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O - jobages
* size distribution S

Q policy construction:

size distribution S — policy (S)

age a — priority (a)
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we complete a job

Little’s law: E[N] = AE[T]

(# jobs present;
Rewards aren’t
immediate
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Write N in terms of
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W(r)

Wy (1)

Defining one job’s r-work

= work relevant to r
= total r-work of all jobs

0
= r-work of single job of rem. size x = {

if r <
if r >
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Optimizing the tail constant C
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