New Tools for
Optimizing Tail Latency in Queues:
Generating Functions, the Gittins Index, and Gurobi

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE
Amit Harlev Cornell CAM
Reevu Adakroy Cornell ORIE

New Tools for
Optimizing Tail Latency in Queues:
Generating Functions, the Gittins Index, and Gurobi

SIGMETRICS 2024

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE
Amit Harlev Cornell CAM
Reevu Adakroy Cornell ORIE

New Tools for
Optimizing Tail Latency in Queues:
Generating Functions, the Gittins Index, and Gurobi

TGS 20

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE
Amit Harlev Cornell CAM
Reevu Adakroy Cornell ORIE

New Tools for
Optimizing Tail Latency in Queues:
Generating Functions, the Gittins Index, and Gurobi

SIGMETRICS 2024 SIGMETRICS 2026

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE
Amit Harlev Cornell CAM
Reevu Adakroy Cornell ORIE

New Tools for
Optimizing Tail Latency in Queues:
Generating Functions, the Gittins Index, and Gurobi

SIGMETRICS 2024 SIGMETRICS 2026

Ziv Scully

SIGMETRICS 2024 best paper,

ﬁ 2024 INFORMS APS student
paper competition finalist

Joint work wi

George Yu Cornell ORIE
Amit Harlev Cornell CAM
Reevu Adakroy Cornell ORIE

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

|0

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

%

How should we schedule jobs to minimize delay?

% 10,

How should we schedule jobs to minimize delay?

% 10,

How should we schedule jobs to minimize delay?

% 10,

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @DZ

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

@%fj s @U

How should we schedule jobs to minimize delay?

@%fj s @U

@ Minimize E[T]?

-

How should we schedule jobs to minimize delay?

v T

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

Cllll

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?
Gfe
3 U
R
L Serve short jobs
@ Minimize E{T]? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?

R0,

shortest remaining
processing time

@ Minimize E[T]? Q]:S)Egseslfcl) 211; ;gbbz SRPT: minimizes E|[T]

-

X

Beyond the mean: tail metrics

5)

l @T:

Beyond the mean: tail metrics

-

P[T > t]?
Minimize < E[(T — t)+]?

= _quantiles of T?

% . 10}

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T?

% . 10}

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T? ATheory: very hard

% . 10}

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T? ATheory: very hard

BN

M/G arrivals |

e arrival rate A
* job size dist. S

Beyond the mean: tail metrics

rP:T > t]? Q?Practice: important Tractable:
Minimize { E[(T —t)*]? study t — oo
= _quantiles of T? ATheory: very hard asymptotics

0%

D

Gﬁe
%
M/G arrivals |

e arrival rate A
* job size dist. S

Beyond the mean: tail metrics

no single t value
1S most important
P[T > t]? Q? Practice: important @ Tractable:

Minimize { E[(T —t)*]? study t — oo
= _quantiles of T? ATheory: very hard asymptotics

BN

M/G arrivals |

e arrival rate A
* job size dist. S

Asymptotic response time tail

probability

1

0 threshold t

Asymptotic response time tail

probability

threshold t

ependsi Asymptotic response time tail
policy &

probability

threshold t

ependsi Asymptotic response time tail
policy &

probability

threshold t

ependsi Asymptotic response time tailt

policy Wh en S 5
probability light-tailed

threshold t

ependsi Asymptotic response time tailt

policy Wh en S 5
probability light-tailed

threshold t

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability C’ght-tail@
response time tail
N P[T,>t]

asymptotic behavior
—Y -
C 7€ I'n (roughly)

threshold t

v . = decay rate of T

C.. = tail constant of T

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability C’ght-tail@
response time tail
N P[T,>t]

asymptotic behavior
—Y -
C 7€ I'n (roughly)

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal ¥ C.. = tail constant of T

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability Cght-taileg
response time tail
N P[T,>t]

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal y-

_—> Strong optimality:

C.. = tail constant of T optimal y and C;

ependsi Asymptotic response time tailt

policy Wh en S @
probability light-tailed

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal y-

_—> Strong optimality:

C.. = tail constant of T optimal y and C;

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

P[T > t]
0.10 -

0.08
0.06 |
0.04

0.02

0.00

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

P[T > t]
0.10 -

0.08
0.06 |
0.04

0.02

0.00

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

P[T > t]/P[Trcrs > t]
14 -

1.2 F

FCFES vs. SRPT

L ¢
0.6 -\ Y
-\
04}
N mm=
0.2 |
0.0- | 1 | 1 1 1 1 | 1
0 10 20 30 40

me. FCEFS

(first-come
first-served)

= = = SRPT

1.4

12|

FCFES vs. SRPT

P[T > t]/P[Trcrs > t] =
: ; Observation: QM

! VFCFS = YSRPT

- 4
: 4
E ! e FCEFS
/4 fi
_ , (first-come
L / first-served)
'\ ’
RY ,/ = = = SRPT
-\ _ v 4
N\ ~_ - =
I ' ' 't

0 10 20 30 40

FCFES vs. SRPT

P[T > t]/P[Tecrs > t] =
14 , Observation: M@

! YFCFS = YSRPT

1.2 - J
_ 4
1.0
! s FCF'S
0.8 ,' Prior work: (first-come
L / see [Boxma & Zwart, 2007] first-served)
0.6 1 V4 : :
v R * Yrcrs 1S optimal - = = SRPT
04k % ’ : .
RN L” * YSRPT 1S peSSlmCll
i S =
0.2 |-
0.0] " ! 1 1 1 1 1 1 1 1 1 1 1 1 1 . . ! . | t

Tradeoft: priority vs. starvation

w

Tradeoft: priority vs. starvation

Tradeoft: priority vs. starvation

Tradeoft: priority vs. starvation

Prioritize 6 Don’t starve

short jobs H O H long jobs

Tradeoft: priority vs. starvation

§f{PT:
optimal E[T] @

Prioritize Don’t starve

short jobs n O H long jobs

Tradeoft: priority vs. starvation

SRPT: FCFS:
optimal E[T] @ optimal y

Prioritize Don’t starve

short jobs O long jobs

Tradeoft: priority vs. starvation

Open problem:
SRPT: optimal y and C F(FFS:
optimal E[T] @ optimal y

Prioritize Don’t starve

short jobs O long jobs

Tradeoft: priority vs. starvation

Open problem:
SE%PT: FCFS:
optimal E[T] @ optimal y

optimal y and C
Prioritize Don’t starve

short jobs O long jobs

Conjecture: FCFS optimizes C, too
|[Wierman & Zwart, 2012]

Tradeoft: priority vs. starvation

Open problem:
SRPT: optimal y and C F(FFS:
optimal E[T] @ optimal y

Prioritize Don’t starve

short jobs O long jobs

Conjecture: FCFS optimizes C, too
|[Wierman & Zwart, 2012]

Tradeoft: priority vs. starvation

Open problem:
SE%PT: FCFS:
optimal E[T] @ optimal y

optimal y and C
Prioritize Don’t starve

short jobs O long jobs

partial
priority

S~
=
@

Conjecture: FCFS optimizes C, too
|[Wierman & Zwart, 2012]

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]

1.4

1.2

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 i !

1.2 — J

1.0
0.8

0.6 I

04 § ’

0.2 L

0.0 N T B S t

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 -

1.2 !

1.0 §
0.8
0.6 -
04l v ’ = Boost@

0.2 -

ooLb— s

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 -

1.2 !

1.0 |
0.8
0.6 -
oal - Boost@

CEW! Theorem: Boost
optimizes y and C

0.2 -

0.0L

Our contributions:

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

of many policies

Olll‘ COIltl‘iblltiOIlS o gctually a family)

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

Olll‘ COIltl‘iblltiOIlS o gctually a family)

of many policies

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

of many policies

Olll‘ COIltl‘ibllti()IlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

of many policies

Olll‘ COIltl‘iblltiOIlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes

of many policies

Olll‘ COIltl‘ibllti()IlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

{1 Known job sizes . < Unknown job sizes

s

of many policies

Olll‘ COIltl‘ibllti()IlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes . < Unknown job sizes //8:Multiple servers

¥ Nt

QD) 1) 1)

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

Boost@

Why is achieving strong tail optimality hard?

How do we achieve strong tail optimality?

?
@ How does the policy family work?
=
?

Boost@

@ Why did it take so long to beat FCFS?
=

Heavy-tailed sizes
“S Pareto-ish” (regularly varying)

P[S>s]~As“

Light-tailed sizes

“S exponential-ish or lighter” (class 1)

P[S>s]~Ae™®

10

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As“ P[S>s]~Ae™®

<&

P[T.>t]~C_ e '

10

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As™* P[S>s]~Ae™®

<& <&

P[T.>t]~C_t " P[T.>t]~C_ e '

10

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C_t " P[T.>t]~C_ e '

v, = decay rate of

C,. = tail constant of 7

10

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C_t " P[T.>t]~C_ e '

v, = decay rate of

C,. = tail constant of 7

Weak optimality:
maximize Y

10

Heavy-tailed sizes
“S Pareto-ish” (regularly varying)

P[S>s]~As™*

<&

PIT.>t]~C_t7'"

Weak optimality:
maximize Y

Light-tailed sizes

“S exponential-ish or lighter” (class 1)

P[S>s]~Ae™®

<&

P[T >t]~C_ e '~

v, = decay rate of

C,. = tail constant of 7

Strong optimality:
maximize yr, minimize Cy

10

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s|~As ¢ P[S>s]|~Ae™™®
P[T.>t]~C, t " P[T.>t]~C._e '
(roughly) (roughly)

v, = decay rate of

C,. = tail constant of 7

Weak optimality: Strong optimality:
maximize Y maximize yr, minimize Cy

(roughly)

10

What causes large response times?

Heavy-tailed sizes Light-tailed sizes

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least attained service) optimal y = a

FCFES pessimaly = a — 1

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least attained service) optimaly = a pessimal y

FCFES pessimaly = a — 1 optimal y

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. : . :
(least attained service) optlmal y=a PeSSImal 4
FCFES pessimaly = a — 1 optimal y

Main cause
o of large T?

What causes large response times?

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. : _ :
(least attained service) optlmal y=a pe551mal 4
FCFES pessimaly = a — 1 optimal y

Main cause | “Catastrophe”
o of large T7? one giant job

What causes large response times?

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. : _ :
(least attained service) optlmal y=a PeSSImal 4
FCFES pessimaly = a — 1 optimal y

I’m stuck behind
the giant job

Main cause | “Catastrophe”
o of large T7? one giant job

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

I’m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc. optimal y = « pessimal y

(least attained service)
I’'m the
giant job
prioritiz®
ShOYt)Obs

FCFS pessimal y =
[Scully & van Kreveld, 2025]

I’m stuck behind
the giant job

Main cause | “Catastrophe”
o of large T7? one giant job

What causes large response times?

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least iy/d service) optimaly = a
also optimal C for I'm the
heavy-tailed sizes giant job

FCFES pessimal y = «

I’m stuck behind
the giant job

Main cause | “Catastrophe”
o of large T7? one giant job

pessimal y

priorinze
ShOYt 3010S

[Scully & van Kreveld, 2025]

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

I’m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

11

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

I’m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

I’m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

I see lots of work
when I arrive

“Conspiracy”
lots of biggish jobs

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

I’m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

I'm a very big job,
lots of smaller jobs
are passing me

optimal y

I see lots of work
when I arrive

“Conspiracy”
lots of biggish jobs

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. : _ :
(least attained service) optlmal y=a PeSSImal 4
FCFES pessimaly = a — 1 optimal y
Main cause | “Catastrophe” “Conspiracy”
o of large T? one giant job lots of biggish jobs

11

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

11

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

11

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y
optimal y

intermediate y

“Conspiracy”
lots of biggish jobs

11

What causes large response times?

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

. I'm in bucket 2,
optimal ¥ ots of bucket 1 jobs

are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

11

What causes large response times?

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. : _ :
(least attained service) optlmal y=a PeSSImal 4
. . I'm in bucket 2,
FCFS pessimaly = a — 1 optimal ¥ {1ots of bucket 1 jobs
are passing me

Prioritize @ Don’t starve

short jobsﬂ = H long jobs

Main cause | “Catastrophe” “Conspiracy”
o of large T? one giant job lots of biggish jobs

SRPT or LAS
just two bucket

intermediate y

11

What causes large response times?

/\ Takeaway:

for light-tailed sizes,
avoid strict priorities

Prioritize ? Don’t starve

short jobs ﬂ = H long jobs
“Conspiracy”

o of large T? lots of biggish jobs

11

Can we beat FCFES?

Can we beat FCFES?

Q Nudge

Can we beat FCFES?

Nudge

- small job can pass one large job

12

Can we beat FCFES?

Nudge

- small job can pass one large job

12

Can we beat FCFES?

Nudge

- small job can pass one large job

12

Can we beat FCFES?

Nudge

- small job can pass one large job

12

Can we beat FCFES?

Nudge

Q .

small job can pass one large job

12

Can we beat FCFES?

Nudge

- small job can pass one large job
- large job can’t be passed twice

12

Can we beat FCFS?
@udge@

3¢

Nudge

- small job can pass one large job
- large job can’t be passed twice

12

Can we beat FCFS?
@udge@

J5U% G

Nudge

- small job can pass one large job
- large job can’t be passed twice

12

Can we beat FCFS?
@udge@

3¢

Nudge

- small job can pass one large job
- large job can’t be passed twice

>€?>|@

Theorem:
CNudge < CFCFS

12

Can we beat FCFS?
@udge?

0<p 83' §

Nudge Theorem:

- small job can pass one large job CNudge < CFCFS
- large job can’t be passed twice

More complex variants get even lower C

12

Boost@(%

@ Why did it take so long to beat FCFS?

=

@ Why is achieving strong tail optimality hard?
=

@ How does the Boost policy family work?

-

@ How do we achieve strong tail optimality?
=

13

=) 829 029 K

Boost@(%

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

13

=) 829 029 K

Boost@(%

strict pI'lOrltleS

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

13

Boost@

@ Why is achieving strong tail optimality hard?
=

13

Can we beat Nudge?

Can we beat Nudge?

@ How to handle
range of sizes?

C:

iy

14

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small?

U U

i

14

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large?

Cllll

o § G@

i

14

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large? something else?

o

i

G@

Cllll

o § G@

i

14

Can we beat Nudge?

What info could
help us decide?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large? something else?

o

i

G@

Cllll

o § G@

i

14

Where do optimal policies come from?

15

Where do optimal policies come from?

Queueing
problem

Clll)l

15

Where do optimal policies come from?

%

arrivals

Queueing
problem

U

Clll)l

15

Where do optimal policies come from?

Queueing

problem <

U

A\

O

arrivals

15

Where do optimal policies come from?

Queueing
problem

&

U

Clll)l

Batch -
problem | -

o
G
]
]

A\

O

arrivals

15

Where do optimal policies come from?

Queueing
problem

e.g. min E|[T]
yields SRPT

Batch
problem

.
Ciy

Clllll

U

&

A\

O

arrivals

15

Where do optimal policies come from?

Queueing

problem

e.g. min E|[T]
yields SRPT

Batch

problem
U U

Clllll

Clllll

U

&

A\

O

arrivals

15

Where do optimal policies come from?

Queueing
problem

e.g. min E|[T]
yields SRPT

Batch

problem
U U

Clllll

&

A\

O

arrivals

15

Where do optimal policies come from?
A\

&

Queueing

problem Q
arrivals
e.g. min E|[T]
yields SRPT
Batch

@ Batch version of
minimizing C?

-

Clllll

roblem
00

15

Where do optimal policies come from?
A\

&

Queueing
problem

e.g. min E|[T] ,
vields SRPT Q Non-asymptotic
version of metric?

Batch
@ Batch version of
minimizing C?

roblem
00 ¢

O

arrivals

Clllll

15

=) 829 029 K

Boost@(%

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

16

Boost@(%

Why did it take so long to beat FCFS?

How does the Boost policy family work?

How do we achieve strong tail optimality?

Qf Why is achieving strong tail optimality hard?
?
?

16

V4
4
?
?

Why did it take so long to beat FCFS?
How to handle
g range of sizes?)

Why is achieving strong tail optimality hard?
Batch version of
minimizing C?

How do we achieve strong tail optimality?

How does the Boost policy family work?

16

V4
4
?
?

Boost@

Why did it take so long to beat FCFS? g

ow to handle
range of sizes?

Why is achieving strong tail optimality hard?
Batch version of
minimizing C?

How do we achieve strong tail optimality?

How does the Boost policy family work?

16

Key information:

@ How to handle
range of sizes?

S

iy

17

Key information: arrival times

@ How to handle
range of sizes?

S

iy

17

i

Key information: arrival times

@ How to handle
J = range of sizes?

>

17

i

Key information: arrival times

@ How to handle
J = range of sizes?

>

i

17

s

Key information: arrival times

@ How to handle
J = range of sizes?

> >

G
C|||

C

17

s

Key information: arrival times

@ How to handle
J = range of sizes?

> >

G
CIII

C

]

G
L

G

17

Key information: arrival times

I @

>

Key information: arrival times

I @

>

Combining arrival time and size

18

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

{C

18

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

NG

arrival tim@

l(

18

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

ﬁﬁ I; arrival tim@

—

J

-~

boost

18

Combining arrival time and size

boosted arrival time
= arrival time — b(size)
ﬁﬁ I; arrival tim@

_/
— —

boost

18

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

boosted
arrival time

arrival tim@

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

rival 1 smaller sizes get
attivd tlm@ bigger boosts

boosted
arrival time

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

rival 1 smaller sizes get
attivd tlm@ bigger boosts

boosted
arrival time

Combining arrival time and size

boosted arrival time
= arrival time — b(size)

rival 1 smaller sizes get
attivd tlm@ bigger boosts

boost l §
I N

gl

boosted
arrival time

Boost policies

boosted arrival time
= arrival time — b(size)

19

C
]

Boost policies

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — b(size)

19

C
]

Boost policies

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — b(size)

can vary choice of
boost function

19

Boost policies

can be preemptive
Or nonpreemptive

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
G = arrival time — b(size)

can vary choice of
boost function

=
B
C

19

Boost@(%

Why did it take so long to beat FCFS?

How does the Boost policy family work?

How do we achieve strong tail optimality?

Qf Why is achieving strong tail optimality hard?
?
?

20

Boost@(%

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

SR

20

Boost@

@ How do we achieve strong tail optimality?
=

20

Boost@

@ How do we achieve strong tail optimality?
=

What’s the right
boost function?

20

Transtforming the problem

C=lim e""P[T > t]

t— OO0

21

Transtforming the problem

¢ = lim e’ P[T > t] @ Finite batch

= problem?

21

Transtforming the problem

T o Y=0 or .
C= lim e"P[T > t] = lim Ele” | @ Finite batch

t— 00 00—y Y
final value prOblem?
theorem Q

Transtforming the problem

— lim e — 1im L= greor .
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
= ~ problem?

Y
“00 -P[T > 00]” O

21

Transtforming the problem

— lim e — 1im L= greor .
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
= ~ problem?

Y
“00 -P[T > 00]” O

Always zero in

batch setting

21

Transtforming the problem

i ot 1 Y =0 . or o
C= lim e"P[T>t]=lim » Ele™] @ Finite batch
= ~ - ~ problem?

Y Y
“oO P[T > OO]” “O‘E[eYT]” -

Always zero in
batch setting

21

Transtforming the problem

i ot 1 Y =0 . or o
C= lim e"P[T>t]=lim » Ele™] @ Finite batch
= ~ - ~ problem?

Y Y
“o0 - P[T > OO]” ccO . E[eYT]n -

Makes sense in
batch setting!

Always zero in
batch setting

21

Transtforming the problem

— lim e — 1im L9 gpeem ..
C= lim e"P[T>t]=lim » Ele™] @lete batch

L VN
~ ~ problem?

“oO P[T > OO]” “O°E[6YT]” -

Makes sense in
batch setting!

Always zero in
batch setting

ti:di_ai

a; = arrival time of job i

d. = departure time of job i

21

Transtforming the problem

— lim 't — 1 Y =0 or o
C = lim e"PLT > t]=lim ——Ele"] @lete batch

L L
~— ~ problem?

“oO P[T > OO]” “O°E[6YT]” -

Makes sense in
batch setting!

Always zero in
batch setting

Batch problem: minimize

t; =d; —q 1 1 n
a; = arrival time of job i E[e"'] == E elli = — E p ViV
1=1

n

n

: : : . n <
d; = departure time of job i i=1

21

Transtforming the problem

— lim 't i 1 0 - or o
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
= ~ - - problem?

almost classic
problem

Batch problem: minimize

Y Y
“oO P[T > OO]” “O°E[6YT]” -

Makes sense in
batch setting!

Always zero in
batch setting

t; =d; —q 1 1 n
a; = arrival time of job i E[e"'] == E elli = — E p ViV
1=1

n

n

: : : . n <
d; = departure time of job i i=1

21

Solving the batch problem

Batch problem: minimize
t; =d; —q; 1 n 1 n
a; = arrival time of job i E[e"] == E elli = — E e T pVd;
n
1=1

: : : . n 4
d. = departure time of job i i=1

U

Solving the batch problem

Batch problem: minimize

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"] == E elli = — E e T pVd;
: : : n “ n 4

d. = departure time of job i i=1 i=1

Classic metric: mean weighted 1 Zn: R
discounted departure time n 4 l
=

U

Solving the batch problem

Batch problem: minimize
ti — di — ai n n
. . . . T]- t: 1 —va: d:
a; = arrival time of job i E[eY]Z—ZeYlZ—Ze S
1=1

: : : n “ n 4
d. = departure time of job i i=1

Classic metric: mean weighted 1 Zn: R
discounted departure time n 4 l
=

U

Solving the batch problem

Batch problem: minimize

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"] == E elli = — E e T pVd;
: : : n “ n 4

d. = departure time of job i i=1 i=1

can’t start i
before a; Classic metric: mean weighted 1 Zn: . e—0d
discounted departure time n 4= l
1=

U

Solving the batch problem

Batch problem: minimize

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"] == E elli = — e T pVd;
: : : n “ n 4 —

d. = departure time of job i i=1 i=1 é

can’t start 1
before q; Classic metric: mean weighted 1< _6d,

discounted departure time n “ l

U

Solving the batch problem

Batch problem: minimize

ti — di — ai n n
. . . . T]- t: 1 —va: d:
a; = arrival time of job i Ele”]Z—ZeYl :_Ze riel
d. = departure time of job i e e Ef
an 't start 1
before ;i Classic metric: mean weighted 1 _od.
8 w.e—0d
discounted departure time n 4 l

—1
negatlve l
discount rate

U

Solving the batch problem

Batch problem: minimize

ti — di — Cll- 1 n 1 n
a; = arrival time of job i E[eYT] = = Z elti = — Z e_YaieYd'
d. = departure time of job i = =T &
an 't start i
before di Classic metric: mean weighted 1 - o0
discounted departure time n 4= i
1=
negatlve
discount rate
Relaxation solved by (sign-flipped) WDSPT, which is Boost with
1 1
b(s) = —log

Y 1—e™s

U

Solving the batch problem

Batch problem: minimize

ti — di — Cll- 1 n 1 n
a; = arrival time of job i E[eYT] = = Z elti = — Z e_YaieYd'
d. = departure time of job i = =T &
an 't start i
before di Classic metric: mean weighted 1 - o0
discounted departure time n 4= i
1=
negatlve
discount rate
Relaxation solved by (sign-flipped) WDSPT, which is Boost with
1 1
b(s) = —log

_ 1—ers
y-Boosé ’

U

Solving the batch problem

Batch problem: minimize

ti — di — Cll- 1 n 1 n
a; = arrival time of job i E[eYT] = = Z elti = — Z e_YaieYd'
d. = departure time of job i = =T &
an 't start i
before di Classic metric: mean weighted 1 - o0
discounted departure time n 4= i
1=
negatlve
discount rate
Relaxation solved by (sign-flipped) WDSPT, which is Boost with
1 1
b(s) = —log

Unknown sizes:
swap WDSPT for Gittins

_ 1—ers
y-Boosé ’

U

Boost@(%

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

SR

23

Boost@(%

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

IV

23

SIS

Boost

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

23

SIS

Boost

Why did it take so long to beat FCFS?
Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

Should you use
= Boost today?

23

SIS

Boost@(%

Why did it take so long to beat FCFS?

Why is achieving strong tail optimality hard?

How does the Boost policy family work?

How do we achieve strong tail optimality?

Should you use
= Boost today?

 Naturally robust to noise

23

Boost@(%

Why did it take so long to beat FCFS? Should you use
= Boost today?

 Naturally robust to noise

How does the Boost policy family work? * Can adapt to unknown job sizes

Why is achieving strong tail optimality hard?

How do we achieve strong tail optimality?

SIS

23

Boost@(%

Why did it take so long to beat FCFS? Should you use
= Boost today?

 Naturally robust to noise

How does the Boost policy family work? * Can adapt to unknown job sizes

Why is achieving strong tail optimality hard?

- Can adapt to multiple servers
How do we achieve strong tail optimality?

SIS

23

0.35 -

e © .O ©
— (\) (\&) W
&) (e} &) o

Tail Improvement Ratio
=
o

Noisy size information

Boost is naturally robust

15 20
Response time

25

30

35

0.5

- 0.4

0.3

0.2

0.1

0.0

0.5 -

S
wo

Tail Improvement Ratio
=)

e
—

0.0 1

Misspecified y

.O
=
1

0 5 10 15 20 25 30 35
Response time

0.40

- 0.35

0.30

0.25

0.20

0.15

0.10

24

Boost in multiserver systems

25

Boost in multiserver systems

Theorem: y-Boost optimizes y and C in heavy-traffic limit (load = 1)

25

Boost in multiserver systems @md <B

Theorem: y-Boost optimizes y and C in heavy-traffic limit (load = 1)

25

Boost in multiserver systems D 10ad <B

Theorem: y-Boost optimizes y and C in heavy-traffic limit (load = 1)

Exponential, load 0.8, 10 servers Exponential, load 0.95, 10 servers
2 0.25- RPN V'S
~ AR
- | /_\.\ | // . 0.2
= 0.00 : A
_Ata

5 0.01 . ¢ =
L -0.251 ‘
>
2
£4-0.50 ~0.21
=
= -0.75- ~0.4-

0 20 40 60 80 0 25 50 75 100 125 150

Latency Threshold
— FCFS y-CombinedBoost —— y-Boost — SizeBoost — Gurobi
® 90th percentile ¢ 99th percentile A 99.9th percentile

25

Boost in multiserver systems @md <B

Theorem: y-Boost optimizes y and C in heavy-traffic limit (load = 1)

Tail Improvement Ratio

Exponential, load 0.8, 10 servers Exponential, load 0.95, 10 servers

025 1 Mww’*rv”ﬁw./\\y\,vﬂ'vi 04 |
0.00 /\-\ =, “ - /\ e
~0.25 0.077 ° ¢
~0.50 ~0.2
~0.75 ~0.4

0 20 40 60 80 0 25 50 75 100 125 150

Latency Threshold
— FCFS y-CombinedBoost —— y-Boost — SizeBoost — Gurobi

A 99.9th percentile

25

Boost in multiserver systems D 10ad <B

Theorem: y-Boost optimizes y and C in heavy-traffic limit (load = 1)

Tail Improvement Ratio

Exponential, load 0.8, 10 servers Exponential, load 0.95, 10 servers

0.25 [a0
0.00- /\-\ =, “ . /\ ApiN
~0.25 0.07 ’ '
~0.50 ~0.2
~0.75 ~0.4

0 20 40 60 80 0 25 50 75 100 125 150

Latency Threshold
— FCFS y-CombinedBoost —— y-Boost — SizeBoost — Gurobi

A 99 9th per

25

Boost in multiserver systems @md <B

Theorem: y-Boost optimizes y and C in heavy-traffic limit (load = 1)

Exponential, load 0.8, 10 servers Exponential, load 0.95, 10 servers
2 0.25- el | 04
45 . W\w.w ot \\)\,\ﬁ
m /‘\ /" i
2 0.00- : & 0.2
L
& |/ ~
S —0.25- 0.0 ’ ¢ “
>
o
4 -0.50 -0.21
s
|
‘= —0.75 ~0.4
0 20 40 60 80 0 25 50 75 100 125 150
Latency Threshold

y-CombinedBoost —— y-Boost — SizeBoost Gurobi

v [le A 99.9th per

25

Our contributions:

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

26

Our contributions:

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

26

Our contributions:

@Z% Design the Boost scheduling policy

(‘compute CBoost)
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

26

Our contributions:

@Z% Design the Boost scheduling policy

(‘compute CBoost)
Y- Boost
@ Analyze Boost’s performance b

s)= —log

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

26

Our contributions:

@Z% Design the Boost scheduling policy

(‘compute CBoost)
Y- Boost
@ Analyze Boost’s performance b

s)= —log

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes

s

. + Unknown job sizes

//8: Multiple servers

Dt

26

Bonus slides

27

o o
(@) ~J
1

o
wl

Tail Improvement Ratio
> o @ ©

e
o

Impact of job size variance

L.ow variance

p = 0.8, Exponential

<
N
1

—————

Nudge-M
Nudge-K

——

0 5 10 15 20
Response time

25

30 35

Tail Improvement Ratio

S
|

S
N
1

o
w1

Q
N
1

o
w

o
S

e
—

S
o

High variance

p = 0.8, Hyperexponential

1

) fad

A,vyvvvvvvvvvvvvvvvvvvvvvvv

YVYVY VYVYY

Boost

Nudge-M
Nudge-K

Nudge
SRPT

Yy V

0

10 20 30 40 50
Response time

60

70

28

Unknown job sizes

Load = 0.8, 1-6-14

IR

Load = 0.8, Hyperexp

—e— y-(Gittins

10 20
Latency threshold

—»— y-Insulated

e M*m
04
— i
0.21.. '
0.01 ¢ | — |
0 20 40 60
Latency threshold

—— y-Surrogate

—— Full-info Boost

29

Why is Boost weakly tail optimal?

Why is Boost weakly tail optimal?

P[T >t]~Ce "

30

Why is Boost weakly tail optimal?

P[T >t]~Ce " C = lim e"P[T > t]

t— 00

30

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

30

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCES
Tpcps =W +5

30

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCFS

‘work)

30

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCFS

‘work)

Crcps = CWE[eYS]

30

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCFS

‘work)

Crcps = CWE[eYS]

lim e"'P[W > t]

t— 00

30

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = tlim e"'P[T > t] = éim E[eT]
— 00 —Y ‘)/
final value
theorem
FCFS Boost
‘work)

Crcps = CWE[BYS]

lim e"'P[W > t]

t— 00

30

Why is Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = lim e"'P[T > t] = éim ! E[e’7]
t— 00 —Y »)/
final value
theorem
FCES Boost boost functio@
Tecps =W + S Tooost W +S—Db(S)+V
‘work)

Crcps = CWE[BYS]

lim e""P[W > t]

t— 00

30

Why is Boost weakly tail optimal?

P[T >t]~Ce™

FCFS

Tpcps =W, +5
‘work)

Crcps = CWE[BYS]

lim e"'P[W > t]
t— 00

— 6
C = lim e""'P[T > t] = lim r E[e®]
t— 00 0—y ,Y
final value
theorem

Boost (boost functio@

Toooe W +S—b(S)+V

30

Why is Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = tlim e"'P[T > t] = éim ! E[e’7]
—> 00 —Y »)/
final value
theorem
FCES BooOst (boost functio@
Tecps =W + S Tooost W +S—Db(S)+V
s
C'FCFS — CWE[BYS] C'Boost — CWE[eY(S_b(S))] E[eyV]

lim e""P[W > t]

t— 00

Why is Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = tlim e"'P[T > t] = éim ! E[e’7]
—> 00 —Y »)/
final value
theorem
FCES BooOst (boost functio@
Tecps =W + S Tooost W +S—Db(S)+V
s
C'FCFS — CWE[BYS] C'Boost — CWE[eY(S_b(S))] E[eyV]

lim e""P[W > t]
t— 00

30

Why is Boost weakly tail optimal?

— 0
P[T>t]~Ce™™ :> C = tlim e"'P[T > t] = éim r E[e®]
— 00 —Y ’)/
final value
theorem

Boost fboost function) V = crossing work
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

---’-----

31

Why is Boost weakly tail optimal?

— 0
P[T>t]~Ce C = tlim e"'P[T >t]= éim ! E[e’"]
—> 00 —Y ')/
final value
theorem

Boost fboost function) V = crossing work

Tooooe W +S—b(S)+V work that “boosts past” a given time

C'Boost — CWE[eY(S_b(S))] E[eYV]

---’-----

31

Why is Boost weakly tail optimal?

— 06
P[T>t]~Ce™" :> C = lim e"P[T > t] = lim Y E[e?T]

t— 00

Boost (‘boost function)
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

00—y Y
final value
theorem

V = crossing work
work that “boosts past” a given time

Cll)l
CIIIII\I
CIIIII\I

-’-----

eht
T

I
@

31

Why is Boost weakly tail optimal?

P[T >t]~ Ce"t :{>

Boost (‘boost function)
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

— 6
C = lim e"'P[T > t] = lim r E[e?T]
t— 0O 00—y ’)/
final value
theorem

V = crossing work
work that “boosts past” a given time

X

&3

chilt
T T

—- HJ.__:,___-_%_g._

31

Why is Boost weakly tail optimal?

— 0
P[T>t]~Ce " :> C = tlim e"'P[T > t] =1lim Y E[eT]

Boost (‘boost function)
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

00—y Y
final value
theorem

V = crossing work
work that “boosts past” a given time

| %
a% 1

T_1T

—- HJ.__:,___-_%_g._

31

Why is Boost weakly tail optimal?

— 0
P[T >t]~Ce " C = tlim e"'P[T > t] = éim r E[e?T]
— 00 —Y ’)/
final value
theorem

Boost fboost function) V = crossing work

Tooooe W +S—b(S)+V work that “boosts past” a given time

C'Boost — CWE[eY(S_b(S))] E[eYV] @ % %

Lemma: finite

i
if b(s) = O(1/s) T T

31

