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Abstract

We consider a class of optimization problems over stochastic variables where the algorithm can learn
information about the value of any variable through a series of costly steps; we model this information
acquisition process as a Markov Decision Process (MDP). The algorithm’s goal is to minimize the cost of
its solution plus the cost of information acquisition, or alternately, maximize the value of its solution minus
the cost of information acquisition. Such bandit superprocesses have been studied previously but solutions are
known only for fairly restrictive special cases.

We develop a framework for approximate optimization of bandit superprocesses that applies to arbitrary
acyclic MDPs with a matroid feasibility constraint. Our framework establishes a bound on the optimal cost
through a novel cost amortization; it then couples this bound with a notion of local approximation that
allows approximate solutions for each component MDP in the superprocess to be composed without loss
into a global approximation. We use this framework to obtain approximately optimal solutions for several
variants of bandit superprocesses for both maximization and minimization. We obtain new approximations for
combinatorial versions of the previously studied Pandora’s Box with Optional Inspection and Pandora’s Box
with Partial Inspection; the less-studied Additive Pandora’s Box problem; as well as a new problem that we
call the Weighing Scale problem.
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1 Introduction

Many real-world settings involve algorithmic decision-making under incomplete information about the underlying
input and future outcomes. In some cases, additional information can be acquired at a cost. A fundamental
question arises: how should this costly information acquisition be incorporated into the algorithmic process?

Consider, for example, a biotechnology company running multiple drug discovery projects. These projects
require upfront investment and entail a series of choices on which directions to pursue before their potential is
known and realized. Other examples include an oil company’s search for an optimal drilling site, a construction
firm paying for multiple architectural designs before choosing one to pursue, and a manufacturer conducting
market research before deciding which products to produce and in what quantity.

A classical model for costly information acquisition is the Pandora’s Box problem, introduced by Weitzman
[1979]. In this model, an algorithm faces an optimization problem over n stochastic alternatives, each concealed
inside a closed box. The algorithm can open a box at a cost to observe the value of the alternative within, and can
select an alternative only after its box has been opened. The goal is to minimize the total cost, which includes both
the cost of opening the boxes and the values of the chosen alternatives.1 The Pandora’s Box model (henceforth,
PB) is well understood and admits a simple optimal solution for a broad class of optimization problems. However, it
is too simplistic to capture the complexities of real-world information acquisition: it assumes that each alternative
can be revealed in only one way and that the algorithm either learns everything or nothing about it—there is no
concept of partial information acquisition.

Recent research has explored extensions of PB that allow for multiple modes and stages of information
acquisition.2 These generalizations are typically NP-hard [Fu et al., 2022], necessitating the development of
approximation algorithms. Beyhaghi and Cai [2024] provide a survey of recent advances in this domain. However,
a significant limitation of prior work is that existing solutions are tailored to specific problem variants and do
not extend to broader settings. For example, Aouad et al. [2020] address a two-stage inspection process, but their
techniques do not generalize to three stages. Similarly, while previous results separately handle cases with partial
inspection and optional inspection, it is unclear how to approach an instance that contains alternatives of both
kinds.

In this paper, we develop a general framework for modeling arbitrarily complex protocols for information
acquisition and designing approximation algorithms for them. Using this framework, we obtain improved
approximations for several PB variants and develop algorithms for new models where non-trivial approxi-
mations were previously unknown.

A Framework for Modeling Information Acquisition. We model the process of costly information
acquisition for each alternative i ∈ [n] using a finite-horizon Markov decision process (MDP), denoted byMi. The
current state of this MDP encapsulates all information the algorithm has about alternative i and determines the
set of available actions for further exploration. Some actions lead to terminal states, where the alternative can be
selected. For instance, both a standard optional-inspection PB and a three-stage inspection PB can be modeled
as MDPs (see Figure 1). A key assumption in our framework is the independence of these MDPs: exploring one
alternative does not affect the state of another.

This framework defines a broad family of optimization problems, which we call Costly Information
Combinatorial Selection (CICS). In CICS, we are given n stochastic alternatives, each associated with an MDP
M1, . . . ,Mn. The goal is to select a subset of alternatives satisfying a given feasibility constraint; our work focuses
on matroid feasibility constraints. The algorithm iteratively chooses an alternative i and takes an action inMi to
gather information. At any time, it can stop and select a feasible subset of alternatives that have reached terminal
states. The objective function is the total expected value of the selected alternatives plus the cost of all actions
taken.

The primary challenge in solving CICS arises from the interplay between two levels of decision-making:
(i) global decision-making, which determines which alternative to explore at each step, and (ii) local decision-

1For maximization problems, the objective is to maximize the function value minus the cost of opening the boxes. In this section,

we will focus our exposition on minimization problems although, as we show later in the paper, our framework and techniques extend
to maximization problems as well.

2See, for example, Olszewski and Weber [2015], Kleinberg et al. [2016], Singla [2017], Doval [2018], Beyhaghi and Kleinberg [2019],

Esfandiari et al. [2019], Gupta et al. [2019], Boodaghians et al. [2020], Aouad et al. [2020], Fu et al. [2022], Beyhaghi and Cai [2022],
Berger et al. [2023], Bowers and Waggoner [2024a], Scully and Doval [2024].
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Figure 1: Three examples of a Pandora’s Box style information acquisition protocol. (Left:) A classical PB is
modeled as a Markov chain with a single costly action (opening the box) resulting in a random terminal state
of value X. (Middle:) An optional-inspection PB modeled as an MDP; in addition to opening the box, there
is a grab action that reveals no information and results in a single terminal state of deterministic value E [X].
(Right:) A three-stage inspection protocol where the box can be opened directly, or it can be partially explored
by sequentially revealing hidden variables Ti at a cost.

making, which dictates the costly actions taken within each alternative’s MDP. These decisions are typically
adaptive, responding to the information that was acquired in previous steps. Since CICS generalizes MDPs, we
have no hope of obtaining a general purpose solution to the problem. Instead, what we aim for is a decomposition
of the problem into smaller pieces that can each be solved independently and composed together into a global
solution. We obtain such a decomposition by analyzing a class of algorithms called committing policies.

Committing Policies and the Commitment Gap. A committing policy for CICS is a policy that, in essence,
predetermines all local decisions before making any global decisions. In particular, it preselects an action for each
state in every MDPMi, effectively reducing the MDPs to Markov chains. This is valuable because for the class of
feasibility constraints we are interested in, the special case of CICS where each MDPMi is effectively a Markov
chain, i.e. has just one action in every state, admits a simple optimal policy [Dumitriu et al., 2003, Gupta et al.,
2019]. By fixing local decisions in advance, we significantly reduce the complexity of global decision-making. This
prompts two questions:

• What is the best approximation ratio achievable by committing policies for a given class of CICS problems?
We call this ratio the commitment gap.

• Can the local decision commitments be made in a composable way? That is, can the commitments for each
MDPMi be determined using only the characteristics ofMi, independent of other MDPs?

These questions have been posed and investigated for optional-inspection PB [Beyhaghi and Kleinberg, 2019,
Scully and Doval, 2024], but little is known beyond that setting. See Section 2 for further discussion of prior work.

In this paper, we address both questions by developing a set of local sufficient conditions for bounding the
commitment gap in general CICS. By “local”, we mean that our conditions depend only on the properties of
each individual MDP Mi, without reference to the other MDPs or the feasibility constraint. Furthermore, our
conditions yield policies that determine their commitments locally (or, in one case, with a simple global algorithm
after local pre-processing). We introduce two key conceptual contributions that enable bounds on the commitment
gap: a method of bounding the optimum, and notions of approximation ratio that can be checked locally for each
MDP.

Bounding the Optimum. Our first conceptual contribution is a lower bound on the cost of the (unrestricted,
non-committing) optimum. This bound is analogous to the Whittle integral [Whittle, 1980] for infinite-horizon
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discounted-reward MDPs. While prior proofs of the Whittle integral exist for the discounted-reward setting [Brown
and Smith, 2013, Hadfield-Menell and Russell, 2015], we present an algorithmic proof for the finite-horizon case,
which is simpler and provides additional insight.

Importantly, our approach extends the notion of surrogate costs from PB literature to general MDPs and
connects it to the Whittle integral, offering valuable algorithmic insights into bounding the commitment gap.
Surrogate costs were first defined for classical PB by [Kleinberg et al., 2016] and [Singla, 2017], and can be
extended easily to arbitrary Markov chains [Weber, 1992, Dumitriu et al., 2003, Gupta et al., 2019]. However,
the extension to MDPs is highly non-trivial and is a novel contribution of our work. We describe the details in
Section 1.1.

Local Approximation. Our second contribution is the development of a local approximation technique, which
expresses the global approximation factor of a committing policy (π1, . . . , πn) in terms of the local properties of
each constituent policy πi relative to its corresponding MDPMi. This concept was first introduced by Scully and
Doval [2024] for the optional-inspection PB; we generalize it to arbitrary MDPs.

Crucially, local approximations compose: if each πi achieves an α-local approximation for Mi, then the
committing policy (π1, . . . , πn) achieves an α-global approximation. This observation answers, for example, our
aforementioned question of how to compose partial-inspection Pandora’s Boxes with optional-inspection ones
within a single instance. Furthermore, our global approximation guarantee extends to any combinatorial setting
that admits a “greedy-style” algorithm via techniques similar to [Singla, 2017, Gupta et al., 2019].

Although local approximation can be defined directly with respect to the Whittle integral, as in [Scully and
Doval, 2024], proving guarantees using this definition appears very challenging. One of our main contributions
is to connect this concept to surrogate costs in a manner that enables simpler analysis. We develop multiple
approaches for bounding local approximation factors that are suitable for different contexts, and demonstrate
their use through the applications discussed in Section 1.1.

Example Application: Shortest Paths. To illustrate the power of our framework, consider the Pandora’s
Shortest Path problem introduced by Singla [2017]: the edge weights of a given graph correspond to independent
Pandora’s boxes and the objective is to accept a set of (open) boxes that form a path between two given vertices s
and t, while minimizing the total cost of opening boxes plus the cost of the path. As path constraints do not admit
frugal algorithms that enable the generalization of Weitzman’s result to combinatorial settings, this problem is
notoriously challenging and no approximation results are known.

When the underlying graph is a union of disjoint s-t paths, this problem becomes an instantiation of CICS:
each path corresponds to an alternative, whose MDP encapsulates the different orders in which the constituent
“edge boxes” can be opened. A committing policy, in this case, pre-defines a protocol for the order of inspecting
the edges within a path, that can adapt only to the instantiations of the edges from the same path. We show that
the commitment gap of this special case of Pandora’s Shortest Paths is at most 2.

1.1 Our technical contributions and their relationship to prior work. We now describe our technical
contributions in more detail in the context of closely related prior work. A thorough discussion of other related
work is presented in Section 2.

Bandit superprocesses and the Whittle integral. CICS is closely related to a class of sequential decision-
making problems called bandit superprocesses (BSPs), introduced by [Nash, 1973]. A BSP is composed from
multiple independent MDPs; at every step, the algorithm advances one of the MDPs, receives a (discounted)
reward, and the state of the underlying MDP evolves stochastically. A primary difference between the two settings
is that a CICS algorithm must terminate by selecting a feasible set of alternatives, whereas a BSP can potentially
have an infinite horizon. Moreover, since the states of the MDPs in a CICS model information acquisition, we
assume that each constituent MDP is acyclic; our techniques rely on this acyclicity. In contrast, BSPs can be
defined over arbitrary MDPs.

In the special case where the MDPs are Markov chains, BSP reduces to the extensively-studied Multi-Armed
Bandit (MAB) problem. MAB admits an astonishingly simple optimal solution [Gittins, 1979]: every state in each
constituent Markov chain is assigned an index independent of the other chains; at every step, the Markov chain
with the maximum index in its current state is advanced. [Dumitriu et al., 2003] show that this “indexability”
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extends to the finite-horizon setting as well, and [Gupta et al., 2019] further extend it to combinatorial settings.
We restate this result with a new proof as Theorem 4.4. [Weitzman, 1979]’s algorithm for classical PB is essentially
a special case of this result.

General BSPs, in contrast, are not indexable [Glazebrook, 1982].3 Nevertheless, the local structure of the
problem provides insight into the optimal cost: given an MDP M, [Whittle, 1980] considers a local problem
(M, y), where at every step the algorithm can either advance M or terminate with a cost of y. The values of
these local games, formalized as “optimality curves” fM(y), one for each constituent MDP in the BSP, can be
combined to obtain the Whittle integral, a lower bound on the global optimum [Whittle, 1980, Brown and Smith,
2013].

Our work provides a new interpretation for Whittle’s optimality curves by connecting them with a mapping
from trajectories in the MDP to “surrogate” costs. The surrogate costs essentially allow an algorithm to amortize
the costs of actions and pay (a part of) them only when the MDP terminates. We develop a recursive water
filling algorithm for cost amortization that ensures that good, i.e. low cost or high reward, terminal states are
responsible for paying most of the cost share. A crucial property we achieve is the independence of the distribution
of surrogate costs from the actions chosen by an algorithm in the MDP in the local or global game. In particular,
the costs capture the local structure of the MDP without limiting in any way how an algorithm “solves” the MDP.
This independence allows us to compose them into a global bound for the optimal (adaptive, non-committing)
policy.

Our approach is heavily influenced by [Kleinberg et al., 2016] and [Singla, 2017]’s amortization viewpoint on
Weitzman’s index for classical PB, as well as its extension to Markov chains. However, we emphasize that the
extension to MDPs while ensuring action independence is an important and novel contribution of our work that
enables our approximation bounds.

Commitment gap and local approximation. We follow the approach of [Scully and Doval, 2024] to establish
a bound on the commitment gap by quantifying the performance of each commitment πi relative to the optimal
policy for MDPMi in the local game (Mi, y). Such an approach helpfully disentangles global and local decision
making.

Local guarantees for (Mi, y) need to be established with care, however. [Whittle, 1980] showed that if
every Mi admits a commitment πi that is optimal for the local game (Mi, y) regardless of the value y, then
the tuple P = (π1, . . . , πn) is globally optimal. In other words, unambiguous local optimality composes into
global optimality. However, the reverse doesn’t hold: the globally optimal policy might take actions that are
unambiguously suboptimal in the local game! (See Appendix C.) Likewise, simply relating the optimal cost fMi

(y)
to the cost of the commitment fMπi

i
(y) at every y is not sufficient, as we demonstrate in Appendix C.

Following [Scully and Doval, 2024] we say that committing policy πi α-locally approximatesMi if for all y we
have fMπi

i
(αy) ≤ α · fMi

(y). Local approximations defined in this manner compose into global guarantees on the

commitment gap. We use this approach to obtain new approximations for PB with partial inspections (defined
below).

Unfortunately, however, local approximations can be very challenging to prove for general MDPs. We develop
a new (but weaker) local condition based on surrogate costs that we call pointwise approximation. This allows
us to analyze more complicated MDPs with multiple rounds of actions for which optimality curves are tricky to
establish.

Finally, the commitment gap can sometimes be strictly smaller than what can be established through local
approximation. We investigate this issue in the context of PB with optional inspection and show that improved
results can be obtained through a semi-local argument.

Applications of our framework. We instantiate our framework to obtain new bounds on the commitment
gap of four PB extensions. The first three variants are new problems studied in the minimization setting, and we
obtain the following results:

• PB with Partial Inspection. In addition to opening the box, the algorithm can choose to “peek” into it
at a cheaper cost and learn its value; boxes must still be opened before being selected. We prove that the

3This is because MAB only involves global decision-making and does not require any local decision-making as there is only one
way to advance the chosen Markov chain.
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commitment gap is at most
√
2.

• Additive PB. The value of the box is given by the sum of independent random variables; each component
must be separately inspected at a cost and the box can be selected only after all components have been
inspected. This models the shortest paths problem over disjoint paths described earlier. We prove that the
commitment gap is at most 2.

• Weighing Scale Problem. The box cannot be opened, but can be compared at a cost against a threshold
t (chosen by the algorithm); the comparison reveals whether Xi ≥ t or not. Any sequence and number
of comparisons are allowed. We obtain a logarithmic bound (in key parameters of the problem) on the
commitment gap.

All these results apply to any set of matroid feasibility constraints, and can be seamlessly extended to any set of
constraints that admit a frugal algorithm, as defined by [Singla, 2017]. Furthermore, they immediately extend to
settings that consider combinations of these variants: an instance consisting of some (normal) boxes, some partial
inspection boxes and some additive boxes under matroid feasibility constraints still has a commitment gap of at
most 2.

We also study the commitment gap in a maximization setting in the context of PB with Optional
Inspection. This problem has been extensively studied in the the single-selection setting [Doval, 2018, Guha et al.,
2008, Beyhaghi and Kleinberg, 2019, Beyhaghi and Cai, 2024], culminating in the discovery of a PTAS [Fu et al.,
2022, Beyhaghi and Cai, 2022]. However, aside from the simultaneous work described below, the maximization
version of the problem has not been studied in the combinatorial setting, with Scully and Doval [2024] covering
only the minimization setting. While the PB local approximation result of Scully and Doval [2024] can be extended
to maximization without too much trouble, it yields a worst-case local approximation ratio of only 0.5, which
can also be achieved by a trivial single-coin-flip algorithm [Beyhaghi and Kleinberg, 2019]. To remedy this, we
introduce an extension of local approximation, which we call semilocal approximation, that introduces just a small
amount of dependence between the randomized commitments for each box. We use semilocal approximation to
construct a committing policy that is a 0.58-approximation under matroid feasibility constraints. While this worst-
case ratio is not state-of-the-art,4 we include our construction because (i) we obtain instance-dependent bounds
on the commitment gap that are better in some regimes, (ii) our construction is simpler and more explicit than
other known approaches that beat the 0.5-approximation barrier, and (iii) semilocal approximation may prove
useful for other PB variants in the future.

Simultaneous and Subsequent Work. In simultaneous and independent work, [Bowers et al., 2025] also
study CICS in the maximization setting. Rather than approaching the problem through local approximation,
they consider an ex-ante relaxation of the optimal policy that allows them to efficiently obtain a non-committing
approximation policy in settings where the underlying combinatorial constraint admits a prophet inequality; in
particular, they obtain a 0.5-approximation via an adaptive policy under matroid constraints. This approach
was subsequently further explored and significantly generalized by Chawla et al. [2025], establishing bounds on
the commitment gap. A key difference between these works and our framework is that (i) our results and local
approximation also apply to the minimization setting, and (ii) the bounds we obtain on the commitment gap also
depend on the structure of the underlying MDPs, allowing for improved approximations in some instances.

1.2 Outline of the rest of the paper. A detailed discussion of related work is presented in Section 2.
In Section 3, we provide formal definitions for CICS and the commitment gap. Our amortization framework and
bound on the optimal policy for the minimization setting are presented in Section 4; corresponding results for the
maximization setting are established in Appendix A. The local approximation framework and its composition
to bounds for the commitment gap are presented in Section 5. Subsequent sections are dedicated to bounding

4While no better approximation algorithms were published prior to this work, we discovered during the revision process that

Beyhaghi and Kleinberg [2019]’s existential bound of (1 − 1/e) on the commitment gap can be matched efficiently up to arbitrary
precision. Informally, their approach is based on a reduction to nonadaptive stochastic submodular maximization, maximizing the
weighted rank function of the matroid constraint subject to another partition matroid. While achieving exactly a 1− 1/e ratio in the

submodular maximization step is nonconstructive, it can be made polynomial-time constructive at the cost of arbitrarily small error
[Asadpour and Nazerzadeh, 2016].
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the commitment gap for different instantiations of CICS: PB with Partial Inspection (Section 6), Additive PB
(Section 7), Weighing Scale Problem (Section 8) and Optional Inspection PB (Section 9).

2 Related work

We have already discussed the relationship of CICS to bandit superprocesses and Markovian multi-armed
bandit. There is little work on BSPs that do not satisy Whittle’s “unambiguous local optimality” condition,
outside of the variants of Pandora’s Box. The only such work we are aware of is by [Ke and Villas-Boas, 2019],
who look at a problem with two specific symmetric MDPs and an arbitrary outside option, and develop an adaptive
(but complicated) exact algorithm for this problem. We refer the reader to the survey by [Hadfield-Menell and
Russell, 2015] for further discussion of BSPs.

Combinatorial variants of Pandora’s Box were first studied by [Singla, 2017] who showed that for feasibility
constraints admitting greedy-style or “frugal” approximation algorithms, an extension of Weitzman’s indexing
algorithm provides the same approximation factor. This was further extended to CICS over Markov chains by
[Gupta et al., 2019].

The idea of augmenting the inspection process of a Pandora’s box in order to explore more interesting
decision-making settings has been a very active line of research over the last years. Arguably, the most studied
variant is optional inspection. Most literature focuses on the single-item selection, as opposed to combinatorial
variants. Study of it was initiated by Guha et al. [2008], who give a 4/5-approximation for the maximization
setting; and Doval [2018], who characterized the solution to the single-box problem and proved certain conditions
under which the Gittins policy remains optimal for single-item selection in the maximization setting (though the
results naturally extend to the minimization setting). Beyond this results are separated by whether they are for the
minimization or maximization setting. For the minimization setting, Scully and Doval [2024] proved a composition
theorem for a special case of local approximation (Definition 5.1) and used it to construct a committing policy
with a 4/3-approximation guarantee. In fact, their result extends beyond the single-item selection setting to
the combinatorial Pandora’s box setting studied by Singla [2017]. In the maximization setting, Beyhaghi and
Kleinberg [2019] and Guha et al. [2008] give approximation guarantees for committing policies. Furthermore, Fu
et al. [2022] and Beyhaghi and Cai [2022] introduced polynomial time approximation schemes that for any ε > 0
compute a policy that is at least a (1 − ε)-approximation. However, all of these results are for the single-item
selection setting. For matroid feasibility constraints, Beyhaghi and Kleinberg [2019] observe that the commitment
gap is at least (1−1/e) and give an efficient policy that achieves a 0.5 approximation; as already mentioned, their
ideas can be pushed further to efficiently obtain a (1− 1/e− ϵ) approximation for any ϵ > 0.

The partial inspection variant of Pandora’s Box has also primarily been studied in the context of
maximization. [Aouad et al., 2020] provide a (1 − 1/e)-approximation via a committing policy, and show that,
in fact, any committing algorithm or its negation (flipping which box should be partially opened versus fully
opened) admits a (1/2)-approximation to the optimal utility. We note that this already highlights a significant
difference between the minimization and maximization settings for this variant. Whereas for maximization one
can essentially flip a coin to decide which of the two actions to commit to, obtaining the optimal’s utility for
the committed action and non-negative utility for the action that was not selected, the same approach cannot
be applied for minimization as the cost suffered by a bad flip could result to arbitrarily bad approximations.
Beyhaghi [2019] introduces a more general inspection model, where the searcher has k different methods for
inspecting each box, and can select at most one of them. They provide a (1− 1/e)-approximation that applies to
k-element selection, but is computationally inefficient when k is large. To our knowledge, partial inspection has
not been studied in the context of minimization.

The additive PB model has been studied previously [Bowers and Waggoner, 2024a,b] in the context of
maximization for k = 2 random variables per alternative with matching constraints. In this case, each alternative
admits only two commitments: opening one of the two random variables followed by the other. The authors show
via a global argument that picking one of the two commitments randomly independently for each alternative
yields a bound of 2 on the commitment gap (a further factor of 2 is lost due to the matching constraint). For
boxes with k > 2 components each, applying the same approach implies a commitment gap of O(k!). We leave as
an open question whether a better bound can be obtained using our techniques. The minimization variant of this
problem has not been explored in prior research.

It is noteworthy that a common approach in the literature to bounding the commitment gap in maximization
settings involves reducing the problem to finding the optimal committing policy for a stochastic submodular
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maximization instance and applying the bound of [Asadpour and Nazerzadeh, 2016] on the adaptivity gap for
such problems [Beyhaghi and Kleinberg, 2019, Aouad et al., 2020, Beyhaghi, 2019]. This method is inherently
global, as it requires efficient optimization over the entire instance once mapped to a stochastic submodular
maximization framework. Moreover, the optimization scales with the number of committing policies and does not
extend beyond the single-selection case.

Other extensions of Pandora’s Box include settings with combinatorial rewards [Olszewski and Weber,
2015]; combinatorial costs [Berger et al., 2023]; correlated values [Chawla et al., 2019, 2021, Gergatsouli and
Tzamos, 2024]; or constraints on the order of inspection [Esfandiari et al., 2019, Boodaghians et al., 2020, Bowers
and Waggoner, 2024a]. We refer the reader to the survey by [Beyhaghi and Cai, 2024] for further discussion of
Pandora’s Box.

The weighing scale problem has not been studied previously, although similar settings where the algorithm
is provided with a budget on the total number of weighings it can perform have been considered. In particular,
Hoefer et al. [2024] study a setting, where each alternative can be weighed against the median (or any other fixed
quantile) of its distribution (conditioned on any past weighings). Hoefer and Schewior [2023] also consider the
setting where the alternatives are identically distributed and the decision-maker is allowed to weigh them against
any threshold of their choosing (much like the weighing scale problem). In both of these works, using the weighing
scale is free; the algorithm is provided with a budget on the number of weighings it can perform; the objective is
to find the best alternative subject to the budget; and constant factor approximations are obtained.

3 Definitions

We begin by defining costly information acquisition for a random variable as a Markov decision process (MDP).
In a Costly Information MDP, states represent the information the algorithm has gained about the corresponding
random variable. Accordingly, we associate each state with the conditional value distribution it represents.
Formally:

Definition 3.1. (Costly Information MDP) A Costly Information MDP for a random variable X is a tuple
MX = (S, σ,A, c,D, V, T ), where S is a set of states, σ ∈ S is the starting state, A(·) maps states to sets of actions,
c(·) is a cost function mapping actions to costs, and D is a transition matrix. For each pair of states s, s′ ∈ S
and each action a ∈ A(s), D(s, a, s′) ∈ [0, 1] specifies the probability of transitioning to s′ upon taking action a in
state s; naturally,

∑
s′ D(s, a, s′) = 1 for all states s ∈ S and actions a ∈ A(s).

V (·) is a function mapping states to distributions over values. V (σ) is the (unconditional) distribution of X
and V (s) is the posterior distribution of X conditioned on being in state s ∈ S. As such, V satisfies the rules of
conditional probability: for all states s ∈ S and all actions a ∈ A(s), we have V (s) =

∑
s′ D(s, a, s′)V (s′). We

also write v(s) := E [V (s)]. Finally, T ⊆ S is the set of terminal states. Terminal states have only one action
available, called the “accept” action. This accept action comes at no cost; results in a value of v(s) at terminal
state s ∈ T ; and terminates the MDP. In the special case where there is only one action (accept or advance)
available at every state s ∈ S, we callMX a Costly Information Markov chain. When clear from the context, we
will drop the subscript X.

Assumptions. Note that each costly information MDP MX is inherently acyclic (i.e. the underlying graph is
a DAG), as each costly action further refines the algorithm’s knowledge of the underlying random variable. For
simplicity of exposition and without loss of generality, we assume that the state spaces, action sets, and the
support of the random variable X are finite, although our framework and results extend seamlessly to continuous
settings. We will also assume a bounded horizon. In particular, there exists a constant H such that any state
reached after a sequence of H actions is terminal.

Definition 3.2. (Costly Information Combinatorial Selection) The Costly Information Combinato-
rial Selection problem (henceforth, CICS) is defined over a ground set of n nonnegative random variables,
X1, X2, · · · , Xn; a costly information MDP Mi := MXi

= (Si, σi, Ai, ci,Di, Vi, Ti) for each variable Xi; and
a feasibility constraint F ⊆ 2[n]. The constraint F corresponds to an upwards closed set in the minimization ver-
sion (henceforth, min-CICS), and to a downwards closed set in the maximization version (henceforth, max-CICS).
We use M := (M1, · · · ,Mn) to denote the set of MDPs and I = (M,F) to denote the CICS instance.

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited



General Policies for CICS. A policy (a.k.a. algorithm) for CICS proceeds as follows. Let S ⊆ [n] denote the
set of indices of all terminated MDPs. Let si denote the current state of the MDPMi at any point of time during
the process. Initially, S = ∅ and si = σi for all i ∈ [n]. The algorithm chooses at every step an index i ∈ [n] \ S
corresponding to a non-terminated MDP Mi and an action ai ∈ Ai(si). It then follows the action at a cost of
ci(ai). If ai is the accept action (i.e. si ∈ Ti is a terminal state), it adds i to S and collects the value vi(si).
Otherwise, it updates the state ofMi to a new state drawn from the distribution D(si, ai, ·), while the states of
all other MDPsMi′ with i′ ̸= i remain unchanged. Observe that the algorithm can make both of these choices –
the index of the MDP to move in and the action to take in that MDP – adaptively, depending on the evolution
of all n MDPs in previous steps.

• For min-CICS, the algorithm terminates as soon as S ∈ F . The objective of min-CICS is to find an
algorithm with minimum total cost, defined as the expectation (over the randomness of the algorithm and
the underlying processes) of the total cost of all actions undertaken by the algorithm until termination plus
the values accrued from accept actions.

• For max-CICS, the algorithm needs to ensure feasibility by selecting at every step indices i ∈ [n] \ S such
that S ∪ {i} ∈ F . The objective of max-CICS is to find an algorithm with maximum utility, defined as the
expectation (over the randomness of the algorithm and the underlying processes) of the total value accrued
from accept actions minus the total cost of all actions undertaken by the algorithm until termination.

We use OPT(I) to denote the cost/utility of the optimal policy for the CICS instance I = (M,F).

Committing Policies for CICS. A commitment πi for the MDP Mi is a mapping from every state si ∈ Si

of Mi to a distribution πi(si) over the actions in Ai(si). A committing policy is then characterized by a tuple
of commitments P = (π1, · · · , πn); at each step, the policy selects an MDPMi at current state si and takes an
action that is sampled from πi(si). Formally, for i ∈ [n], letMπi

i denote the Markov chain resulting from applying
the commitment πi to MDP Mi. Then any policy for the instance I|P := (Mπ1

1 , · · · ,Mπn
n ,F) is a committing

policy for I consistent with the tuple P. Note that while committing policies must make all local decisions as
dictated by P, the index of the MDP to move in can be selected adaptively: committing policies are therefore
adaptive algorithms.

We use C (Mi) to denote the set of all possible commitments πi for the MDPMi and C (I) =
∏

i C (Mi) to
denote the set of all possible tuples of commitments P for the CICS instance I. The commitment gap quantifies
the performance loss of committing policies relative to the optimal policy.

Definition 3.3. (Commitment Gap) The commitment gap for any min-CICS (or max-CICS) instance I =
(M,F) is defined as

CG(I) := min
P∈C(I)

OPT(I|P)
OPT(I)

≥ 1
(
or CG(I) := max

P∈C(I)

OPT(I|P)
OPT(I)

≤ 1
)
.

Matroid-min-CICS. From now on, we focus primarily on matroid feasibility constraints: each MDP corresponds
to an element of some known matroid M = ([n], I). For min-CICS, F is the collection of all sets that contain a
basis of M; for max-CICS, F contains all the independent sets of M. Observe that single-element selection, where
the algorithm’s goal is to accept one MDP, is a special case of matroid selection. Following the work of Singla
[2017], our results will apply to any feasibility constraint that admits an efficient frugal approximation algorithm.
We describe this extension in Appendix B. For conciseness, in the main body of the paper, we state our results for
the minimization setting (matroid-min-CICS); the analogous framework and results for the maximization setting
are discussed in Appendix A.

4 An Amortization Framework

In this section, we develop a novel cost amortization technique that will allow us to lower bound the cost
of the optimal adaptive algorithm for matroid-min-CICS. We first establish our amortization for the special
case of Markov chains (Section 4.1). We then connect our amortization framework to the notion of optimality
curves (Section 4.2) and use this connection to extend our approach to general MDPs (Section 4.3). For ease of
presentation, we present all our proofs in Section 4.4.
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4.1 Amortized Surrogate Costs for Markov Chains. In this section we consider instances I = (M,F) of
the matroid-min-CICS where every MDP Mi is a Markov chain. We begin with some notation. For a Markov
chainM = (S, σ,A, c,D, V, T ) and a state s ∈ S, we use c(s) to denote the cost of the unique action in A(s). A
trajectory τ in this Markov chain is a sequence of states that results from advancing the chain until it terminates.
For a state s ∈ S, let Υ(s) denote the set of all possible trajectories starting in s and let Υ := Υ(σ). For state
s ∈ S and trajectory τ ∈ Υ(s), let p(τ) denote the probability that a random trajectory starting in the initial state
σ visits the state s and then continues along τ until terminating. Let p(s) :=

∑
τ∈Υ(s) p(τ) denote the probability

of visiting s. For τ ∈ Υ and s ∈ τ , let τs denote the suffix of τ starting with s. Finally, let v(τ) be the value v(t)
of the terminal state t that τ ends in.

We will now define an amortization of action costs in a Markov chain over the resulting (random) trajectories
that follow. The intention is that in the amortized setting, the algorithm does not incur any action costs when
the action is taken but pays the amortized cost of the instantiated trajectory only if it follows the trajectory all
the way to termination.

Definition 4.1. (Cost Amortization) A cost amortization of a Markov chain M = (S, σ,A, c,D, V, T ) is a
non-negative vector b = {bsτ}s∈S,τ∈Υ(s) with the property that

∑
τ∈Υ(s) p(τ)bsτ = p(s)c(s) for all states s ∈ S.

Based on this amortization, we define:

• The amortized cost of a trajectory τ ∈ Υ as ρb(τ) := v(τ) +
∑

s∈τ bsτs .

• The surrogate cost of the Markov chainM as the random variable ρM,b that takes on value ρb(τ) for τ ∈ Υ
with probability p(τ).

• The index of a state s ∈ S of the Markov chainM as IM,b(s) := minτ∈Υ:s∈τ ρb(τ).

Note that the “cost shares” bsτ distributed by a state s towards its resulting trajectories fully cover the cost of
s’s action and no more. However, in the amortized setting, these cost shares are paid only when the trajectory
terminates, and go unpaid if the algorithm stops advancing the Markov chain midway through the trajectory. We
therefore obtain the following lemma.

Lemma 4.2. Consider any instance I = (M,F) of matroid-min-CICS over Markov chains and let bi be any cost
amortization ofMi with surrogate cost ρi := ρMi,bi for all i ∈ [n]. Then, OPT(I) ≥ E

[
minS∈F

∑
i∈S ρi

]
.

We will now exhibit a specific cost amortization and a corresponding algorithm that achieves the lower bound
of Lemma 4.2, proving optimality. Thewater filling cost amortization is described algorithmically in a bottom-
up fashion. We consider the states of the chain in reverse topological order, starting from the terminals up towards
the root σ. Trajectories τ ∈ Υ(t) for terminal states t ∈ T are singletons and do not carry cost shares. Consider
a state s such that the cost shares for all states reachable from it have been determined. The state distributes its
total cost c(s) across its downstream trajectories τ ∈ Υ(s), starting from those with the lowest current total
cost, until the equation

∑
τ∈Υ(s) p(τ)bsτ = p(s)c(s) is satisfied. Formally, let τ ′ = τ \ s be the sequence of states

in τ following s; its current downstream cost is ρ(τ ′) = v(τ ′) +
∑

s′∈τ ′ bs′τ ′
s′
. We find the lowest water level g

such that the cost shares bsτ := (g − ρ(τ \ s))+ satisfy the cost equation above. The new total cost of τ becomes
ρ(τ) = bsτ + ρ(τ \ s) = max{g, ρ(τ \ s)}. We continue in this manner until σ’s cost is amortized.

We use W ∗
M to denote the water filling surrogate cost of a Markov chain M, and I∗M(s) to denote the

water filling index of a state s in M. Finally, we can describe an index-based policy based on the water filling
amortization.

Definition 4.3. (Water Filling Index Policy) The water filling index policy for an instance I = (M,F)
of matroid-min-CICS over Markov chains selects at every step the Markov chain i∗ = argmini∈FS

I∗i (si),
where si is the current state of Markov chain Mi; S is the set of terminated (selected) Markov chains; and
FS = {i : rank(S ∪ {i}) > rank(S)}.

Note that, by definition, the indices of states encountered on any trajectory weakly increase with each next
action. The water filling amortization ensures that if bsτ > 0 for some state s ∈ S and τ ∈ Υ(s), then the index
of all states in the downstream trajectory τ stays equal to the index of s. Since the policy described above always
advances the Markov chain of minimum index, this implies that for any action taken by the policy, any downstream
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trajectory that “owes” a non-zero cost share to that action will terminate with acceptance if instantiated. In other
words, all the amortized cost shares are paid in expectation, establishing the following optimality result:

Theorem 4.4. For any matroid-min-CICS instance I = (M,F) over Markov chains, the expected cost of the
water filling index policy is equal to E

[
minS∈F

∑
i∈S W ∗

Mi

]
. The policy is therefore optimal for I.

To conclude this section, we will illustrate water filling through an example.

Example 4.5. Consider an MDPM whose starting state is given a choice between following one of two Markov
chainsM1 andM2. Each Markov chain has a single costly action and results in a distribution over two distinct
states, as illustrated in Figure 2. The action costs, terminal values, and instantiation probabilities are indicated
in the figure. For each chain, the water filling amortization computes a unique index g (here, g1 = 2 and
g2 = 1), corresponding to the value for which the highlighted area equals the cost of the amortized action. Each
trajectory leads to a unique terminal node, so we can associate cost shares with terminals. For each terminal t,
the corresponding cost share is given by (g − v(t))+; here, b11 = 4/3, b21 = 1/2 and b12 = b22 = 0. Therefore, the
surrogate cost W ∗

M1
is 2 with probability (3/4) and 4 with probability (1/4). Likewise, W ∗

M2
is 1 with probability

(1/4) and 3 with probability (3/4).

Figure 2: The water filling amortization for Markov chains M1 (left branch) and M2 (right branch). The solid
black edges denote costly actions (of costs 1 and 1/8) and the dashed blue edges denote random transitions to
terminal states upon taking these actions, with the corresponding probabilities of transition. Each terminal state
has a corresponding value, depicted in the bottom line. The graphs on the right display the water-filling operation
for each chain with the x-axis representing probabilities of instantiation of the respective trajectories and the
y-axis representing the terminal values for these trajectories. The area of the gray region equals the action cost
and its height is the water level that determines cost shares. By definition of water-filling, cost shares are first
transferred to the trajectories of minimum value.

4.2 Local Games and Optimality Curves. We now connect the water filling amortization described above
to the notion of optimality curves for MDPs, defined in the work of Whittle [1980] and its follow ups. We first
define a “local game” for an MDPM.

Definition 4.6. (Local Game and Optimality Curve) The local game (M, y) is a single-selection min-
CICS with two MDPs, one of which is the MDP M. The second MDP, a.k.a. the outside option, has a single
terminal state with deterministic value y. A policy for the local game advances M for some (zero or non-zero)
number of steps and either accepts the deterministic option y or the value fromM. Let fM(y) denote the expected
cost of the optimal policy for the local game (M, y). We refer to the function fM as the optimality curve of the
MDPM.

The surrogate cost of the outside option y (under any cost amortization) is simply y; as a consequence of
Theorem 4.4, we obtain the following characterization:

Corollary 4.7. For any Markov chainM and any y ∈ R, it holds that fM(y) = E [min(y,W ∗
M)] .
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Observe from this characterization that the CDF of the surrogate costW ∗
M can be derived5 from the optimality

curve as 1− d
dyfM(y). Inspired by this connection, we can extend the definition of water filling surrogate costs to

arbitrary MDPs:

Definition 4.8. (Water Filling Surrogate Costs) Let M be an MDP with optimality curve fM. The
water filling surrogate cost for M is the random variable W ∗

M generated from the CDF 1 − d
dyfM(y). That

is, W ∗
M is the random variable satisfying fM(y) = E [min(y,W ∗

M)] for all y ∈ R.

Our eventual goal is to prove the following analog of Theorem 4.4 for general CICS over MDPs.

Theorem 4.9. In any instance I = (M,F) of matroid-min-CICS, OPT(I) ≥ E
[
minS∈F

∑
i∈S W ∗

Mi

]
.

The quantity E
[
mini W

∗
Mi

]
is called the Whittle integral in the context of single selection over infinite-horizon

discounted-reward MDPs. It was first suggested as a lower bound on the optimal cost by [Whittle, 1980] and proved
in that context by [Brown and Smith, 2013] and [Hadfield-Menell and Russell, 2015]. Unfortunately, Definition 4.8
does not give us insight into how the surrogate costs W ∗

Mi
relate to the cost of an adaptive algorithm for matroid-

min-CICS. We will instead prove the theorem by relating optimality curves to the water filling procedure.

4.3 Water Filling and Surrogate Costs for General MDPs. In this section we will prove Theorem 4.9.
In the case of Markov chains, the water filling surrogate cost of a randomly sampled trajectory recovers the
optimality curve of the Markov chain. The challenge to extending this argument for general MDPs is that each
sequence of actions creates a different distribution over the trajectories and consequently also over the surrogate
costs, as illustrated in Example 4.5.

Our main observation is that if we are willing to cover action costs only partially through the amortization,
then we can define an appropriate amortization for every possible deterministic commitment in M such that
the distribution over surrogate costs generated by that commitment is independent of the commitment itself. In
other words, every sequence of actions in the MDP generates the same distribution over surrogate costs. This
distribution is a fundamental property of the MDP itself, and not of the algorithm operating on the MDP. We
formalize this property through the following lemma.

Lemma 4.10. For any MDPM = (S, σ,A, c,D, V, T ) and any deterministic commitment π ∈ C (M), generating
a Markov chain Mπ with states Sπ ⊆ S, realizable trajectories Υπ ⊆ Υ and a distribution pπ over trajectories
and reachable states, there exists an amortized cost function ρπ : Υπ 7→ ∆(R) mapping trajectories to distributions
over costs and a non-negative cost sharing vector bπ = {bπsτ}s∈Sπ,τ∈Υπ(s), such that the following properties hold:

1. Cost Sharing: the amortized cost of a trajectory pays for its own acceptance value and the cost shares it
sends to upstream states. For all τ ∈ Υπ, it holds that E [ρπ(τ)] = v(τ) +

∑
s∈τ b

π
sτs .

2. Cost Dominance: the cost shares received by any state pay towards its action cost, but do not overpay.
For all s ∈ Sπ, it holds that

∑
τ∈Υπ(s)

pπ(τ)b
π
sτ ≤ pπ(s)c(π(s)).

3. Action Independence: sampling a trajectory τ ∼ pπ and then sampling from the amortized cost
distribution ρπ(τ) generates a random surrogate cost for the MDP. This random variable is distributed
identically to the water filling surrogate cost W ∗

M.

As mentioned earlier, the amortized costs ρπ(τ) defined by the lemma are necessarily different from the
water filling costs in the respective Markov chains Mπ as they must satisfy action independence. Observe that
in the absence of the last condition connecting the surrogate costs ρπ(τ) to the water filling costs W ∗

M as defined
in Definition 4.8, the lemma is trivial to satisfy. Indeed we can define all of the cost shares to be 0 and still satisfy
cost dominance and action independence. The key contribution of the lemma is to show that we can achieve these
properties while recovering the “optimal” surrogate costs as determined by the optimality curve fM. Figure 3
illustrates how the lemma applies to the MDP in Example 4.5.

5In particular, let H and h denote the CDF and PDF of W ∗
M respectively, then we have fM(y) = y(1−H(y)) +

∫ y
0 zh(z)dz, from

which the statement follows by differentiating both sides.
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Once we establish the lemma, the proof of Theorem 4.9 follows in much the same way as the proof
of Lemma 4.2. At a high level, we can view the algorithm’s choices in hindsight as corresponding to some
deterministic commitment, and relate the algorithm’s cost to the surrogate costs as instantiated through that
commitment.

Figure 3: We consider the same setting as in Example 4.5. The optimality curve for MDP M is obtained
by the minimum of the optimality curves for M1 (orange dashed line) and M2 (blue dashed line). Each
action/commitment leads to two possible trajectories. The table on the right displays the four trajectories along
with their respective probabilities of instantiation, values, and amortized costs under their respective commitments
(commitment 1 for the first two columns and commitment 2 for the last two columns). Observe that resulting
surrogate costs have different distributions. The last row in the table defines an alternate set of (random) surrogate
costs ρM(t). Observe that for each t, we have E[ρM(t)] ≤ v(t). This implies cost dominance. The distribution of
ρM(t) when t is picked according to commitment 1 is 1 with probability (3/4) · (1/3) = (1/4), 2.5 with probability
(3/4) · (2/3) = (1/2) and 4 with probability (1/4) · (1) = (1/4). We obtain the same distribution if t is picked
according to commitment 2. The same distribution also arises from the solid black optimality curve in the graph
on the left, exhibiting the action independence property.

4.4 Omitted Proofs. We conclude this section by presenting the formal proofs of all our stated theorems and
lemmas.

Proof of Lemma 4.2. We begin with the proof of the lower bound we stated in Lemma 4.2, relating the cost of
any algorithm to the surrogate costs of any amortization. We note that one way to prove Lemma 4.2 is to follow
the approach developed by [Singla, 2017] and relate the performance of any algorithm on a “costly information”
instance to its performance in a “free information world” where action costs are paid by an outside investor who
is in turn paid back the extra amortized cost of any terminal that the algorithm follows and accepts. Instead, we
provide an algorithmic proof that will allow us to directly argue about the optimality of the water filling index
policy, as well as extend our setting to MDPs.

Let ALG be any algorithm for I. We will decompose the expected cost of ALG into the expected cost that it
pays in every Markov chainMi for all i ∈ [n]. LetMi = (Si, σi, Ai, ci,Di, Vi, Ti) be the i-th Markov chain and let
ρi := ρMi,bi be any cost amortization for this chain. We drop the i-index for notational convenience and define
the following random events:

• I(s) := the event that ALG advancesM at the non-terminal state s ∈ S.

• R(τ) := the event that nature realizes a trajectory τ ′ ∈ Υ with suffix τ .

• R(s) := the event that nature realizes a trajectory τ ∈ Υ with s ∈ τ .

• A := the event that ALG accepts a terminal state t ∈ T .
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Then, the expected cost paid by the algorithm on Markov chainM can be written as:

(4.1) ALG(M) =
∑
s∈S

Pr [I(s)] · c(s) +
∑
τ∈Υ

Pr [R(τ)] · Pr [A|R(τ)] · v(τ)

For the expected cost of taking costly actions, we have that

(4.2)
∑
s∈S

Pr [I(s)] · c(s) =
∑
s∈S

Pr [I(s)] ·
∑

τ∈Υ(s)

Pr [R(τ)]

Pr [R(s)]
· bsτ =

∑
s∈S

Pr [I(s)] ·
∑

τ∈Υ(s)

Pr [R(τ)|R(s)] · bsτ

where the first equality follows by the definition of cost shares and the second equality follows by τ ′ ∈ Υ(s).
For the expected cost of accepting a terminal state, we have that

(4.3)
∑
τ∈Υ

Pr [R(τ)] · Pr [A|R(τ)] · v(τ) =
∑
τ∈Υ

Pr [R(τ)] · Pr [A|R(τ)] ·
(
ρ(τ)−

∑
s∈τ

bsτs
)

by definition of the surrogate cost ρ(τ). We further decompose this expression into two terms:

• For the first term, we have

(4.4)
∑
τ∈Υ

Pr [R(τ)] · Pr [A|R(τ)] · ρ(τ) =
∑
τ∈Υ

Pr [R(τ)] · E [A · ρ(τ)|R(τ)] = E [A · ρ]

with the first equality following from A ∈ {0, 1} and the second by definition of the surrogate cost.

• For the second term, we have∑
τ∈Υ

Pr [R(τ)] · Pr [A|R(τ)] ·
∑
s∈τ

bsτs =
∑
s∈S

∑
τ∈Υ(s)

bsτ ·
∑

τ ′∈Υ:τ⊂τ ′

Pr [R(τ ′)] · Pr [A|R(τ ′)]

=
∑
s∈S

∑
τ∈Υ(s)

bsτ · Pr [A ∩R(τ)]
(4.5)

with the first line following by exchanging the summation order and the second line following by definition
of the event R(τ), specifically that R(τ) =

∑
τ ′∈Υ:τ⊂τ ′ R(τ ′).

Combining Equations (4.1) through (4.5), we obtain that the expected cost of the algorithm on Markov chainM
can be written as

ALG(M) = E [A · ρ] +
∑
s∈S

∑
τ∈Υ(s)

bsτ ·
(
Pr [I(s)] · Pr [R(τ)|R(s)]− Pr [A ∩R(τ)]

)
.

Observe that the second term is always non-negative: in order to accept a terminal from the chain and for
nature to realize a trajectory τ ∈ ρ(s), it is necessary for the algorithm to advance state s (this already requires
that s belongs in the realized trajectory) and for the suffix τ to be realized conditioned on having reached s;
notice that the last two events are independent. Thus, we have concluded that

ALG(M) ≥ E [A · ρ] .

The proof is completed by noting that

E [cost(ALG)] =

n∑
i=1

ALG(Mi) ≥
n∑

i=1

E [Ai · ρi] = E

[
n∑

i=1

Aiρi

]
≥ E

[
min
S∈F

∑
i∈S

ρi

]

with the last inequality obtained by the fact that the set S = {i ∈ [n] : Ai = 1} must be feasible (i.e. S ∈ F) with
probability 1 for ALG to be a valid policy.
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Proof of Theorem 4.4. We now proceed to prove Theorem 4.4 using Lemma 4.2. Observe that in the proof
of Lemma 4.2, we only used inequalities at two points: (i) when relating the amortized cost of the trajectories
that the algorithm selected to the (feasible) set of trajectories of minimum total surrogate cost and (ii) when
we established that Pr [I(s)] · Pr [R(τ)|R(s)] ≥ Pr [A ∩R(τ)] for all states s and all trajectories τ ∈ Υ(s); notice
that this was only required for pairs (s, τ) with bsτ > 0. The first inequality can become tight if the algorithm
somehow ensures that it will always accept the feasible set of realized trajectories whose total surrogate cost is
minimum. The second inequality becomes tight if the algorithm can somehow ensure that whenever it advances
a state s sharing cost bsτ > 0 with one of its downstream trajectories τ , it will always accept the corresponding
Markov chain if the suffix τ gets realized. This allows us to characterize the conditions under which the lower
bound is actually met by an algorithm, which we formally state as the following corollary:

Corollary 4.11. Consider any instance I = (M,F) of matroid-min-CICS over Markov chains and let bi be any
cost amortization ofMi with surrogate cost ρi := ρMi,bi for all i ∈ [n]. Then, any algorithm that satisfies both

1. Surrogate Optimality. The algorithm always accepts a feasible set of Markov chains whose realized
trajectories have the minimum total surrogate cost.

2. Promise of Payment. Whenever one of the Markov chains Mi gets advanced from a state si ∈ Si such
that bsiτi > 0 for some τi ∈ Υ(si), the algorithm will keep advancing Mi as long as it’s trajectory evolves
according to τi.

will have expected cost precisely E
[
minS∈F

∑
i∈S ρi

]
.

Promise of payment states that whenever bsτ > 0 and the algorithm advances s, it will ensure that while it
is possible for τ to be realized, the corresponding Markov chain will continue to be advanced; in other words,
that Pr [I(s)] · Pr [R(τ)|R(s)] = Pr [A ∩R(τ)]. We note that achieving any of these properties individually is
trivial; fully advancing all Markov chains and picking the feasible set of trajectories of minimum total surrogate
cost achieves surrogate optimality, and either advancing a Markov chain fully or not advancing it at all achieves
promise of payment. The water filling amortization is specifically defined so that the corresponding index policy
achieves both of these properties, simultaneously.

It suffices to argue that the water filling index policy, paired with the water filling amortization, satisfies both
surrogate optimality and promise of payment. We begin with surrogate optimality. By definition, the water filling
index policy advances the chain of minimum water filling index; recall that the index of a state corresponds to
the minimum surrogate cost among all trajectories passing through it. This ensures that while there is potential
for some chainMi to realize the trajectory of minimum surrogate cost, the algorithm will keep advancing it. In
other words, this algorithms ends up greedily accepting Markov chains with respect to the surrogate cost of their
realized trajectories. Paired with the fact that a minimum cost basis of a matroid is always obtained by greedily
adding the cheaper feasible element, this establishes surrogate optimality of the water filling index policy.

Next, we show that promise of payment also holds. Say that at any point the algorithm advances Markov
chainMi at state si with index Ii(si) and there exists some trajectory τi ∈ Υ(si) such that bsiτi > 0. We need
to argue that as long as the state ofMi evolves according to τi, the algorithm will keep advancing it. SinceMi

was advanced by the water filling index policy, this implies that Ii(si) was the minimum index among the current
states of all Markov chains; thus, a sufficient condition is to show that Ii(s

′
i) ≤ Ii(si) for all s′i ∈ τi, as then all

the states in the trajectory will continue to have the minimum index and thus will be advanced if realized. Since
bsiτi > 0, we know by definition of the water filling amortization that immediately after si got amortized, τi had
the minimum surrogate cost across all trajectories in Υ(si). As states are considered in a bottom-up order, this
implies that any subsequent steps of the amortization will maintain that the trajectory passing through si that
has the minimum surrogate cost ends with τi. This immediately gives us the proof, by definition of the indices
and s′i ∈ τi.

Proof of Lemma 4.10. We now proceed to prove Lemma 4.10, which is the main technical challenge of this
section. Fix any MDPM = (S, σ,A, c,D, V, T ). The proof follows by induction on the horizon H of the MDP. If
H = 1, thenM is a singleton MDP where σ ∈ T is the unique state, πσ is the unique (trivial) commitment and
Υπσ

= {{σ}}. Therefore, the lemma is immediately satisfied by ρπσ ({σ}) := v(σ) and bπσ

σ{σ} := 0. We now assume

that the conditions of the lemma hold for all MDPs of horizon up to H and extend it to MDPs of horizon H +1.
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Let M be of horizon H + 1 and let A(σ) = {a1, · · · , ak} be the set of actions available at the starting
state σ. Let Rj denote the set of all states that can be reached directly by taking action aj on σ; that is,
Rj := {s ∈ S : D(σ, aj , s) > 0}. For each s ∈ Rj , we useMs to denote the subprocesses ofM that starts in state
s and W ∗

Ms
to denote the water filling surrogate cost ofMs. We begin by computing the water filling amortization

of each action aj .
Let Zj denote the random variable that first draws a state s from the distribution D(σ, aj , ·) and then draws

a value from the distribution W ∗
Ms

. Let gj be the solution to the equation

c(aj) + E [Zj ] = E [max{gj , Zj}] .

Then, Ẑj := max{gj , Zj} is the water filling surrogate cost of the action aj . We observe that for any y ≥ gj , we

have c(aj) + E [min{y, Zj}] = E
[
min{y, Ẑj}

]
, and because Ẑj is always at least gj , we get for all y:

min{y, c(aj) + E [min{y, Zj}]} = E
[
min{y, Ẑj}

]
.(4.6)

We can now write the optimality curve ofM as:

fM(y) = min

y,min
j∈[k]

(
c(aj) +

∑
s∈Rj

D(σ, aj , s) · fMs
(y)

)
= min

y,min
j∈[k]

(
c(aj) +

∑
s∈Rj

D(σ, aj , s) · E
[
min{y,W ∗

Ms
}
])

= min

{
y,min

j∈[k]

(
c(aj) + E [min{y, Zj}]

)}
= min

{
y,min

j∈[k]
E

[
min

(
y, Ẑj

)]}
.

Here the first equation follows from noting that in the local game (M, y), the algorithm can either choose the
outside option y or takes one of the actions aj from σ and then proceeds optimally in the game (Ms, y) where s
is instantiated from Rj . The second equation follows by the definition of W ∗

Ms
; the third by the definition of Zj ;

and the fourth by Equation (4.6).
Recall that fM(y) = E [min{y,W ∗

M}], and so, we conclude that

E [min{y,W ∗
M}] ≤ E

[
min{y, Ẑj}

]
for all j ∈ [k]. This implies that the random variable Ẑj second-order stochastically dominates the random variable
W ∗

M, allowing us to use the following lemma.

Lemma 4.12. (Second Order Stochastic Dominance.) Let X,Z be discrete random variables that satisfy the
property E [min{y,X}] ≤ E [min{y, Z}] for all y ∈ R. There exists a mapping m : supp(Z) 7→ ∆(supp(X))
from the support of Z to distributions over the support of X such that:

1. X is obtained by sampling from m(z) for a randomly sampled z ∼ Z.

2. For all z ∈ support(Z), it holds that E [m(z)] ≤ z.

We note that the lemma is standard (see for example [Strassen, 1965, Föllmer and Schied, 2016]) but we provide
a constructive proof in Appendix D for the sake of intuition and completeness. We apply Lemma 4.12 to all tuples
(W ∗

M, Ẑj) to obtain mappings mj(·).
We are finally ready to define the amortized cost functions ρπ and the cost sharing vectors bπ. Fix any

deterministic commitment π ∈ C (M) and let j = π(σ) ∈ [k] be the fixed action that π takes at state σ. For each
state s ∈ Rj , we use π|s ∈ C (Ms) to denote the commitment π after we transition to state s; note that this is
also a deterministic commitment. By definition, each MDPMs has horizon up to H and thus by the induction
hypothesis, it admits a mapping ρπ|σ(·) and a non-negative cost sharing vector bπ|σ, satisfying the properties
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of the lemma. Now, consider any trajectory τ ∈ Υπ and observe that τ = {σ, τs} for some s ∈ Rj and some
τs ∈ Υπ(s). We define

ρπ(τ) := mj(max{gj , ρπ|s(τs)})

and
bπστ := E [ρπ(τ)]− E

[
ρπ|s(τs)

]
and for all other s ∈ Sπ \ {σ} and τ ∈ Υπ(s), we use the same cost share bπsτ = b

π|s
sτ that was used inMs.

• Cost sharing: This holds trivially by the definition of the cost shares in the starting state σ, the fact that
we don’t change the cost shares in any other state s ̸= σ, the fact that v(τ) = v(τs) for any suffix τs of τ
and the induction hypothesis.

• Cost dominance: By the induction hypothesis and the fact that we maintain the cost shares of every state
s ̸= σ, we only need to prove the inequality for σ. We have∑

τ∈Υπ

pπ(τ)b
π
στ =

∑
s∈Rj ,τs∈Υπ(s)

pπ({σ, τs})(E [ρπ({σ, τs})]− E
[
ρπ|s(τs)

]
)

=
∑
τ∈Υπ

pπ(τ) E [ρπ(τ)]−
∑
s∈Rj

D(σ, aj , s)
∑

τs∈Υπ(s)

pπ|s(τs) E
[
ρπ|s(τs)

]
= E [W ∗

M]−
∑
s∈Rj

D(σ, aj , s) E
[
W ∗

Ms

]
≤ E

[
Ẑj

]
− E [Zj ] = c(aj).

and the statement follows by noting pπ(σ) = 1. Here the first equation follows from the definition of bπστ
and a decomposition of the trajectories τ ; the second just rewrites the terms separately; the third is by the
action independence of ρπ (proven below), and by the induction hypothesis applied to Ms similarly; the
fourth uses property (2) in Lemma 4.12 for the first term and the definition of Zj for the second term; and

the last equality follows from the definition of Ẑj .

• Action independence: Drawing a trajectory τ ∼ pπ is equivalent to first drawing a state s ∈ Rj from
the distribution D(σ, aj , ·) and then drawing a trajectory τs ∈ Υπ(s) from pπ|s. Consider drawing τ in this

manner and then sampling from the distribution ρπ|s(τs). By the induction hypothesis and the definition
of Zj , this provides us with a sample drawn from Zj . Then, max{gj , ρπ|s(τs)} with τ drawn in this manner

corresponds to an instantiation of Ẑj , and mj applied to that instantiation results in an instantiation of
W ∗

M by the definition of mj and property (1) in Lemma 4.12.

This concludes the proof of Lemma 4.10.

Proof of Theorem 4.9. Finally, we are ready to prove our main result (Theorem 4.9) using Lemma 4.10. Fix
any algorithm (including the optimal adaptive policy) for instance I and let ALG denote the (random) cost of this
algorithm. Also, for all i ∈ [n], let ALG(i) denote the (random) cost suffered by the algorithm from paying action
costs and accepting terminal states inMi. Notice that ALG =

∑n
i=1 ALG(i) with probability 1. Finally, let X(i)

be the random variable indicating whether the algorithm accepts a state fromMi or not. To prove Theorem 4.9,
we will argue that for all i ∈ [n],

(4.7) E [ALG(i)] ≥ E
[
X(i) ·W ∗

Mi

]
.

Notice that if this is true, then we immediately have that

E [ALG] =

n∑
i=1

E [ALG(i)] ≥
n∑

i=1

E
[
X(i) ·W ∗

Mi

]
= E

[
n∑

i=1

X(i) ·W ∗
Mi

]
≥ E

[
min
S∈F

∑
i∈S

W ∗
Mi

]
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with the last inequality following from the fact that for any feasible algorithm, the set of accepted terminals
S = {i : X(i) = 1} must be feasible (i.e. S ∈ F) with probability 1.

We now turn our attention to proving inequality (4.7). We use A to denote the inner randomness of the
algorithm and Ri to denote the randomness of each MDPMi for all i ∈ [n]. Notice that conditioned on A and
Ri for all i ∈ [n], the outcome of the algorithm is deterministic. Now fix any i ∈ [n] and let

R−i := A ∪
(
∪j ̸=i Rj)

encode all the randomness in the algorithm’s run except from the realizations of Mi. The key observation
is that conditioned on R−i, all the actions that the algorithm takes in MDP Mi are predetermined ; in
other words, the algorithm’s trajectory on Mi is fully described by some deterministic commitment denoted
πi = πi(R−i) ∈ C (Mi). Thus, we have that

(4.8) E [ALG(i)] = ER−i

[
ERi

[
ALG(i)|R−i

]]
= ER−i [cost(πi)]

where cost(πi) is the expected cost of the algorithm, following the commitment πi = πi(R−i), on MDPMi. The
proof is the completed by the following generalization of Lemma 4.2, which is enabled from Lemma 4.10.

Claim 4.13. Fix any MDP M and any deterministic commitment π ∈ C (M). Then, the expected cost of any
algorithm following π onM will be at least

E [X(π) ·W ∗
M]

where X(π) is an indicator of whether the algorithm accepts a terminal state ofM or not.

Notice that the above claim doesn’t depend on the underlying CICS instance I; it simply states that conditioned
on running a committing policy on some MDP and accepting a terminal state, the expected total cost spent on
this MDP is lower bounded by the surrogate cost. Since this lower bound applies to all commitments π ∈ C (M),
coupled with equation (4.8), it directly implies inequality (4.7), as

E [ALG(i)] = ER−i [cost(πi)] ≥ ER−i

[
E
[
(X(i)|R−i) ·W ∗

Mi

]]
= E

[
X(i) ·W ∗

Mi

]
,

completing the proof of Theorem 4.9.

Proof of Claim 4.13. Notice that since we are committing to running policy π ∈ C (M) on M, we are
essentially running some algorithm on the Markov chain Mπ. From Lemma 4.2 and Theorem 4.4, we know
that the contribution of Markov chainMπ to the total cost will be at least

E [X(π) ·W ∗
Mπ ]

and thus to prove the claim, we will need to show that

E [W ∗
Mπ ] ≥ E [W ∗

M]

for all π ∈ C (M).
Let M = (S, σ,A, c,D, V, T ) and recall that we use Sπ and Υπ to denote the state space and trajectory set

of Mπ and pπ to denote the implied distribution over Υπ. Finally, we use c(s) to denote the cost of the unique
action that the deterministic commitment π chooses at state s ∈ Sπ. By definition of the water filling surrogate
cost of a Markov chain, we have

E [W ∗
Mπ ] =

∑
τ∈Υπ

pπ(τ) · ρ∗Mπ (τ) =
∑
τ∈Υπ

pπ(τ) ·
(
v(τ) +

∑
s∈τ

b∗sτs

)
where b∗sτ are non-negative cost shares satisfying

∑
τ∈Υπ(s)

pπ(τ)b
∗
sτ = pπ(s)c(s) for all s ∈ Sπ. Since π is

deterministic, we know from Lemma 4.10 that there exists an amortized cost function ρπ(·) over the trajectories
in Υπ and a set of cost shares {bπsτ} that will satisfy action independence, cost sharing and cost dominance. Using
these, we have

E [W ∗
Mπ ] =

∑
τ∈Υπ

pπ(τ) ·
(
v(τ) +

∑
s∈τ

b∗sτs

)
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=
∑
τ∈Υπ

pπ(τ) ·
(
E [ρπ(τ)]−

∑
s∈τ

bπsτs +
∑
s∈τ

b∗sτs

)
(Cost Sharing)

=
∑
τ∈Υπ

pπ(τ) · E [ρπ(τ)] +
∑
τ∈Υπ

∑
s∈τ

pπ(τ)(b
∗
sτs − bπsτs)

= E [W ∗
M] +

∑
s∈Sπ

∑
τ∈Υπ(s)

pπ(τ)(b
∗
sτ − bπsτ ) (Action Independence)

= E [W ∗
M] +

∑
s∈Sπ

pπ(s)c(s)−
∑

τ∈Υπ(s)

pπ(τ)b
π
sτ

≥ E [W ∗
M] . (Cost Dominance)

5 Local Approximation and Composition Theorems

Recall that the commitment gap of a CICS instance is defined as the ratio between the cost of the optimal
committing policy and the cost of the optimal (non-committing) policy. Let I = (M,F) be an instance of matroid-
min-CICS and let πi be a commitment forMi ∈ M. We will establish bounds on the commitment gap achieved
by P = (π1, · · · , πn) by quantifying for each i ∈ [n] the performance of πi in the local game (Mi, y).

Recall that the performance of an optimal algorithm for the local game (M, y) is described by the optimality
curve fM(y). The performance of the commitment π in the same game is given by fMπ (y). [Scully and Doval,
2024] define local approximation by relating these two quantities:6

Definition 5.1. (Local Approximation) Let M be any MDP and let α ≥ 1. We say that a commitment
π ∈ C (M) is an α-local approximation forM if fMπ (αy) ≤ α · fM(y) for all y ∈ R.

Restating the inequality in terms of the water-filling costs provides a more intuitive definition as well as a
composition theorem. Theorems 4.4 and 4.9 together imply that we can bound the commitment gap as:

CG(I) ≤ min
(π1,··· ,πn)∈C(I)

E
[
minS∈F

∑
i∈S W ∗

Mπi
i

]
E
[
minS∈F

∑
i∈S W ∗

Mi

] .

On the other hand, using Definition 4.8, an α-local approximation for πi with respect toMi can be restated as
a second-order stochastic dominance condition:

(5.9) E
[
min{y,W ∗

Mπi
i
}
]
≤ E

[
min{y, αW ∗

Mi
}
]
∀y ∈ R.

Combining these inequalities provides the following composition result.

Theorem 5.2. Let I = (M,F) be any instance of matroid-min-CICS, where each constituent MDP Mi admits
an α-local approximation under some commitment πi ∈ C (Mi). Then, CG(I) ≤ α.

Proof. Let z := [W ∗
Mπ

2
, · · ·W ∗

Mπ
n
] encode the surrogate costs of all Markov chainsMπi

i with the exception ofMπ1
1 .

Then, we have

E

[
min
S∈F

∑
i∈S

W ∗
Mπi

i

]
= Ez

[
EW∗

Mπ1
1

[
min
S∈F

∑
i∈S

W ∗
Mπi

i

]]

= Ez

EW∗
Mπ1

1

min
S∈F

(
W ∗

Mπ1
1
· 1[1 ∈ S] +

∑
i∈S\{1}

W ∗
Mπi

i

)
= Ez

[
EW∗

Mπ1
1

[
min

(
min

S∈F :1/∈S

∑
i∈S

W ∗
Mπi

i
, W ∗

Mπ1
1

+ min
S:1/∈S;S∪{1}∈F

∑
i∈S

W ∗
Mπi

i

)]]

6Their definition is provided in the context of optional-inspection PB, and we extend the same definition to general MDPs.
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Now, let f1(z) := minS∈F :1/∈S

∑
i∈S W ∗

Mπi
i

and f2(z) := minS:1/∈S;S∪{1}∈F
∑

i∈S W ∗
Mπi

i

. Note that both

quantities depend only on z and not on W ∗
Mπ1

1
. Then, we have

E

[
min
S∈F

∑
i∈S

W ∗
Mπi

i

]
= Ez

[
EW∗

Mπ1
1

[
min

(
f1(z) , W ∗

Mπ1
1

+ f2(z)

)]]
= Ez

[
f2(z) + EW∗

Mπ1
1

[
min

(
f1(z)− f2(z) , W ∗

Mπ1
1

)]]
≤ Ez

[
f2(z) + EW∗

M1

[
min

(
f1(z)− f2(z) , α ·W ∗

M1

)]]
(Local Approximation)

= Ez

[
EW∗

M1

[
min

(
f1(z) , α ·W ∗

M1
+ f2(z)

)]]
= E

[
min
S∈F

∑
i∈S

W̃i

]

where W̃1 = α ·W ∗
M1

and W̃i := W ∗
Mπi

i

for all i ̸= 1. Thus, we have substituted W ∗
Mπ1

1
with α ·W ∗

M1
. By repeating

the same process for i = 2, 3, · · · , n, we obtain that

E

[
min
S∈F

∑
i∈S

W ∗
Mπi

i

]
≤ E

[
min
S∈F

∑
i∈S

α ·W ∗
Mi

]

and thus

E
[
minS∈F

∑
i∈S W ∗

Mπi
i

]
E
[
minS∈F

∑
i∈S W ∗

Mi

] ≤ α.

From Theorem 4.4 the nominator is precisely the cost of the optimal committing policy for I under commitments
P = (π1, · · · , πn) and from Theorem 4.9, the denominator is a lower bound on OPT(I). Thus, we have CG(I) ≤ α
as desired.

Theorem 5.2 also provides a recipe for designing approximation algorithms for CICS: if we can efficiently identify
a commitment πi for each MDP Mi that achieves an α-local approximation, then we can simply restrict each
MDPMi to the corresponding Markov chainMπi

i and run the (efficient) water filling index policy; the resulting
committing policy is guaranteed to be an α-approximation to the unrestricted optimum.

Geometric Intuition for Local Approximation. It is worth emphasizing that α-local approximation is not
equivalent to simply achieving a standard α-approximation in the local game. Slightly rearranging the condition
in Definition 5.1, we have that for commitment π to be an α-local approximation, we require for all y ∈ R,

fMπ (y) ≤ αfM(y/α).

In contrast, for commitment π to be a standard α-approximation for the local game, we require only

fMπ (y) ≤ αfM(y),

the difference being y instead of y/α on the right-hand side. As illustrated in Figure 4, we can understand both
of the above conditions as saying that the graph of fMπ (y) needs to lie below a geometrically scaled version of
the graph of fM(y). However, the scaling used is different for the two conditions.

• For standard α-approximation, we vertically scale up fM(y) by a factor of α.

• For α-local approximation, we vertically and horizontally scale up fM(y) by a factor of α.
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Original Cost Curve

y

fM(y)

Standard Approximation:
vertical scaling

y

fM(y)

αfM(y)

Local Approximation:
diagonal scaling

y

fM(y)

αfM(y/α)

Figure 4: For an MDPM with a given optimality curve (left), we contrast two approximation notions: standard
α-approximation (center) vs. α-local approximation (right). In both cases, achieving the approximation requires
designing a commitment whose optimality curve lies below a scaled version of the optimal cost (purple curves).
For standard α-approximation, the curve is scaled up vertically by a factor of α. For α-local approximation, the
curve is scaled up diagonally, i.e. both vertically and horizontally, by a factor of α.

The additional horizontal scaling in local approximation is critical in proving eq. (5.9) and thereby obtaining
Theorem 5.2. Standard α-approximation implies only a weaker version of eq. (5.9) with the y on the right-
hand side replaced by αy. Working through the proof of Theorem 5.2 with this change, one would eventually
obtain a commitment gap bound of αn, scaling exponentially7 in the number of MDPs n. Using the right local
approximation notion is thus critical for obtaining approximation guarantees that do not depend on n.

Establishing Local Approximation. We note that in some cases, the surrogate costs of an MDP might not
admit a simple structure, making second-order stochastic dominance conditions difficult to establish. We can
alternatively establish local approximation through a stronger but conceptually easier relationship between the
surrogate costs: namely, that αW ∗

M first-order stochastically dominates W ∗
Mπ

. Formally, we define the following
alternate notion of approximation, where for a quantile q ∈ [0, 1] and a random variable X, we let X(q) denote
the qth quantile value of the r.v.: X(q) = inf{x : Pr[X ≤ x] ≥ q}.

Definition 5.3. (Pointwise Approximation) LetM be any MDP and let α ≥ 1. We say that a commitment
π ∈ C (M) is an α-pointwise approximation forM if W ∗

Mπ (q) ≤ α ·W ∗
M(q) for all q ∈ [0, 1].

The following is immediate from the fact that first-order stochastic dominance implies second-order stochastic
dominance, but the converse need not hold.

Fact 5.4. If π ∈ C (M) is an α-pointwise approximation forM, it also an α-local approximation forM.

Finally, we note that by definition we have fM(y) = minπ∈C(M) fMπ (y). Moreover, because randomized
commitments generate optimality curves as averages over those of deterministic commitments, we can write
fM(y) as the minimum over the optimality curves of deterministic commitments. Thus, we can obtain local or
pointwise approximation guarantees by showing that the commitment π satisfies the desired definition against
all other deterministic commitments π′ ∈ C (M). This simple observation can prove essential when establishing
these conditions, as the water-filling surrogate costs of Markov chains have a much more intuitive structure
(Lemma 4.2) than the surrogate costs of MDPs (Lemma 4.10). For example, while the surrogate costs of the
MDPs corresponding to Additive PBs (Section 7) are very complicated, the surrogate costs of committing policies
for the same setting admit an exceptionally simple form that can be exploited to prove a pointwise approximation.

Beyond Local Approximation. For one of our applications, namely the maximization version of Pandora’s box
with optional inspection (Section 9), local approximation turns out to be too stringent of a condition. As such, we
introduce a slight weakening of local approximation, which we call semilocal approximation (Definition 9.4), that
is tailored to this application. Roughly speaking, local approximation requires purely multiplicative suboptimality,
while semilocal approximation allows for some additive suboptimality, too. See Section 9 for details.

7Appendix C exhibits an explicit example of this exponential scaling.
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6 Pandora’s Box with Partial Inspection (Minimization)

In classical Pandora’s Box, the algorithm pays some cost co to open a box and observe its value, and is then
allowed to select the box. We will now study the minimization version of the generalization called Pandora’s Box
with Partial Inspection (henceforth, PBPI) where the algorithm can additionally “peek” into the box at a smaller
cost cp < co and learn its value. If upon obtaining this information, the algorithm wants to select the box, it must
still open the box at a cost of co before accepting it. This presents a choice: in some cases it may be better to
open the box outright, while in others it is better to pay the smaller peeking cost to potentially avoid paying the
opening cost later.

Formally, we consider an instance with n partial inspection boxes (henceforth, PI-boxes) {Bi}ni=1, where each
box Bi = (Di, c

o
i , c

p
i ) is characterized by a distribution Di over values; an opening cost coi > 0; and a peeking cost

cpi ∈ (0, coi ]
8. Each PI box Bi can be expressed as a Costly Information MDP with two possible actions, peeking

and opening, where we can interpret the accept action after peeking as incurring a cost of co. An instance of PBPI
corresponds to an instance of min-CICS over the corresponding MDPs. A pictorial representation of the different
states of a box and the underlying MDP is shown in Figure 5.

Figure 5: In PBPI, a peeking box B = (D, co, cp) is initially closed. In order to learn the value realization realization
X ∼ D, the decision maker can either peek into the box (at a cost of cp) or open it (at a cost of co). To accept
the box, the decision maker must first open it and then pay its (now known) value X.

A committing policy for PBPI needs to decide in advance (perhaps randomly) whether each box Bi will be directly
opened or peeked into and then (potentially) opened. Our main result in this section is the following:

Theorem 6.1. The commitment gap of matroid-PBPI is at most
√
2.

In Section 6.1 we show a lower bound of 16/15 for the commitment gap of matroid-PBPI (Example 6.2)
and a trivial upper bound of ϕ ≈ 1.618 (Lemma 6.3). We then prove Theorem 6.1 by showing that each PI
box B admits a

√
2 ≈ 1.414 local approximation (Lemma 6.4) and employing Theorem 5.2; we note that the

commitment achieving this guarantee decides whether each box will be directly opened or peeked before opened
deterministically, based on the parameters of the box, and can be efficiently computed.

6.1 Lower and Upper Bounds on the Commitment Gap of PBPI. We begin by showing that that there
are simple instances where all committing policies are sub-optimal up to a constant factor.

Example 6.2. Consider an instance of single-selection PBPI over two boxes. The first box has an opening cost
of 1, a peeking cost of 1

4 and its random value is 0 with probability 1
2 and 2 otherwise. The second box has both

an opening and peeking cost of 0, and its random value is 2 with probability 1
2 and ∞ otherwise.

• Since opening the second box is free, we can assume without loss that all policies start by opening it and
observing its value, call it y. The optimal policy will simply open and accept the first box if y = ∞. But if
y = 2, it can peek into the first box and only open it if it contains a value of 0. The expected cost of this
algorithm is 15/8.

• Now consider any policy that commits to opening or peeking into box 1 before observing y. If it commits to
opening the first box, it accepts the value of this box regardless of y, as box 1 always has a value smaller than

8Since we can only select an opened box, if cpi ≥ coi , then we can safely exclude the peeking action and the box reduces to a
classical Pandora’s Box.
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y. The expected cost of this policy is 2. If it commits to peeking into the first box, then at y = ∞ it incurs
a cost of 9/4 due to having to pay the extra peeking cost; and at y = 2 it incurs an expected cost of 7/4 by
opening the first box only if it contains a value of 0. It’s net cost is again 2.

Since both deterministic committing policies have an expected cost of 2, so does any randomized commitment.
Consequently, the expected cost of the optimal adaptive policy is strictly smaller than that of the optimal committing
policy.

Example 6.2 illustrates that the commitment gap of matroid-PBPI at least (16/15). On the positive side, it
is easy to obtain an upper bound of 2. In particular, consider the policy that commits to peeking all boxes. This
policy can mimic the optimal one as follows. Whenever the optimal algorithm peeks, so does this committing
policy. Whenever the optimal algorithm opens without peeking, the committing policy peeks and then opens; on a
box with costs cpi and coi , this policy pays cpi +coi or at most twice the amount coi paid by the optimal algorithm. In
fact, we can further refine this argument by choosing the action we commit to more carefully: there always exists
a simple commitment under which we can achieve a ϕ ≈ 1.618 approximation to the optimal adaptive policy.

Lemma 6.3. Consider any instance of matroid-PBPI and partition the n boxes into two sets

O :=

{
i ∈ [n] :

coi
cpi
≤ 1 +

cpi
coi

}
and P = [n] \O. The policy that commits to directly opening the boxes in O and peeking before opening the boxes
in P achieves a ϕ-approximation to the optimal (non-committing) policy.

Proof. The proof relies on the crucial fact that opening and peeking into a PI box reveals precisely the same
information to the decision maker; in particular, the value of the box. We construct a policy that commits to
directly opening boxes i ∈ O and peeking before opening boxes i ∈ P , while simultaneously mimicking the optimal
adaptive policy. In particular, fix any box i.

• If the optimal never interacts with box i, neither does our policy.

• If the optimal directly opens box i, then (i) if i ∈ O our policy also opens it and never peeks into it, and
(ii) if i ∈ P our policy first peeks into the box and then immediately opens it.

• If the optimal first peeks into box i, then (i) if i ∈ P our policy also peeks into it (and then opens it whenever
the optimal decides to open it), and (ii) if i ∈ O our policy directly opens it and never peeks into it.

• If the optimal selects box i, so does our policy.

Observe that at any point the optimal and our policy have the exact same information, so we can keep
mimicking the optimal decision tree. Furthermore, our policy clearly respects the given commitment. Finally,
whenever the optimal selects a box, we can do the same as the set of our policy’s opened boxes is always a superset
of the optimal’s opened boxes. This ensures feasibility of our algorithm under any combinatorial constraint F .

Thus, the only difference between the costs of our policy and the optimal is due to differences in the selected
actions. In particular, if i ∈ P then if the optimal peeks into or ignores the box then so does the algorithm, with
the worst case being the optimal directly opening the box. In that case, the optimal pays coi whereas our policy
pays cpi + coi . On the other hand, if i ∈ O, then the worst case is if the optimal peeks into the box and decides not
to open it; in that case the optimal pays cpi whereas our algorithm pays coi . Finally, our algorithm pays precisely
the same cost as the optimal for accepting boxes.

Combining everything, we conclude that our policy achieves an

α := max

(
max
i∈O

(
coi
cpi

) , max
i∈P

(
cpi + coi

coi
)

)
approximation to the optimal adaptive policy. For each box i ∈ [n], let λi = cpi /c

o
i ∈ (0, 1) and observe that by

definition of the partition sets we have that 1/λi ≤ 1 + λi if and only if i ∈ O. Thus, we obtain that

α ≤ max
i

min(1 + λi,
1

λi
) ≤ max

x∈(0,1)
min(1 + x,

1

x
) = ϕ.

as desired.
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We note that by using a global argument such as the one above, i.e. an argument where we charge each action
of the committing policy directly to the optimal adaptive policy, one cannot improve on this upper bound of
ϕ (for example, consider a setting where all the boxes have cp = 1 and co = ϕ). In order to achieve a better
guarantee, we would need to leverage our knowledge of the value distributions. In the next section, we achieve
this by establishing local approximation guarantees for PBPI.

6.2 Local Approximation Guarantees for PBPI. Given a PI box B = (D, co, cp), let gp denote the water
filling (a.k.a. Gittins) index of the policy that commits to peeking. Equivalently, gp is the solution to the equation
cp = EX∼D [(gp −X − co)+]. We call gp the peeking index of the box.

Lemma 6.4. Let B = (D, co, cp) be a PI box with peeking index gp. Let π commit to the opening action whenever

co

cp
·
(
1− co

gp

)
≤ 1 + min

(
cp

co
,
co

gp

)
and to the peeking action otherwise. Then, π is a

√
2-local approximation to B.

The rest of this section is devoted to proving Lemma 6.4. We first note the following characterization:

Definition 6.5. (Optimality Curves For PBPI) The optimality curve of a PI box B = (D, co, cp) for cost
minimization is given by

fB(y) := min{y, fo
B(y), f

p
B(y)}

where fo
B(y) := co + EX∼D [min{y,X}] is the optimality curve of the policy that commits to opening the box and

fp
B(y) := cp+EX∼D [min{y,X + co}] is the optimality curve of the policy that commits to peeking. We also define
the opening index of the box, go, as the water filling index of the opening policy, equivalently, the solution to
the equation co = EX∼D [(go −X)+]. We depict these curves and indices in Figure 6.

Figure 6: The optimality curves for a box B with opening cost co = 0.5, value X = 0 with probability 0.5 and
X = 2 with probability 0.5 and peeking cost cp = 0.4 (left) and cp = 0.1 (right). The optimality curve of B is
given by the minimum of the three curves. Observe that the curves of the opening and peeking action intersect
at a unique point τ and that unless gp < go, the opening action dominates the peeking action.

Observe that if the optimal adaptive policy prefers opening over peeking the box for some outside option y,
then the same will be true for any y′ > y. Also, for y = 0 peeking is clearly preferable to opening. Thus, the
optimality curves fo

B(y) and fp
B(y) will have a unique intersection (up to an interval). We use τ to denote this

intersection; formally, τ is the maximal solution to equation

EX∼D
[
(τ −X)+

]
− EX∼D

[
(τ −X − co)+

]
= co − cp.

This implies that unless gp < go < τ , the opening action will dominate the peeking action for all values of the
outside option y for which accepting it isn’t optimal; as a consequence, such instances trivially admit a 1-local
approximation by committing to the opening action. From now on, we assume that gp < go < τ . Lemma 6.4 is
a consequence of the following claims, establishing local approximation guarantees for the opening and peeking
actions respectively.
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Claim 6.6. For all y ∈ R, it holds that min{y, fo
B(y)} ≤ α · fB( yα ) for α = co

cp ·
(
1− co

gp

)
.

Claim 6.7. For all y ∈ R, it holds that min{y, fp
B(y)} ≤ α · fB( yα ) for α = 1 +min

(
cp

co ,
co

gp

)
.

Note that the above claims immediately imply an α-local approximation with

α = min

{
co

cp
·
(
1− co

gp

)
, 1 +

cp

co
, 1 +

co

gp

}
.

Fixing co and cp and letting λ := cp/co ∈ (0, 1), the minimum of the first and third terms is maximized at
gp = co · 1+λ

1−λ ; so we have α ≤ min{1 + λ, 2
1+λ} ≤

√
2. We conclude this section with the proofs of the two claims.

Proof of Claim 6.6. By concavity, we have that fo
B(y) ≤ αfo

B(
y
α ) for all y ∈ R and α ≥ 1; thus, we only need

to verify the condition for y such that fB(
y
α ) = fp

B(
y
α ). In other words, we only need to verify

min{y, fo
B(y)} ≤ αfp

B(
y

α
) ∀y ∈ [αgp, ατ ].

For start, we will show that the condition holds for α = go/gp; notice that for this parameter, fo
B(y) ≤ y for

all y ∈ [αgp, ατ ] and thus we can now write our condition as

Dα(y) := αfp
B(

y

α
)− fo

B(y) ≥ 0 ∀y ∈ [αgp, ατ ].

Let F (·) denote the CDF of distribution D. By definition of fo
B(y) and fp

B(y), we have

d

dy
fo
B(y) = 1− F (y) ,

d

dy
fp
B(y) = 1− F (y − co)

and by taking the derivative of Dα(·), we immediately obtain that Dα(·) is a weakly increasing function of y and
thus the condition only needs to hold on y = αgp. Observe that for α = go/gp and y = αgp = go, we have

Dα(y) =
go

gp
· fp

B(g
p)− fo

B(g
o) = go − go = 0

and thus we obtain that the opening action always achieves a go/gp local approximation.
The final step of the proof will be to show that

go

gp
≤ co

cp
·
(
1− co

gp
)

For this purpose, we define the function h(z) := EX∼D [(z −X)+] and observe that h′(z) = F (z); thus, h(z) is
an increasing and convex function of z with h(0) = 0. Furthermore, by definition of the indices and the curves we
have that h(go) = co and h(gp − co) = cp. Thus, by convexity, we immediately obtain that

h(go)

go
≥ h(gp − co)

gp − co
⇒ co

go
≥ cp

gp − co

from which the claim follows.

Proof of Claim 6.7. By concavity, we have that fp
B(y) ≤ αfp

B(
y
α ) for all y ∈ R and α ≥ 1; thus, we only need

to verify the condition for y such that fB(
y
α ) = fo

B(
y
α ); notice that this corresponds to y ≥ ατ > gp and thus

fp
B(y) ≤ y. In other words, we only need to verify

fp
B(y) ≤ αfo

B(
y

α
) ∀y ≥ ατ.

Let Dα(y) := α ·fo
B(y/α)−fp

B(y). We need Dα(y) ≥ 0 for y ≥ ατ . The condition immediately holds at y = ατ
since

αfo
B(

ατ

α
) = αfo

B(τ) = αfp
B(τ) ≥ fp

B(ατ)
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by concavity of fp
B(·). Next, observe that

d

dy
Dα(y) =

d

dy
fo
B(

y

α
)− d

dy
fp
B(y) = F (y − co)− F (

y

α
)

and thus Da(y) gets minimized at y = α·co
α−1 . If

α·co
α−1 ≤ ατ or equivalently α ≥ 1 + co/τ , then d

dyDα(y) ≥ 0 in the

area of interest; thus, we obtain that the peeking action always achieves a 1 + co

τ ≤ 1 + co

gp local approximation.

To complete the proof, we need to show that the peeking action also achieves a 1 + cp

co local approximation or

equivalently that for α = 1 + cp

co we have that miny≥ατ Dα(y) = D(α·c
o

α−1 ) ≥ 0.

Once again, we consider the function h(z) = EX∼D [(z −X)+]; this time, we observe that by definition we
have

fo
B(y) = co + y − h(y) , fp

B(y) = cp + y − h(y − co).

From this, the condition D(α·c
o

α−1 ) ≥ 0 translates to

h(
co

α− 1
) ≤ α · co − cp

α− 1

and for α = 1 + cp

co , this statement is equivalent to

h(
co · co

cp
) ≤ co · co

cp

which is clearly true, by definition of h(·).

7 Additive Pandora’s Box (Minimization)

In this section, we study a different generalization of Pandora’s Box which we call Additive Pandora’s Box
(henceforth, APB). In this setting, the value of each (additive) box is given by the sum of independent random
variables, all of which need to be separately probed by paying a corresponding probing cost. The objective is to
minimize the total sum of opening costs plus the additive value of the accepted box.

The primary motivation for studying APB is that it constitutes a special case of the notoriously challenging
Pandora’s Shortest Path problem, where the edge weights of a given graph correspond to independent Pandora’s
boxes and the objective is to accept a set of boxes that form a path between two given vertices s, t. Due to the
fact that path constraints do not admit frugal algorithms, no results are currently known for this problem and
it is left as an open direction by [Singla, 2017]. It is not hard to see that APB corresponds to the special case of
Pandora’s Shortest Path where the graph consists of parallel paths between s and t; each path is then modeled
via an additive Pandora’s Box (the components of which correspond to the path’s edges) and the path constraint
translates to a single-selection constraint over the additive boxes.

Formally, an instance of APB consists of n-additive boxes {Bi}ni=1. Each box Bi = (D⃗i, c⃗i) is characterized by
ki ≥ 1 random variables, each distributed independently according to Dij and with an opening cost of cij ≥ 0 for
j ∈ [ki]. The algorithm can observe the realization Vij ∼ Dij by paying cij and can accept the box Bi only after

all the ki random variables have been observed, at a cost of
∑ki

j=1 Vij . At any point, the algorithm can adaptively
select which additive box to explore, as well as which of its components to probe.

We can immediately cast this problem as a min-CICS instance where each additive box corresponds to an MDP
M (which we call an additive-MDP), capturing all the different (adaptive) probing orders for the components
of the box. A commitment for an additive-MDP corresponds to a protocol that determines which component to
probe first, which second depending on the realization of the first value etc. Our main contribution is a to show
that the commitment gap of APB is constant, and does not depend on the number of components.

Theorem 7.1. The commitment gap of matroid-APB is at most 2.

Our proof of Theorem 7.1 is existential and does not indicate how to efficiently construct the committing
policy that achieves this bound. One could consider a restricted class of committing policies, which we call static
commitment policies, where the components of each additive box are always probed in a fixed order. Trivial
arguments suffice to show that static policies probing the components in increasing order of costs achieve a
commitment gap of k. By considering the structure of water filling surrogate costs, we can obtain an improved
bound on the gap:
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Theorem 7.2. Let M be any additive-MDP. For k = 2, there exists a static commitment policy that achieves a
ϕ ≈ 1.618-pointwise approximation. For k ≥ 3, the static policy of minimum index achieves a

(
1+⌊k+1

2 ⌋
)
-pointwise

approximation.

In order to constructively achieve the approximation factor guaranteed by Theorem 7.2, one can compute
the indices of the k! static policies for each constituent MDP and commit to the one with the smallest index. We
leave open the questions of whether it is possible to achieve the same approximation more efficiently, and whether
one could efficiently compute a committing policy that admits a constant factor gap. The rest of this section is
dedicated to proving Theorems 7.1 and 7.2.

Proof of Theorem 7.1. Our proof boils down to proving that each additive-MDP admits a 2-pointwise
approximation under a suitably chosen commitment and then employing Fact 5.4 and Theorem 5.2. Our proof
consists of two steps: first, we identify a simple structure for the surrogate costs under any commitment for APB
and translate pointwise-approximation into a simple condition for the commitment. Then, we show that there
exists some commitment satisfying this condition.

Step 1. Let M be any additive-MDP with k ≥ 1 components corresponding to values Vi ∼ Di and costs
ci ≥ 0 for i ∈ [k]. Let π ∈ C(M) be any commitment; observe that π specifies which value to be probed first,
which to be probed second depending on the first’s realization and so on until all k-values have been probed.
Therefore,Mπ is a tree-structured Markov chain of height k, the terminal states t(V⃗ ) of which correspond to all

the possible realizations of the value vector V⃗ = (V1, · · · , Vk). Furthermore, the probability of reaching such a

terminal state t(V⃗ ) is always equal to the probability of V⃗ being realized, independently of π’s probing protocol.

Therefore, the water filling surrogate cost W ∗
Mπ for any commitment π is obtained by sampling V⃗ ∼ D⃗ and then

returning a (commitment-specific) surrogate cost ρπ(t(V⃗ )). Due to this structure, the α-pointwise approximation
condition for additive-MDPs translates to proving that there exists some commitment π ∈ C(M) such that

ρπ(t(V⃗ )) ≤ α · ρπ
′
(t(V⃗ ))

for all vectors V⃗ ∼ D⃗ and all deterministic commitments π′ ∈ C(M).
Up next, we will use the inductive definition of water filling amortization to obtain structure on these surrogate

costs. Fix a commitment π ∈ C(M) and the underlying Markov chain Mπ. For each state s of Mπ, we define
the following quantities:

1. The index gπ(s) of state s is defined as the water filling index of the sub-chain rooted at s, if all values that
have been already probed have been realized to 0. In other words, gπ(s) corresponds to the index of the
committing policy that proceeds as π after state s is reached, without the additive cost of already observed
values. Clearly, gπ(t(V⃗ )) = 0 for all terminal states t(V⃗ ) and gπ(r) = gπ for the root r ofMπ.

2. The value V π(s) of state s is defined as the sum of all the realized values in the trajectory from the root

to s; clearly, we have that V π(r) = 0 and V π(t(V⃗ )) =
∑k

i=1 Vi for all terminal states tV⃗ .

The key observation is that when amortizing some state s, all the terminal states in it’s subtree will share
the same additive offset V π(s), corresponding to the sum of realized values leading to s. It is immediate by
the definition of the water filling amortization that such an additive offset does not affect the cost shares
of vertex s. Also, recall that water filling amortization is performed in a bottom-up manner. Thus, the
surrogate cost of a terminal state t(V⃗ ) immediately after one of its ancestors s gets amortized will be precisely

V π(s) + max(gπ(s), ρ′(t(V⃗ ))), where ρ′(t(V⃗ )) is the surrogate cost of t(v⃗) immediately after it’s ancestor that is

a child of s was amortized. Performing this step for all ancestors of t(V⃗ ), we obtain that

ρπ(t(V⃗ )) =
k+1
max
i=1

(
V π(si) + gπ(si)

)
where (r = s1, s2, · · · , sk, sk+1 = t(V⃗ )) is the unique path inMπ that reaches t(V⃗ ).

From this expression, it becomes clear that ρπ(t(V⃗ )) ≥ max(gπ,
∑k

i=1 Vi). Furthermore, if it is the case that

gπ ≥ gπ(s) for all states s, then we can easily upper bound ρπ(t(V⃗ )) ≤ gπ +
∑k

i=1 Vi. We refer to commitments
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that have this property as root dominant. Combining everything, we then obtain that for any root dominant
commitment π, any commitment π′ and any terminal state t(V⃗ ), we have that

ρπ(t(V⃗ ))

ρπ′(t(V⃗ ))
≤

gπ +
∑k

i=1 Vi

max(gπ′ ,
∑k

i=1 Vi)
≤ 1 +

gπ

gπ′ .

In other words, we have shown that any root dominant commitment π will achieve an α-pointwise approximation
for α = 1 + gπ/minπ′∈C(M) g

π′
. The proof of Theorem 7.1 is then completed by arguing that there exists a root

dominant commitment π that has minimum index across all committing policies.
Step 2. Let π be any commitment of minimum index. If π is root dominant, then we are obviously done.

Otherwise, there exists at least one state s1 in Mπ such that gπ(s1) > gπ. Among all these states, we consider
one of minimum distance to the root. Notice that s1 must have at least one sibling state s2 with gπ(s2) ̸= gπ(s1);
otherwise, the index of of the parent state of s1 will be at least gπ(s1) (by the inductive definition of indices) and
thus s1 won’t be a maximum height state satisfying the condition.

Let π′ be the commitment that is obtained by substituting the sub-tree rooted at s1 inMπ with the sub-tree
rooted at s2; notice that both of these subtrees correspond to commitments over the (same) set of unprobed values
and thus such a substitution is always allowed (i.e. π′ ∈ C(M) as well). Up next, we will show that gπ ≥ gπ

′
;

then, π′ will also be a minimum index commitment and we can apply the same process to it. Furthermore, each
substitution reduces the heteromorphity of the underlying chain (i.e. the number of different child sub-trees that
a state can have) so our iterative process is guaranteed to terminate after some finite number of steps, resulting
in a commitment that is both root dominant and has minimum index.

We finally argue that gπ ≥ gπ
′
. Since gπ is the water filling index ofMπ, it is by definition at least as large as

the minimum surrogate cost of any valid amortization ofMπ. Let b = {bst}s,t denote the water filling cost shares

of Mπ and b′ = {b′st}s,t denote the water filling cost shares of Mπ′
Now, consider the following amortization

b̂ = {b̂st}s,t ofMπ:

• For each state s that does not belong in the sub-tree rooted at s1, let b̂st = b′st for all terminals t.

• For each state s in the sub-tree rooted at s1 (including s1), let b̂st = bst for all terminals t.

Since all the states ofMπ andMπ′
that are not ancestors of state s1 have the same distribution over terminal

states, this is indeed a valid amortization. Furthermore, any terminal state t that is not a descendant of s1 will
receive precisely the same cost shares as it does inMπ′

and thus it’s surrogate cost will be at least gπ
′
. On the

other hand, every terminal state t that is a descendant of s1 receives the same cost shares as it did inMπ up until
state s1 gets amortized; by definition, this implies that it’s surrogate cost will be at least gπ(s1)+V π(s1) ≥ gπ(s1).
Thus, we conclude that gπ ≥ min(gπ

′
, gπ(s1)) = gπ

′
as desired.

Proof of Theorem 7.2. We will separately prove the theorem for k = 2 and k ≥ 3.
The k = 2 case. We use (X, cx) and (Z, cz) to denote the k = 2 components of the additive-MDP and

gx, gz to denote their respective water filling indices. Notice that there are only two (static) committing policies
to consider: πXZ and πZX depending on whether X is probed first or not. We use gxz and gzx for their respective
indices. Using the same structural properties of surrogate costs for additive-MDPes as in the proof of Theorem 7.1,
we have that πXZ admits an αxz-pointwise approximation for

αxz = max
t=(x,z)

ρxz(t)

ρzx(t)
= max

t=(x,z)

max(gxz, gx + z, z + x)

max(gzx, gz + x, z + x)
≤ max

t=(x,z)
max(1,

gxz
gzx

,
gx + z

max(gzx, gz + x, z + x)
)

and for the last term in the maximum, since x ≥ 0, we have that

αxz ≤ max
t=(x,z)

max(1,
gxz
gzx

,
gx + z

max(gzx, z)
) ≤ max(

gxz
gzx

, 1 +
gx
gzx

)

and likewise we obtain that

αzx ≤ max(
gzx
gxz

, 1 +
gz
gxz

).
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Finally, we will now prove that min(αzx, αzx) ≤ ϕ always. By re-labeling and re-scaling we can assume without
loss that gxz ≤ gzx = 1. Furthermore, we have that gxz ≥ gx+gz. To see why this is true, consider an amortization
Mπxz where each (height 1) Z-vertex sends the same cost shares bz as in the water filling amortization of (Z, cz) to
any terminal (x, z), and the (unique) X-vertex sends the same cost shares bx as in the water filling amortization of
(X, cx) to any terminal (x, z) - this amortization covers the opening costs by definition, and the surrogate cost of
terminal (x, z) is x+z+bx+bz = ρx(x)+ρz(z) ≥ gx+gz. Since water-filling amortization maximizes the minimum
surrogate cost across all amortizations, we indeed have gxz ≥ gx + gz. Thus, we have gx + gz ≤ gxz ≤ gzx = 1.
These in turn imply that αxz ≤ 1+gx and αzx ≤ 1

gx+gz
max(1, gx+2gz). The proof is then completed by showing

α := min

(
1 + gx,

1

gx + gz
max(1, gx + 2gz)

)
≤ ϕ

for all gx, gz ≥ 0 with gx + gz ≤ 1. By fixing gx, it is not hard to see that the second term gets maximized at
either gz = 0 or gz = 1− gx. Thus, we have

α ≤ max
x∈[0,1]

min

(
x+ 1,max(

1

x
, 2− x)

)
= ϕ.

The k ≥ 3 case. Let π ∈ C (M) be any commitment of index gπ for an additive-MDPM over k-components
and let α = ⌊k+1

2 ⌋. We will show that there exists a static committing policy π′ such that gπ
′ ≤ α · gπ. Then, by

instantiating π as any minimum index policy and observing that all static policies are by definition root dominant
(i.e. the root state has maximum index across all states), step 1 in the proof of Theorem 7.1 immediately gives
us the proof of Theorem 7.2.

Consider the Markov chainMπ. Like in the proof of Theorem 7.1, we define the index gπ(s) of a state s as
the water filling index of the sub-chain rooted at s if all previously probed values are realized at 0, and its value
V π(s) as the sum of all realized values in the trajectory from the root to s. Observe that these indices and values
uniquely determine the water filling cost shares that each state s sends to its downwards terminal states inMπ;
in particular, we have that

bst = max

(
0, gπ(s) + V π(s)− max

s′∈P (s,t)
(gπ(s′) + V π(s′))

)
= max

(
0, gπ(s)− max

s′∈P (s,t)
(gπ(s′) + V π(s, s′))

)
where the inner maximum is taken over all states in the (unique) path from s to t, excluding state s, and V π(s, s′)
denotes the sum of all realizations in the trajectory from s to s′. The above equality is a direct consequence of the
fact that the minimum surrogate cost in the sub-tree of state s immediately after s gets amortized is by definition
gπ(s) + V π(s).

We will now define the static policy π′. Observe that any trajectory from the root of Mπ to a terminal
state defines a fixed ordering of the k-components; we define π′ as the ordering corresponding to a trajectory
of lexicographically maximum index. In other words, π′ probes the same first box as π, then the second box
corresponding to a child of the root with maximum index etc. By re-labeling, we assume that π′ is the static
ordering k 7→ (k − 1) 7→ · · · 7→ 1.

We now turn our attention to the Markov chainMπ′
. We use h(s) to denote the height of state s; this is 0

for terminal states and k for the root. Notice that inMπ′
, all the states s with h(s) = j ∈ [k] correspond to the

same (remaining) fixed probing order j 7→ (j − 1) 7→ · · · 7→ 1, and will have the same index gπ
′
(s) = g(j), with

gπ
′
= g(k). Furthermore, each state s ofMπ′

at height j ∈ [k] can be mapped to the unique height j state ofMπ

that was chosen by our process; we use sj to denote this state.
We will prove that for all j ∈ [k], it holds that g(j) ≤ α(j) · gπ(sj) for α(j) := ⌊ j+1

2 ⌋. This would directly
imply that gπ = g(k) ≤ α(k) ·gπ(sk) = α(k) ·gπ, completing the proof. In order to upper bound the indices g(j) of
Mπ′

, it suffices to argue that the suggested upper bounds generate enough cost shares to cover the amortization
of the costs. Since each state s ofMπ′

at height j ∈ [k] shares the same distribution over terminal states with the
state sj ofMπ, it will suffice to point-wise compare these cost shares. In other words, it suffices to prove that

max

(
0, α(j)·gπ(sj)− max

s′∈P ′(s,t)
(α(h(s′))·gπ(sh(s′))+V π′

(s, s′))

)
≥ max

(
0, gπ(sj)− max

s′∈P (sj ,t)
(gπ(s′)+V π(sj , s

′))

)

Copyright © 2026 by SIAM
Unauthorized reproduction of this article is prohibited



for all j ∈ [k]. Our proof will be completed by arguing that our specific definition of α(j) satisfies

max
s′∈P ′(s,t)

(
α(h(s′)) · gπ(sh(s′)) + V π′

(s, s′)

)
≤ α(j) · max

s′∈P (sj ,t)

(
gπ(s′) + V π(sj , s

′)

)
for all j ∈ [k], all states s with h(s) = j and all terminal states t.

The maximum in the left hand side will get realized at some s′ ∈ P ′(s, t) with h(s′) := j′ ≤ j−1 (as h(s) = j).
If j′ < j− 1, then we can upper bound the left hand side by a(j′) · gπ(sj′)+V π′

(s, t). Since π′ is a static policy, it
is not hard to see that the indices in any trajectory from the root to a terminal will form a decreasing sequence,
so gπ(sj′) ≤ gπ(sj). Furthermore, we have that V π′

(s, t) = V π(sj , t) and thus our inequality holds as long as
α(j) ≥ α(j′) + 1 which is always the case for j′ < j − 1.

It remains to argue about j′ = j − 1. In that case, the left hand side is α(j − 1) · gπ(sj−1) + Vj for some
realization Vj of the j-th component. We will upper bound this through the first term in the right hand side
maximum, corresponding to some child vertex ŝ of sj ; in that case, we need to show that

α(j − 1) · gπ(sj−1) + Vj ≤ α(j) · gπ(ŝ) + Vj

and the proof is completed by the fact that our policy selected a trajectory of lexicographically maximum indices
and thus gπ(sj−1) ≤ gπ(s′) as sj−1 and s′ are both children of the same state sj inMπ.

8 The Weighing Scale Problem (Minimization)

We will now introduce the Weighing Scale (henceforth, WS) problem. A decision maker is presented with n
alternatives (Xi, ci) and a combinatorial constraint F ⊆ 2[n]; Xi ≥ 0 is the random value of the alternative
realized independently by a known distribution and ci ≥ 0 is a weighing cost. The only way the decision maker
can determine any further information about each value Xi beyond its distribution, is to use a weighing scale to
compare it against some fixed threshold t of their choosing at the additional cost of ci and learn whether Xi ≤ t
or not. The process terminates with the decision maker selecting a feasible set of alternatives S ⊆ F , paying their
total value. Note that each alternative (Xi, ci) corresponds to a Costly Information MDPMi that captures the
information acquisition process described above. In particular, the available actions at the starting state of each
MDPMi are as follows:

1. Pick a threshold t ∈ support(Xi) and weigh the alternative against it at a cost of ci. Upon taking one

of these actions, the MDP advances to one of two random subprocesses M≤t
i and M>t

i , defined over the
random variables (Xi|Xi ≤ t) and (Xi|Xi > t) respectively, based on the outcome of the weighing.

2. Commit no more weighings of the alternative; this is a 0-cost action resulting to a terminal state xi of value
v(xi) := E [Xi].

From this equivalence, an instance of WS corresponds to an instance of min-CICS over the corresponding MDPs.9

Our main result for this section is the following:

Theorem 8.1. The commitment gap of matroid-WS is at most O(maxi κi), with the parameter κi for each
alternative i ∈ [n] defined as

κi :=
µi

Mi
+ log

µi

gi
where µi = E [Xi] is the expected value of Xi, Mi is the median value of Xi, and gi denotes the Gittins index of
the alternative; i.e. the solution to the equation ci = E [(gi −Xi)

+].

We prove Theorem 8.1 by showing that for each alternative i ∈ [n], the MDPMi admits an O(κi)-pointwise
approximation. Furthermore, the commitment π that achieves this condition corresponds to a very natural and
efficient algorithm which we call One-Sided Halving. Finally, we note that without any assumptions on the
distributions of the values, the parameters κi can be unbounded; in particular, for heavy tail distributions, µi/Mi

can be arbitrarily large. We show that this dependence is necessary for any pointwise approximation guarantee.
Better bounds may be possible via the weaker notion of local approximation or a global argument.

9Technically, our framework does not capture infinite horizon MDPs. However, observe that whenever the decision maker has

identified that the value of the alternative lies in some interval of length ≤ c, performing any extra weighings is suboptimal. Thus,
the corresponding MDPs for the WS problem are finite horizon without loss, even for continuous random variables X.
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Theorem 8.2. For any constant α ≥ 1, there exists a WS alternative that does not admit an α-pointwise
approximation.

The rest of this section is dedicated towards proving Theorem 8.1 (Section 8.1) and Theorem 8.2 (Section 8.2).

8.1 Proving the Upper Bound. We begin by introducing the committing policy for WS described below,
which we call the One-Sided Halving algorithm. The policy begins by weighing the alternative against some
threshold t2; if the alternative is larger, then the policy commits to no more weighings and if it is smaller, it
halves its threshold from t2 to t2/2 and repeats, until the threshold reaches some fixed lower bound t1.

Algorithm 8.3. (One-Sided Halving Algorithm.)
1: Input. An MDPM corresponding to a WS alternative (X, c) and two thresholds 0 < t1 < t2.
2: Set t = t2.
3: while t ≥ t1 do
4: Weigh the random variable X against t. if X ≤ t then t = t/2 else break.

5: Commit to no more weighings for the alternative.

Let h be the solution to equation c = E [(X − h)+]. The following lemma, combined with our reduction from
pointwise to local approximation (Fact 5.4) and our local approximation composition result (Theorem 5.2) directly
implies Theorem 8.1.

Lemma 8.4. Committing to no weighings if g > min{µ,M}, and otherwise committing to the One-Sided Halving
algorithm with t1 = g and t2 = min(M,h) achieves an O(κ)-pointwise approximation.

Before proving Lemma 8.4, we provide some intuition on how this result is obtained. A commitment π ∈ C (M)
for WS will declare in advance a decision tree over pre-specified thresholds against which it will weigh X, resulting
in a Markov chain Mπ. Importantly, π will end up partitioning the support X of distribution D into a set of
intervals, corresponding to its terminal states. Furthermore, the probability of running the Markov chain Mπ

and ending up in a terminal state t corresponding to some interval I will be precisely Pr [X ∈ I]. A pictorial
representation of such Markov chains is given in Figure 7. By directly relating the water filling amortized cost on
these intervals for the One-Sided Halving algorithm to the surrogate cost of the underlying MDP, we are able to
obtain our pointwise approximation guarantees.

Figure 7: The indices g and h of the alternative can be obtained by the inverse CDF of the random value; the
highlighted ares equal the weighing cost c. The figure on the right corresponds to the Markov chain for One-Sided
Halving instantiated with threshold t1 = 2, t2 = 8 for an instance with value X ∼ Unif[0, 10]. The terminal states
partition the support of X; the probability and value at each terminal equals the probability and the conditional
expectation of the corresponding interval.

Proof of Lemma 8.4. We fix a WS alternative M corresponding to random value X of support X :=
support(X) and weighing cost c. We use µ,M, g, h and κ to denote the parameters of the alternative, as previously
defined. In order to develop our pointwise approximation guarantees, we first need to obtain expressions for the
surrogate costs.
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Surrogate cost of M. We begin by noting that the optimality curve ofM has a very simple form. Indeed,
consider the local game (M, y); the optimal adaptive policy has only three choices available: either accept the
outside option at a cost of y, or accept the alternative without performing any weighings at an expected cost of
µ or perform a single weighing of the alternative against y to determine which of the two costs is smaller. Thus,
we immediately obtain that fM(y) = min(y, µ, c+ E [min{y,X}]).

Observe that by definition, g corresponds to the maximal threshold for which y ≤ c + E [min{y,X}] for all
y ≤ g. Thus, if µ ≤ g, then the cost c + E [min{y,X}] will always be dominated by either y or µ, making the
weighing action universally sub-optimal. If that’s the case, then we can safely commit to blindly accepting the
alternative without performing any weighings, achieving a 1-local approximation. Thus, from now on we will
be assuming that g < µ. Recall that g satisfies c = E [(g −X)+]; h satisfies c = E [(X − h)+]; and µ satisfies
E [(µ−X)+] = E [(X − µ)+] by its definition. Then we can deduce that g < µ implies µ < h. We can therefore
re-write the optimality curve ofM as

fM(y) =


y if y < g

E [min(y,max(g,X))] if y ∈ [g, h]

µ if y > h

From this, we obtain the following characterization of the surrogate costs. We note that the same result is
proven by [Scully and Doval, 2024], as the optimality curve for the alternativeM coincides with the optimality
curve of a Pandora’s Box with optional inspection in the minimization setting.

Fact 8.5. The water filling surrogate cost W ∗
M ofM corresponds to sampling x ∼ X and returning

ρ∗(x) := min(h,max(g, x)).

Committing policies. Now, consider any commitment π ∈ C (M). Observe that π corresponds to a protocol
that determines in advance a decision tree (or a distribution over decision trees) over pre-specified thresholds
against which it will weigh X, resulting in a Markov chain Mπ. Importantly, any commitment will end up
partitioning the support X of distribution D into a set of intervals, corresponding to its terminal states. We use
Iπ to denote this set of intervals, and t(I) to denote the terminal state ofMπ corresponding to interval I ∈ Iπ.
Furthermore, the probability of running the Markov chain Mπ and ending up in a terminal state t(I) will be
precisely Pr [X ∈ I]. This allows us to obtain the following characterization of surrogate costs for committing
policies.

Fact 8.6. For any committing policy π ∈ C (M), the water filling surrogate cost W ∗
Mπ corresponds to sampling

x ∼ X and returning
ρπ(x) := W ∗

Mπ (t(I))

for the unique interval I ∈ Iπ that contains x.

We are now ready to prove Lemma 8.4. Let π be the committing policy described in Lemma 8.4. We have already
handled the case of g > µ. Next, consider g > M . In this case π commits to no weighings, Mπ is simply a
terminal state of value µ and thus ρπ(x) = µ for all x ∈ X . Since ρ∗(x) ≥ g for all x ∈ X , this trivially implies a
α = µ/g ≤ µ/M pointwise approximation and the lemma follows.

If M ≥ g, then π corresponds to the one-sided halving algorithm with t1 = g and t2 = min(M,h). Observe
that by definition, the minimum threshold used by the policy will be some tf ∈ [g, 2g]. Thus, the first interval in
Iπ will be I0 = (−∞, tf ]. Note that

Pr [X ∈ I0] = Pr [X ≤ tf ] ≥ Pr [X ≥ g] ≥ c

g

where the last inequality follows from the fact that c = E [(g −X)+] ≤ g ·Pr [X ≤ g]. Furthermore, recall that by
the definition of (any) amortization, the cost shares for the amortization of a state s satisfy

p(s) · c(s) =
∑

t∈T (S)

p(t) · bst
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and since Pr [X ∈ I0] ≥ c/g and all the action costs are c(s) = c, this implies that in any step during the
amortization ofMπ, the surrogate cost of terminal t(I0) increases by at most g. Finally, we note that the horizon
ofMπ will be at most

k := log
t2
tf
≤ log

M

g
≤ log

2µ

g

and thus we conclude that the total number of amortization steps will be k, and that the total increase in the
value of the first terminal will be at most kg.

Up next, we will argue that the terminal t(I0) will be the terminal that suffers the maximum increase during
the water-filling amortization of Mπ. Note that by definition of Mπ, the initial value of a terminal state t(I)
corresponding to some I ∈ Iπ will be precisely µ(I) := E [X|X ∈ I]. Thus, terminal t(I0) starts with the minimum
value. Furthermore, by the one-sided structure ofMπ, observe that t(I0) is a terminal state for all intermediate
action states, and thus it will participate in all the stages of the water filling amortization. These two facts
immediately prove the claim.

From the above, we can summarize that for all I ∈ Iπ we have

W ∗
Mπ (t(I)) ≤ µ(I) + k · g

and thus for any x ∈ X , we have ρπ(x) ≤ µ(I) + kg for the unique I ∈ Iπ for which x ∈ I. It remains
to upper bound the expectations µ(I). For I0 = (−∞, tf ] ⊆ (−∞, 2g] we have that µ(I0) ≤ 2g. For the
maximum interval I = (t2,∞), we have that µ(I) ≤ 2µ; this is a consequence of the fact that t2 ≤ M and
thus E [X|X > t2] ≤ E [X|X ≥M ] ≤ 2µ. Finally, for any other interval I, we know that the ratio between its
endpoints will be precisely 2 due to the halving and thus µ(I) ≤ 2x for any x ∈ I.

To summarize, we have shown that for all x ∈ X :

ρπ(x) ≤


kg + 2g if x < g

kg + 2x if x ∈ [g, t2]

kg + 2µ if x > t2

Observe that since t2 ≤M ≤ 2µ, we have that for any x ∈ X ,

ρπ(x) ≤ u(x) := kg + 2 ·min(2µ,max(x, g)).

Notice that the upper bound u(x) is non-decreasing. Now, recall that ρ∗(x) = min(h,max(g, x)) is also a
non-decreasing mapping. This, policy π will α-pointwise approximateM for

a = max
x∈X

u(x)

ρ∗(x)

and since µ ≤ h and k = O(log µ
g ) this implies a O(log µ

g + µ
M )-pointwise approximation.

8.2 Proving the Lower Bound. Finally, we prove the lower bound of Theorem 8.2. For ease of notation,
let k := α + 1 and B := 2k

2

. We consider the alternative with weighing cost c = 1 and random cost X that is
continuously distributed in interval [1, B] and has two point masses on 0 and (k + 1)B, namely:

X =


0 with probability 1− 1

k

x ∈ [1, B] with density f(x) = 1
kx2

(k + 1)B with probability 1
kB

Note that since B > k > 1 and
∫ B

x=1
1

kx2 dx = 1
k −

1
kB , X is indeed a valid random variable. We proceed by

computing the relevant parameters of X.

• The expected value of X is µ = E [X] = k + 1 + 1
k by definition. Thus, µ ∈ [k + 1, k + 2].

• The g-index of M satisfies g ∈ [1, k
k−1 ]. Define exc(z) := E [(z −X)+]. The claim follows by noting that

exc(·) is non-decreasing; exc(1) = 1− 1
k < 1 and exc( k

k−1 ) > 1; whereas exc(g) = 1 by definition.
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• The h-index ofM is h = B, since E [(X −B)+] = 1
kB · [(k + 1)B −B] = 1.

By definition of ρ∗(x), we have that ρ∗(0) = g, ρ∗((k + 1)B) = B and ρ∗(x) = max(g, x) for all x ∈ [1, B]. We
will now show that no committing policy can achieve an α′-pointwise approximation for the alternative (X, 1) for
any α′ < α.

Fix any commitment π and let ℓ(x) := E [X ∈ I] where I ∈ Iπ is the unique interval of the policy’s partition
that contains x. Clearly, ℓ(x) is a lower bound to ρπ(x) and it is also a non-decreasing function. Thus, in order to
prove impossibility of pointwise approximation for any α′ < α, it suffices to show that there exists some x ∈ X
for which

ℓ(x)

ρ∗(x)
≥ α.

We begin by considering the committing policy π that does not perform any weighings. Then, we simply
have ℓ(x) = ρπ(x) = µ for all x ∈ X and since ρ∗(x) ≥ g for all x ∈ X, and the claim follows from α ≤ µ/g.
Next, consider any commitment that performs weighings, and let t be the maximum threshold that it uses.
Clearly, t < (k+ 1)B otherwise there is no point in the weighing. This means that the final interval in Iπ will be
I∞ := (t,∞). Let µ∞ := µ(I∞) = E [X|X > t]. We distinguish between the following cases:

• If t ≥ B, then µ∞ = (k + 1)B and ρ∗(t) ≤ h = B. In that case, the ratio is at least k > α.

• If t ≤ 1, then µ∞ ≥ E [X|X ≥ 1] = k2 + k + 1 and ρ∗(t) ≤ ρ∗(1) = min(h,max(g, 1)) = g. In that case, the
ratio is at least k2 − k > α.

• Finally, if t ∈ (1, B), then Pr [X ≥ t] = 1
kt and thus µ∞ ≥ kt. Since ρ∗(t) = max(g, t), the ratio is at least

k − 1 = α.

Thus, in any case there exists some x for which ℓ(x) ≥ ρ∗(x). As already mentioned, by the fact that both
mappings are non-decreasing and by definition of pointwise-approximation, this proves Theorem 8.2.

9 Pandora’s Box with Optional Inspection (Maximization)

Finally, we consider the maximization version of Pandora’s Box with Optional Inspection (henceforth, PBOI),
arguably the most studied Pandora’s Box variant. In PBOI, the decision-maker may select a box without opening
it; we refer to this action as “grabbing” the box. There is a rich line of research addressing PBOI; we provide a
detailed discussion of these results in Section 2. In the single-selection setting, PBOI is NP-hard but admits a
PTAS [Fu et al., 2022, Beyhaghi and Cai, 2022].

For matroid constraints, [Beyhaghi and Kleinberg, 2019] show that the commitment gap is at least 0.63.
While the arguments presented in their work do not suffice for an efficient approximation matching this bound,
the same ideas can be extended to match this guarantee; see our discussion in the Introduction for more details.
Importantly, their framework requires solving an instance of stochastic submodular maximization, a problem
first studied by [Asadpour and Nazerzadeh, 2016]. While this problem can be solved efficiently, the solution is
obtained by iteratively solving and rounding an appropriate relaxation. Furthermore, the approximation factor
of 0.63 is a direct consequence of their approach, and it is not clear whether instance-dependent guarantees can
be obtained. On the other hand, the committing policies obtained through local approximation are significantly
more simple and essentially correspond to flipping a random coin for each of the boxes. Furthermore, the achieved
approximations naturally depend on the parameters of the boxes, leading to instance-dependent guarantees that
are potentially bounded away from the worst-case instances.

As Beyhaghi and Kleinberg [2019] observe, the optimal policy that does not grab any box will attain half of
the utility from boxes that the optimal doesn’t grab, and the optimal policy that only grabs boxes will attain
half of the utility from boxes that the optimal grabs. Thus, uniformly randomizing between these policies will
immediately give us a 0.5-approximation.10 In this section, we use an extension of local approximation to obtain
a different randomization between opening and grabing the boxes, obtaining the following result.

10Beyhaghi and Kleinberg [2019] make this observation in the single-item setting, but combining it with results of Singla [2017]
generalizes it to the matroid setting.
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Theorem 9.1. There exists an efficient randomized committing policy that achieves a 0.582-approximation to the
optimal adaptive policy for any instance of matroid-max-PBOI.

In Section 9.1 we cast PBOI into our CICS framework by considering each optional-inspection box as an
MDP. A reasonable first approach would be to establish a local approximation condition for these MDPs in order
to prove Theorem 9.1; however, we show that for any ϵ > 0, there exist boxes for which we cannot do better
than a (0.5 + ϵ)-local approximation (Section 9.2). We use the intuition from these hard instances to develop
a refinement of local approximation, which we call semilocal approximation; we then show that, similarly to
local approximation, semilocal approximation guarantees can be composed into a (global) approximation ratio
(Section 9.3). Finally, in Section 9.4 we show that this new notion of approximation suffices to establish the bound
of Theorem 9.1.

Limitations of Semilocal Approximation. There are two prices we pay in refining local approximation to
semilocal approximation. First, the definition as we state it currently is specific to PBOI, though it could perhaps
be generalized to other MDP families in the future. Second, our composition result for semilocal approximations
only holds for matroid feasibility constraints, whereas past works showed results compatible with any frugal
(roughly, “greedy”) algorithm [Singla, 2017, Gupta et al., 2019, Scully and Doval, 2024]. We are not sure whether
this second limitation is fundamental or might be overcome using a different proof technique.

9.1 PBOI Preliminaries. We begin by establishing the necessary notation for PBOI. All the definitions
mentioned in this section were previously established for the minimization setting by [Scully and Doval, 2024]; we
simply restate them here for the maximization setting.

Fix any optional-inspection PB B = (D, c). We use X ∼ D to denote the value of the box and µ = E [X]
to denote its expectation. We can model B as a Costly Information MDP M with two actions: opening the
box at a cost of c and transitioning to a terminal state of reward X ∼ D, and grabbing the box at a cost
of 0 and transitioning to a terminal state of reward µ (Figure 8). Therefore, the set of (deterministic) local
commitments for M consists of just two options {o, g} and the optimality curve of M can be written as
fM(y) := max{fMo(y), fMg (y)}, where

fMo(y) := max{y,E [max(X, y)]− c} , fMg (y) := max{y, µ}

are (by definition) the optimality curves under the two commitments. Using the inherent connection between
optimality curves and surrogate costs, we can use these expressions to recover the following [Doval, 2018]:

Definition 9.2. (Surrogate costs for PBOI) Let B = (D, c) be any optional-inspection box. We define its
Gittins index g as the solution to equation c = EX∼D [(X − g)+] and its backup index as h = max(µ, h′), where
h′ is the solution to equation c = EX∼D [(h′ −X)+]. Then:

1. W ∗
o := W ∗

Mo = min{X, g} satisfies fo
M(y) = E [max{W ∗

o , y}].

2. W ∗
g := W ∗

Mg = µ satisfies fg
M(y) = E

[
max{W ∗

g , y}
]
.

3. W ∗ := W ∗
M = max{W ∗

o , h} satisfies fM(y) = E [max{W ∗, y}].

These indices have an intuitive interpretation: consider the local game (M, y) for some value of the outside
option y. For small values of y, the optimal policy will immediately grab the box, and for large values of y it
will accept the outside option. The Gittins index g corresponds to the maximum value of the outside option for
which opening is preferable to stopping, and h′ corresponds to the minimum value of the outside option for which
opening is preferable to grabbing. In other words, the optimal policy for the local game (M, y) will grab the box
if y ∈ [0, h′], it will open the box if y ∈ [h′, g] and it will accept the outside option if y ≥ g. Note that if g < h′,
opening the box is never the optimal action. We refer to such boxes B = (D, c) as degenerate, and since they are
never opened by any optimal policy, we can substitute them by normalized boxes B = (µ, 0) without loss of any
generality. From now on, we will be assuming that all degenerate boxes have been normalized; this in turn implies
that h = h′ ≤ µ and c ≤ µ ≤ g (Figure 8).
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Figure 8: An optional inspection box B = (D, c) can me modeled as an MDPM with two actions, grab and open,
incuring costs 0 and c and resulting to rewards E [X] and X respectively. On the right side, we demonstrate the
optimality curves for the local game (M, y) for a box with cost c = 0.5 and reward X = 3 · Be(1/2).

9.2 Insufficiency of Local Approximation. Since any MDPM describing an optional-inspection box only
has two actions, any (randomized) commitment π ∈ C (M) is fully described by the probability p ∈ [0, 1] of
committing to the grab action. Therefore, by Definition 9.2, the α-local approximation condition for max-PBOI
translates to

∃p ∈ [0, 1] : (1− p) · E [max{W ∗
o , y}] + p · E

[
max{W ∗

g , y}
]
≥ E [max{αW ∗, y}] .

We will now demonstrate a specific box where no commitment p ∈ [0, 1] can achieve a local approximation
factor that is better than 1/2.

Example 9.3. For any n ≥ 1, consider the optional-inspection box Bn = (D, c) where c = n− 1 and

D =

{
1 w.p. 1− 1

n2

n3 w.p. 1
n2

.

Straightforward computations show that the parameters of this box are µ = n + 1 − n−2, g = n2 and
h = 1+ n2/(n+ 1). Using these expressions and the definition of surrogate costs (Definition 9.2), we can proceed
to write-down the local approximation condition at points y = 0 and y = µ as follows:

Local approximation at y = 0: α ≤ 1− (1− p) · n3 − n2

n3 + n2 − 1

Local approximation at y = µ: α ≤ 1− p · n
2 − n− 1 + n−2

n2

Just from these two values of y, we obtain that as n→∞, we have that α ≤ 1−max(p, 1− p) ≤ 0.5.

To better understand this “worst-case” behavior that Example 9.3 demonstrates, it will be illustrative to
visualize the optimality curves of the box Bn for some large value of n. Figure 9 shows the curves for n = 20.
We see that when y is small, we have a strong preference for grabbing the box, and when y is larger, we have
a very slight preference for opening the box. Intuitively, we might guess that committing to the grabbing action
performs quite well, since in the worst case there is only a small additive sub-optimality factor. However, local
approximation requires a small multiplicative sub-optimality factor, which, as Example 9.3 above demonstrates,
we cannot achieve.
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Figure 9: The red and blue lines represent the optimality curves for grabbing B20 and opening B20, respectively.
This best possible local approximation achieved for this box is 0.537.

9.3 Semilocal Approximation. The above discussion suggests that we need to reason about additive
suboptimality, not just multiplicative. We do so by introducing (α, β)-semilocal approximation, defined below.
Roughly speaking, the α captures multiplicative suboptimality, while β captures the additive suboptimality.
Formally:

Definition 9.4. (Semilocal Approximation) We say that an optional-inspection box B = (D, c) admits an
(α, β)-semilocal approximation if there exists a probability p ∈ [0, 1] such that for all y ∈ R:

(1− p) · E [max(W ∗
o , y)] + p · E

[
max(W ∗

g , y)
]
≥ E [max(αW ∗, y)]− pβµ.

Re-writing the above expression as

(1− p) · E [max(W ∗
o , y)] + p · (E

[
max(W ∗

g , y)
]
+ βµ) ≥ E [max(αW ∗, y)] ,

it becomes clear that (α, β)-semilocal approximation is basically an α-local approximation where we have boosted
the value attained from grabbing by an additive factor proportional to the mean. It is important that we do this
only for grabbing—boosting the value of inspecting by an additive factor would lead to poor guarantees when
composing semilocal approximations in the matroid selection setting.

Equipped with the semilocal approximation definition, we now show that semilocal approximations can be
composed under matroid feasibility constraints:

Theorem 9.5. Let α > β ≥ 0, and let I = (B1, . . . ,Bn,F) be any instance of matroid-max-PBOI where
each constituent box Bi admits an (α, β)-semilocal approximation under some probability pi ∈ [0, 1]. Then,
CG(I) ≥ α− β.

Algorithm 9.6. (Semilocal Approximation Composition Algorithm)
1: Input. A normalized matroid-max-PBOI instance I = (B1, . . . ,Bn,F) and a vector of probabilities

(p1, . . . , pn).
2: Sgrab ← {}. ▷ set of boxes marked as “grab”
3: Relabel the boxes such that µ1 ≥ · · · ≥ µn.
4: for i = 1, 2, . . . , n do
5: Li ← 1 if Sgrab ∪ {i} ∈ F else 0 ▷ Li = 0 means we never want to grab box i
6: Sample Ki ← Bernoulli(pi) ▷ Ki = 1 means provisionally mark box i “grab”
7: If Ki = 1 and Li = 1 then Sgrab ← Sgrab ∪ {i}. ▷ fully mark box i as “grab”

8: Commit to grabbing the boxes Sgrab and opening the boxes in [n] \ Sgrab.
9: Run the optimal (index) policy under the resulting commitment.
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The committing policy achieving the bound of Theorem 9.5 is presented in Algorithm 9.6. Importantly, this
policy does not commit to grabbing each box Bi with probability pi independently (as would be the case when
composing local approximation guarantees). Instead, it examines the boxes in decreasing mean order, flips a
coin with probability pi for each box Bi and only commits to grabbing it if (i) the coin flip succeeds and (ii)
the set of boxes that are committed to the grab action after inserting Bi remains an independent set of the
underlying matroid. Once the commitments for each box have been specified, we simply run the optimal policy
for the resulting matroid-max-CICS instance over Markov chains (equivalently, we substitute each grab box (D, c)
with a box (µ, 0) and run Weitzman’s algorithm for the mandatory inspection setting). Therefore, as long as the
probabilities pi achieving the semilocal approximation can be efficiently computed, the entire algorithm runs in
polynomial time. To ease the presentation, we defer the proof of Theorem 9.5 to Section 9.5

We note that both the definition and composition algorithm for semilocal approximation are specifically
tailored to the PBOI model, though we believe modest extensions beyond PBOI may be possible. The main
limitaiton is that the proof of Theorem 9.5 relies crucially on the fact that if we choose to grab a box, then the
box’s terminal value is deterministic, namely µ. It is thus natural to try extending semilocal approximation to
other Pandora’s box variants that have a grab-like action that yields a deterministic terminal value, but we leave
this to future work.

9.4 Breaking the 0.5 Barrier. We are finally ready to prove Theorem 9.1. From Theorem 9.5, it suffices
to prove that all optional inspection boxes admit an (α, β)-semilocal approximation for some α, β such that
α− β ≥ 0.582. This is achieved by the following lemma.

Lemma 9.7. Let B be any (non-degenerate) box with opening cost c and mean value µ. For any β ≥ 0, let

α(β) :=

{
1

1+ c
µ−β c

µ−c
if 1

1+ c
µ−β c

µ−c
∈ (0, 1].

1 otherwise.

Then, the probability p = c
µα(β) achieves an (α(β), β)-semilocal approximation for B.

Proof. To simplify notation we denote α(β) as α throughout the proof. By Definition 9.4, proving this lemma
amounts to showing that these α and β satisfy:

(9.10) (1− p) E
[
max

(
W ∗

o , y
)]

+ pmax
(
µ, y) ≥ E

[
max

(
αW ∗, y

)]
− pβµ

for all y ≥ 0. This is equivalent to showing that

f(y) := (1− p) E
[
max

(
W ∗

o , y
)]

+ pmax
(
µ, y)− E

[
max

(
αW ∗, y

)]
+ pβµ

satisfies f(y) ≥ 0 for all y ≥ 0. We will first show that it is sufficient to check that f(0) ≥ 0 and that f(y) ≥ 0 for
y ≥ µ. It follows from Definition 9.2 that at all values y for which f ′(y) is defined, it is equal to

(1− p) Pr [y ≥W ∗
o ] + p1(y > µ)− 1(y > αh) Pr [y > αW ∗

o ] .

Observe that

• if y < αh < µ, then f ′(y) ≥ 0,

• if αh < y < µ, then since α ≤ 1, we must have f ′(y) ≤ 0.

Thus a global minimum of f(y) must be at y = 0 or on y ≥ µ, so it is sufficient to check that Equation (9.10) is
satisfied when y = 0 and y ≥ µ. When y = 0, Equation (9.10) reduces to

(1− p)(µ− c) + pµ ≥ αµ− pβµ.

which holds for the values of α and p given in the lemma. When y ≥ µ, Equation (9.10) reduces to

(9.11) (1− p) E
[
max

(
W ∗

o , y
)]

+ py ≥ E
[
max

(
αW ∗, y

)]
− pβµ = αE

[
max

(
W ∗

o ,
y

α

)]
− pβµ
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where the last equality follows from the fact that E
[
max

(
αW ∗, y

)]
= max{E

[
max

(
αW ∗

o , y
)]

, αµ}. The slope of
E [max{W ∗

o , y}] is bounded above by 1, so

αE
[
max

(
W ∗

o ,
y

α

)]
≤ αE

[
max

(
W ∗

o , y
)]

+ α
( y

α
− y

)
.

Applying this bound to Equation (9.11), we find that Equation (9.11) holds if,

(9.12) (α+ p− 1)(E
[
max

(
W ∗

o , y
)]
− y) ≤ pβµ.

Since the slope of E [max{W ∗
o , y}] is bounded above by 1, it must be that E

[
max

(
W ∗

o , y
)]
− y is maximized at

y = 0 where it is equal to µ− c, so Equation (9.12) holds if,

(α+ p− 1)(µ− c) ≤ pβµ.

Observe that if p = α c
µ , we can rewrite this inequality as

α

(
1 +

c

µ
− c

µ− c
β

)
≤ 1,

which is satisfied by the α given in the lemma.

By optimizing over α(β)−β, we instantiate Lemma 9.7 with β = 0.1, to obtain the corresponding probability.
It is straightforward to verify (using a computer algebra system or numerical solver) that since c

µ ∈ [0, 1] (recall

that we have normalized all degenerate boxes), we have(
1 +

c

µ
− c

10(µ− c)

)−1

≥ 0.682

whenever (1+ c
µ−

c
10(µ−c) )

−1 ∈ (0, 1]. This means α(0.1) ≥ 0.682, and thus all boxes admit a (0.682, 0.1)-semilocal

approximation, from which the proof of Theorem 9.1 follows. Critical to the above argument is that Lemma 9.7
implies there exists a universal pair (α, β), namely (0.682, 0.1), such that all boxes admit an (α, β)-semilocal
approximation. It would not suffice to show only that for each box, there exists a box-specific pair (α′, β′) such
that the box admits a (α′, β′)-semilocal approximation, even if we always had α′ − β′ ≥ 0.582. This is because
Theorem 9.5 requires all boxes to admit a (α, β)-approximation for the same pair (α, β).

9.5 Composition of Semi-Local Approximation. We will finally analyze the composition Algorithm 9.6
and prove Theorem 9.5. To simplify the notation, we let W open

i := W ∗
o,i be the surrogate cost of the opening

action for box Bi. There are two main steps of the proof, each stated and proved in a lemma below. We express
both steps in terms of the random variables

W alg
i =

{
W open

i if KiLi = 0

µi if KiLi = 1,

where Ki and Li are as defined in Algorithm 9.6. One can think of W alg
i as the surrogate value of box i conditional

on the state of the algorithm after line 7. The first step, Lemma 9.8, is to express the value achieved by Algorithm
9.6 in terms of W alg

i :

Lemma 9.8. For any max-matroid Pandora’s box instance I = (B1, . . . ,Bn,F) and any vector of probabilities
(p1, . . . , pn), the expected value achieved by Algorithm 9.6 is

E [value achieved by Algorithm 9.6] = E

[
max
S∈F

∑
i∈S

W alg
i

]
.

The second step, Lemma 9.9, is to compare the resulting expression to an upper bound on the optimal value.
This step uses the semilocal (α, β)-approximation guarantee from Definition 9.4, which gives us a relationship

between W alg
i and W ∗

i .
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Lemma 9.9. Under the hypotheses of Theorem 9.5,

E

[
max
S∈F

∑
i∈S

W alg
i

]
≥ E

max
S∈F

∑
i∈S

αW ∗
i −

∑
i∈Sgrab

βµi

 ,

where Sgrab refers to the value of the Sgrab variable in Algorithm 9.6.

Combining the two lemmas yields

E [value achieved by Algorithm 9.6] ≥ E

max
S∈F

∑
i∈S

αW ∗
i −

∑
i∈Sgrab

βµi

 ,

where Sgrab is the set of boxes marked “grab” at the after line 7 of the algorithm. It remains only to relate the
two terms on the right-hand side to the optimal expected value.

• From the analogue of Theorem 4.9 for the maximization setting (see Theorem A.7 in Section A), we know
that the water filling surrogate costs provide an upper bound on the utility of the optimal adaptive policy
for any max-CICS instance. Thus:

E

[
max
S∈F

∑
i∈S

W ∗
i

]
≥ E [value of optimal policy] .

• Because Algorithm 9.6 ensures Sgrab ∈ F by construction, the following policy is feasible: “Compute Sgrab

as in Algorithm 9.6, but then simply grab the boxes in Sgrab.” This algorithm achieves value E
[∑

i∈Sgrab µi

]
,

which means

E

 ∑
i∈Sgrab

µi

 ≤ E [value of optimal policy] .

Therefore, as desired, E [value achieved by Algorithm 9.6] ≥ (α − β) · E [value of optimal policy] which implies a
lower bound of α− β for the commitment gap.

Proof of Lemma 9.8. Consider running Algorithm 9.6 through line 7, but not further. All of the randomness
thus far comes from the coin flips Ki, and no boxes have been opened yet. This means that conditional on the
coin flips Ki, the expected value achieved is that of a mandatory-inspection instance I′ = (B′1, . . . ,B′n,F) whose
ith box B′i is defined as follows:

• If KiLi = 0 (marked “open”), B′i = (Di, ci), i.e. the box is the same as the original instance.

• If KiLi = 1 (marked “grab”), B′i = (µi, 0), i.e. the box is free to open and always contains value µi.

Under instance I′, box i’s surrogate value is given by W alg
i . Since this is an instance of max-CICS over Markov

chains, from the counterpart of Theorem 4.4 for maximization (see Theorem A.4 in Section A) we have

E [value achieved by Algorithm 9.6|K1, . . . ,Kn] = E

[
max
S∈F

∑
i∈S

W alg
i |K1, . . . ,Kn

]
.

The lemma then follows by the law of total expectation.

Proof of Lemma 9.9. We want to prove that

(9.13) E

[
max
S∈F

∑
i∈S

W alg
i

]
≥ E

max
S∈F

∑
i∈S

αW ∗
i −

∑
i∈Sgrab

βµi

 .
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The outline of the proof is as follows. We begin with the left-hand side of Equation (9.13). Then, for each

box i, we swap W alg
i with αW ∗

i , and also subtract βµi if box i is marked “grab”. Because each box admits a
semilocal (α, β)-approximation, each of these replacements only decreases the expression’s expected value. After
all n replacements, we are left with the right-hand side of Equation (9.13), as desired. This is the same strategy
used by Scully and Doval [2024, Theorem 5.4], but some careful conditioning is needed to account for the βµi

subtractions.
In order to notate the one-by-one replacement outlined above, let

W
(j)
i =

{
W alg

i if i ≤ j

αW ∗
i if i > j,

U (j) = max
S∈F

∑
i∈S

W
(j)
i .

Using this notation and recalling how Sgrab is defined in Algorithm 9.6, we can rewrite our goal Equation (9.13)
as

E
[
U (n)

]
≥ E

[
U (0) −

n∑
i=1

βKiLiµi

]
.

Therefore, it suffices to show that for all j ∈ {1, . . . ,m},

(9.14) E
[
U (j)

]
≥ E

[
U (j−1) − βKjLjµj

]
.

We will show Equation (9.14) using the definition of semilocal approximation (Definition 9.4). But in order

to do so, we need to express each side in terms of a maximum between W alg
j or αW ∗

j and a quantity that is
independent of box j’s value Xj and coin flip Kj (this will take the place of the outside option in the definition
of semilocal approximation). We express the latter quantity in terms of

Y̸=j = max
S∈F :j ̸∈S

∑
i∈S

W
(j)
i , Z̸=j = max

S∈F :j∈S

∑
i∈S\{j}

W
(j)
i .

These can both be seen as optimal total surrogate values achievable without box j. The difference is that Y ̸=j

optimizes over sets that exclude j, whereas Z̸=j optimizes over sets that include j (but still excludes box j’s
surrogate value from the sum). With the definitions of Y ̸=j and Z ̸=j in hand, we can express U (j) and U (j−1) as

U (j) = max
(
Y̸=j , Z̸=j +W alg

j

)
= Z̸=j +max

(
W alg

j , Y̸=j − Z ̸=j),

U (j−1) = max
(
Y̸=j , Z̸=j + αW ∗

j

)
= Z̸=j +max

(
αW ∗

j , Y̸=j − Z ̸=j).

So to show Equation (9.14), it suffices to show

E
[
max

(
W alg

j , Y̸=j − Z ̸=j

)]
≥ E

[
max

(
αW ∗

j , Y̸=j − Z ̸=j

)
− βKjLjµj

]
.

Letting K<j = (K1, . . . ,Kj−1), by the law of total expectation, it suffices to show

(9.15) E
[
max

(
W alg

j , Y̸=j − Z ̸=j

)
|K<j , Y̸=j , Z̸=j

]
≥ E

[
max

(
αW ∗

j , Y̸=j − Z ̸=j

)
− βKjLjµj |K<j , Y̸=j , Z̸=j

]
.

The key to showing Equation (9.15) is observing the following independence facts:

• (Kj , Xj) is independent of K<j . This is because the coin flips K<j affect neither the coin flip Kj nor the
box value Xj .

• (Kj , Xj) is conditionally independent of (Y̸=j , Z̸=j) givenK<j . This is because onceK<j are fixed, the values
(Y ̸=j , Z̸=j) are a function of the values of boxes other than j, and the box values are mutually independent.

The main obstacle to applying the semilocal approximation condition to Equation (9.15) is that W alg
j depends

on Lj , which in turn depends on K<j . Fortunately, we see from Algorithm 9.6 that

L≤j = (L1, . . . , Lj) is a deterministic function of K<j = (K1, . . . ,Kj−1).
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This is because for all i, when executing line 7, the only randomness the algorithm has used is the past coin
flips K<i. So to show Equation (9.15), we split into cases based on whether Lj = 0 or Lj = 1.

Suppose that Lj = 1. More precisely, suppose K<j = k<j , where k<j is any bit vector such that K<j = k<j

induces Lj = 1 in Algorithm 9.6. In this case, the coin flip Kj impacts whether we mark box j as “grab” or
“open”, so we will use the semilocal approximation guarantee from Definition 9.4. By the assumption on k<j and
the fact that Kj ∼ Bernoulli(pj) independently of K<j ,

E [KjLj |K<j = k<j ] = E [Kj ] = pj .

So, by Definition 9.4,

E
[
max

(
W alg

j , y
)
|K<j = k<j

]
= (1− pj) E

[
max

(
W open

j , y
]
) + pj max

(
µj , y)

≥ E
[
max

(
αW ∗

j , y
)]
− βpjµj

= E
[
max

(
αW ∗

j , y
)
− βKjµj

]
= E

[
max

(
αW ∗

j , y
)
− βKjLjµj |K<j = k<j

]
.

The fact that (Y ̸=j , Z̸=j) is conditionally independent of (Kj , Xj) givenK<j completes the proof of Equation (9.15)
on the event Lj = 1.

Suppose now that Lj = 0. In this case, we mark box j as “open” regardless of the coin flip Kj , so instead of
using the semilocal approximation condition, we will show that marking box j as “open” does not lose any any
potential value. Specifically, we will show the following:

(a) For all y ≥ hj , we have E
[
max

(
W open

j , y
)]

= E
[
max

(
W ∗

j , y
)]
.

(b) If Lj = 0, then Y ̸=j − Z ̸=j ≥ µj .

Together with the fact that µj ≥ hj (which holds by the assumption that all degenerate boxes have been
normalized), facts (a) and (b) imply that for any k<j such that K<j = k<j induces Lj = 0 in Algorithm 9.6,

E
[
max

(
W alg

j , Y̸=j − Z ̸=j

)
|K<j = k<j

]
= E

[
max

(
W open

j , Y̸=j − Z ̸=j

)
|K<j = k<j

]
= E

[
max

(
W ∗

j , Y̸=j − Z ̸=j

)
|K<j = k<j

]
≥ E

[
max

(
αW ∗

j , Y̸=j − Z ̸=j

)
|K<j = k<j

]
= E

[
max

(
αW ∗

j , Y̸=j − Z ̸=j

)
− βKjLjµj |K<j = k<j

]
,

which completes the proof of Equation (9.15) on the event Lj = 0. It remains only to show (a) and (b). Fact (a)
holds by definition: recall that hj denotes the smallest value of the outside option y for which the optimal policy
in the local game will prefer opening to grabbing. For (b), we will show that if Lj = 0, then Y̸=j ≥ µj + Z̸=j . Let

• BZ ∈ argmaxS∈F :j∈S

∑
i∈S\{j} W

(j)
i be a maximizing basis in the definition of Z ̸=j ,

• Sgrab
<j = Sgrab ∩ {1, . . . , j − 1} be the boxes marked “grab” before the j-th step in the loop, and

• Bgrab be Sgrab
<j extended to a basis by elements of BZ , so that Sgrab

<j ⊆ Bgrab ⊆ Sgrab
<j ∪BZ .

Because Lj = 0, we have Sgrab
<j ∪ {j} ̸∈ F , which means j ̸∈ Bgrab. But j ∈ BZ by definition, so j ∈ BZ \ Bgrab.

By the basis exchange property, there exists k ∈ Bgrab \BZ such that the following is a basis:

BY = (BZ \ {j}) ∪ {k}.

But Bgrab \ BZ ⊆ Sgrab
<j , which means W

(j)
k = µk ≥ µj since Algorithm 9.6 iterates over the boxes in decreasing

order of mean value. This means

Y̸=j ≥
∑
i∈BY

W
(j)
i = µk +

∑
i∈BZ\{j}

W
(j)
i ≥ µj +

∑
i∈BZ\{j}

W
(j)
i = µj + Z ̸=j .

and the proof is completed.
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Appendix

A The Maximization Setting

In this section, we describe how our entire framework extends to the maximization setting under matroid feasibility
constraints. Our objective will be to restate our claims from Sections 4 and 5, as they were only established with
respect to the matroid-min-CICS problem. Since the proofs follow exactly the same steps, rather than re-proving
all our results, we simply discuss the differences, where there are any.

A.1 Amortization for Markov Chains. The cost amortization of a Markov chain is defined in the same
manner, with the difference that instead of increasing the terminal values of the trajectories to obtain surrogate
costs, we now decrease them to obtain surrogate values. Furthermore, the index of a state now corresponds to the
maximum surrogate value among all downwards trajectories instead of the minimum. Formally:

Definition A.1. (Cost Amortization for Maximization) A cost amortization for any Markov chainM =
(S, σ,A, c,D, V, T ) is a non-negative vector b = {bsτ}s∈S,τ∈Υ(s) satisfying

∑
τ∈Υ(s) p(τ)bsτ = p(s)c(s) for all states

s ∈ S. Based on this amortization, we define:

• The amortized value of a trajectory τ ∈ Υ as ρb(τ) := v(τ)−
∑

s∈τ bsτs .

• The surrogate value of the Markov chainM as the random variable ρM,b that takes on value ρb(τ) for τ ∈ Υ
with probability p(τ).

• The index of a state s ∈ S of the Markov chainM as IM,b(s) := maxτ∈Υ:s∈τ ρb(τ).

Intuitively, we postpone the payment of the action costs until a terminal state is accepted, in which case a
smaller (compared to the original value) surrogate value is collected. From this, we follow precisely the same steps
as in the proof of Lemma 4.2 to upper bound the the utility of any algorithm for matroid-max-CICS through the
surrogate values.

Lemma A.2. (Markov chain upper upper for maximization settings) Consider any instance I =
(M,F) of matroid-max-CICS over Markov chains and let bi be any cost amortization ofMi with surrogate value
ρi := ρMi,bi for all i ∈ [n]. Then, OPT(I) ≤ E

[
maxS∈F

∑
i∈S ρi

]
.

Up next, we extend our definition of water filling amortization to the maximization setting. Like before,
the water draining cost amortization is described algorithmically in a bottom-up fashion where states are
considered in the chain in reverse topological order, starting from the terminals up towards the root σ. Trajectories
τ ∈ Υ(t) for terminal states t ∈ T are singletons and do not carry cost shares. Consider a state s such that
the cost shares for all states reachable from it have been determined. The state distributes its total cost c(s)
across its downstream trajectories τ ∈ Υ(s), starting from those with the maximum current value, until the
equation

∑
τ∈Υ(s) p(τ)bsτ = p(s)c(s) is satisfied. In other words, instead of increasing the cost of the minimum-

cost trajectory, we now decrease the value of the maximum-value trajectory. We use W ∗
M to denote the water

draining surrogate value of a Markov chainM, and I∗M(s) to denote the water draining index of a state s inM.
Through this amortization, we once again define the corresponding index based policy; naturally, the policy

will now select to advance the feasible Markov chain of maximum index.

Definition A.3. (Water Draining Index policy) The water draining index policy for an instance I =
(M,F) of matroid-max-CICS over Markov chains selects at every step the Markov chain i∗ = argmaxi∈FS

I∗i (si),
where si is the current state of Markov chain Mi; S is the set of terminated (selected) Markov chains; and
FS = {i : S ∪ {i} ∈ F}.

From the same observations as in the proof of Lemma 4.2, it immediately follows that this algorithm achieves
two desired properties: it always selects the feasible set of Markov chains with maximum total surrogate value,
and whenever it advances a state s ∈ S that contributes to the surrogate value of a downwards trajectory τ ∈ Υ(s)
(i.e. bsτ > 0) and nature realizes τ , the algorithm will select it. From this, and the fact that the algorithm that
greedily adds the maximum weight feasible element is optimal for the matroid independent set problem, the
following counterpart to Theorem 4.4 follows, establishing the optimality of the Water Draining Index policy for
matroid-max-CICS.
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Theorem A.4. For any matroid-max-CICS instance I = (M,F) over Markov chains, the expected utility of the
water draining index policy is equal to E

[
maxS∈F

∑
i∈S W ∗

Mi

]
. The policy is therefore optimal for I.

A.2 Optimality Curves. The definition of a local game (M, y) naturally extends to the maximization setting;
at any step, the decision maker can either advance the Markov chainM at a cost (until it reaches a terminal state
in which case it may collect its value and terminate), or collect the reward y of the outside option and terminate.
Like before, we use fM(y) to denote the utility of the optimal adaptive policy in this game. From Theorem A.4,
we immediately have that

fM(y) = E [max{y,W ∗
M}] .

From this expression, we obtain that the CDF of the water draining surrogate value W ∗
M can be derived from

the optimality curve as d
dyfM(y). This in turn allows us to define water draining surrogate values for arbitrary

MDPs.

Definition A.5. (Water draining surrogate values for MDPs) Let M be an MDP with optimality
curve fM. The water draining surrogate value for M is the random variable W ∗

M generated from the CDF
d
dyfM(y). That is, W ∗

M is the random variable satisfying fM(y) = E [max(y,W ∗
M)] for all y ∈ R.

A.3 Amortization for MDPs. We will now use the definition of the water draining surrogate values to prove
the following counterpart of Lemma 4.10 that characterizes the water draining surrogate value of an MDP. Since
this is the most technical proof of the framework and there are a few arguments that change in the maximization
setting, we provide a proof sketch for the result.

Lemma A.6. For any MDP M = (S, σ,A, c,D, V, T ) and any deterministic commitment π ∈ C (M), generating
a Markov chain Mπ with states Sπ ⊆ S, realizable trajectories Υπ ⊆ Υ and a distribution pπ over trajectories
and reachable states, there exists an amortized cost function ρπ : Υπ 7→ ∆(R) mapping trajectories to distributions
over costs and a non-negative cost sharing vector bπ = {bπsτ}s∈Sπ,τ∈Υπ(s), such that the following properties hold:

1. Cost Sharing: the amortized cost of a trajectory pays for its own acceptance value and the cost shares it
sends to upstream states. For all τ ∈ Υπ, it holds that E [ρπ(τ)] = v(τ)−

∑
s∈τ b

π
sτs .

2. Cost Dominance: the cost shares received by any state pay towards its action cost, but do not overpay.
For all s ∈ Sπ, it holds that

∑
τ∈Υπ(s)

pπ(τ)b
π
sτ ≤ pπ(s)c(π(s)).

3. Action Independence: sampling a trajectory τ ∼ pπ and then sampling from the amortized cost
distribution ρπ(τ) generates a random surrogate cost for the MDP. This random variable is distributed
identically to the water draining surrogate cost W ∗

M.

Proof. Notice that the only change with respect to the statement of Lemma 4.10 for the minimization setting is
the negative sign in the cost sharing property. Our proof will mirror the proof of Lemma 4.10, and we use the
same notation throughout. Once again, the proof proceeds by induction on the horizon of the MDP; the H = 1
case remains trivial.

For the amortization of the action costs c(aj), we will now define gj to be the solution to equation

E [Zj ]− c(aj) = E [min{gj , Zj}]

and by defining Ẑj := min{gj , Zj}, we have

max{y,E [max{y, Zj}]− c(aj)} = E
[
max{y, Ẑj}

]
which in turn allows us to argue that

E [max{y,W ∗
M}] ≥ E

[
max{y, Ẑj}

]
for all y ∈ R and j ∈ [k].

Using the identity max(a, b) = −min(−a,−b), this implies that for all j ∈ [k], the random variable (−Ẑj)
second-order stochastically dominates the random variable (−W ∗

M). From Lemma 4.12, this allows us to obtain

mappings mj : supp(Ẑj) 7→ ∆(supp(W ∗
M)) such that:
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1. For each j ∈ [k], W ∗
M can be obtain by sampling a z ∼ Ẑj and then sampling from mj(z).

2. For each z ∈ supp(Ẑj), we have E [mj(z)] ≥ z.

We can now define the amortized cost functions ρπ and the cost sharing vectors bπ. Fix any deterministic
commitment π ∈ C (M) and let j = π(σ) ∈ [k] be the fixed action that π takes at state σ. For each state s ∈ Rj , we
use π|s ∈ C (Ms) to denote the commitment π after we transition to state s; note that this is also a deterministic
commitment. By definition, each MDPMs has horizon up to H and thus by the induction hypothesis, it admits a
mapping ρπ|σ(·) and a non-negative cost sharing vector bπ|σ, satisfying the properties of the lemma. Now, consider
any trajectory τ ∈ Υπ and observe that τ = {σ, τs} for some s ∈ Rj and some τs ∈ Υπ(s). We define

ρπ(τ) := mj(min{gj , ρπ|s(τs)})

and
bπστ := E [ρ(τ)]− E

[
ρπ|s(τs)

]
and for all other s ∈ Sπ \ {σ} and τ ∈ Υπ(s), we use the same cost share bπsτ = b

π|s
sτ that was used in Ms. The

proof of the three properties follows precisely the same steps as Lemma 4.10.

From Lemma A.6, we immediately obtain the following counterpart of Theorem 4.9; the proof follows exactly
the same steps as the proof of Theorem 4.9 that we presented in Section 4, and is thus omitted.

Theorem A.7. In any instance I = (M,F) of matroid-max-CICS, OPT(I) ≤ E
[
maxS∈F

∑
i∈S W ∗

Mi

]
.

A.4 Local Approximation. Finally, we note that our notion of local approximation seamlessly extends to
the maximization setting by simply changing the inequality order. In particular:

Definition A.8. (Local approximation for maximization settings) Let M be any MDP and let α ∈
(0, 1]. We say that a commitment π ∈ C (M) is an α-local approximation for M if fMπ (αy) ≥ α · fM(y) for
all y ∈ R.

Notice that in the maximization setting, we have an α-local approximations for α ∈ (0, 1]. By following exactly
the same steps as in the proof of Theorem 5.2, the following composition theorem is immediate:

Theorem A.9. (Composition theorem for maximization settings) Let I = (M,F) be any instance of
matroid-max-CICS, where each constituent MDP Mi admits an α-local approximation under some commitment
πi ∈ C (Mi). Then, CG(I) ≥ α.

By combining Theorem A.9 with the optimality of the Water Draining Index policy (Theorem A.4) and the upper
bound of Theorem A.7, we obtain a way to efficiently approximate the optimal solution for matroid-max-CICS
assuming that the underlying MDPs achieve good local approximation guarantees.

B The Combinatorial Setting

In this section, we describe how our entire framework extends to combinatorial settings beyond the case of
matroids. We will state our results in full generality and distinguish between minimization and maximization
whenever needed. The framework we consider is based on [Singla, 2017] and its followup [Gupta et al., 2019],
where the authors develop a technique for combinatorial selection over Markov chains. In this section, we show
that under local approximation, their results can be seamlessly extended to arbitrary MDPs.

Definition B.1. (CICS) A Costly Information with Combinatorial Inspection (CICS) instance I is defined with
respect to a set of Costly Information MDPs {Mi}ni=1, a feasibility constraint F ⊆ 2[n] and a function h : F 7→ R.
At each step, an algorithm chooses one of the MDPs and advances it through one of its actions. The game
terminates once the algorithm accepts a feasible11 set S ∈ F of MDPs.

11We assume that the algorithm will always ensure that this happens, i.e. when having already accepted a set of MDPs S, it will
never accept another MDP i for which S ∪ {i} ∪A /∈ F for all A ⊆ [n].
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For a specific run of the algorithm, let A denote the set of all actions the algorithm took, S ∈ F denote the set
of terminated MDPs and T be the corresponding set of terminals it accepted. Then, the total cost of the algorithm
for this run in the minimization setting is given by∑

t∈T

v(t) + h(S) +
∑
a∈A

c(a)

and the total utility of the algorithm for the run in the maximization setting is given by∑
t∈T

v(t) + h(S)−
∑
a∈A

c(a).

The optimal adaptive policy in the minimization (resp. maximization) setting is the policy of minimum (resp.
maximum) expected cost (resp. utility).

We note that there are two differences with respect to the matroid setting. The first is that F can now be any
arbitrary set of constraints. In fact, we won’t even have to assume that the set is downwards or upwards close, as
long as the algorithms always ensure that they accept a feasible set of MDPs. The second is the addition of the
function h(·); this is a function that encodes an extra cost (or reward, depending on the setting) that does not
depend on the precise terminals of the MDPs that were selected, but only on the set of terminated MDPs.

The notions of amortization, water filling/draining, optimality curves, surrogate costs and local approximation
apply to each MDP separately, and thus are independent of the underlying combinatorial setting. Therefore,
all these definitions extend to the combinatorial setting without change. Our first contribution is to
extend Theorem 4.9 beyond the matroid setting and prove that the performance of the optimal adaptive policy
in any combinatorial setting is bounded by the surrogate costs of the underlying MDPs. We note that while this
result was known in the single-selection setting, we are the first to prove it for the general combinatorial setting.

Theorem B.2. Let I = (M1, · · · ,Mn,F , h) be any instance of CICS. For each i ∈ [n], let W ∗
Mi

be the water
filling (resp. water draining) surrogate costs in the minimization (resp. maximization) setting. Then:

1. For the minimization setting, OPT(I) ≥ E
[
minS∈F (

∑
i∈S W ∗

Mi
+ h(S))

]
.

2. For the maximization setting, OPT(I) ≤ E
[
maxS∈F (

∑
i∈S W ∗

Mi
+ h(S))

]
.

Our second contribution is to show that local approximation continues to imply composition results even
in the combinatorial setting. In particular, we prove the following extension of Theorem 5.2.

Theorem B.3. Let I = (M1, · · · ,Mn,F , h) be any instance of CICS. For each i ∈ [n], let W ∗
Mi

be the water
filling (resp. water draining) surrogate costs in the minimization (resp. maximization) setting. Finally, for each
i ∈ [n], let πi ∈ C (Mi) be some commitment that α-locally approximatesMi. Then:

1. For the minimization setting, E
[
minS∈F (

∑
i∈S W ∗

Mπi
i

+ h(S))
]
≤ α · E

[
minS∈F (

∑
i∈S W ∗

Mi
+ h(S))

]
.

2. For the maximization setting, E
[
maxS∈F (

∑
i∈S W ∗

Mπi
i

+ h(S))
]
≥ α · E

[
maxS∈F (

∑
i∈S W ∗

Mi
+ h(S))

]
.

By combining Theorem B.2 with Theorem B.3, and assuming that our MDPs admit local approximation
guarantees, we are left with the task of optimizing over the CICS instance that is generated by the commitments;
observe that this is now an instance over Markov chains. In the case of matroid constraints, we showed that we can
always efficiently achieve this via the water filling/draining index policy. However, depending on the combinatorial
constraint, efficient optimization might not be possible – consider for example the case where each MDP is a single
terminal state corresponding to a set of elements and we need to select a minimum cost set cover.

The final key to the puzzle will be a way of efficiently approximating the optimal policy for a CICS instance
I = (M1, · · · ,Mn,F , h) over Markov chains. This is precisely the setting that is considered by [Gupta et al.,
2019]. In this work, it is shown that a sufficient condition to get an efficient β-approximation to the optimal
policy for a CICS instance over Markov chains is for the underlying pair (F , h) to admit a β-approximate frugal
algorithm. We defer the reader to [Gupta et al., 2019] for the full details. Here, we will just mention some examples
of such combinatorial settings:
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• Matching constraints in the maximization setting admit a 0.5-approximate frugal algorithm.

• Facility location constraints in the minimization setting admit a 1.861-approximate frugal algorithm.

• Set cover constraints in the minimization setting admit a min(f, logn)-approximate frugal algorithm where
f is the maximum number of sets in which a ground element is present.

Combining everything, we obtain the following result for the combinatorial setting:

Corollary B.4. Let I = (M1, · · · ,Mn,F , h) be any instance of CICS such that:

1. Each MDPMi admits an α-local approximation.

2. The combinatorial setting (F , h) admits a β-frugal algorithm.

Then, CG(I) ≤ α · β for minimization, and CG(I) ≥ α · β for maximization.

In other words, if (i) we can efficiently compute an α-local approximate commitment for each MDP and
(ii) the combinatorial setting admits a frugal algorithm, then we can efficiently construct a committing policy
that (αβ)-approximates the optimal (non-committing) policy. We are left with the task of proving our extended
Theorems B.2 and B.3. It is not hard to see that both proofs are identical to their matroid counterparts and are
thus omitted. In particular:

1. The proof of Theorem B.2 follows exactly the same steps as the proofs of Theorem 4.9 (for the minimization
setting) and Theorem A.7 (for the maximization setting) that were presented in Section 4 and Section A
respectively. In these proofs, we separately bounded the cost/utility contribution of each MDP by the
corresponding surrogate costs/values and simply invoked the feasibility of the optimal adaptive policy at
the end. Thus, the exact same proofs imply Theorem B.2 for any feasibility constraint F and any cost/reward
function h(·).

2. The proof of Theorem B.3 follows exactly the same steps as the proofs of Theorem 5.2 (for the minimization
setting) and Theorem A.9 that were presented in Section 4 and Section A respectively. In particular, none
of these proofs used the fact that F is a matroid constraint at any point, and it is also straightforward to
see that they immediately extend for any cost/reward function h(·).

C Challenges of Composing Local Conditions

In this section, we demonstrate the challenges of extending Whittle’s condition to obtain bounds on the
commitment gap. Fix any instance I = (M,F) of CICS. Whittle’s condition states that if the (local) commitments
πi are optimal for all local games (Mi, y), then Π = (π1, · · · , πn) is optimal for I and thus the commitment gap is
1. Naturally, this is a very strong local condition and it is desirable to relax it into an approximation guarantee,
while still being able to compose it into a global bound.

A natural approach would be to try and extend this result to approximation guarantees over the local games.
However, this does not work. Consider, for example, a minimization MDP M with two 0-cost actions: the first
action leads to a deterministic value of 1, and the second uniformly leads to a stochastic value of 0 or 1. Committing
to each of these actions leads to an expected cost of min(y, 1) and 1/2 ·min(y, 1) in the local game respectively;
the deterministic action achieves a 2-approximation for all local problems (M, y). Now consider a single-selection
CICS with n copies of the above MDP. If we commit to the deterministic action in each MDP, our cost is
deterministically 1, whereas taking the stochastic action in each costs us 1/2n – an exponential gap!

A different approach would be to consider the negation of Whittle’s condition: if a (local) commitment πi is
strictly suboptimal for all local game (Mi, y), then no optimal policy for the CICS instance I will commit to πi.
This could potentially allow us to rule out some of the commitment policies and simplify our instance. However,
we show that this isn’t true: there are instances of CICS where the commitment gap is 1 (and thus the optimal
policy is a committing policy) and yet the actions it commits to are unambiguously suboptimal!

The Example. We consider an instance of single-selection min-CICS consisting of two MDPs (M1,M2). The
MDPM1 is a depth 1 Markov chain, consisting of a single action of cost 3 and resulting to a uniformly random
terminal state of value 0 or 50. The MDP M2 is of height 2. On the first level, there are two actions a1, a2 of
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cost c(a1) = c(a2) = 0. Taking action a1 deterministically results to a terminal state of value 5. Taking action a2
results to a terminal state of value 0 with probability 1/2 and to a non-terminal state s with probability 1/2. On
state s, there are two more actions a3, a4 of cost c(a3) = c(a4) = 0. Taking a3 results to a terminal of value 12
and taking a4 results to a uniformly random terminal of value 0 or 50.

Notice that there are three committing policies in C (M2), corresponding to action sequences {a1}, {a2, a3}
and {a2, a4}; we use π1, π23 and π24 to denote these policies. As we have seen, each of these committing policies π
implies a Markov chainMπ

2 and an optimality curve for the local game (Mπ
2 , y), denoting the cost of the optimal

policy for the local game as a function of the outside option y ≥ 0. For this specific example, it is not hard to see
that:

• f1(y) := fMπ1
2
(y) = min{y, 5}.

• f23(y) := fMπ23
2

(y) = 0.5 ·min{y, 12}.

• f24(y) := fMπ24
2

(y) = 0.25 ·min{y, 50}.

A pictorial representation of the two MDPs and the corresponding optimality curves for the three committing
policies onM2 is shown in Figure 10.

Figure 10: The MDPsM1 (left) andM2 (right). All the actions inM2 have a cost of 0. There are three committing
policies forM2 with optimality curves f1(y) (blue), f23(y) (orange) and f24(y) (red).

The optimality curves demonstrate that for any value of y, the committing policy π23 is sub-optimal for the
local game (M2, y); in other words, the optimal policy for the local game will never take action a3. One could
expect that since a3 is always suboptimal, the optimal policy would never take this action in the context of the
bandit superprocess (M1,M2). However, we can show that this isn’t true. On the contrary, the optimal algorithm
for (M1,M2) will commit to π23!

Claim C.1. The optimal policy for the single-selection min-CICS instance (M1,M2) is the committing policy
that commits to the unique commitment for Markov chainM1 and to π23 for MDPM2.

Proof. We prove the claim by computing the expected cost of all possible policies for the single-selection min-CICS
instance (M1,M2) and showing that the proposed committing policy has the minimum expected cost. At the
beginning, every policy needs to either take the costly action ofM1 or take either action a1 or a2 fromM2.

• We first consider the set of policies that start by taking the costly action ofM1 at a cost of 3; if the realized
terminal has value 0 then we should clearly terminate, otherwise we play the local game onM2 for y = 50.
In other words, the optimal policy that starts by taking the costly action ofM1 has expected cost

3 +
1

2
· 0 + 1

2
·min{f1(50), f23(50), f24(50)} = 5.5.

• Up next, we consider the set of policies that start by taking action a1 inM2; in that case, we should play
the local game onM1 with outside option y = 5 optimally. In other words, the optimal policy that starts
by taking action a1 onM2 has expected cost

min{5, 3 + 1

2
· 0 + 1

2
· 5} = 5.
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• Finally, we need to consider the set of policies that start by taking action a2. If the realized outcome is
the terminal state of value 0 (this happens with probability 1/2), then we should clearly accept it and
terminate at a total cost of 0. Otherwise, we are left with the task of computing the optimal policy for the
single-selection min-CICS (M1,Ms) whereMs is the sub-process ofM2 rooted at state s. In other words,
the cost of the optimal policy that starts by taking action a2 onM2 will be precisely

1

2
·OPT(M1,Ms).

We will now compute the cost of the optimal policy for the sub-instance (M1,Ms). Observe that any policy
will either start by taking a3 or a4 or by taking the costly action inM1; in the latter case, if the outcome is
0 the policy should terminate, otherwise there is once again an optimal choice between a3 and a4. Thus, we
can assume without loss that the optimal policy for the sub-instance (M1,Ms) will commit in advance to
either a3 or a4. Furthermore, since both a3 and a4 have a cost of 0, we can assume that we start by taking
the corresponding action. Thus:

– If the policy commits to a3, the optimal cost for the sub-instance (M1,Ms) is

min{12, 3 + 1

2
· 0 + 1

2
·min{12, 50}} = 9.

– If the policy commits to a4, the optimal cost for the sub-instance (M1,Ms) is

1

2
· 0 + 1

2
·min{50, 3 + 1

2
·min{0, 50}+ 1

2
·min{50, 50}} = 14.

Thus, the cost of the optimal policy that starts by taking action a2 onM2 will be (1/2) · 9 = 4.5.

From the above case analysis, we obtain that the optimal policy for (M1,M2) will start by taking action a2,
then action a3 and finally the costly action of M1 - the policy terminates whenever a terminal state of value 0
is reached or it runs out of actions to take (in which case it accepts the terminal of value 12). Clearly, this is
equivalent to the optimal policy that commits to π23, concluding the proof.

D Second Order Stochastic Dominance Lemma

In this section we provide a proof for Lemma 4.12. Once again, we note that this result is standard; here, we
provide our own constructive proof for the sake of completeness and building intuition on how the water filling
surrogate cost of an MDP is obtained. For simplicity, we refer to Lemma 4.12 as the Stochastic Dominance Lemma,
henceforth SDL, which we restate for the reader’s convenience.

Lemma 4.12. (Second Order Stochastic Dominance.) Let X,Z be discrete random variables that satisfy the
property E [min{y,X}] ≤ E [min{y, Z}] for all y ∈ R. There exists a mapping m : supp(Z) 7→ ∆(supp(X))
from the support of Z to distributions over the support of X such that:

1. X is obtained by sampling from m(z) for a randomly sampled z ∼ Z.

2. For all z ∈ support(Z), it holds that E [m(z)] ≤ z.

Proof. We will say that X ⪯ Z if there exists a mapping m : supp(Z) 7→ ∆(supp(X)) such that the two conditions
of the SDL hold. We associate each random variable W with a function fW (y) := E [min{y,W}] over y ∈ R. In
other words, we want to prove that

fX(y) ≤ fZ(y) ∀y ∈ R =⇒ X ⪯ Z.

We first prove transitivity of our condition. In other words, if X,Y, Z are discrete random variables such
that X ⪯ Y and Y ⪯ Z, we also have that X ⪯ Z. The proof is immediate; let m1 : supp(Z) 7→ ∆(supp(Y ))
be the corresponding mapping for Y ⪯ Z and m2 : supp(Y ) 7→ ∆(supp(X)) be the corresponding mapping for
X ⪯ Y . Then, the composition mapping m := m2 ◦m1 that maps each z ∈ supp(Z) to a random realizations of
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m2(y) for a randomly sampled y ∼ m1(z) immediately satisfies both conditions and yields X ⪯ Z. Formally, for
each x ∈ supp(X) we have

Pr [X = x] =
∑
y,z

Pr [Z = z] · Pr [m1(z) = y] · Pr [m2(y) = x] =
∑
z

Pr [Z = z] · Pr [m(z) = x]

and for each z ∈ supp(Z) we have

E [m(z)] =
∑
y

Pr [m1(z) = y] · E [m2(y)] ≤
∑
y

Pr [m1(z) = y] · y = E [m1(z)] ≤ z

and thus transitivity of the ⪯ operator is established.
We will now proceed to the main proof. Fix the random variables X and Z such that fX(y) ≤ fZ(y) for all

y ∈ R and order their support sets so that

X := support(X) = {x1, · · · , xM}

and
Z := support(Z) = {z1, · · · , zN}

with x1 < x2 < · · · < xM and z1 < z2 < · · · < zN . We also use pXi := Pr [X = xi] for all i ∈ [N ] and
pZi := Pr [Z = Zi] for all i ∈ [M ] to denote the corresponding probabilities, with

M∑
i=1

pXi =

N∑
i=1

pZi = 1.

We will say that X and Z agree up to index i, if xj = zj and pXj = pZj for all j < i. Conventionally, we say
that any two random variables will agree up to index 1 according to this definition. We will structure our proof
of the SDL as an induction on the maximum index that X and Z agree up to. In particular, we break-down our
proof in the following two steps:

1. (Induction Base). If X and Z agree up to index M , the SDL holds.

2. (Induction Step). If X and Z agree up to index i ∈ [M − 1], there exists a random variable Z ′ such that

(a) Z ′ and X agree up to index (i+ 1).

(b) Z ′ ⪯ Z.

(c) For all y ∈ R, fX(y) ≤ fZ′(y).

Before proving each of these two claims, let’s see how they naturally construct an inductive proof for the SDL.
Initially, we have that by definition, X and Z agree up to index 1. We can then apply our second claim (i.e. the
induction step) to obtain a random variable Z1 ⪯ Z that agrees with X up to index 2 and satisfies fX(y) ≤ fZ1

(y)
for all y ∈ R. We can then re-apply the induction step to obtain a random variable Z2 ⪯ Z1 that agrees with X
up to index 3 and satisfies fX(y) ≤ fZ2(y) for all y ∈ R. We keep applying the induction step for as long as we
can, until we obtain a random variable ZM−1 ⪯ ZM−2 ⪯ · · · ⪯ Z1 ⪯ Z that agrees with X up to index M and
satisfies fX(y) ≤ fZM−1

(y) for all y ∈ R. We then proceed to use our first claim (i.e. the induction base) to show
that X ⪯ ZM−1. Finally, we use the transitivity of operator ⪯ in order to obtain X ⪯ Z, which concludes the
proof.

Proof of Induction Base. Assume that X and Z agree up to indexM ; this means that xi = zi and pXi = pZi
for all i < M . Then, consider the deterministic mapping m(zi) = xi if i < M and m(zi) = xM if i ≥M . Since xM

is the last point in the support X , sampling z ∼ Z and outputting m(z) is clearly equivalent to sampling x ∼ X.
For the expectation condition, we need to show that m(zi) = xM ≤ zi for all i ≥ M . For y = xM , we have that
fX(xM ) ≤ fZ(xM ). By definition:

fX(xM ) =

M∑
i=1

pXi · xi =

M−1∑
i=1

pXi · xi + pXM · xM
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and

fZ(xM ) =

M−1∑
i=1

pZi · zi +
N∑

i=M

pZi ·min(zi, xM ).

Observe that the sums for i ∈ [M − 1] are equal by the agreement assumption and also
∑N

i=M pZi = pXM .
Thus, to satisfy fX(xM ) ≤ fZ(xM ) we would need xM ≤ min(xM , zi) for all i ≥ M or equivalently that
xM ≤ zM < zM+1 < · · · < zN and the proof follows.

Proof of Induction Step. We will now prove the induction step. Assume that the random variables X and
Z agree up to index i for some i ∈ [M − 1]; if they also agree up to index (i+1) the step follows for Z ′ = Z since
clearly Z ⪯ Z. If they don’t agree up to index (i+ 1), then by fX(y) ≤ fZ(y) for all y ∈ R it must necessarily be
the case that either xi < zi or (xi = zi and pXi > pZi ). In any case, we deduce that fX(y) = fZ(y) for all y ≤ xi

and limy→x+
i
fX(y) < limy→x+

i
fZ(y).

Now, let ℓ(y) denote the unique straight line that passes through points (xi, fX(xi)) and (xi+1, fX(xi+1)),
that is:

ℓ(y) =
fX(xi+1)− fX(xi)

xi+1 − xi
· (y − xi) + fX(xi).

Since fZ(y) is clearly concave, ℓ(y) will intersect it in at most two points; one of them is the point (xi, fZ(xi)) =
(xi, fX(xi)) and the other point will necessarily be (s, fZ(s)) for some s ≥ xi+1. A pictorial representation is given
in Figure 11.

Figure 11: The induction step. Random variables X and Z agree up to index 2. The line ℓ(y) extends the line-
segment of fX(y) from x2 to x3 and cuts fZ(y) on some y = s ≥ x3. Let h(y) denote the highlighted curve. The
random variable Z ′ that has curve fZ′(y) = h(y) agrees with X up to index 3 and satisfies fZ′(y) ≥ fX(y) for all
y ∈ R. Here, J = {2, 3} denotes the set of indices of fZ ’s break-points that lie in (x2, s).

Now, consider the curve h(y) = min{ℓ(y), fZ(y)}. By construction, this curve satisfies fX(y) ≤ h(y) for all
y ∈ R. Furthermore, if it is the case that there exists some random variable Z ′ such that f ′

Z(y) = h(y), then it
would be the case that Z ′ and X agree up to index (i + 1). Thus, to complete the proof, we need to show that
such a random variable Z ′ not only exists, but also satisfies Z ′ ⪯ Z. This will require it’s own type of induction,
so we will state it an prove it as a separate claim (Claim D.1) to ease the presentation. Notice that once this claim
is proven, the proof of the SDL is completed.

Claim D.1. For any discrete random variable Z with curve fZ(y) = E [min{y, Z}] and any line ℓ(y) intersecting
fZ(y) at exactly two points a < b, there always exists discrete random variable Z ′ such that Z ′ ⪯ Z and
fZ′(y) = min{fZ(y), ℓ(y)}.

Proof. Once again, we denote Z := support(Z) = {z1, · · · , zN} and assume z1 < z2 < · · · < zN . We also use
pZi := Pr [Z = zi] for i ∈ [N ]. Notice that the function fZ(y) is piece-wise linear, with breakpoints precisely at
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zi ∈ Z. Furthermore, the slope at the interval (−∞, zi] is 1, the slope at any interval [zi, zi+1] for i ∈ [N − 1] is
1−

∑
j≤i p

Z
j and the slope at the interval [zN ,∞) is 0. Finally, for each point zi ∈ Z, the difference of the slope

of fZ(y) on the segment to its left minus the slope of fZ(y) on the segment to its right equals the probability pZi .
We will begin by designing a useful gadget. This gadget G(Z, a, b) takes as input a discrete random variable

Z and two parameters a < b such that there exists index i ∈ [N ] with zi−1 ≤ a < zi < b ≤ zi+1 (we denote
z0 = −∞ and zN+1 = +∞) and returns a random variable Z ′ that is obtained by mapping each point zj ∈ Z
with j ̸= i to itself, and mapping point zi to point a with some probability λ and to point b with probability 1−λ.
Clearly, support(Z ′) = {a, b} ∪ Z \ {zi}. Let ℓab(y) be the line passing through points (a, fZ(a)) and (b, fZ(b))
and let s be the slope of this line. Furthermore, let s1 be the slope of fZ(y) at the interval [a, zi] and s2 be its
slope at the interval [zi, b]; by definition, s1 − s2 = pZi . Also, note that s1 > s > s2 by concavity. Then, by using
mapping probability

λ :=
s1 − s

s1 − s2

it is not hard to see that fZ′(y) = min{fZ(y), ℓab(y)}, since we maintain the probability mass at all points zj ̸= zi
and furthermore we have Pr [Z ′ = a] = pZi · λ = s1 − s and Pr [Z ′ = b] = pZi · (1− λ) = s− s2. Furthermore, it is
also not hard to see that Z ′ ⪯ Z; we only need to verify that

λ · a+ (1− λ) · b ≤ zi

or equivalently (by substituting λ’s definition) that s(b − a) ≤ s1(zi − a) + s2(b − zi); this always holds with
equality due to the definition of s1, s2 and s.

We are now ready to prove the claim. Let J = {zi ∈ (a, b)}; this is the set of points zi ∈ Z for which
fZ(zi) > ℓ(zi). Notice that the gadget G(Z, a, b) already proves the claim for the special case of |J | = 1. We
will now inductively apply the gadget to prove the general case. Let zi be the minimum point in J ; we begin by
applying the gadget G(zi, a, zi+1) to obtain a new random variable Z ′; this is allowed since zi is the unique point
of Z in the interval (a, zi+1). By our construction of the gadget and concavity of fZ(y), we have that Z ′ ⪯ Z and
also that fZ′(y) ≥ min{fZ(y), ℓ(y)} for all y ∈ R. Furthermore, the corresponding J-interval for Z ′ will now have
one less point; thus, we can inductively keep applying our gadget and by transitivity of the ⪯ operator the claim
follows.
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