What TCS Can Do U
for Queueing \‘R§

and

What Queueing
Can Do for TCS .

in Scheduling Theory Cornell University

j Part I
.1 Handling job size uncertainty

Part 11

SO0

Analyzing multiserver scheduling

Part 111
Optimizing tail metrics

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

|0

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

%

How should we schedule jobs to minimize delay?

% 10,

How should we schedule jobs to minimize delay?

% 10,

How should we schedule jobs to minimize delay?

% 10,

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @DZ

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

@%fj s @U

How should we schedule jobs to minimize delay?

@%fj s @U

@ Minimize E[T]?

-

How should we schedule jobs to minimize delay?

v T

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

Cllll

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?
Gfe
3 U
R
L Serve short jobs
@ Minimize E{T]? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?

R0,

shortest remaining
processing time

@ Minimize E[T]? Q Ezgfesﬂ)f; jgb];z SRPT: minimizes E[T]

-

X

TCS vs. Queueing

i)

l
@ T = response time

TCS vs. Queueing

v 11T
L [

@ T = response time

TCS

n arbitrary arrivals
T is tuple of n times

TCS vs. Queueing

v 11T
L [

@ T = response time

TCS Queueing

n arbitrary arrivals infinite stochastic sequence of arrivals
T is tuple of n times T is a limiting distribution

TCS vs. Queueing

s z
M/G arrivals | N

» arrival rate A
@ T = response time

(Poisson)
TCS Queueing

* job size dist. S
n arbitrary arrivals infinite stochastic sequence of arrivals
T is tuple of n times T is a limiting distribution

Job size uncertainty

Q short before long

@GGQ

Job size uncertainty

Q short before long

—

Jlc

GQ

S1ZesS

—

| I |
(-
! !
LI |

]

&unknown

| |
[I |
1

J

Job size uncertainty

Q short before long

—

Jlc

5

U

9}

@ What info can we use?
a

&unknown

S1ZesS

—

| I |
(-
! !
LI |

]

| |
[I |
1

J

Job size uncertainty

Q short before long

—

|

U

5

U

9}

@ What info can we use?

-

* job ages

Au

nknown sizes

—

-
(-
! !
LI |

]

HE

J

Job size uncertainty

Q short before long &unknown sizes
BEEER ; ERRERREREE
J1 0|6 ERRERRE

@ What info can we use?

© - jobages

* size distribution S

Scheduling with unknown job sizes

@ What info can we use?

O - jobages
* size distribution S

Scheduling with unknown job sizes

@ What info can we use?

O - jobages
* size distribution S

Q policy construction:

size distribution S — policy (S)

Scheduling with unknown job sizes

@ What info can we use?

O - jobages
* size distribution S

Q policy construction:

size distribution S — policy (S)

age a — priority (a)

Outline of Part 1

@ What is ?
(.

@ain focuAQ
@ Why are (and SRPT) optimal?
Q

@ Predictions: what if we don’t know

o exact distributions (or sizes)?

Scheduling with functions

Scheduling with functions

SERPT

shortest expected remaining processing time

age

Scheduling with functions

SERPT

shortest expected remaining processing time

(a)=E[S—a|S>a]

age

Scheduling with functions

SERPT
shortest expected remaining processing time
(a)=E[S—a|S >a] Job size distribution:
1 wp. %
S=46 wp. %
14 w.p. %

age

Scheduling with functions

SERPT
shortest expected remaining processing time
(a)=E[S—a|S >a] Job size distribution:
1 wp. %
S=46 wp. %
14 w.p. %

age

Scheduling with functions

SERPT
shortest expected remaining processing time
(a)=E[S—a|S >a] Job size distribution:
1 wp. %
N 1
14 w.p. %

age

Scheduling with functions

SERPT
shortest expected remaining processing time
(a)=E[S—a|S >a] Job size distribution:
1 wp. %
S=46 wp. %
14 w.p. %

age

Scheduling with rank functions

SERPT
shortest expected remaining processing time
rank(a) =E[S—a | S > a] Job size distribution:
? 1 wp. 3
8 _ 1
6 14 w.p. %

1N

Gittins

age

Defining the Gittins rank

I T

\

known unknown size
sizer (S| S > age)

Cllll

Defining the Gittins rank

I T

:U 0
known unknown size
sizer (S| S > age)

Cllll

Defining the Gittins rank

I T

C I |
QL
O

known unknown size
sizer (S| S > age)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

o
-l

I T

">

0 serve known

known unknown size
sizer (S| S > age)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

o
-l

I T

">

0 serve known serve unknown

known unknown size
sizer (S| S > age)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

rank

T E———

0 serve known serve unknown

o
-l

I T

known unknown size
sizer (S| S > age)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

rank

T E———

0 serve known serve unknown

o
-l

I T

known unknown size
sizer (S| S > age)

Key question: for which r

0
1 (50%) = should we serve unknown?

19 (50%)

Defining the Gittins rank

I T

C I |
QL
O

known unknown size
sizer (S| S > age)
Key question: for which r
0
1 (50%) = should we serve unknown?
19 (50%)

Defining the Gittins rank

I T

Cllll
QL

O

I

known unknown size
sizer (S| S > age)
Key question: for which r
0
1 (50%) = should we serve unknown?
19 (50%)

Defining the Gittins rank

I T

Cio
o
Ni

known unknown size
sizer (S| S > age)
Key question: for which r
0
1 (50%) = should we serve unknown?
19 (50%)

Defining the Gittins rank

I T

o
-l

known unknown size Qf

sizer (S| S > age)

1 (50%)
19 (50%)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

I T

r

o
-l

or=1 r=19

known unknown size Qf 83

sizer (S| S > age)

1 (50%)
19 (50%)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

I T

r

o
-l

or=1 r=10 r=19

known unknown size Qf 83

sizer (S| S > age)

1 (50%)
19 (50%)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

I T

r

o
-l

or=1 r=10 r=19

known unknown size Qf Qf 83

sizer (S| S > age)

1 (50%)
19 (50%)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

I T

r

o
-l

or=1 r=29.9 r=19

known unknown size Qf 83

sizer (S| S > age)

1 (50%)
19 (50%)

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

I T

r

r=9.9 r=19

known unknown size Qf Qf 83

sizer (S| S > age)

1 (50%)
19 (50%)

o
-l

Key question: for which r
= should we serve unknown?

Defining the Gittins rank

rank = 2

r

I T

r=9.9 r=19

known unknown size Qf Qf 83

sizer (S| S > age)

1 (50%)
19 (50%)

o
-l

Key question: for which r
= should we serve unknown?

How to prove SRPT is optimal?

How to prove SRPT is optimal?

Little’s law: E[N] = AE[T]

How to prove SRPT is optimal?

Little’s law: E[N] = AE[T]

(# jobs present;

10

o

How to prove SRPT is optimal?

Little’s law: E[N] = AE[T]

(# jobs present;

Reward each time
we complete a job

10

o

How to prove SRPT is optimal?

Little’s law: E[N] = AE[T]

(# jobs present;

Reward each time Rewards aren’t
we complete a job immediate

10

o

How to prove SRPT is optimal?

Reward each time
we complete a job

Little’s law: E[N] = AE[T]

(# jobs present;
Rewards aren’t
immediate
-

Write N in terms of
“smoother” quantity?

10

WINE

Work Integral Number Equality

S\

r-work W(r)

te

number of jobs N

Nf

U

11

WINE

Work Integral Number Equality

AW, telt

r-work W(r) number of jobs N

E[T] bounds for SRPT and Gittins in:

WINE

Work Integral Number Equality

AW, telt

r-work W(r) number of jobs N

E[T] bounds for SRPT and Gittins in:
« M/G/k and G/G/k

WINE

Work Integral Number Equality

AW, telt

r-work W(r) number of jobs N

E[T] bounds for SRPT and Gittins in:
* M/G/k and G/G/k
* systems with multiserver jobs

WINE

Work Integral Number Equality

AW, telt

r-work W(r) number of jobs N

E[T] bounds for SRPT and Gittins in:
* M/G/k and G/G/k

* systems with multiserver jobs

* systems with noisy size estimates

WINE

Work Integral Number Equality

AW, telt

r-work W(r) number of jobs N

E[T] bounds for SRPT and Gittins in:
* M/G/k and G/G/k
* systems with multiserver jobs
* systems with noisy size estimates
NEW! . gsystems with unknown size distribution

Key quantity: r-work

e

“me”

Key quantity: r-work

(o)

12

(44

i

me

7

Key quantity: r-work

J

random system state

12

Key quantity: r-work

C o]
1

=
™D
]

o«
o«
A J
b

random system state

12

(44

me

7

Key quantity: r-work

random system state

12

Key quantity: r-work

random system state

=
™D
]

Key quantity:
W(r) = work relevant to job of r

G‘-WOI‘E‘%

12

Key quantity: r-work

random system state

Key quantity: /CO\

W(r) = work relevant to job of r

G‘-WOI‘E‘%

=
™D
]

12

Key quantity: r-work

Key quantity:
W(r) = work relevant to job of

C -WOI‘E‘/é

12

Key quantity: r-work

3

Key quantity:
W(r) = work relevant to job of

C -WOI‘E‘/é

12

Key quantity: r-work

3

Key quantity:
W(r) = work relevant to job of

C -WOI‘E‘/é

12

Key quantity: r-work

3

Key quantity:
W(r) = work relevant to job of

C -WOI‘E‘/é

12

Key quantity: r-work

3

Key quantity:
W(r) = work relevant to job of

C -WOI‘E‘/é

12

Key quantity: r-work

3

Key quantity:
W(r) = work relevant to job of

C -WOI‘E‘/é

12

Defining one job’s r-work

W(r) = work relevant to r

13

Defining one job’s r-work

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

13

Defining one job’s r-work

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

13

/

Defining one job’s r-work

W(r) = work relevant to r

wx(r) = r-work of single job of rem. size x = {

~

13

/

Defining one job’s r-work

W(r) = work relevant to r

. . , 0 ifr<
wy(r) = r-work of single job of rem. size x = {

~

13

/

Defining one job’s r-work

W(r) = work relevant to r

. . , 0 ifr<
wy(r) = r-work of single job of rem. size x = {

~

13

/

Defining one job’s r-work

W(r) = work relevant to r

. . , 0 ifr<
wy(r) = r-work of single job of rem. size x = {

~

T

13

/

Defining one job’s r-work

W(r) = work relevant to r

0
wx(r) = r-work of single job of rem. size x = {

~

T

if r <
if r >

13

Defining one job’s r-work

W(r) = work relevant to r

0
wx(r) = r-work of single job of rem. size x = {

if r <
if r >

13

W(r)

Wy (1)

Defining one job’s r-work

= work relevant to r
= total r-work of all jobs

0
= r-work of single job of rem. size x = {

if r <
if r >

13

From r-work to number of jobs

14

From r-work to number of jobs

(‘ Goal: integral = N }

W(r)
/T

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

wW(r) Wi (1)
/T A\
0 ifr<
w.(r) = r-work of job of rem. size x = 4 .
x ifr=

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

W(r) Wy (1)
/T A\
>1/r
(0 ifr<
wx(r) = r-work of job of rem. size x = { .
x ifr=

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

wW(r) Wi (1)

/T

w.(r) = r-work of job of rem. size

Il/r

1/

(0 ifr<
if r >

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

wW(r) Wi (1)

/T

w.(r) = r-work of job of rem. size

1/r

1/

(0 ifr<
if r >

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

wW(r) Wi (1)
/T
>1/r 1/ 1/r
(:
w.(r) = r-work of job of rem. size x = 4 0 %f s
\ if r >

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

wW(r) Wi (1)

F-L\—Jl/r

w.(r) = r-work of job of rem. size

1/r

1/

(0 ifr<
if r >

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

wW(r) Wi (1)

1
]
! 1/r

w.(r) = r-work of job of rem. size

1/r

1/

(0 ifr<
if r >

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1,

W(r) Wy (1)

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1'

W(r) Wy (1)

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1'

W(l‘) Wx(r)
; X
1
1
1/r T 1/r
Theorem:

Ve

0
] W (r)
WINE | N = I
‘ 0 r2 uses rank = rem. size

14

From r-work to number of jobs

(‘ Goal: integral = N } | Suffices: integral = 1'

W(r) Wy (1)

: X
1
! 1/r 1/r

1/x

Theorem: under any policy,

1‘
uses rank = rem. size

14

How does WINE help?

Theorem:

How does WINE help?

Theorem:

How to minimize W(r)?

How does WINE help?

Theorem:

How to minimize W(r)?

Prioritize jobs with rank < r

15

How does WINE help?

Theorem:

How to minimize W(r)? L

Prioritize jobs with rank < r)

To do for all r:
always serve job of minimum rank

15

How does WINE help?

Theorem:

How to minimize W(r)? L

Prioritize jobs with rank < r

é under P01sson
arrlvals

J

To do for all r:
always serve job of minimum rank

15

A

SRPT-flavored WINE:
@)
%%
N = f (r) dr
0

P2

16

SRPT-flavored WINE:
x a N =f Wr) dr
0

P2

i Gittins-flavored WINE:

B[N = f E(W()]
0

P2

16

P2

i Gittins-flavored WINE:

B[N = f E(W()]
0

SRPT-flavored WINE:
x a N zf Wr) dr
0

P2

Lemma: using Gittins-flavored r-work,

- f *° E[one job’s r-work | job’s state]
— =
0

dr

16

SRPT-flavored WINE:
’k a N zf Wr) dr
0

12
i Gittins-flavored WINE:
Related to achievable 00
region method E[N]|= f E[Wz(r)] dr
r
0

Lemma: using Gittins-flavored r-work,

- f “° E[one job’s r-work | job’s state]
— =
0

dr

16

Robustness of Gittins

2

B[N — f E[W ()]
0

Robustness of

B[N — f E[W()] ,
0

Corollary: if

2

function is within ¢ factor

of ’s, then E[N] is within c2 of optimal

17

Robustness of

2

B[N — f E[W()] ,
0

Corollary: if function is within c factor
of ’s, then E[N] is within c2 of optimal

Proof: change of variables in integral

17

Robustness of

BTN — f E[W()] ,
0

I’ robustness to noisy

; job size predictions
Corollary: if function is within c factor

of ’s, then E[N] is within c2 of optimal

Proof: change of variables in integral

17

Robustness of

B[N — f E[W()] .
0

I robustness to noisy

; job size predictions
Corollary: if function is within c factor
of ’s, then E[N] is within c2 of optimal

can substitute n samples

Proof: change of variables in integral S e
for true distribution S

17

'
I
| |
I |

¢

SO0

Part 1
Handling job size uncertainty

Part 11
Analyzing multiserver scheduling

Part 111
Optimizing tail metrics

18

j Part I
.1 Handling job size uncertainty

Queueing for TCS
Use WINE to analyze
with arbitrary release dates?

Part 11

SO0

Analyzing multiserver scheduling

Part 111
Optimizing tail metrics

18

Scheduling in the M/G/k

Scheduling in the M/G/k

- 1118

N0

M/G arrivals

 arrival rate A
(Poisson)
* job size dist. S

19

Scheduling in the M/G/k

speed 1/k

%9 ? -K\é W} k servers of
O

M/G arrivals

 arrival rate A
(Poisson)
* job size dist. S

19

Scheduling in the M/G/k

%9 ? -K\é W} k servers of
O

speed 1/k

*. w J size s job
M/G arrivals takes ks time
« arrival rate A

(Poisson)
* job size dist. S

19

Scheduling in the M/G/k

speed 1/k

-K\é >k servers of
H\Qq

J size s job
takes ks time

20

Scheduling in the M/G/k

I3

J

20

k servers of
speed 1/k

size s job
takes ks time

1 server of
speed 1

Scheduling in the M/G/k

i==3

J

AN

comparable

e

k servers of
speed 1/k

size s job
takes ks time

1 server of
speed 1

19

Scheduling in the M/G/k

i==3

J

AN

comparable

0]

bin-packing
aspect

k servers of
speed 1/k

size s job
takes ks time

1 server of
speed 1

19

-

Q: Are SRPT and Gittins
still good in the M/G/k?

20

@ Q: Are SRPT and Gittins A: Yes, especially in the
= still good in the M/G/k? heavy traffic limit

-

Q: Are SRPT and Gittins A: Yes, especially in the
still good in the M/G/k? heavy traffic limit

Theorem: for SRPT and Gittins,

E[T,] <E[T;]+(k—1)- O(lOg 1 ip)

20

-

Q: Are SRPT and Gittins A: Yes, especially in the
still good in the M/G/k? heavy traffic limit

Theorem: for SRPT and Gittins,

E[T,.|<E[T;]+

— -
E[S*(logS)*]< oo = o(E[T;])

20

SRPT-k SRPT-1

So0%

SRPT-k

\

k servers,
speed 1/k

b S

SRPT-1

21

SRPT-k

k
SP

servers,
eed 1/k

b S

21

r———

SRPT-k

\

k servers,
speed 1/k

E[Tx]

b S

SRPT-1

|

)

éc, Q E[T:]

21

 —

SRPT-k

|

k servers,
speed 1/k

E[Tx]

T2

AN
NS

E[Wi(r)] :]‘ > E[Wi(r)]

SRPT-1

|

)

é Q E[T:]

AN
NS

21

SRPT-k

k servers,
speed 1/k
—
O

SRPT-1

\

21

k servers,
SRPT-k speed 1/k

ot

(E[Wk(r)] |
Lemma: r-work
decomposition

21

SRPT-k

k
SP

servers,
eed 1/k

T2

21

SRPT-k

servers,
eed 1/k

k
Sp

21

Lemma: r-work
decomposition

22

Lemma: r-work
decomposition

E[W.(r)] =E[W;(r)] + “r-work of k —1 jobs”

22

E[W.(r)] =E[W;(r)] + “r-work of k —1 jobs”
<E[W;(r)]+(k—1)r

Lemma: r-work
decomposition

Lemma: r-work R 0w : ,s
decomposition E[W,.(r)] =E[W;(r)] + “r-work ;Hn e
<E[W,;(r)]+(k—1)r

'
I
| |
I |

¢

SO0

Part 1
Handling job size uncertainty

Part 11
Analyzing multiserver scheduling

Part 111
Optimizing tail metrics

23

j Part I
.1 Handling job size uncertainty

Queueing for TCS
Use WINE to analyze SRPT-k
with arbitrary release dates?

Part 11

SO0

Analyzing multiserver’scheduling

Part 111
Optimizing tail metrics

23

Tail metrics

Tail metrics

-

P[T > t]?
Minimize < E[(T — t)+]?

= quantiles of T?

%g

Tail metrics

-

@ P[T > t]? @Practice: important

Minimize 3 E[(T — t)+]?
= quantiles of T?

%g

Tail metrics

-

P[T > t]? @Practice: important
Minimize {

E[(T —t)*]?
= quantiles of T? ATheory: very hard

%g

v

-

P[T > t]?

Minimize { E[(T — t)+]?
quantiles of T?

Tail metrics

QQ Practice: important

&Theory: very hard

%g

o

Tractable:

study t — oo
asymptotics

24

Asymptotic response time tail

probability

1

0 threshold t

25

Asymptotic response time tail

probability

threshold t

25

epends on
pohcy T

Asymptotic response time tail

probability

threshold t

25

epends on
pohcy T

Asymptotic response time tail

probability

threshold t

25

epends on
pohcy T

when S

Asymptotic response time tailt

probability

is
light-tailed

threshold t

25

epends on
pohcy T

when S

Asymptotic response time tailt

probability

is
light-tailed

threshold t

25

epends on
pohcy T

Asymptotic response time tail

probability

response time tail

Cn P[Tﬂ' > t]

asymptotic behavior
C.e '

v . = decay rate of T

C.. = tail constant of T

hen S

W is
light-tailed

threshold t

25

Weak optimality: <— I'n

optimal y~

ependsi Asymptotic response time tailt
policy
probability

when S is
light-tailed

response time tail

P[T,>t]

asymptotic behavior
C.e '

threshold t

= decay rate of

C.. = tail constant of T

25

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability Cght-taileg
response time tail
N P[T,>t]

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal y-

_—> Strong optimality:

C.. = tail constant of T optimal y and C;

25

ependsi Asymptotic response time tailt

policy Wh en S @
probability light-tailed

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal y-

_—> Strong optimality:

C.. = tail constant of T optimal y and C;

25

hen S is

olicy
P ight- talled

probability

ependsi Asymptotic response time tallt
1

response time tail

Heavy-tailed S:
SRPT and others are
strongly optimal

Cn P[Tﬂ' > t]

asymptotic behavior
C.e '

0 threshold t
= decay rate of T
Weak optimality: <~ I'n . Y _—> Strong optimality:
optimal ¥ C.. = tail constant of T optimal y» and Cx

25

Optimizing the decay rate y

me. ECES

= == SRPT

26

Optimizing the decay rate y

me. ECES

= == SRPT

26

P[T > t]
0.10 -~

0.08
0.06 |
0.04

0.02

0.00

Optimizing the decay rate y

me. ECES

= == SRPT

26

Optimizing the decay rate y

P[T > t]
0.10 -~

- e HCF S
0.08 |

- = == SRPT
0.06 |

0.04

0.02

0.00

26

P[T > t]/P[Trcrs > t]

1.4

1.2

Optimizing the decay rate y

0 10

20

30

40

26

Optimizing the decay rate y

P[T > t]/P|Trcrs > t]
1.4

Observation:

[|
- FCFS -~ VSRPT
L2f N 4 4 ——— FCFS

4

1.0 :
’ = = = SRPT
0.8 | ,,

0.6 \ y

04 § ’

0.2 L

0.0- | | | 1t

Optimizing the decay rate y

Pl[z > tl/PlTrcrs > t] Observation:
; ;, VECFS = YSRPT
12} ; ——— FCFS
_ / 4
1.0
’ = = = SRPT
0.8 | ,' Prior work:
L Y 4 see [Boxma & Zwart, 2007]
0.6 1 Y : :
"\ R * yrcrs 1S optimal
04 § ’ : :
RN L” * YSRPT 1S peSSlmCll
i S =
0.2 |
0.0] | | | | t

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
1.4 i !

1o} , ——— FCFS

Optimizing the tail constant C

P[T > t]/P|Trcrs > t]

1.4 Conjecture: FCFS
I Il optimizes y and C?
1.2 ! [Wierman & Zwart, 2012]) e FCFS
| , -
1.0
’ = = = SRPT
4
0.8 | ,
1 ’
0.6 1 ’
i Y 4
-\ ’
04F V ’
B s’
! D JNERESIL S
0.2
0.0 - ' | I 't

P[T > t]/P[Trcrs > t]
1.4

1.2 |
1.0}
0.8 |
0.6
0.4
0.2

0.0L

Optimizing the tail constant C

Conjecture: FCFS

,' optimizes y and C?

! [Wierman & Zwart, 2012]) e HCES

! —
~ = = SRPT

,, ------ NUdge
P [Grosof et al., 2021]
' 4
4

27

Optimizing the tail constant C

P[T > t]/P|Trcrs > t] -
1.4 - Conjecture: FCFS
' optimizes y and C?

1.2 F / |[Wierman & Zwart, 2012]

1.0 k
0.8

0.6 -

04F § ’

0.2 -

ooLb— s

e HCF S

------ NUdge
[Grosof et al., 2021]

=== = BOOSt

27

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]

14 - Conjecture: FCFS
i ! Sy R
- ' optimizes y and C:
12 L ! [(Wierman & Zwart, 2012]) = ECFES
I I -
1.0
= = = SRPT
0.8
06 _ Nudge
i [Grosof et al., 2021]
04 = = == Boost
0.2} CEW! The.or.em: Boost
_ optimizes y and C
00—

How Boost works

l(

28

How Boost works

boosted arrival time
= arrival time — b(size)

l(

28

How Boost works

boosted arrival time
= arrival time — b(size)

NG

arrival tim@

lc

28

How Boost works

boosted arrival time
= arrival time — b(size)
ﬁﬁ l; arrival tim@

| boost = b(size)

28

oosted

b
arrival time

T

How Boost works

boosted arrival time
= arrival time — b(size)

arrival tim@

| boost = b(size)

28

How Boost works

boosted arrival time
= arrival time — b(size)

~
I\

boosted
arrival time

T

| boost = b(size)

smaller size,
bigger boost!

arrival tim@

How Boost works

boosted arrival time
= arrival time — b(size)

I\
>

boosted
arrival time

T

smaller size,
bigger boost!

arrival tim@

| boost = b(size)

How Boost works

boosted arrival time

oosted

b
arrival time

T

= arrival time — b(size)

~
I\

smaller size,

arrival tim@ bigger boost!

| boost = b(size)

28

How Boost works

boosted arrival time
= arrival time — b(size)

25

C
]

How Boost works

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — b(size)

25

How Boost works

can be preemptive
Or nonpreemptive

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
G = arrival time — b(size)

=
B
L

25

How Boost works

can be preemptive
Or nonpreemptive

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
G = arrival time — b(size)

i

What's the right
= boost function?

=
B
L

25

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

30

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

Batch problem

30

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

(. /)
~

“cO0-P|[T > 00]”

Batch problem

30

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

(. /)
~

“cO0-P|[T > 00]”

Batch problem

minimize P[T > oo

30

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

(. /)
~

ccoo . P[T > OO]))

Batch problem

1 n
minimize P[T > oo]| = —Z 1(t; > o0)
L

30

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

(. /)
~

“cO0-P|[T > 00]”

Batch problem

1 n
minimize P[T > oo]| = —Z 1(t; >00)=0
=

30

Queueing problem

minimize C = lim e"'P[T > t]

t— OO0

(. /)
~

“cO0-P|[T > 00]”

Batch problem

30

Queueing problem

minimize C = lim e"'P[T > t] = lim
t— 00 00—y

— _/
~

“cO0-P|[T > 00]”

Batch problem

Y_QE[eQT]

14

&S

30

Queueing problem

— 6
minimize C = lim ¢"P[T > ¢] = lim F 7 R[]
t— 00 —Y
L) Y _
Y Y
“oO P[T > OO]” “O'E[eYT]”

Batch problem

&S

30

Queueing problem

— 6
minimize C = lim ¢"P[T > ¢] = lim F 7 R[]
t— 00 —Y
L) Y _
Y Y
“oO P[T > OO]” “O'E[eYT]”

Batch problem

minimize E[e"]

&S

30

Queueing problem

— 6
minimize C = lim ¢"P[T > ¢] = lim F 7 R[]
t— 00 —Y
L) Y _
Y Y
“oO P[T > OO]” “O'E[eYT]”

Batch problem

n

L 1 |
minimize E[e’']= — E el
=

&S

30

Queueing problem

— 6
minimize C = lim ¢"P[T > ¢] = lim F 7 R[]
t— 00 —Y
L) Y _
Y Y
“oO P[T > OO]” “O'E[eYT]”

Batch problem

n

L 1 |
minimize E[e’']= — E el
=

&3
V4

30

Queueing problem

— 6
minimize C = lim e"'P[T > t] = élm ! E[eQT]
t— 00 —Y
_ PR 4 J
~ ~
“OO P[T > OO]” “O'E[eYT]”

Batch problem

minimize E[e"'] = Ze“ =
=1

&S
_Z - Qf

30

Queueing problem

— 6
minimize C = lim e"'P[T > t] = élm ! E[eQT]
t— 00 —Y
_ PR 4 J
~ ~
“OO P[T > OO]” ccO E[eYT]n

Batch problem

mlmmlze E[@YT]— E eYt — — E —ya eYd w
=1

almost classic
problem

30

Solving the batch problem

minimize E[eYT]— E e’ti = = E e T%gVd:

=1

31

Solving the batch problem

minimize E[eYT]— E e’ti = = E e T%gVd:

Classic metric: mean weighted 1 ZW .04
discounted departure time

31

Solving the batch problem

minimize E[eYT]— E e’ti = = E e T%gVd:

Classic metric: mean weighted 1 ZW .04
discounted departure time

31

Solving the batch problem

minimize E[e"!] = Ze”l = — Z e 1% gV
&Y >0)

Classic metric: mean weighted 1 ZW .04
discounted departure time

31

Solving the batch problem

minimize E[e"!] = Ze”l = — Z e 1% gV
EY >0)

negative

discount rate Classic metric: mean weighted 1 Z w,e—04

discounted departure time

31

Solving the batch problem

minimize E[e"!] = Ze”l = — Z e 1% gV
EY >0)

negative
discount rate

can’t start i
before a;

Classic metric: mean weighted 1 ZW .04
discounted departure time

31

Solving the batch problem

minimize E[e"!] = Ze“l = — Z e 1% gV
EY >0)

negative
discount rate

can’t start 1
before a;
Relaxation solved by (sign-flipped) WDSPT, which is Boost with

1 1
b(s) = —1
() MR pp—

Classic metric: mean weighted 1 ZW .04
discounted departure time

31

Solving the batch problem

minimize E[e"!] = Ze“l = — Z e 1% gV
EY >0)

negative
discount rate

can’t start 1
before a;
Relaxation solved by (sign-flipped) WDSPT, which is Boost with

1 1
b(s) = —log
- Y l—e 78
y-Boosé

Classic metric: mean weighted 1 ZW .04
discounted departure time

31

Solving the batch problem

Takeaway:
=" E[e""] for critical y is a

“smoothed” tail metric

1 1
b(s) = —log

- 1l—ers
y-Boosé ’

31

Solving the batch problem

Takeaway:
E[e""] for critical y is a

“smoothed” tail metric

1 1
b(s) = —log

- 1l—ers
y-Boosé ’

Unknown sizes:
swap WDSPT for Gittins

31

Multiserver tail optimization

\

> k servers of
speed 1/k

32

Multiserver tail optimization

\

> k servers of
speed 1/k

J

Theorem: y-Boost is strongly tail-optimal
in the heavy-traffic limit

é*: AE[S]— 1)

32

Multiserver tail optimization

\

> k servers of
speed 1/k

J

Theorem: y-Boost is strongly tail-optimal
in the heavy-traffic limit

é*: AE[S]— 1)

32

1 — PIT > t]/P[Trcrs > t]

k = 10 servers, load 0.8

0.25-

k = 10 servers, load 0.95

0.4

0.21

0.00 1

—0.251

—0.501

—-0.751

0.0

—0.21

—0.4 1

— FCFS

20

40
threshold t

90th percentile

60

¢

30 0

99th percentile

25

A

50 75 100
threshold t

99.9th percentile

125

150

33

1 — PIT > t]/P[Trcrs > t]

k = 10 servers, load 0.8

k = 10 servers, load 0.95

0.25 1 0.4-
0.00- ¢ & 0.2
~0.25- 0.0° | '
~0.50- ~0.2-
~0.751 —0.47
0 20 40 60 80 0 25 50 75 100 125 150
threshold ¢t threshold ¢
— FCFS — y-Boost

90th percentile 1 1 entile A 99.9th percentile
b(s)= —log " »
y T l—e

33

1 — PIT > t]/P[Trcrs > t]

k = 10 servers, load 0.8 k = 10 servers, load 0.95

0.25 - W 0.4-
0.001 N A 0.21
—0.251 0.0 1 o $ A
~0.50- ~0.2-
~0.751 —0.47

0 20 40 60 30 0 25 50 75 100 125 150

threshold t threshold t
—— FCFS —— y-Boost —— Gurobi

® 90th percentile 1 1 entile A 99.9th percentile
b(s)= —log " »
y T l—e

33

1 — PIT > t]/P[Trcrs > t]

k = 10 servers, load 0.8 k = 10 servers, load 0.95

0.25 - W 0.4-
0.001 N A 0.21
—0.251 0.0 1 o $ A
~0.50- ~0.2-
~0.751 —0.47

0 20 40 60 30 0 25 50 75 100 125 150

threshold t threshold t
—— FCFS —— y-Boost —— Gurobi

® 90th percentile 1 1 entile A 99.9th percentile
b(s)= —log " »
y T l—e

Boost large jobs?

i

33

k = 10 servers, load 0.8 k = 10 servers, load 0.95

= 0.25 0.4
A M
E 0.00 1 \ A 0.2
S 025 0.0-) ’ .
A _
e ~0.50- —0.2
Ay
I ~0.75- 0.4
i
0 20 40 60 30 0 25 50 75 100 125 150
threshold t threshold t
— FCFS —— y-Boost — Gurobi
® 90th percentile b(s) Tl 1‘%entile A 99.9th@m3
S)= —10 . .
y S 1—er bin packing
M

Boost large jobsi?

i

33

1 — PIT > t]/P[Trcrs > t]

k = 10 servers, load 0.8 k = 10 servers, load 0.95

0.251 W 0.4 1
0.00 1 \ A 0.2
—0.251 0.0 1 o o A
~0.50 1 ~0.2-
~0.751 —0.47
0 20 40 60 30 0 25 50 75 100 125 150
threshold t threshold t
— FCFS —— y-Boost —— SizeBoost — Gurobi

e 90th percentile 1 1 Sen(b(s) = (k—1)s ;).9th compare to
b(s) = —log — : :
y Cl—ers bin packing
M

Boost large jobsi?

Wi

33

k = 10 servers, load 0.8 k = 10 servers, load 0.95

_ | . 4
X 0.25 | Mwm,ﬁwf T 0
5 0.00- /\-\/9/ A A 0.2- v
F ' - ‘?«./“I‘m
~ -0.257 0.07 ° ¢ A
A _
e ~0.50- —0.2
Ay
I ~0.75- 0.4
i
0 20 40 60 30 0 25 50 75 100 125 150
threshold t threshold t
— FCFS y-CombinedBoost —— y-Boost —— SizeBoost —— Gurobi

ercentile 1 1 Sen(b(s) = (k—1)s ;>.9th compare to
b(s) = —log — : :
y Cl—ers bin packing
M

Boost large jobsoo?

i

33

k = 10 servers, load 0.8 k = 10 servers, load 0.95

_ | . 0.4
4/~\a 0.25 | Ww,@,wﬁwf \W\,Wv
5 0.00- /\.\,/,/ R A 0.21 | |
ﬁ‘-') a "'\/“I"‘h
E, /_i *\’"‘“”“*/"M_A/M)
< -0.25 0.07 ’ '
A _
e ~0.50- —0.2
Ay
I ~0.75- 0.4
Lo |
0 20 40 60 30 0 25 50 75 100 125 150
threshold t threshold t
— FCFS y-CombinedBoost —— y-Boost —— SizeBoost —— Gurobi

ercentile 1 1 Sen(b(s) = (k—1)s ;>.9th compare to
b(s) = —log — : :
y Cl—ers bin packing
M

Boost large and small jobs!?

i

33

'
I
| |
I |

¢

SO0

Part 1
Handling job size uncertainty

Part 11
Analyzing multiserver scheduling

Part 111
Optimizing tail metrics

34

j Part I
.1 Handling job size uncertainty

Part 11

SO0

Analyzing multiserver scheduling
TCS for Queueing

Approximation algorithms for
smoothed tail metric E[e""]?

Part 111
Optimizing tail metrics

34

j Part I
.1 Handling job size uncertainty

Queueing for TCS
Use WINE to analyze
with arbitrary release dates?

Queueing for TCS
Use WINE to analyze SRPT-k
with arbitrary release dates?

Part 11

SO0

Analyzing multiserver’scheduling
TCS for Queueing

Approximation algorithms for
smoothed tail metric E[e""]?

Part 111
Optimizing tail metrics

34

