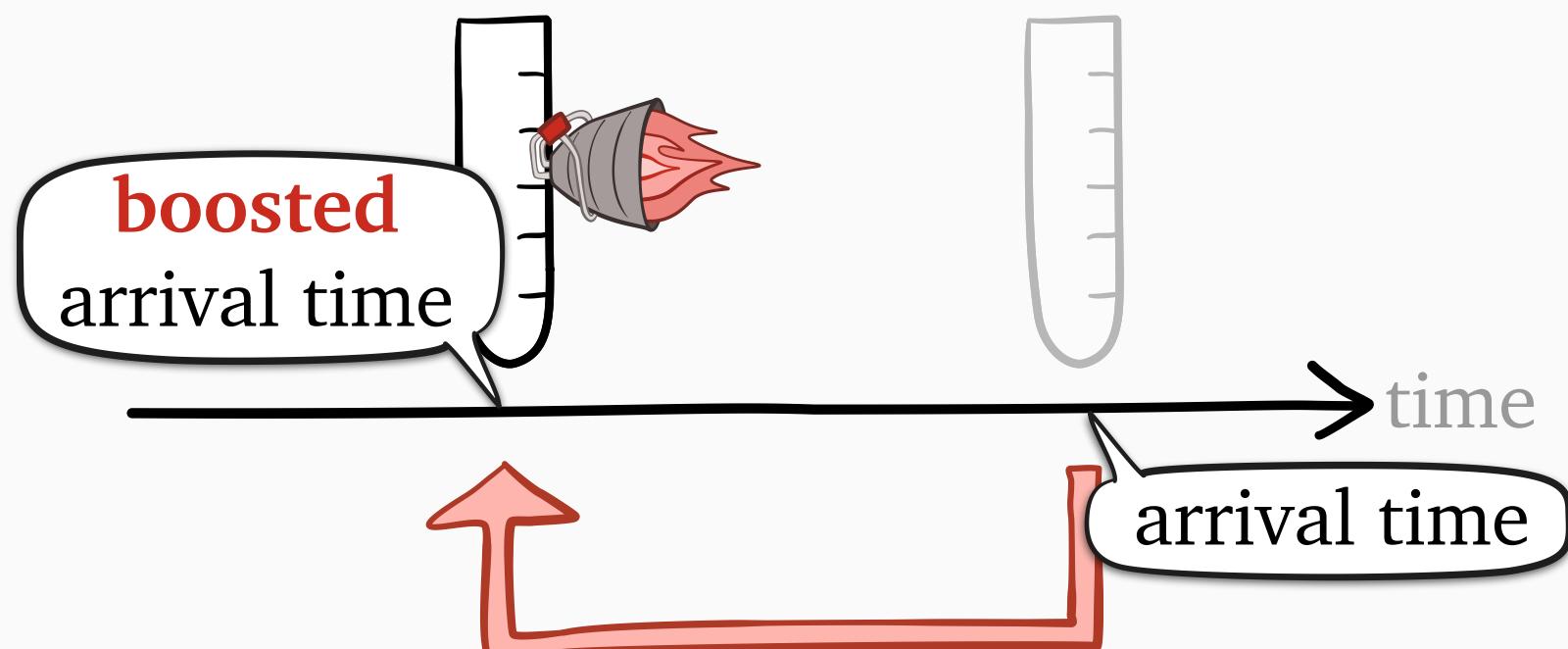
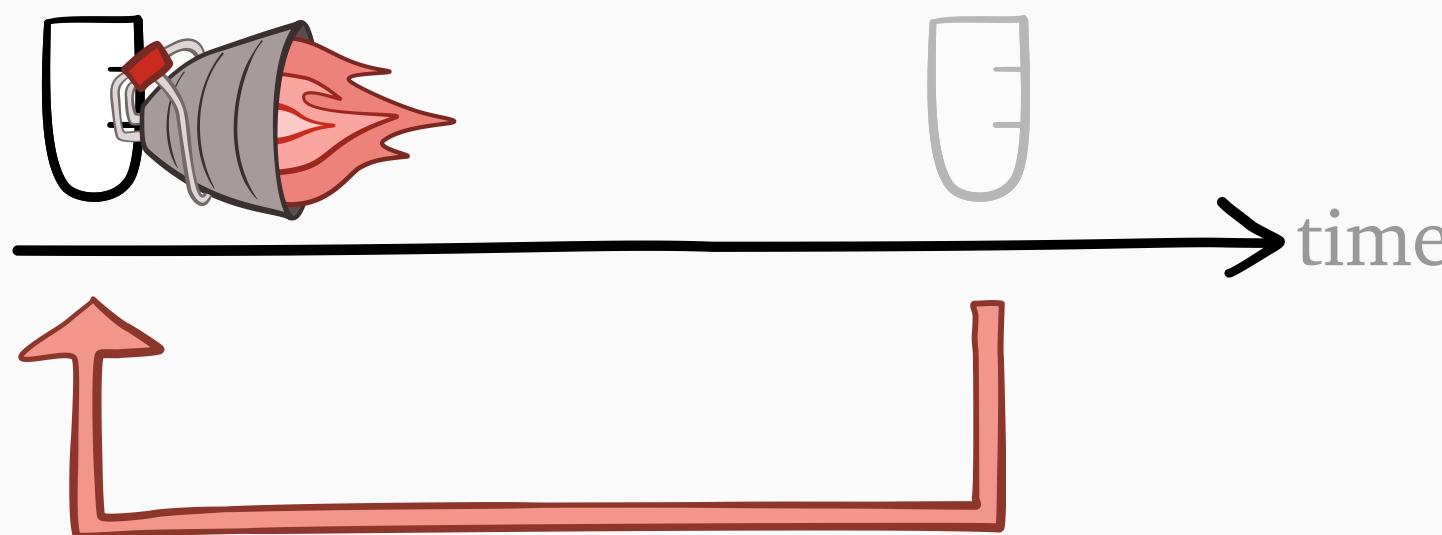
# How Boost works



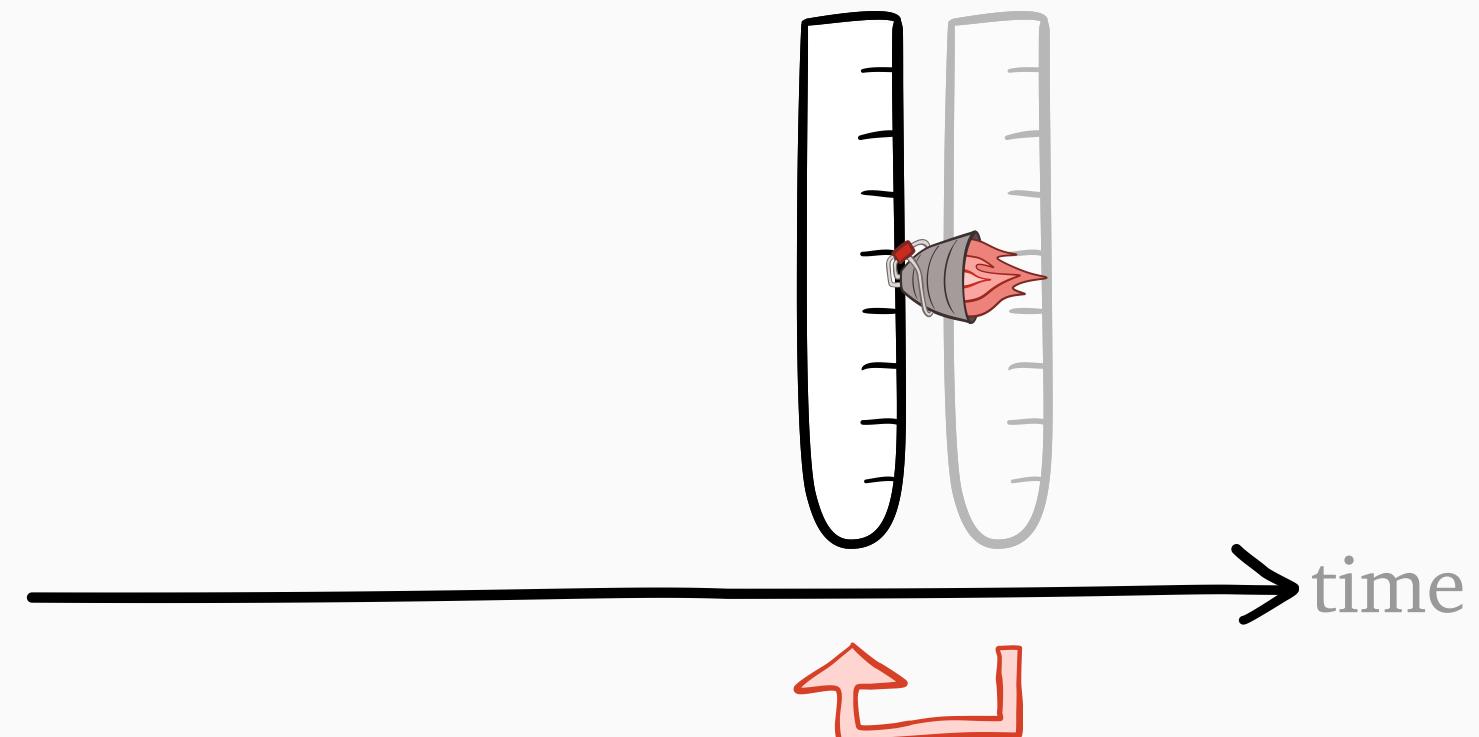
**boosted** arrival time  
= arrival time -  $b(\text{size})$



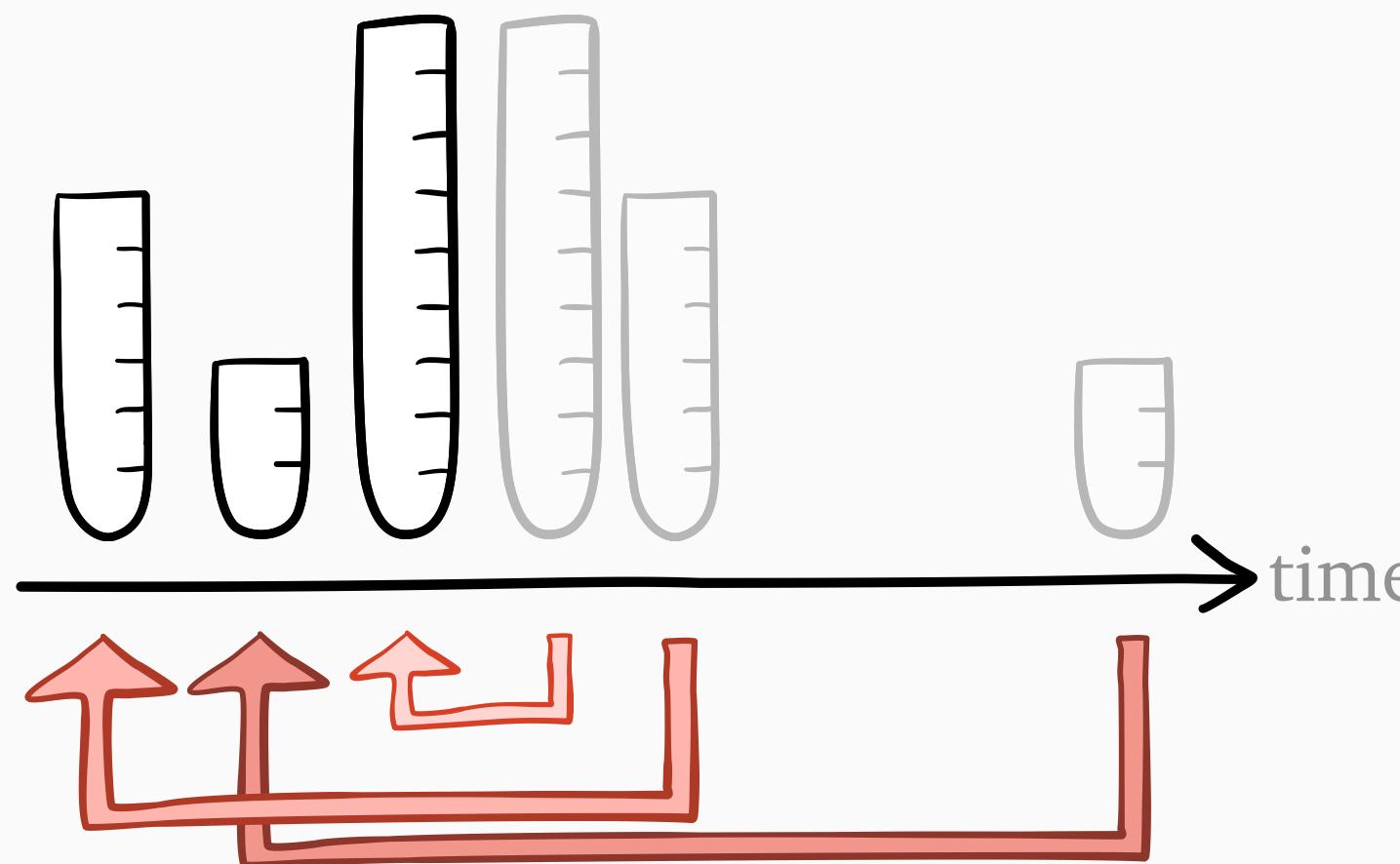
# How Boost works



**boosted arrival time**  
= arrival time -  $b(\text{size})$



# How Boost works

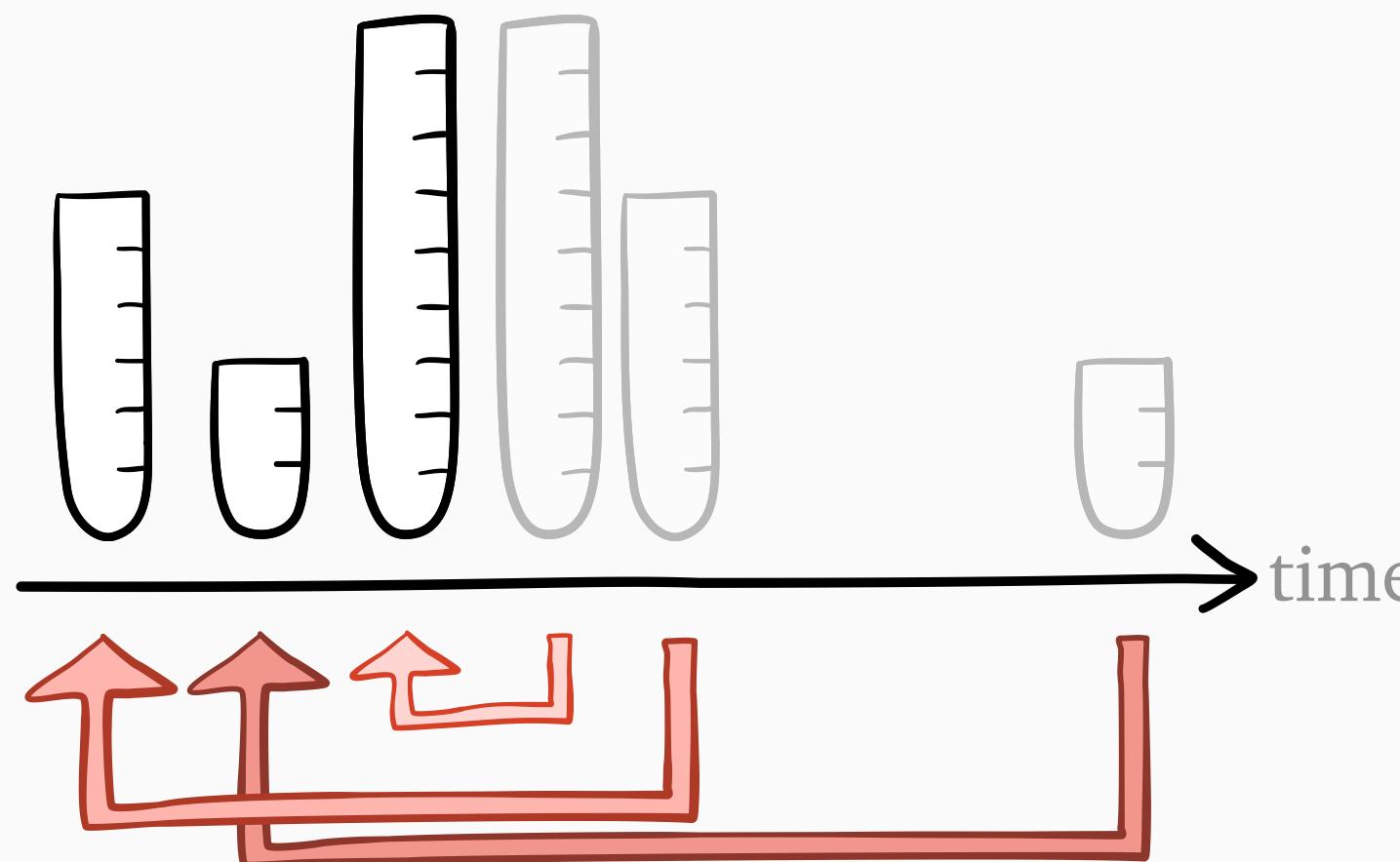


**boosted** arrival time  
= arrival time  $- b(\text{size})$

# How Boost works



Scheduling rule: always serve job of  
*minimum **boosted** arrival time*



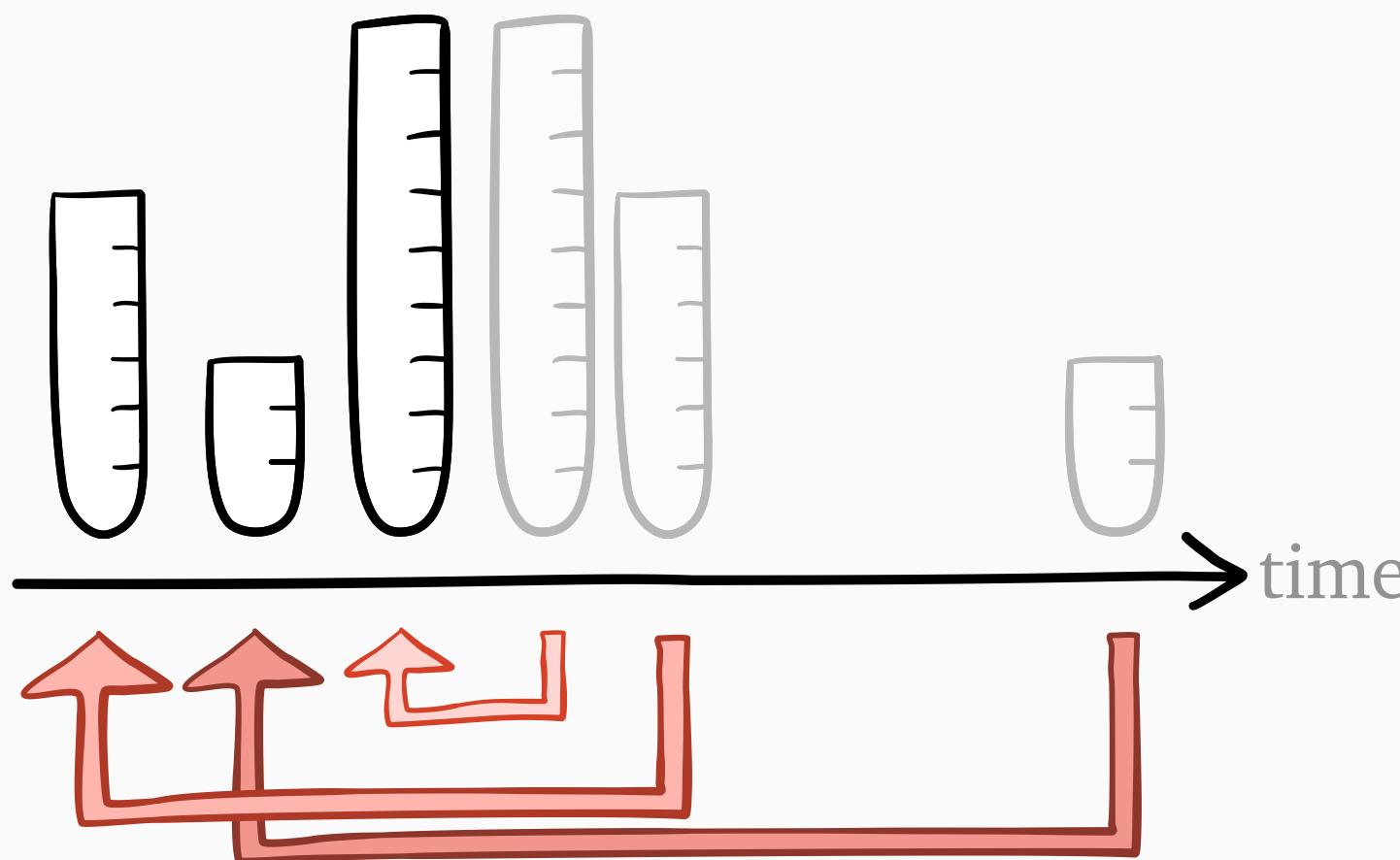
**boosted** arrival time  
= arrival time  $- b(\text{size})$

# How **Boost** works

can be preemptive  
or nonpreemptive



Scheduling rule: always serve job of  
*minimum boosted arrival time*



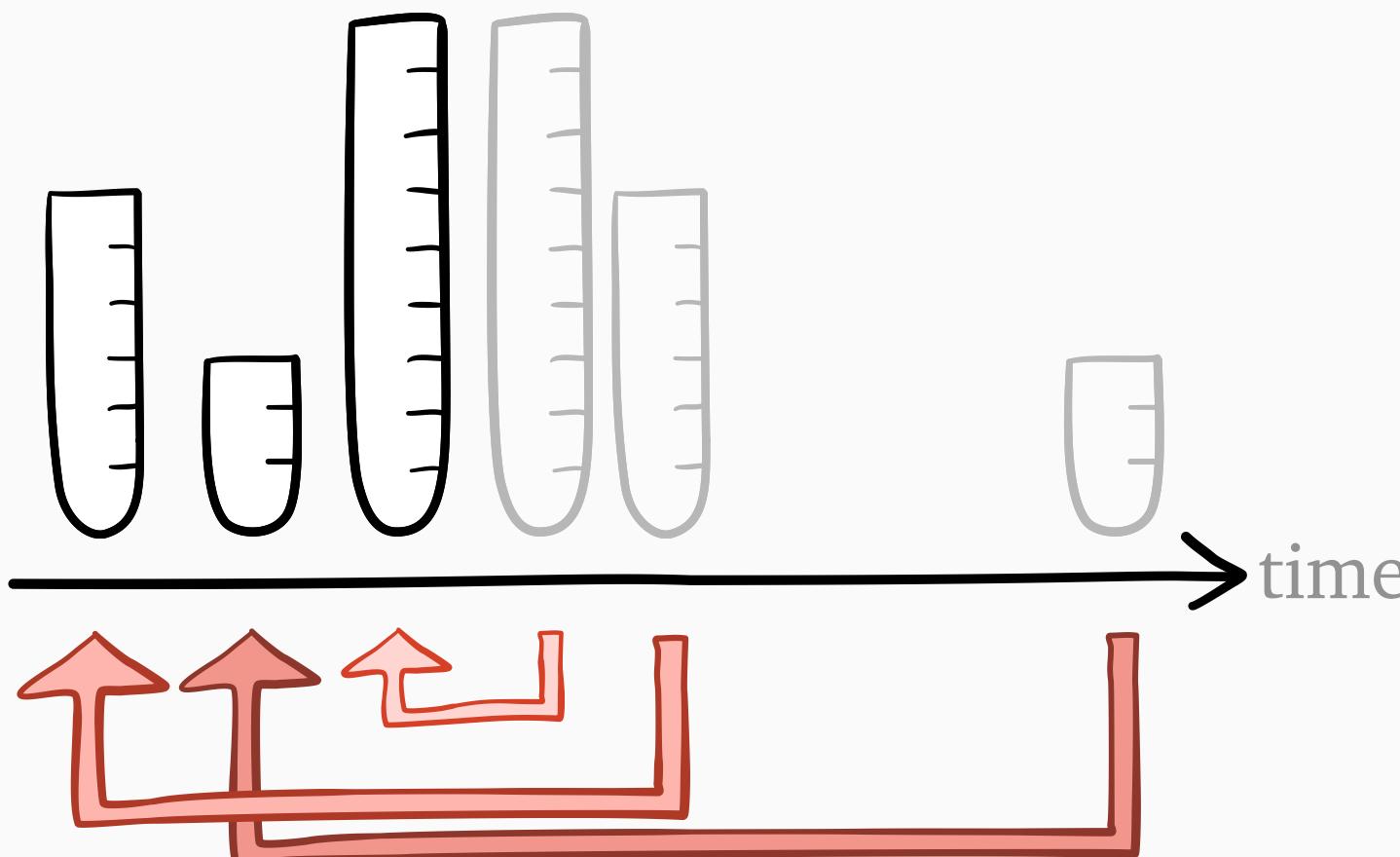
**boosted** arrival time  
= arrival time  $- b(\text{size})$

# How Boost works

can be preemptive or nonpreemptive



Scheduling rule: always serve job of *minimum boosted arrival time*



**boosted** arrival time  
= arrival time -  $b(\text{size})$

What's the right  
**boost** function?

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

# Batch problem

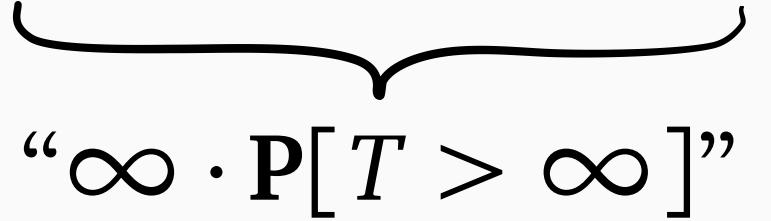
$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

  
“ $\infty \cdot \mathbf{P}[T > \infty]$ ”

# Batch problem

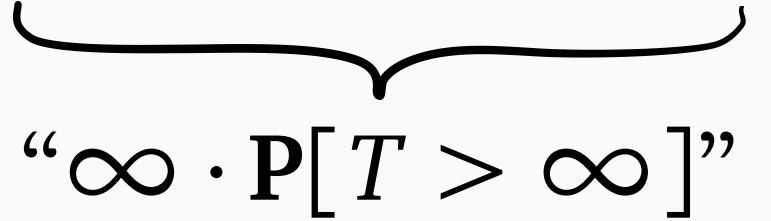
$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

  
“ $\infty \cdot \mathbf{P}[T > \infty]$ ”

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty]$$

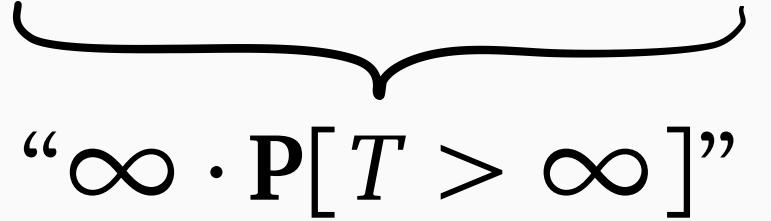
$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

  
“ $\infty \cdot \mathbf{P}[T > \infty]$ ”

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty)$$

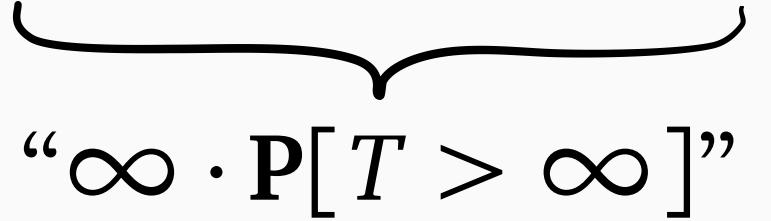
$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

  
“ $\infty \cdot \mathbf{P}[T > \infty]$ ”

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty) = 0$$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

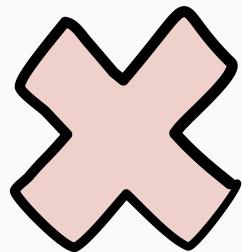
# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t]$$

$\overbrace{\quad\quad\quad}^{\text{“}\infty \cdot \mathbf{P}[T > \infty]\text{”}}$

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty) = 0$$



$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

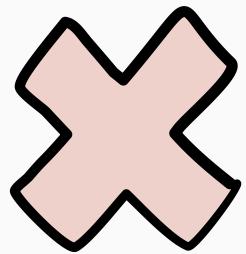
$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$\overbrace{\quad\quad\quad}^{\text{“}\infty \cdot \mathbf{P}[T > \infty]\text{”}}$

(by final value theorem  
for Laplace transforms)

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty) = 0$$



$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$


  
 “ $\infty \cdot \mathbf{P}[T > \infty]$ ”      “ $0 \cdot \mathbf{E}[e^{\gamma T}]$ ”

(by final value theorem  
for Laplace transforms)

# Batch problem

minimize  $P[T > \infty] = \frac{1}{n} \sum_{i=1}^n 1(t_i > \infty) = 0$  

- $t_i = d_i - a_i$
- $a_i$  = arrival time of job  $i$
- $d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$


  
 “ $\infty \cdot \mathbf{P}[T > \infty]$ ”      “ $0 \cdot \mathbf{E}[e^{\gamma T}]$ ”

(by final value theorem  
for Laplace transforms)

# Batch problem

minimize  $P[T > \infty] = \frac{1}{n} \sum_{i=1}^n 1(t_i > \infty) = 0$  

minimize  $E[e^{\gamma T}]$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$


  
 “ $\infty \cdot \mathbf{P}[T > \infty]$ ”      “ $0 \cdot \mathbf{E}[e^{\gamma T}]$ ”

(by final value theorem  
for Laplace transforms)

# Batch problem

minimize  $P[T > \infty] = \frac{1}{n} \sum_{i=1}^n 1(t_i > \infty) = 0$  

$$\text{minimize } \mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i}$$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

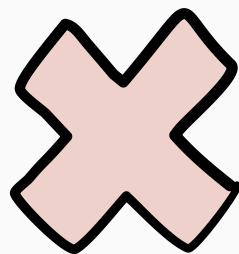
$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

 “ $\infty \cdot \mathbf{P}[T > \infty]$ ”       “ $0 \cdot \mathbf{E}[e^{\gamma T}]$ ”

(by final value theorem  
for Laplace transforms)

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty) = 0$$



$$\text{minimize } \mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i}$$



$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

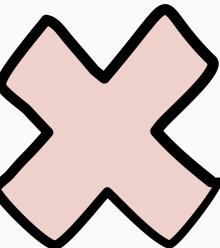
# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

 “ $\infty \cdot \mathbf{P}[T > \infty]$ ”       “ $0 \cdot \mathbf{E}[e^{\gamma T}]$ ”

(by final value theorem  
for Laplace transforms)

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty) = 0$$


$$\text{minimize } \mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$


$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Queueing problem

$$\text{minimize } C = \lim_{t \rightarrow \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \rightarrow \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

 “ $\infty \cdot \mathbf{P}[T > \infty]$ ”       “ $0 \cdot \mathbf{E}[e^{\gamma T}]$ ”

(by final value theorem  
for Laplace transforms)

# Batch problem

$$\text{minimize } \mathbf{P}[T > \infty] = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(t_i > \infty)$$

*almost classic  
problem*

$$\text{minimize } \mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$



$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Solving the batch problem

$$\text{minimize } \mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

# Solving the batch problem

$$\text{minimize } \mathbb{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

**Classic metric:** mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

# Solving the batch problem

$$\text{minimize } \mathbb{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$



**Classic metric:** mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

# Solving the batch problem

$$\text{minimize } \mathbb{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$



**Classic metric:** mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

# Solving the batch problem

$$\text{minimize } E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$

*negative  
discount rate*



**Classic metric:** mean weighted  
discounted departure time

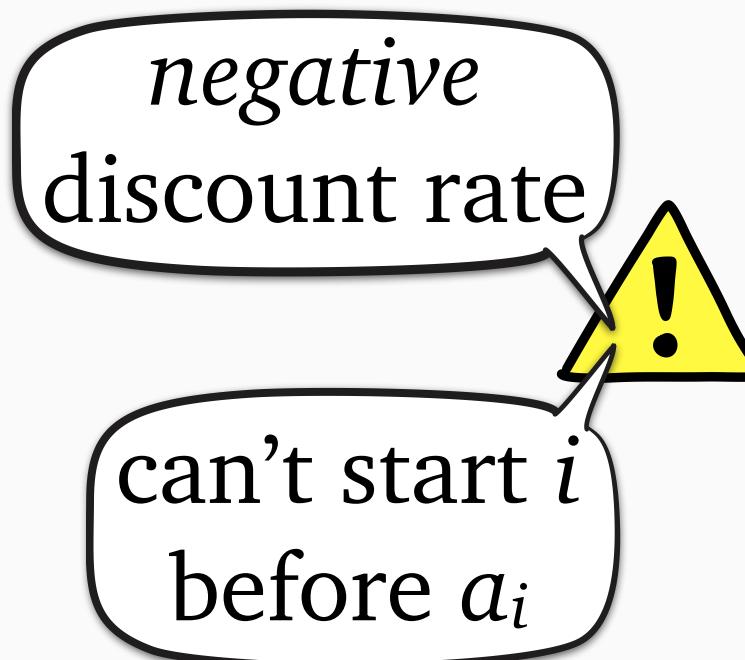
$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

# Solving the batch problem

$$\text{minimize } E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$t_i = d_i - a_i$   
 $a_i$  = arrival time of job  $i$   
 $d_i$  = departure time of job  $i$



**Classic metric:** mean weighted discounted departure time

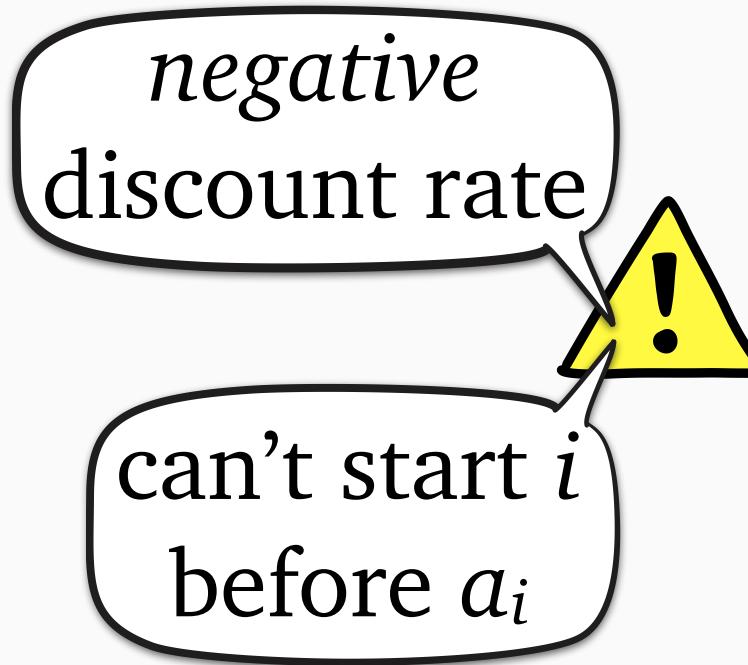
$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

# Solving the batch problem

$$\text{minimize } E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$t_i = d_i - a_i$   
 $a_i$  = arrival time of job  $i$   
 $d_i$  = departure time of job  $i$



**Classic metric:** mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

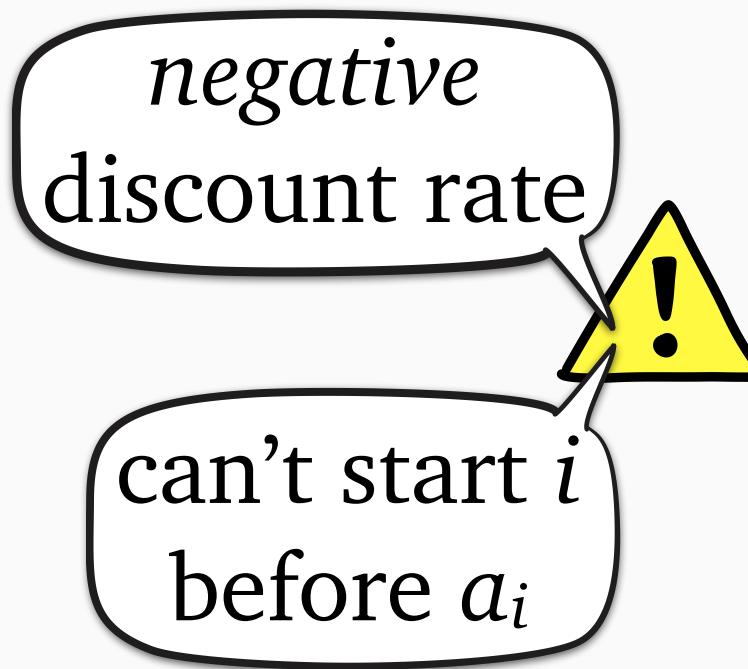
$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

# Solving the batch problem

$$\text{minimize } E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$t_i = d_i - a_i$   
 $a_i$  = arrival time of job  $i$   
 $d_i$  = departure time of job  $i$



**Classic metric:** mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^n w_i e^{-\theta d_i}$$

Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

**$\gamma$ -Boost**

# Solving the batch problem

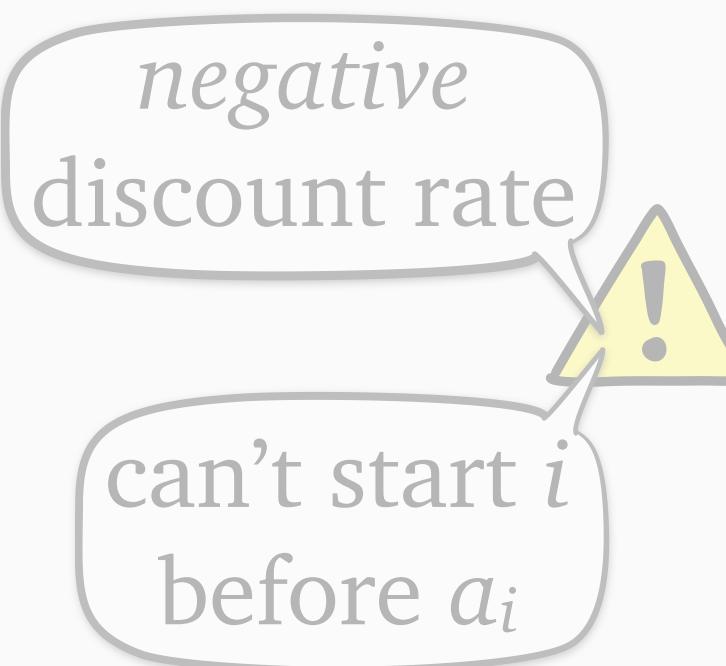
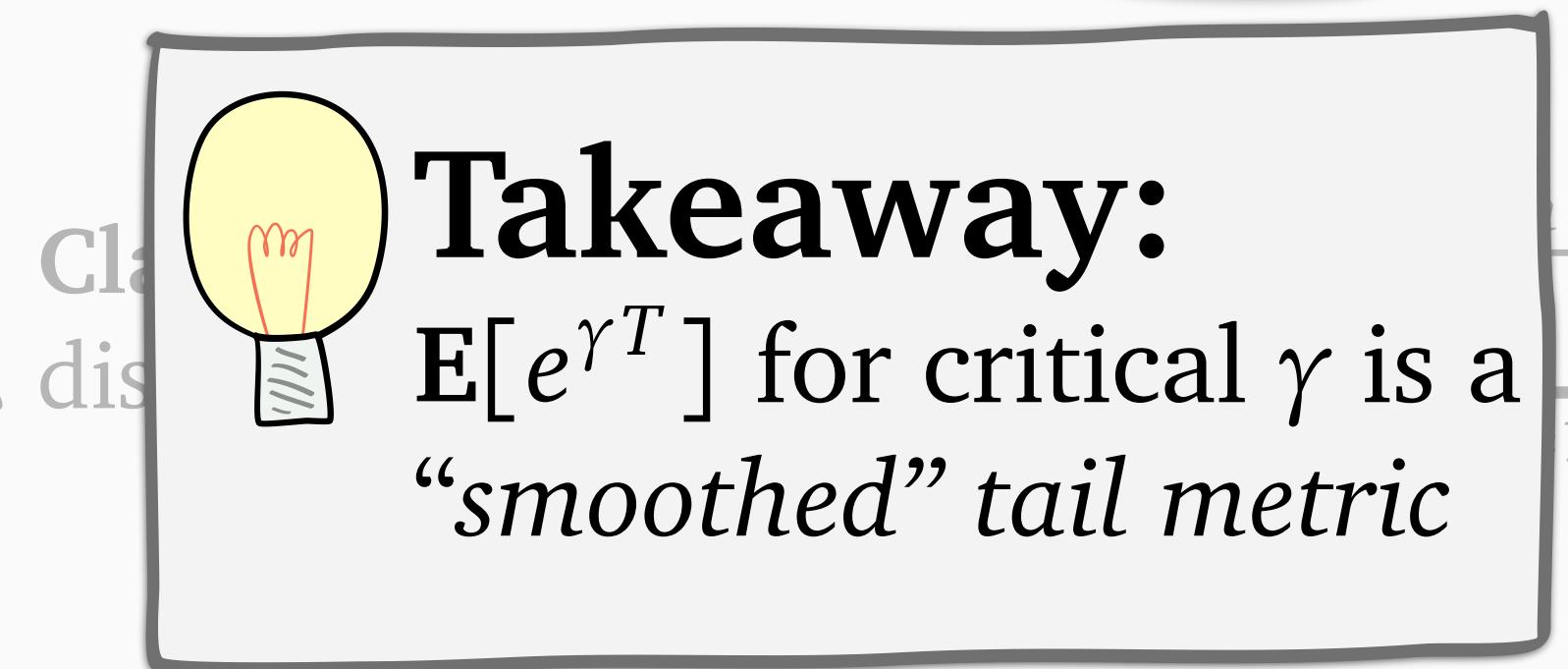
$$\text{minimize } \mathbb{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$



$$\sum_{i=1}^n w_i e^{-\theta d_i}$$

Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

**$\gamma$ -Boost**

# Solving the batch problem

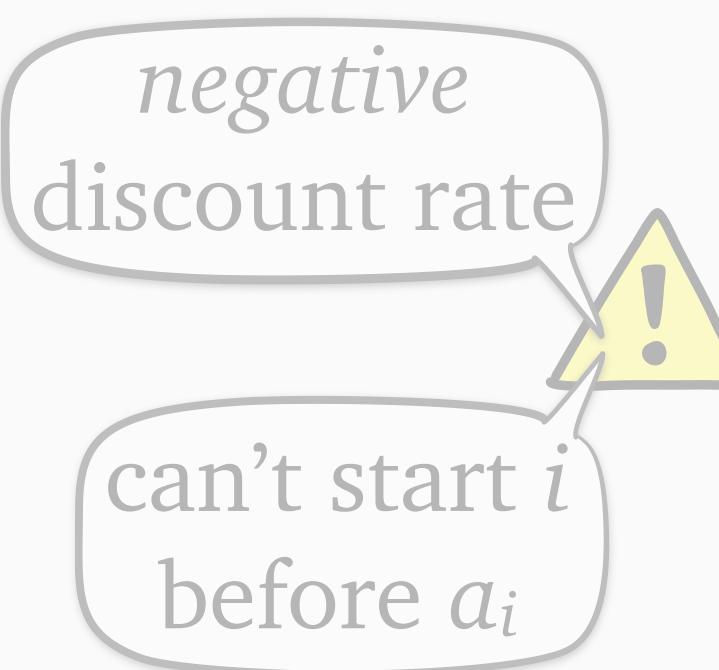
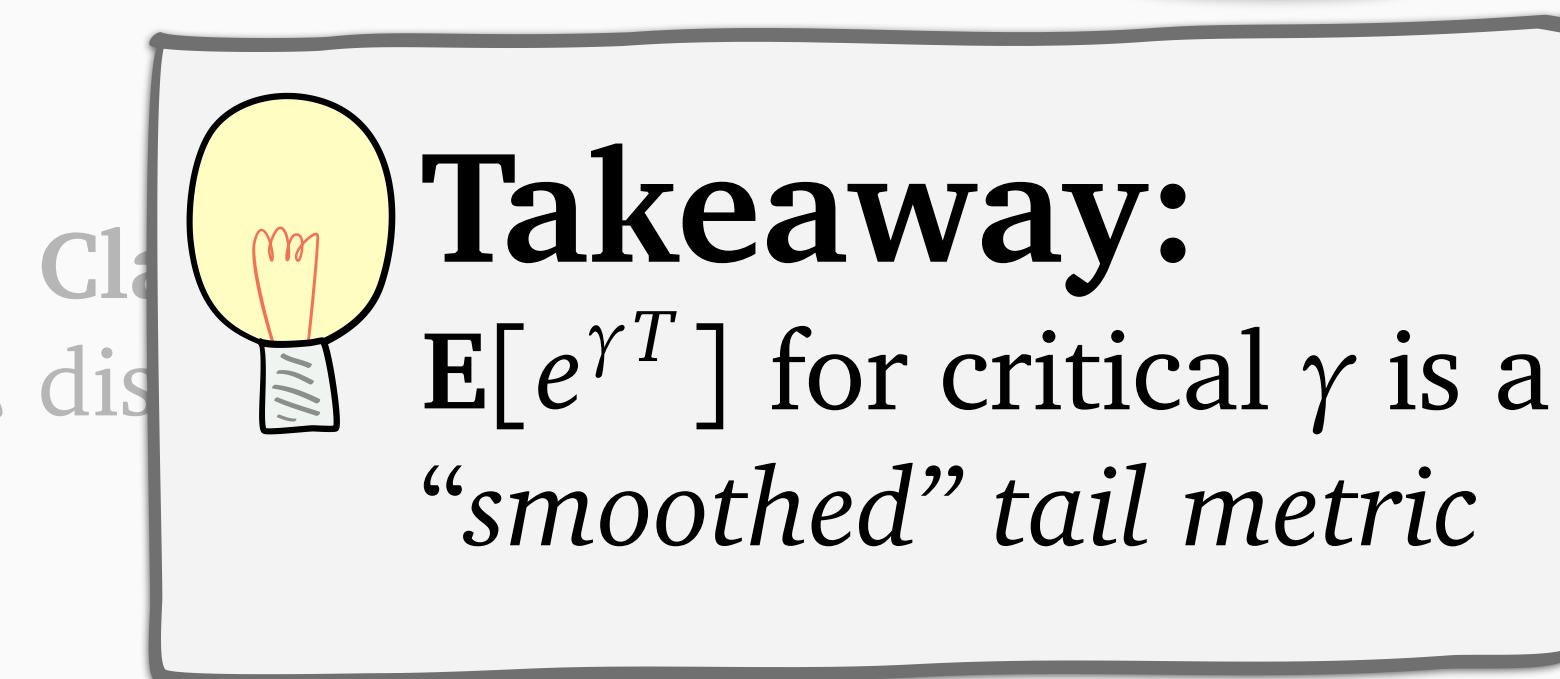
$$\text{minimize } E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$\gamma > 0$

$$t_i = d_i - a_i$$

$a_i$  = arrival time of job  $i$

$d_i$  = departure time of job  $i$



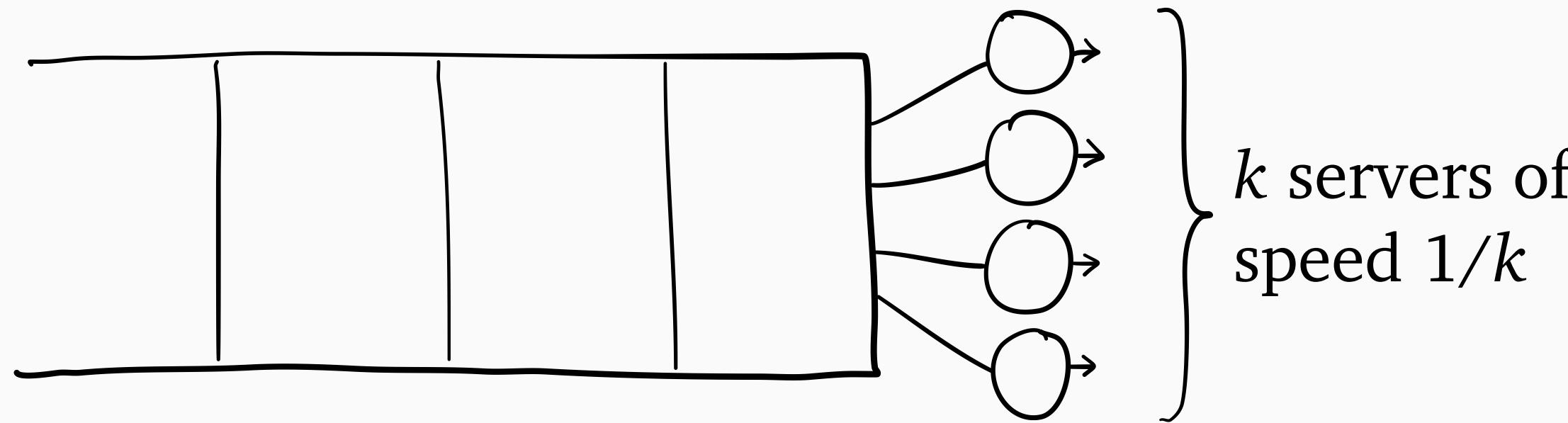
Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

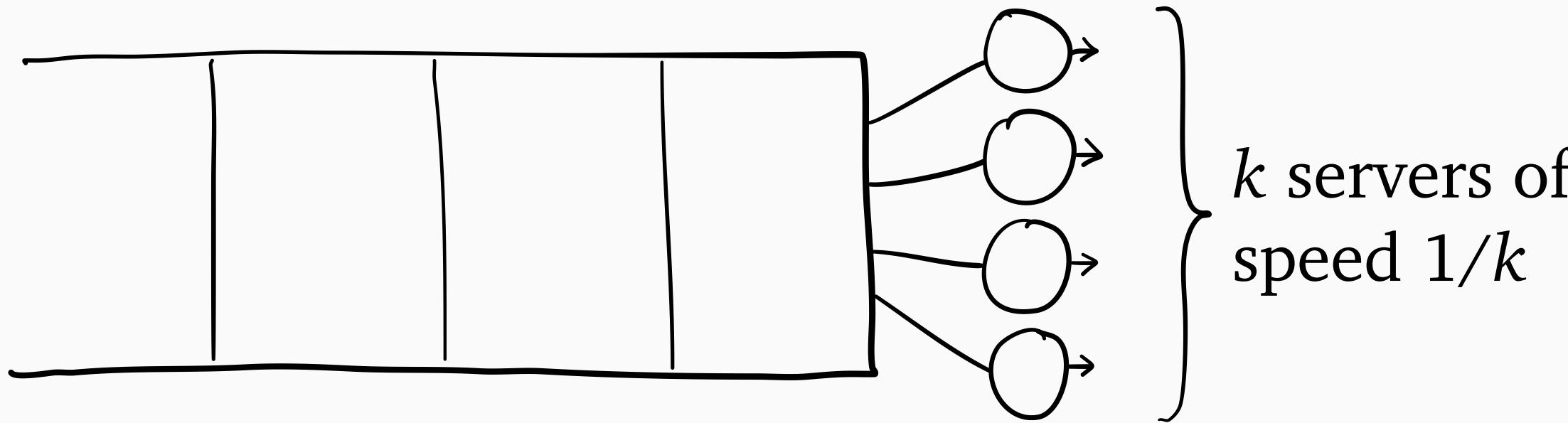
**$\gamma$ -Boost**

**Unknown sizes:**  
swap WDSPT for *Gittins*

# Multiserver tail optimization



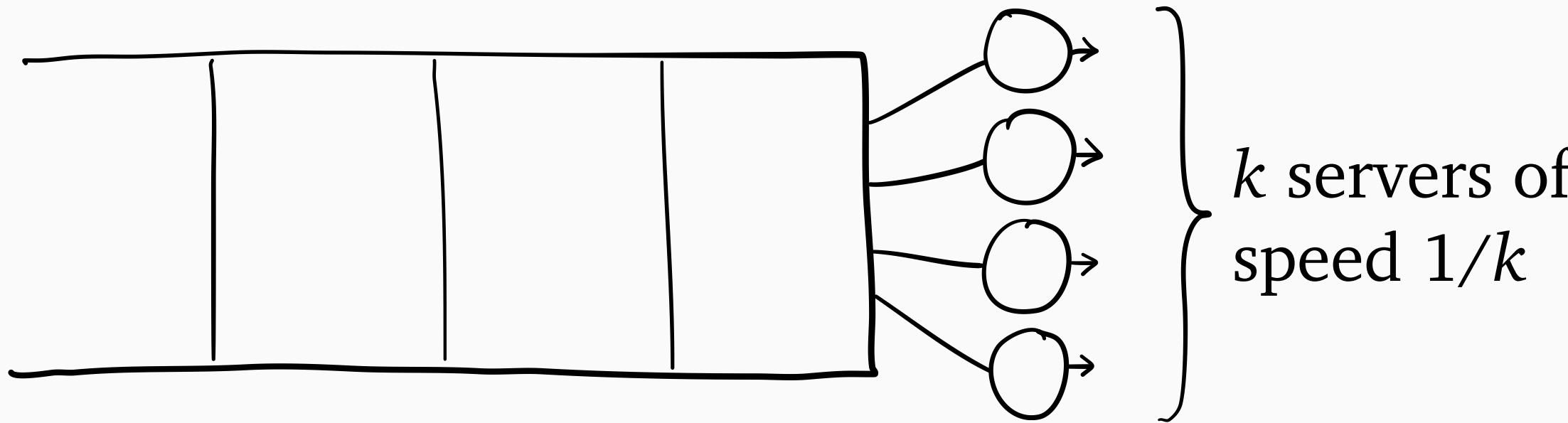
# Multiserver tail optimization



**Theorem:**  $\gamma$ -Boost is strongly tail-optimal  
in the heavy-traffic limit [Yu et al., 2025]

$$\rho = \lambda \mathbf{E}[S] \rightarrow 1$$

# Multiserver tail optimization

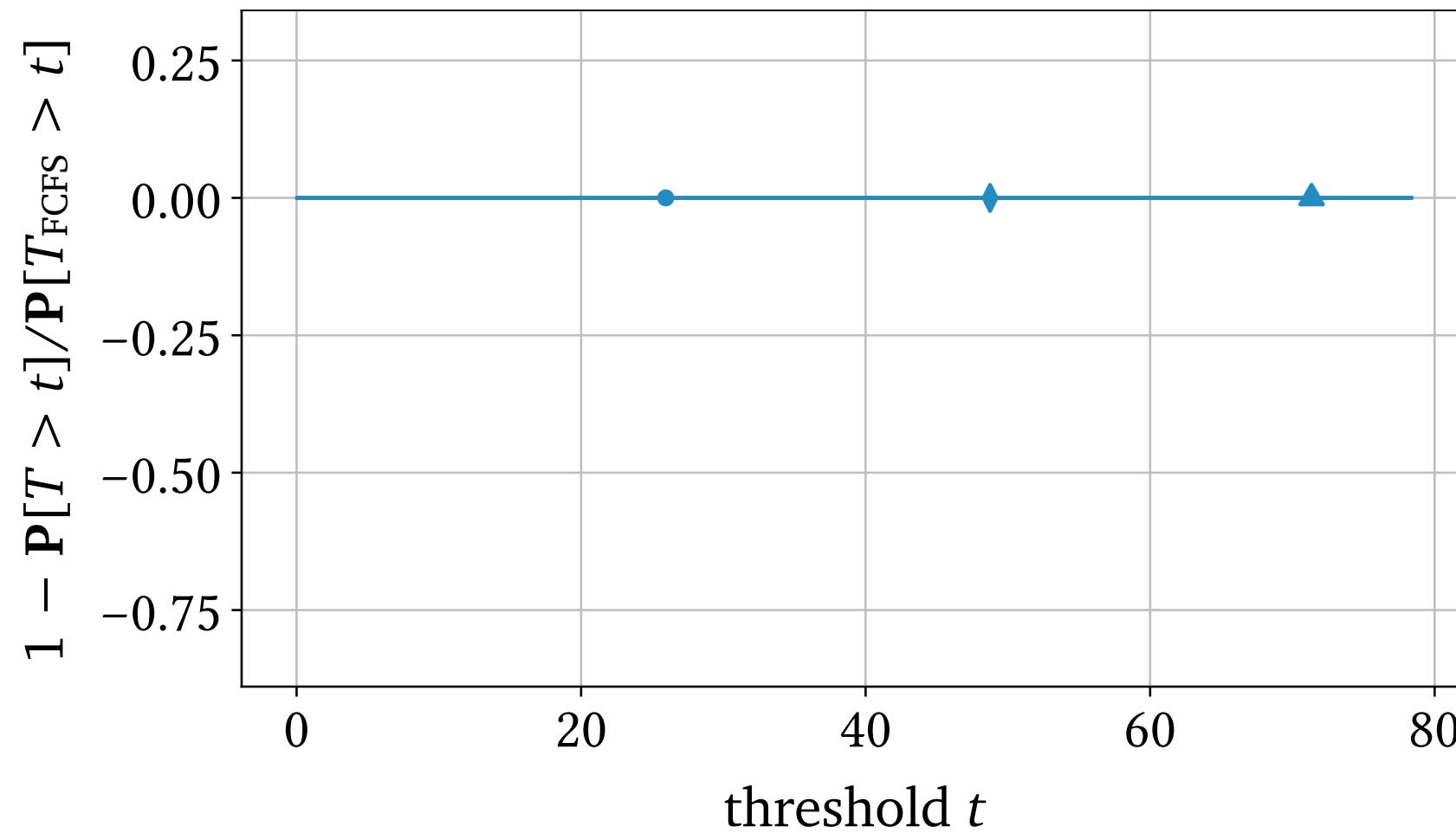


**Theorem:**  $\gamma$ -Boost is strongly tail-optimal  
in the heavy-traffic limit [Yu et al., 2025]

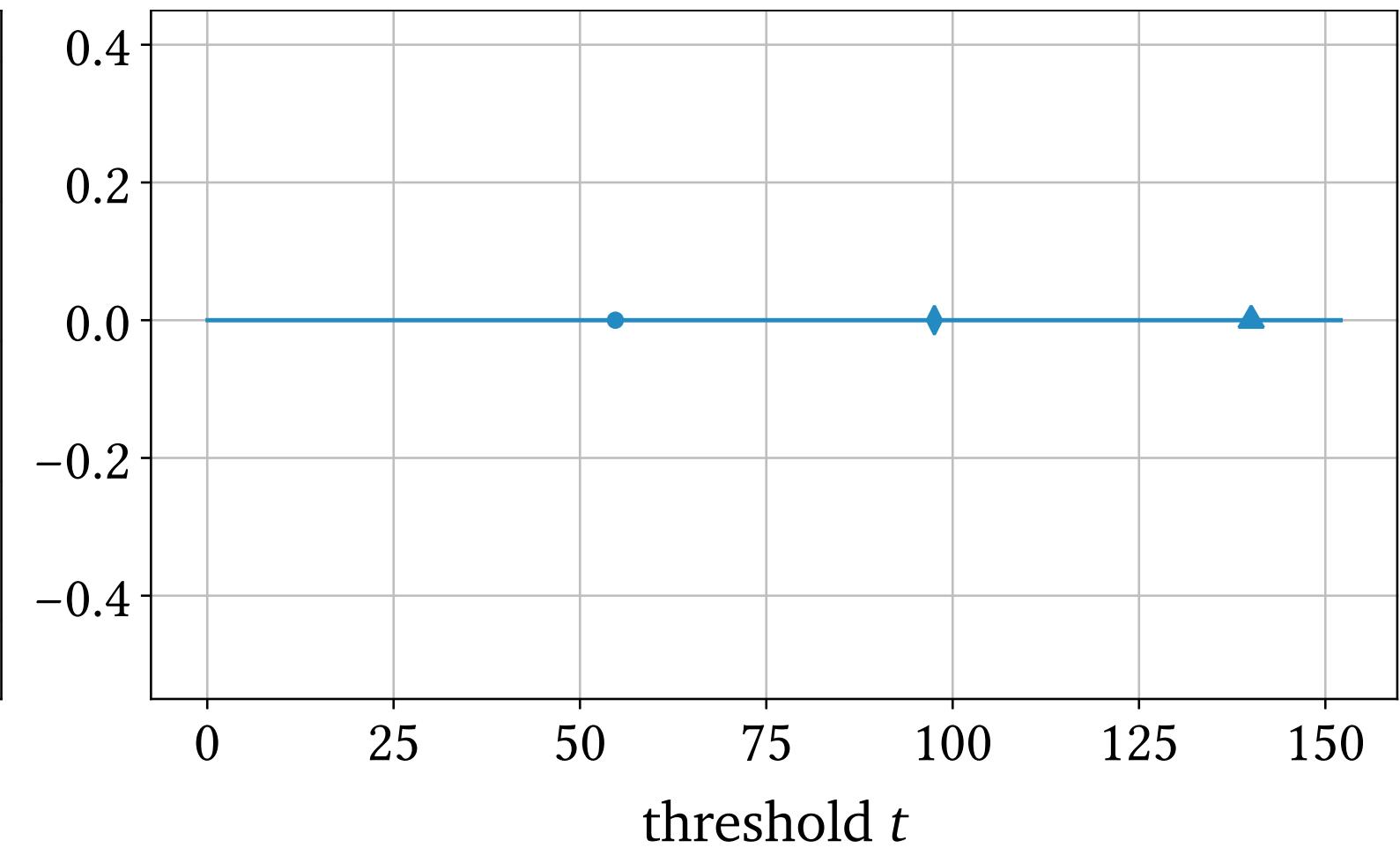
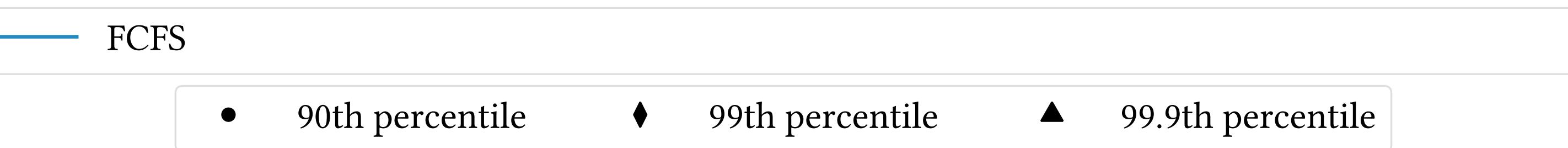
$$\rho = \lambda \mathbf{E}[S] \rightarrow 1$$

? load < 1?

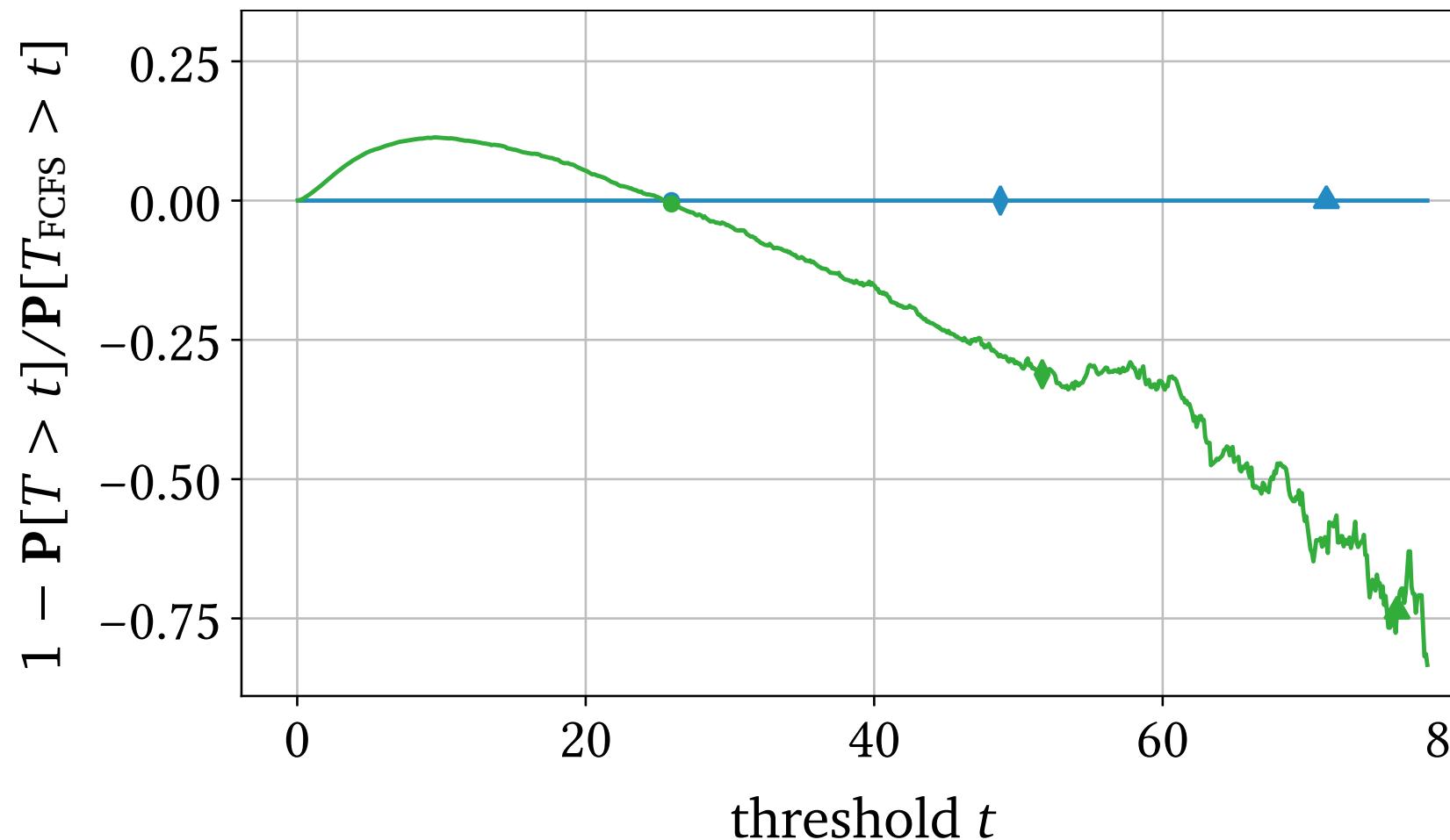
$k = 10$  servers, load 0.8



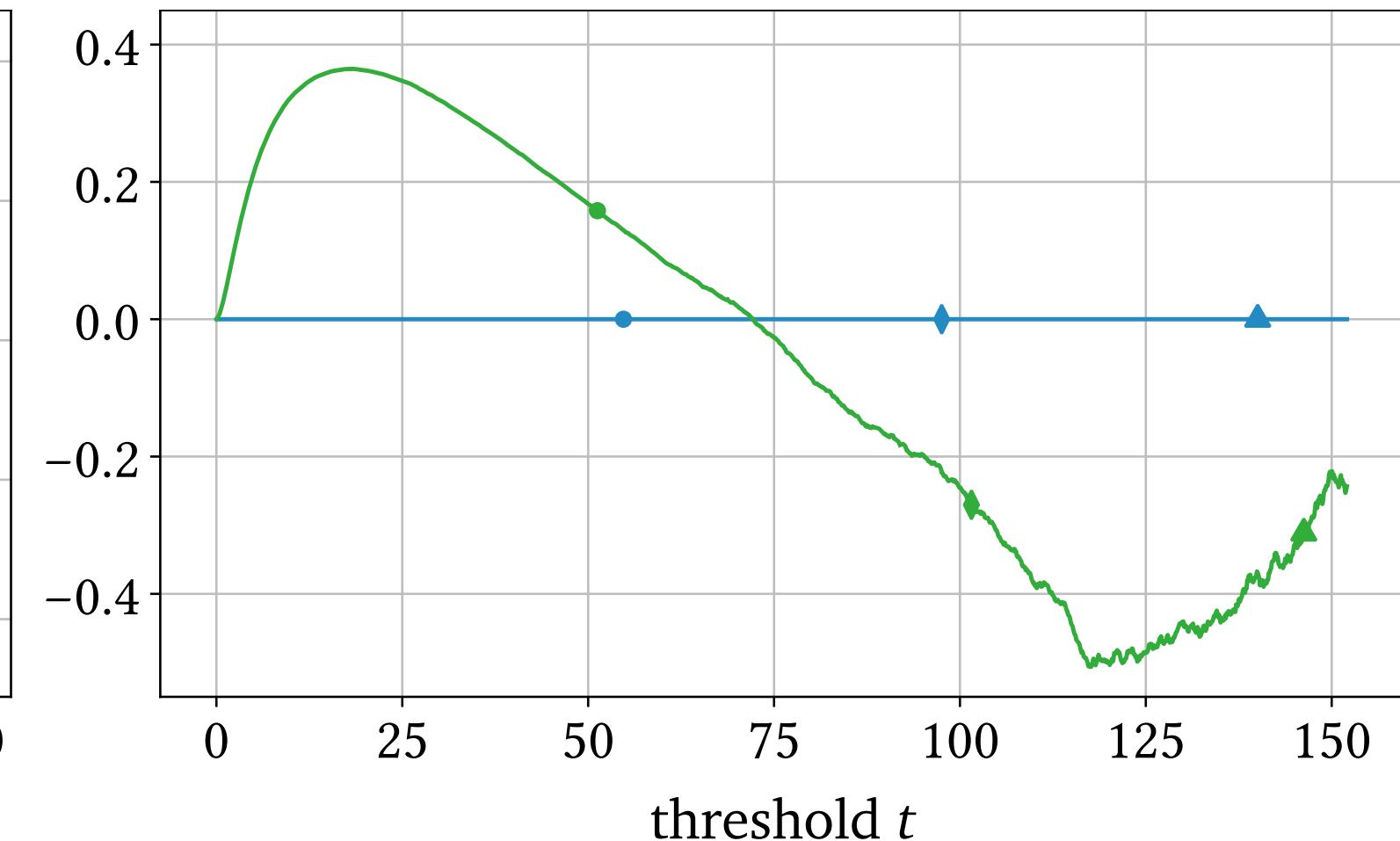
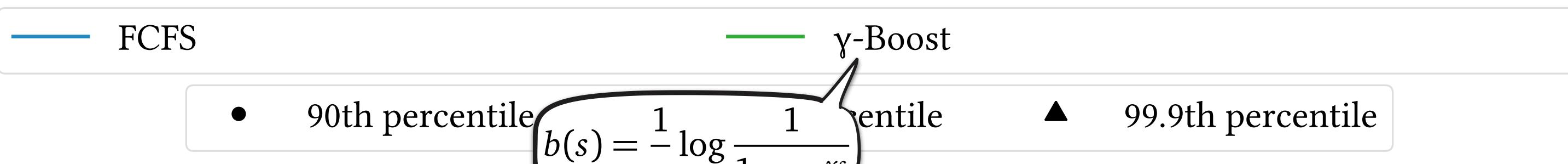
$k = 10$  servers, load 0.95



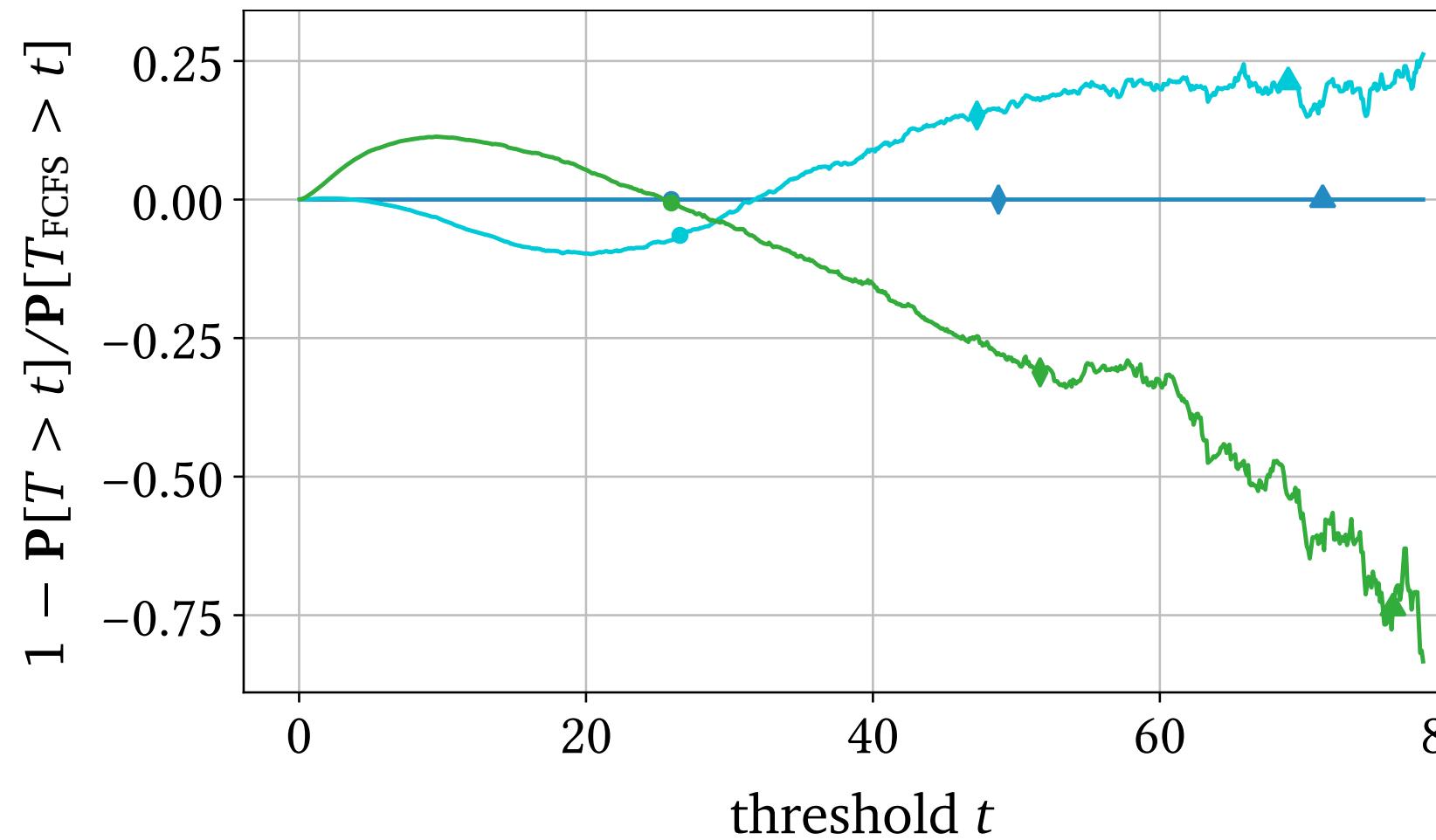
$k = 10$  servers, load 0.8



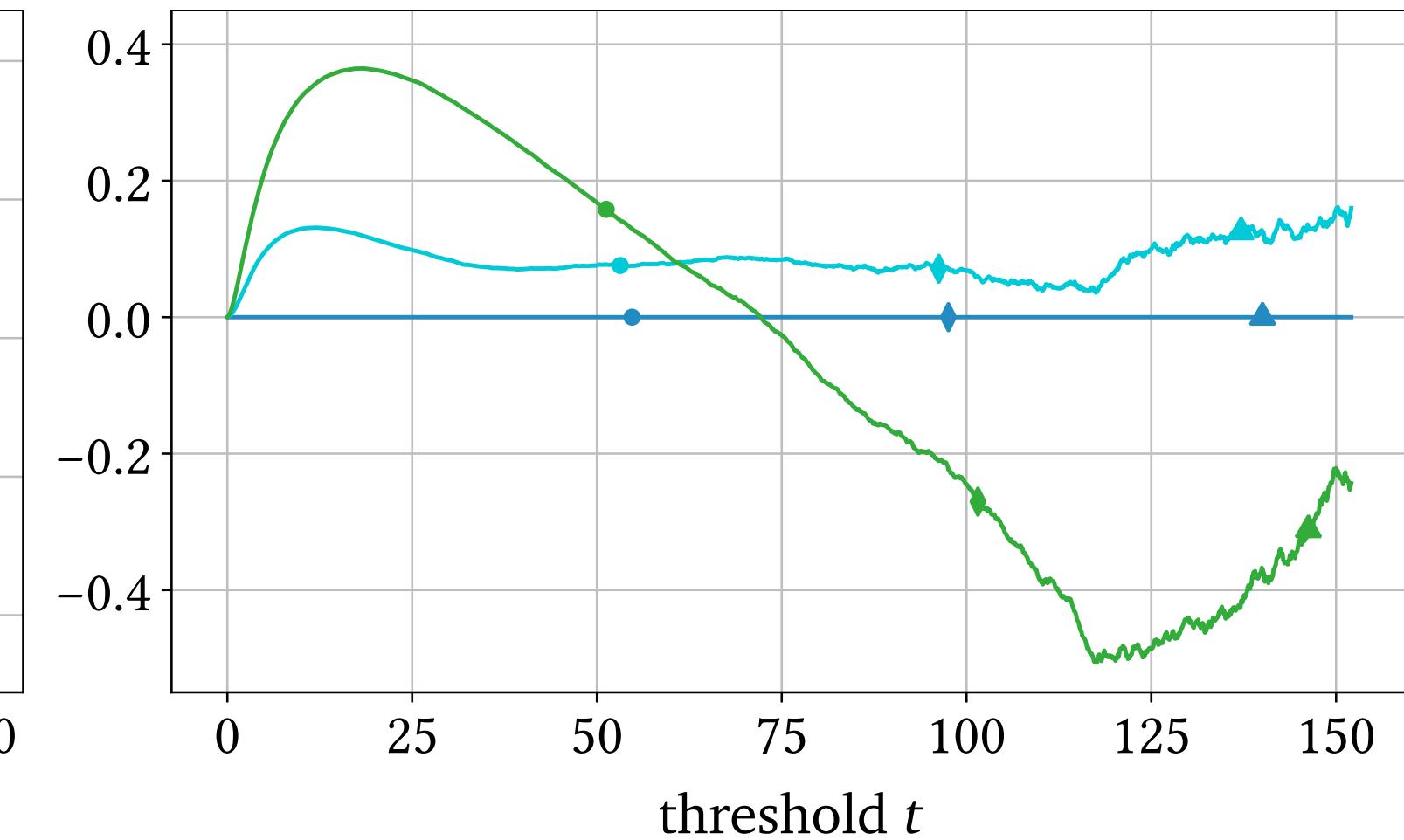
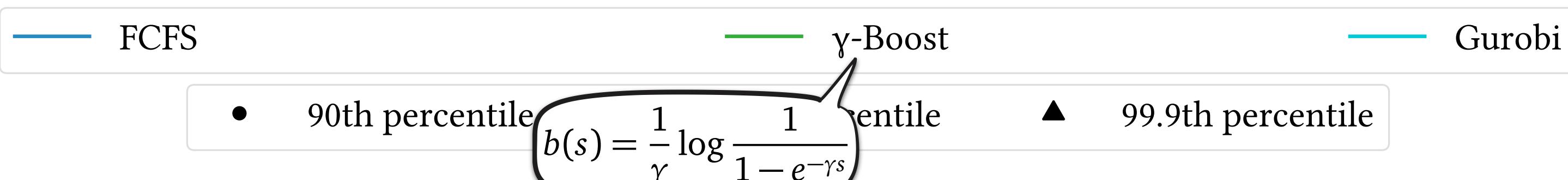
$k = 10$  servers, load 0.95



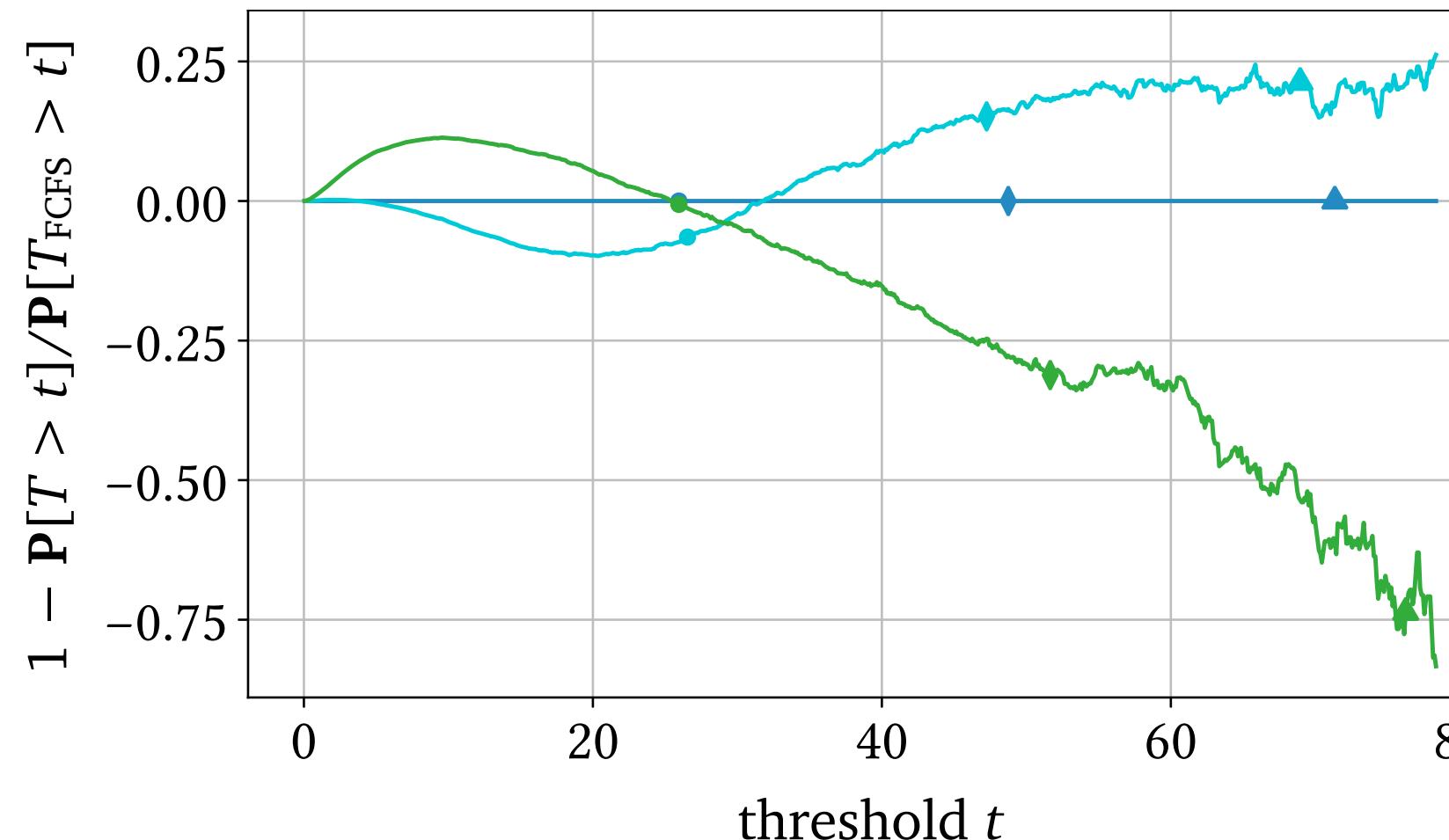
$k = 10$  servers, load 0.8



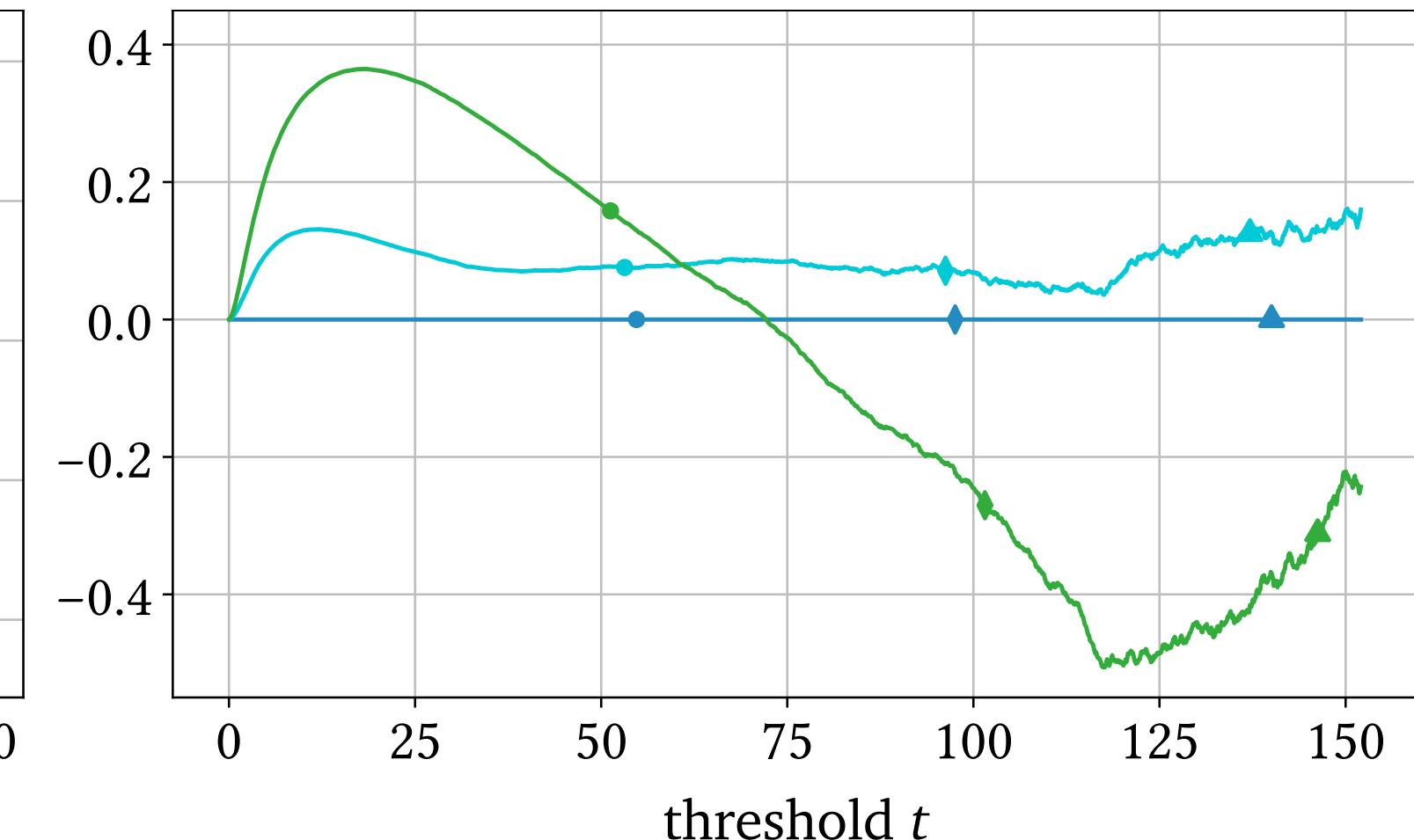
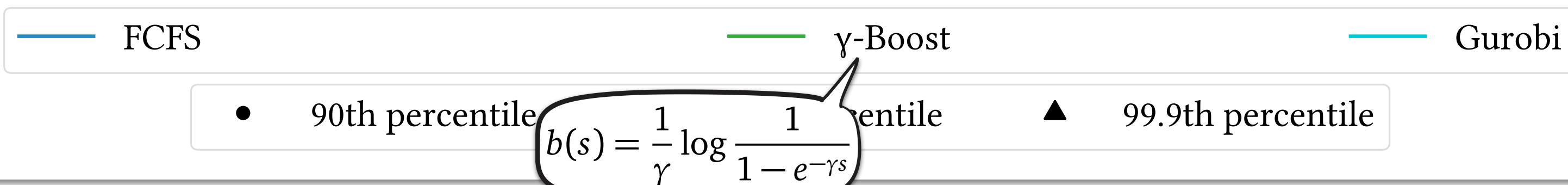
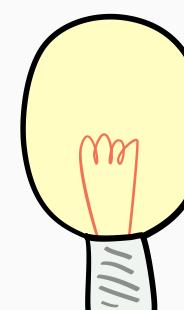
$k = 10$  servers, load 0.95



$k = 10$  servers, load 0.8

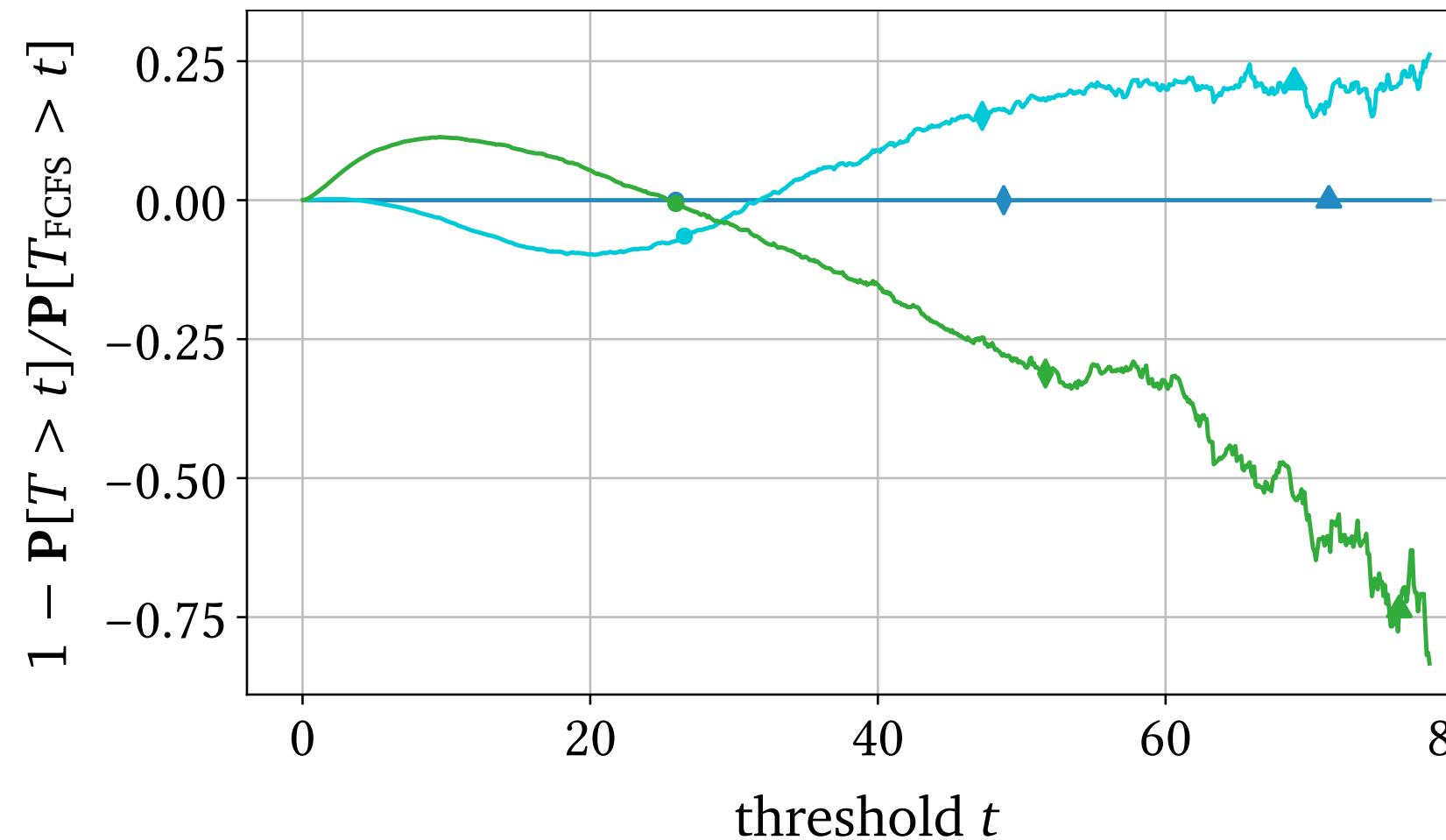


$k = 10$  servers, load 0.95

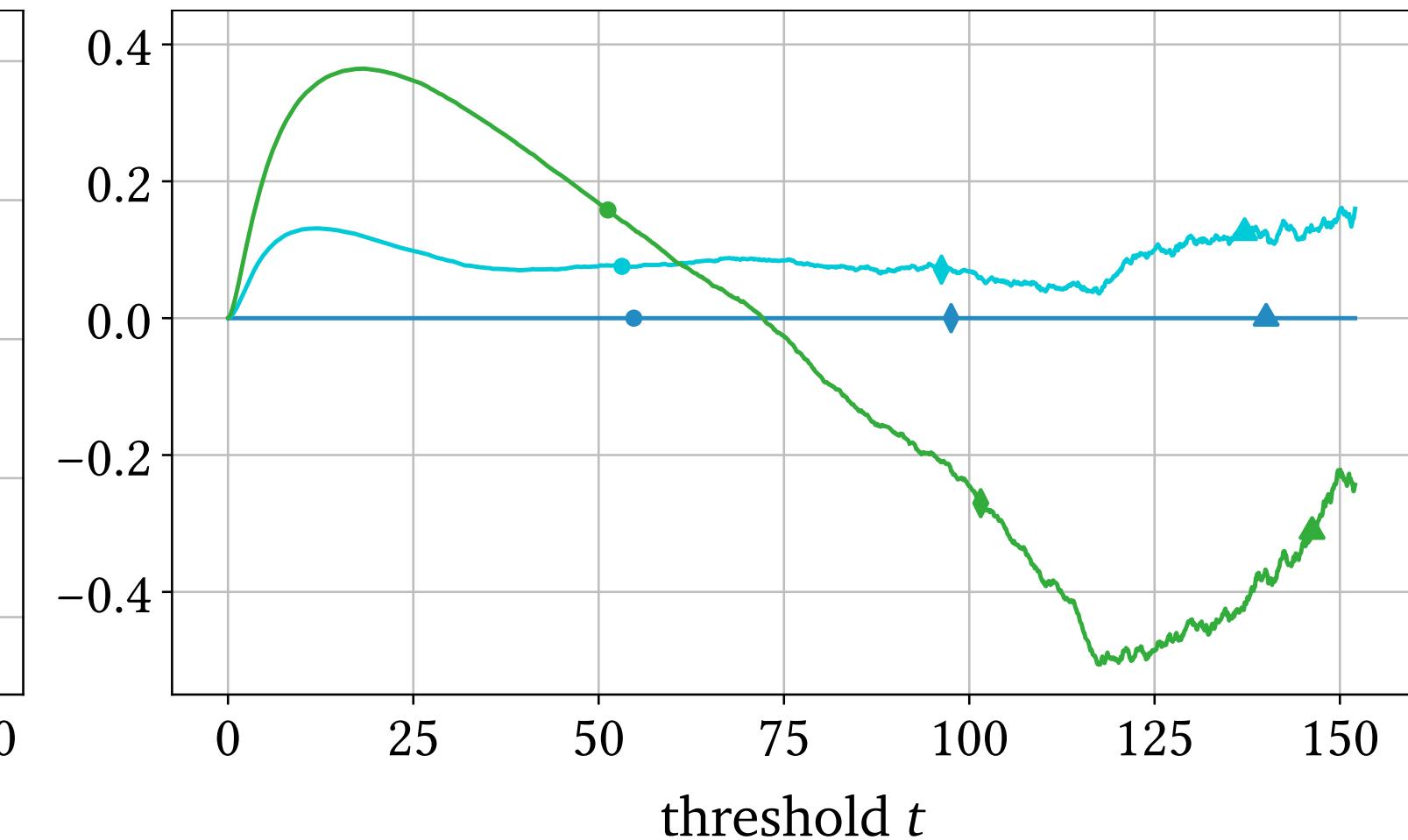


**Boost** large jobs?

$k = 10$  servers, load 0.8



$k = 10$  servers, load 0.95

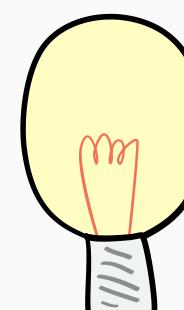


• 90th percentile

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

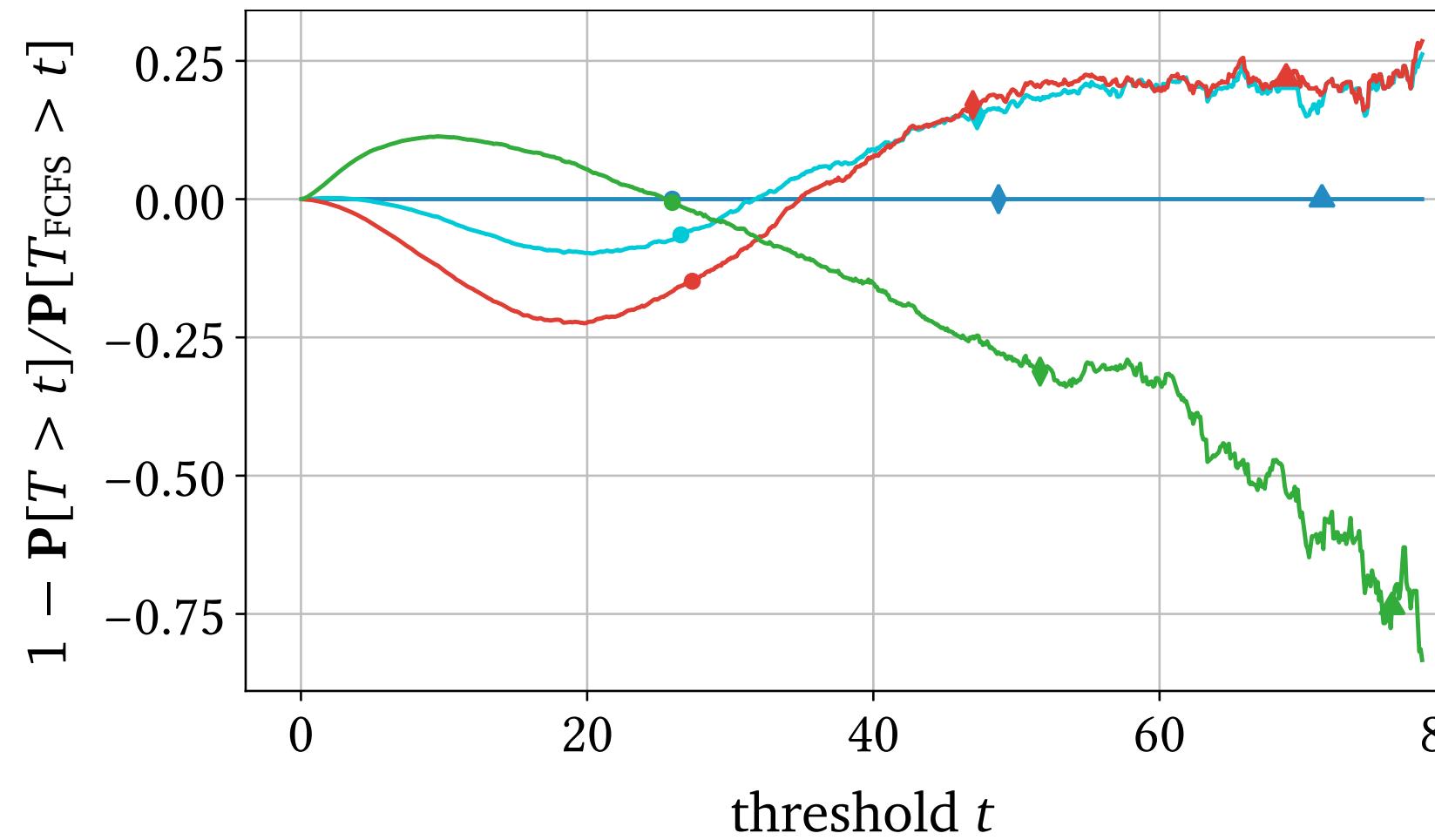
99.9th percentile

compare to bin packing

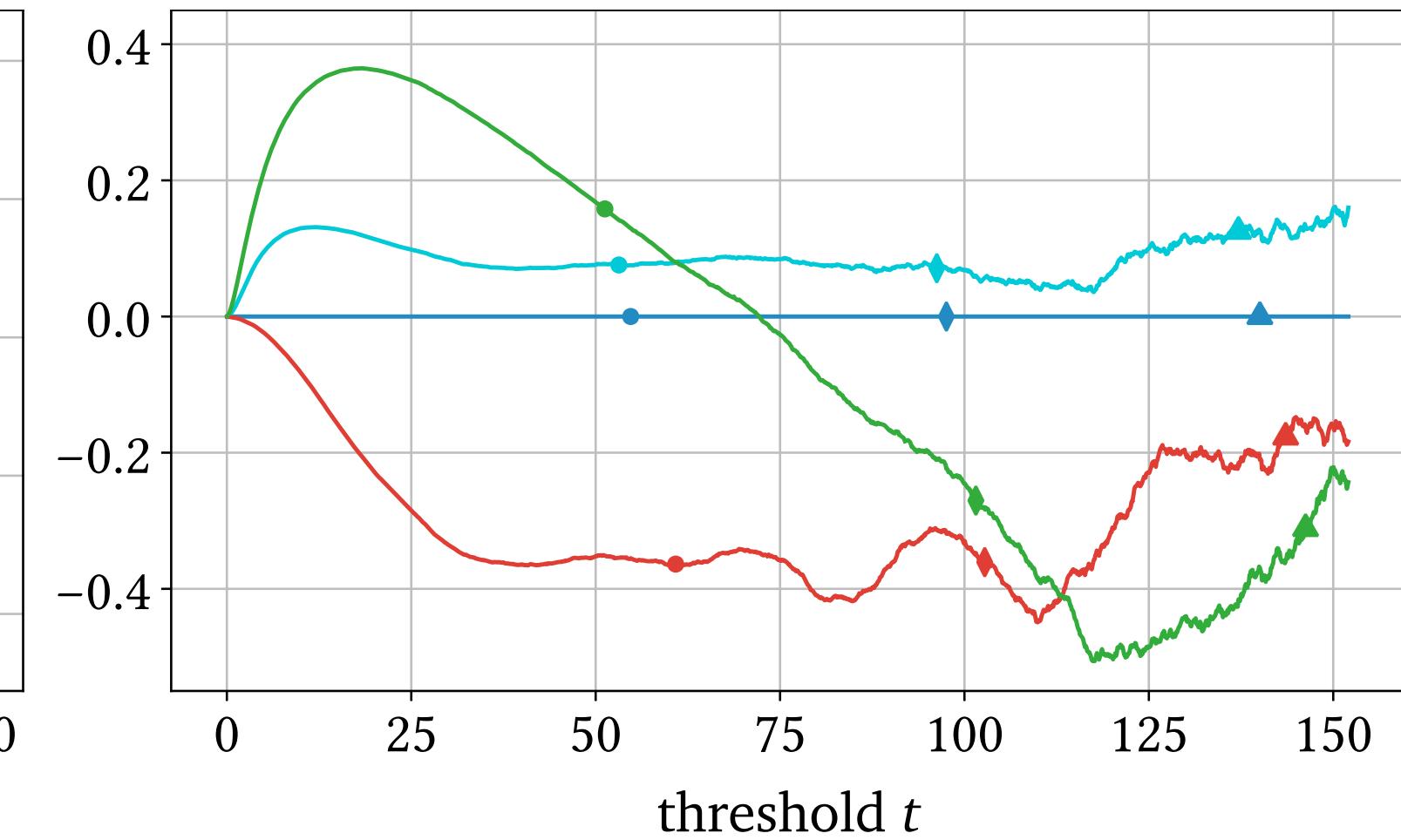


**Boost** large jobs?

$k = 10$  servers, load 0.8



$k = 10$  servers, load 0.95



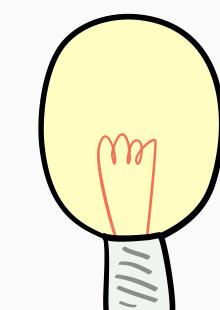
— FCFS      —  $\gamma$ -Boost      — SizeBoost      — Gurobi

• 90th percentile

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

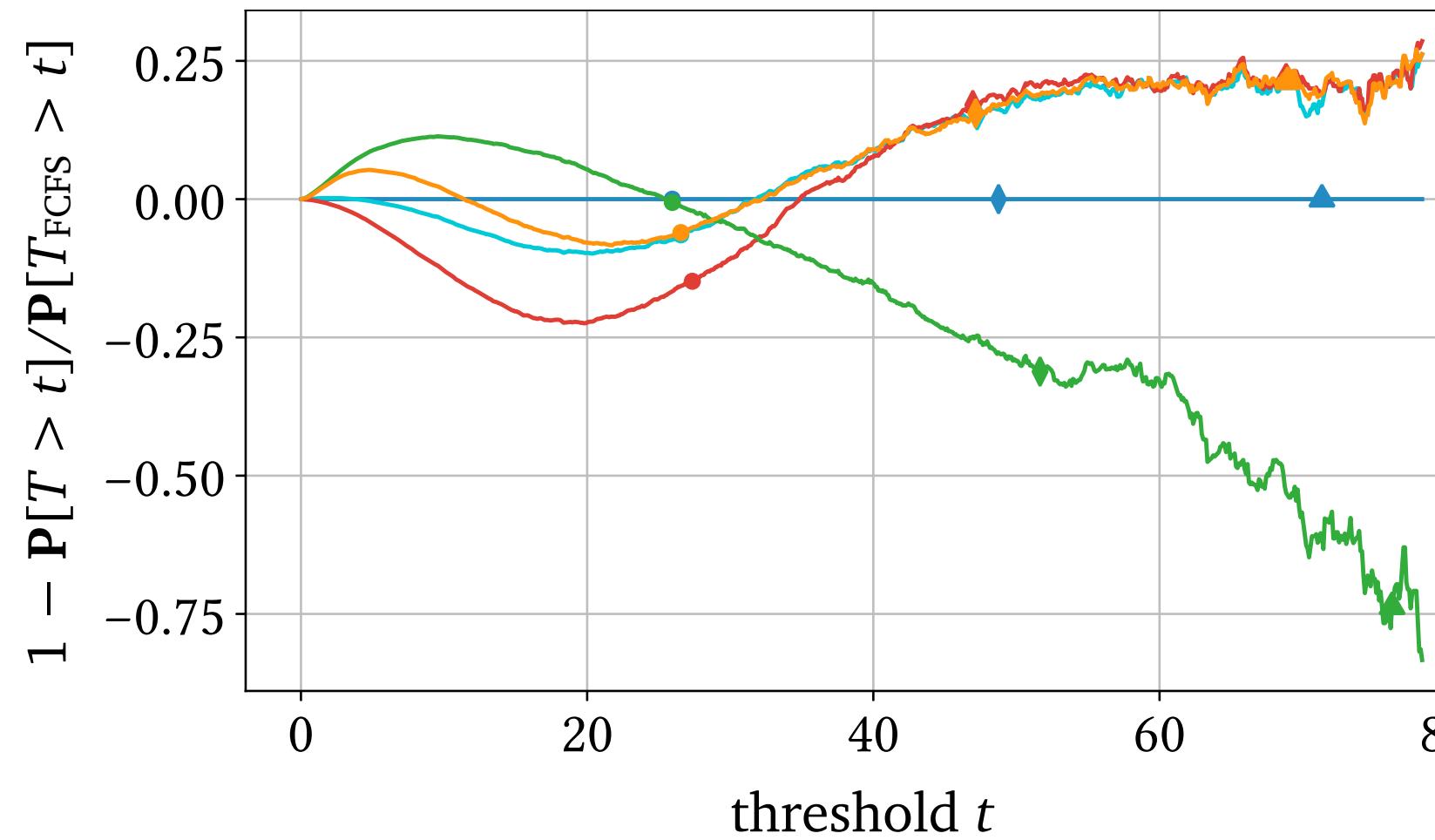
$$b(s) = (k-1)s$$

90th percentile  
compare to bin packing

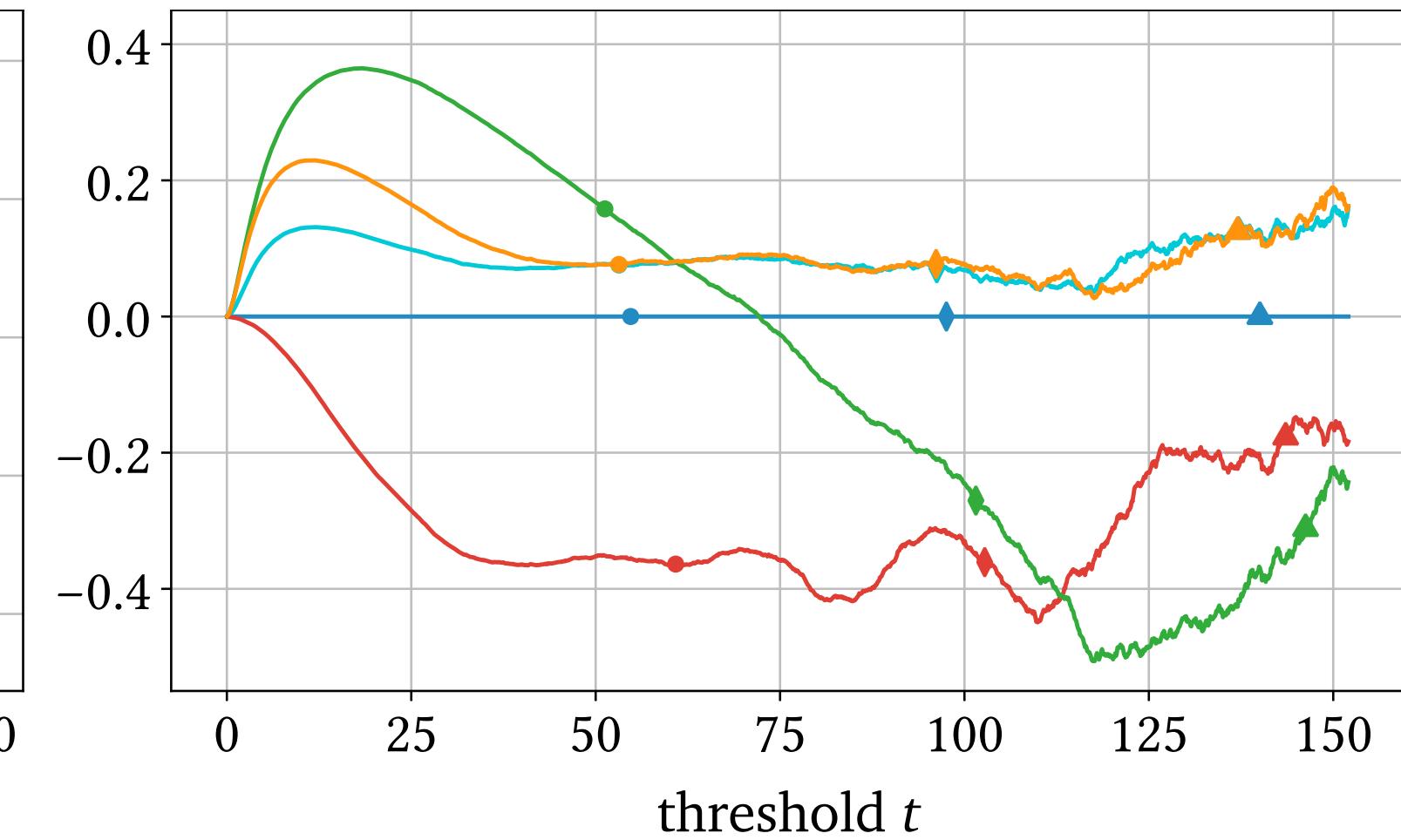


Boost large jobs?

$k = 10$  servers, load 0.8



$k = 10$  servers, load 0.95



FCFS       $\gamma$ -CombinedBoost       $\gamma$ -Boost      SizeBoost      Gurobi

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}} + (k-1)s$$

percentile  
0.001

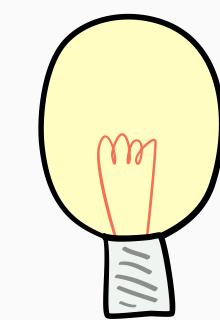
$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

$$b(s) = (k-1)s$$

99th percentile

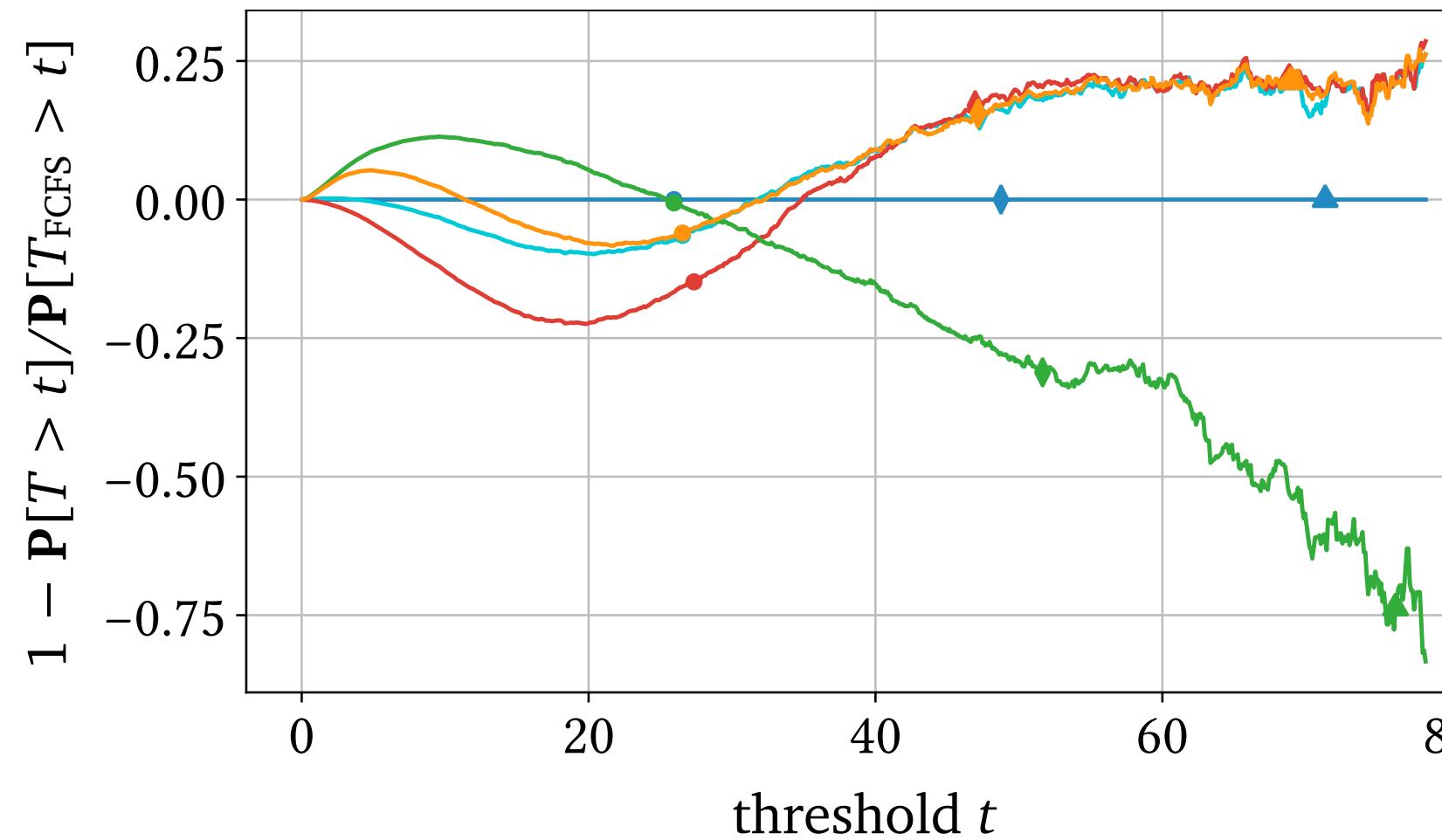
99th percentile  
b(s) = (k-1)s

compare to  
bin packing

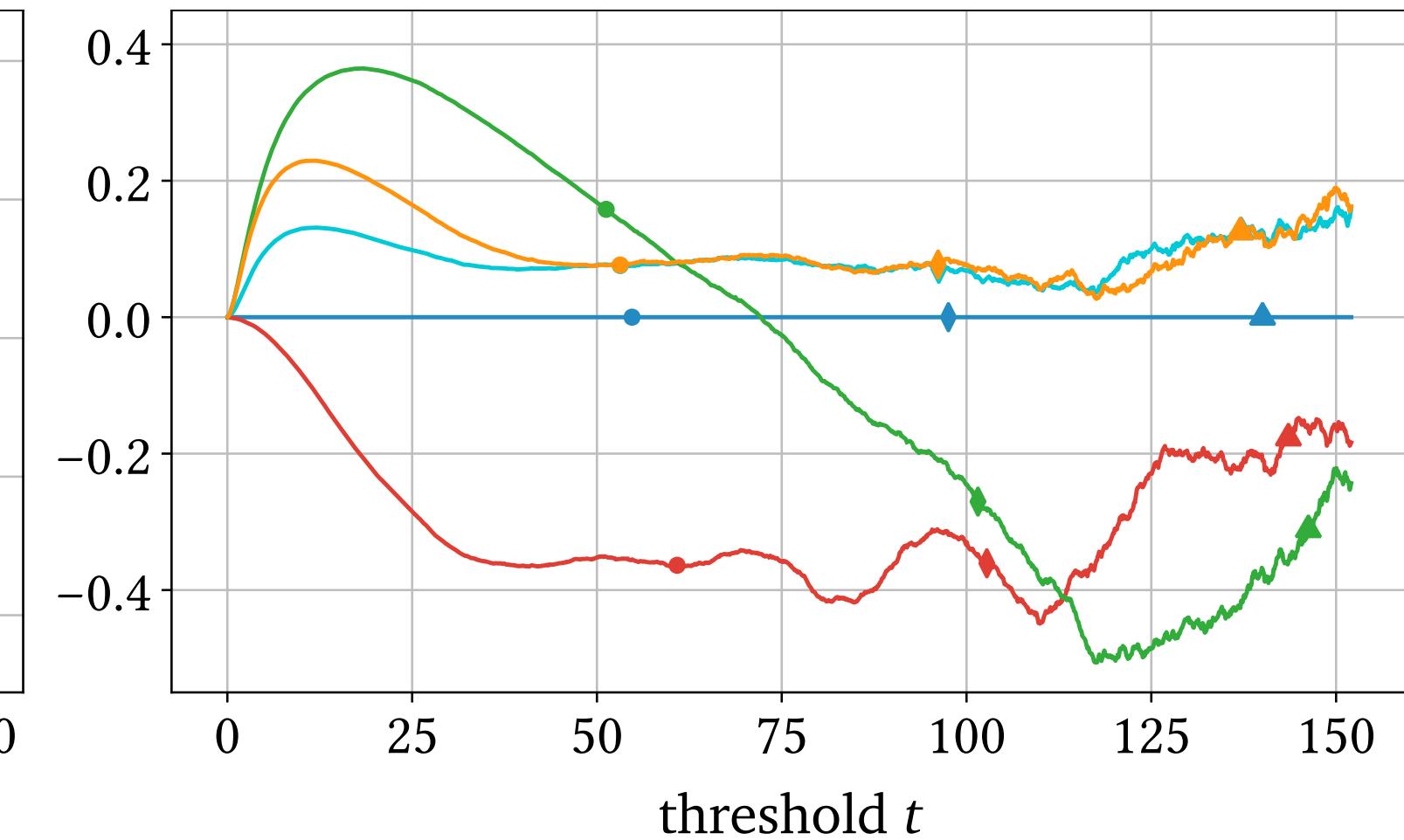


**Boost** large jobs?

$k = 10$  servers, load 0.8



$k = 10$  servers, load 0.95



— FCFS

## — γ-CombinedBoost

## — γ-Boos

## ▪ SizeBoost

---

Gurobi

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}} + (k-1)s$$

99+1 percenti

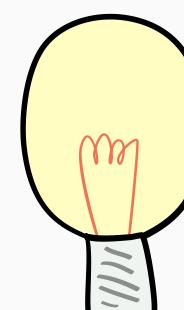
$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

$$\text{sent } b(s) = (k -$$

## — SizeBoost

t — Gurob

compare to  
bin packing

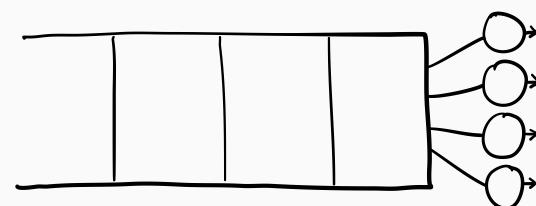


# Boost large *and* small jobs!?



*Part I*

# Handling job size uncertainty



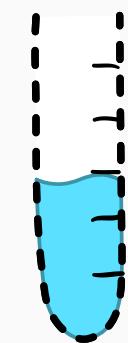
*Part II*

# Analyzing multiserver scheduling



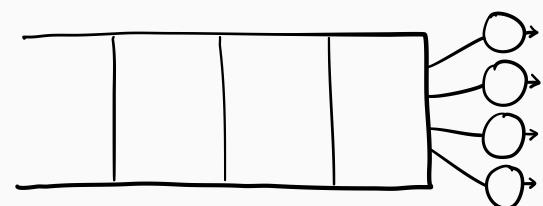
*Part III*

# Optimizing tail metrics



*Part I*

# Handling job size uncertainty



*Part II*

# Analyzing multiserver scheduling

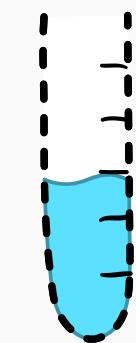
**TCS for Queueing**

*Approximation algorithms for smoothed tail metric  $E[e^{\gamma T}]$ ?*



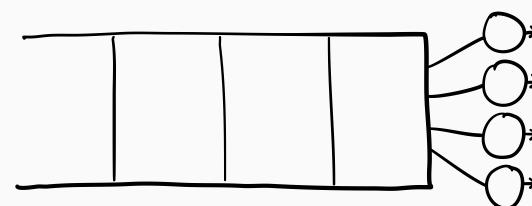
*Part III*

# Optimizing tail metrics



Part I

# Handling job size uncertainty



Part II

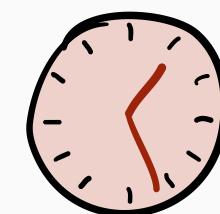
Queueing for TCS

Use WINE to analyze Gittins  
with arbitrary release dates?

Queueing for TCS

Use WINE to analyze SRPT-**k**  
with arbitrary release dates?

# Analyzing multiserver scheduling



Part III

# Optimizing tail metrics

TCS for Queueing

Approximation algorithms for  
smoothed tail metric  $E[e^{\gamma T}]$ ?