The Power of SOAP Scheduling

Mor Harchol-Balter
Ziv Scully
Carnegie Mellon University
M/G/1 Queue
M/G/1 Queue
M/G/1 Queue
M/G/1 Queue

queue

server

job

size
M/G/1 Queue

queue

server

job

size
M/G/1 Queue

queue

server

job

size
M/G/1 Queue
M/G/1 Queue

- Queue
- Server
- Job
- Remaining size
- Size
- Age
M/G/1 Queue

random arrivals

size

remaining size

age

server

job

queue
M/G/1 Queue

random arrivals

size

remaining size

age

queue

server

job
M/G/1 Queue

$X = \text{size distribution}$

$\lambda = \text{arrival rate}$

$\rho = \lambda E[X] < 1$

random arrivals

queue

server

job

remaining size

size

age
M/G/1 Queue

$X =$ size distribution
$\lambda =$ arrival rate
$\rho = \lambda E[X] < 1$

random arrivals

queue

server

Scheduling policy:
picks which job to serve

job

size
do not include remaining size

$X =$ size distribution
$\lambda =$ arrival rate
$\rho = \lambda E[X] < 1$
M/G/1 Queue

\[X = \text{size distribution} \]
\[\lambda = \text{arrival rate} \]
\[\rho = \lambda E[X] < 1 \]

random arrivals

\[
X = \text{size distribution} \\
\lambda = \text{arrival rate} \\
\rho = \lambda E[X] < 1
\]

Scheduling policy: picks which job to serve

job

server

queue

remaining size

size

age
\(X = \text{size distribution} \)
\(\lambda = \text{arrival rate} \)
\(\rho = \lambda E[X] < 1 \)

M/G/1 Queue

- **Queue**
- **Server**
- **Random arrivals**
- **Job**
- **Remaining size**
- **Age**

Scheduling policy:

Picks which job to serve

\(E[X] \)
M/G/1 Queue

- $X = \text{size distribution}$
- $\lambda = \text{arrival rate}$
- $\rho = \lambda E[X] < 1$

Scheduling policy: picks which job to serve

Diagram:
- Random arrivals
- Queue
- Server
- Job
- Remaining size
- Size
- Age

Equations:
- $E[X]$
M/G/1 Queue

X = size distribution
λ = arrival rate
$\rho = \lambda E[X] < 1$

Scheduling policy: picks which job to serve
Response Time
Response Time
Response Time

= T = response time
Response Time

$= T = \text{response time}$

Goal: analyze mean response time $E[T]$
Response Time

Response time \(T = \) mean response time

Goal: analyze mean response time \(E[T] \)

Depends on scheduling policy
Impact of Scheduling

What scheduling policy minimizes $E[T]$?
Impact of Scheduling

What scheduling policy minimizes $E[T]$?

Shortest remaining processing time (SRPT)
Impact of Scheduling

What scheduling policy minimizes $E[T]$?

Shortest remaining processing time (SRPT)

- FCFS
- PS
- FB
- SRPT
Impact of Scheduling

What scheduling policy minimizes $E[T]$?

Shortest remaining processing time (SRPT)

... but nobody uses SRPT!
Why Not SRPT?
Why Not SRPT?

Unknown job sizes
Why Not SRPT?

- FCFS (first come, first served)
- Unknown job sizes
Why Not SRPT?

Unknown job sizes

\[
\begin{align*}
\text{FCFS} & \quad \text{(first come, first served)} \\
\text{FB} & \quad \text{(foreground-background: least age)}
\end{align*}
\]
Why Not SRPT?

Unknown job sizes

\[
\begin{align*}
\text{FCFS} & \quad \text{(first come, first served)} \\
\text{FB} & \quad \text{(foreground-background: least age)} \\
\text{SERPT} & \quad \text{(least expected remaining size)}
\end{align*}
\]
Why Not SRPT?

Unknown job sizes

FCFS (first come, first served)
FB (foreground-background: least age)
SERPT (least expected remaining size)
Gittins (optimal!)
Why Not SRPT?

Unknown job sizes
- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints
Why Not SRPT?

Unknown job sizes

- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints

- “Discrete” SRPT (preempt only at checkpoints)
Why Not SRPT?

Unknown job sizes

- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints

- “Discrete” SRPT
 (preempt only at checkpoints)
- “Bucketed” SRPT
 (limited number of priority levels)
Why Not SRPT?

Unknown job sizes

- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints

- “Discrete” SRPT, FB, etc.
 (preempt only at checkpoints)
- “Bucketed” SRPT, FB, etc.
 (limited number of priority levels)
Why Not SRPT?

Unknown job sizes

- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints

- “Discrete” SRPT, FB, etc.
 (preempt only at checkpoints)
- “Bucketed” SRPT, FB, etc.
 (limited number of priority levels)

Metric other than $E[T]$
Why Not SRPT?

Unknown job sizes

- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints

- "Discrete" SRPT, FB, etc.
 (preempt only at checkpoints)
- "Bucketed" SRPT, FB, etc.
 (limited number of priority levels)

Metric other than $E[T]$

- Priority classes
Why Not SRPT?

Unknown job sizes

- FCFS (first come, first served)
- FB (foreground-background: least age)
- SERPT (least expected remaining size)
- Gittins (optimal!)

Hardware constraints

- “Discrete” SRPT, FB, etc.
 (preempt only at checkpoints)
- “Bucketed” SRPT, FB, etc.
 (limited number of priority levels)

Metric other than $E[T]$

- Priority classes
- RS (optimal for mean slowdown)
Many Scheduling Policies
Many Scheduling Policies

$E[T]$ known
Many Scheduling Policies

$E[T]$ known

SRPT
Many Scheduling Policies

\[E[T] \text{ known} \]

SRPT
FCFS
Many Scheduling Policies

$E[T]$ known

SRPT
FCFS
FB
Many Scheduling Policies

\[E[T] \] known

SRPT
FCFS
FB
Simple priority classes
Many Scheduling Policies

- **E[T] known**
 - SRPT
 - FCFS
 - FB
 - Simple priority classes

- **E[T] unknown!**
Many Scheduling Policies

\[E[T] \text{ known} \]
SRPT
FCFS
FB
Simple priority classes

\[E[T] \text{ unknown!} \]
SERPT
Gittins
Discrete SRPT
Discrete FB
Bucketed SRPT
Bucketed FB
RS*
Complex priority classes
... and more!
Many Scheduling Policies

E[T] known
- SRPT
- FCFS
- FB
- Simple priority classes

E[T] unknown
- SERPT
- Gittins
- Discrete SRPT
- Discrete FB
- Bucketed SRPT
- Bucketed FB
- RS*
- Complex priority classes
- ... and more!
SOAP

Broad class of scheduling policies…
SOAP

Broad *class* of scheduling policies…

… with *universal* response time analysis
SOAP
Schedule Ordered by Age-based Priority

Broad class of scheduling policies…
… with *universal* response time analysis
Outline
Outline

Part 1: defining SOAP policies
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Part 1: defining SOAP policies
Scheduling with Ranks
Scheduling with Ranks

FB
serve by least age
Scheduling with Ranks

FB
serve by least age
Scheduling with **Ranks**

- **FB**
 - serve by least age

- **SRPT**
 - serve by least remaining size
Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size
Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank (priority) depends on its age
Scheduling with Ranks

Common theme: a job’s rank (priority) depends on its age
Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank (priority) depends on its age
Scheduling with Ranks

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank (priority) depends on its age
A **SOAP** policy is a **rank** function with one rule:
A SOAP policy is a rank function with one rule:

always serve the job of minimum rank
A *SOAP* policy is a *rank* function with one rule:

always serve the job of *minimum rank*
(break ties FCFS)
Classic SOAP Policies

FB

\[\text{rank} \rightarrow \text{age} \]

SRPT

\[\text{rank} \rightarrow \text{age} \]

- large
- medium
- small
Classic SOAP Policies

- **FB**
 - Rank vs. Age
 - (Graph showing a linear relationship between rank and age)

- **SRPT**
 - Rank vs. Age
 - (Graph showing a decreasing relationship between rank and age for large, medium, and small)

- **FCFS**
 - Rank vs. Age
 - (Graph showing a horizontal line, indicating no change in rank)
Classic SOAP Policies

FB

- Rank vs. Age

SRPT

- Rank vs. Age

FCFS

- Rank vs. Age

Preemptive Priority

- Rank vs. Age
Classic SOAP Policies

FB
- Rank
- Age

SRPT
- Rank
- Age

Preemptive Priority
- E[T] known
- Normal
- Urgent

FCFS
- Rank
- Age
SOAP Policy: SERPT

Job size distribution:

\[
X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}
\]
SOAP Policy: SERPT

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
SOAP Policy: SERPT

Job size distribution:

\[
X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}
\]
SOAP Policy: SERPT

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
SOAP Policy: SERPT

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]

Rank nonmonotonic in age
SOAP Policy: SERPT

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3}
\end{cases} \]

\[E[T] \text{ unknown!} \]

Rank nonmonotonic in age
SOAP Policy: SERPT

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3}
\end{cases} \]

\[E[T] \text{ unknown!} \]
SOAP Policy: SERPT

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
SOAP Policy: Gittins

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
SOAP Policy: Gittins

Job size distribution:

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3}
\end{cases} \]

\[\mathbf{E}[T] \text{ unknown!} \]
SOAP Policy: Discrete FB

rank

age
SOAP Policy: Discrete FB

FB, but preempt only at age checkpoints
SOAP Policy: Discrete FB

FB, but preempt only at age checkpoints
SOAP Policy: Discrete FB

FB, but preempt only at age checkpoints
SOAP Policy: Discrete FB

FB, but preempt only at age checkpoints

$E[T]$ unknown!
SOAP Policy: Bucketed SRPT

rank

age
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

rank

age
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: \([0, 2)\), \textbf{rank} = 1
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: $[0, 2)$, rank $= 1$
- Medium: $[2, 7)$, rank $= 2$
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

• Small: \([0, 2)\), \textbf{rank} = 1
• Medium: \([2, 7)\), \textbf{rank} = 2
• Large: \([7, \infty)\), \textbf{rank} = 3
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: \([0, 2)\), rank = 1
- Medium: \([2, 7)\), rank = 2
- Large: \([7, \infty)\), rank = 3
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: \([0, 2)\), \(\text{rank} = 1\)
- Medium: \([2, 7)\), \(\text{rank} = 2\)
- Large: \([7, \infty)\), \(\text{rank} = 3\)

2 remaining
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:
- Small: \([0, 2)\), \textbf{rank} = 1
- Medium: \([2, 7)\), \textbf{rank} = 2
- Large: \([7, \infty)\), \textbf{rank} = 3

Graph showing:
- 7 remaining
- 2 remaining
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:

- Small: $[0, 2)$, \textbf{rank} = 1
- Medium: $[2, 7)$, \textbf{rank} = 2
- Large: $[7, \infty)$, \textbf{rank} = 3

2 remaining

7 remaining

2 remaining
SOAP Policy: Bucketed SRPT

SRPT with three size buckets:
- Small: \([0, 2)\), \(\text{rank} = 1\)
- Medium: \([2, 7)\), \(\text{rank} = 2\)
- Large: \([7, \infty)\), \(\text{rank} = 3\)

\(E[T]\) unknown!
Two customer classes: *humans* and *robots*
SOAP Policy: Mixture

Two customer classes: *humans* and *robots*

Humans
- unknown size
- nonpreemptible
- FCFS
SOAP Policy: Mixture

Two customer classes: humans and robots

Humans
- unknown size
- nonpreemptible
- FCFS

Robots
- known size
- preemptible
- SRPT
SOAP Policy: Mixture

Two customer classes: *humans* and *robots*

Humans
- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots
- known size
- preemptible
- SRPT
SOAP Policy: Mixture

Two customer classes: *humans* and *robots*

Humans
- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots
- known size
- preemptible
- SRPT

Twist: small robots outrank humans
SOAP Policy: Mixture

Two customer classes: *humans* and *robots*

Humans
- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots
- known size
- preemptible
- SRPT

Twist: small robots outrank humans

\[\text{size} < x_H \]
Two customer classes: *humans* and *robots*

Humans
- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots
- known size
- preemptible
- SRPT

Twist: small robots outrank humans

\[\text{size} < x_H \]
SOAP Policy: Mixture

Two customer classes: *humans* and *robots*

Humans
- unknown size
- nonpreemptible
- FCFS
- priority over robots

Robots
- known size
- preemptible
- SRPT

\[E[T] \] unknown!

size \(< x_H \)

Twist: small robots outrank humans
A **SOAP** policy is any policy expressible by a \textit{rank} function of the form:
Full SOAP Definition

A SOAP policy is any policy expressible by a rank function of the form:

$$\text{descriptor} \times \text{age} \rightarrow \text{rank}$$
Full SOAP Definition

A **SOAP** policy is any policy expressible by a **rank** function of the form:

\[
\text{descriptor} \times \text{age} \rightarrow \text{rank}
\]
A SOAP policy is any policy expressible by a rank function of the form:

\[\text{descriptor} \times \text{age} \rightarrow \text{rank} \]

\[FB \]
\[r_\emptyset(a) = a \]
A **SOAP** policy is any policy expressible by a **rank** function of the form:

\[\text{descriptor} \times \text{age} \rightarrow \text{rank} \]

FB

\[r_{\emptyset}(a) = a \]

SRPT

\[r_{x}(a) = x - a \]
A SOAP policy is any policy expressible by a rank function of the form:

\[
\text{descriptor} \times \text{age} \rightarrow \text{rank}
\]

Descriptor can be anything that:
- does not change while a job is in the system
- is i.i.d. for each job
FAQ:
What *isn’t* a **SOAP** policy?
FAQ:
What isn’t a SOAP policy?

• Rank changes when not in service
FAQ:

What isn’t a SOAP policy?

- **Rank** changes when not in service
- **Rank** depends on system-wide state
FAQ:
What isn’t a SOAP policy?

• **Rank** changes when not in service
• **Rank** depends on system-wide state
• Non-FCFS tiebreaking
FAQ:
What isn’t a SOAP policy?

• **Rank** changes when not in service
• **Rank** depends on system-wide state
• Non-FCFS tiebreaking

Excludes: EDF, accumulating priority, PS
Part 1: defining SOAP policies
Part 1: defining SOAP policies
Outline

Part 1: *defining* **SOAP** policies

Part 2: *analyzing* **SOAP** policies

Part 3: *policy design* with **SOAP**

Part 4: *optimality proofs* with **SOAP**
Outline

Part 1: defining **SOAP** policies

Part 2: analyzing **SOAP** policies

Part 3: *policy design* with **SOAP**

Part 4: *optimality proofs* with **SOAP**
Part 2: analyzing SOAP policies
Tagged Job Analysis

“me” → random system state
Tagged Job Analysis

“me” → random system state

| = rank
Tagged Job Analysis

“me” → random system state

I = rank
Tagged Job Analysis

Nonmonotonic rank function

random system state

“me”

rank

age
Tagged Job Analysis

Two obstacles:

- Random system state
- Nonmonotonic rank function

Diagram:
- "Me"
- Rank function
- Age
- Random system state

⚠️ Two obstacles:
Tagged Job Analysis

Two obstacles:

- My rank goes up and down randomly.

Nonmonotonic rank function.
Tagged Job Analysis

Two obstacles:

• My rank goes up and down

• Others’ ranks go up and down too

Nonmonotonic rank function
Running example: SERPT

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Warmup: Empty System

\[X = \left\{ \begin{array}{c} 1 \text{ w.p. } \frac{1}{3} \\ 6 \text{ w.p. } \frac{1}{3} \\ 14 \text{ w.p. } \frac{1}{3} \end{array} \right\} \]
Warmup: Empty System

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Warmup: Empty System

Later arrivals: me

Later arrivals: me

Rank

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Warmup: Empty System

Which arrivals delay me?
By how much?

My size

<table>
<thead>
<tr>
<th>My size</th>
<th>Which arrivals delay me?</th>
<th>By how much?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = \{1 \text{ w.p. } \frac{1}{3}, 6 \text{ w.p. } \frac{1}{3}, 14 \text{ w.p. } \frac{1}{3}\}
Warmup: Empty System

My size	Which arrivals delay me?	By how much?
1 | 6 | 14
6 | 14 | 14
14 | 1 | w.p. $\frac{1}{3}$
14 | 6 | w.p. $\frac{1}{3}$
1 | 14 | w.p. $\frac{1}{3}$
Warmup: Empty System

My size

Which arrivals delay me?

By how much?

1

none

6

14

later arrivals me

X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}
Warmup: Empty System

Later arrivals me

My size Which arrivals delay me? By how much?

1 none n/a
6
14

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Warmup: Empty System

My size Which arrivals delay me? By how much?
--- ----------------- -----------------
1 none n/a
6
14
Warmup: Empty System

<table>
<thead>
<tr>
<th>My size</th>
<th>Which arrivals delay me?</th>
<th>By how much?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Later arrivals

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Warmup: Empty System

later arrivals me

My size Which arrivals delay me? By how much?
1 none n/a
6 when 0 ≤ my age < 3
14

X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}
Warmup: Empty System

My size	Which arrivals delay me?	By how much?
1 | none | n/a
6 | when $0 \leq \text{my age} < 3$ | 1
14 | |

$x = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$
Warmup: Empty System

My size	Which arrivals delay me?	By how much?
1 | none | n/a
6 | when $0 \leq \text{my age} < 3$ | 1
14 | | |

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Warmup: Empty System

Which arrivals delay me?
By how much?

<table>
<thead>
<tr>
<th>My size</th>
<th>Which arrivals delay me?</th>
<th>By how much?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td>when (0 \leq \text{my age} < 3)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Warmup: Empty System

Later Arrivals and Me

<table>
<thead>
<tr>
<th>My size</th>
<th>Which arrivals delay me?</th>
<th>By how much?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td>when $0 \leq \text{my age} < 3$</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>when $0 \leq \text{my age} < 7$</td>
<td></td>
</tr>
</tbody>
</table>

Delay Analysis

$$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$$
Warmup: Empty System

- **later arrivals**
- **me**

<table>
<thead>
<tr>
<th>My size</th>
<th>Which arrivals delay me?</th>
<th>By how much?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>n/a</td>
</tr>
<tr>
<td>6</td>
<td>when $0 \leq \text{my age} < 3$</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>when $0 \leq \text{my age} < 7$</td>
<td>1</td>
</tr>
</tbody>
</table>

$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$
SOAP Insight #1: Pessimism Principle

Replace my rank with my worst future rank
Pessimism Principle

Replace my **rank** with my **worst** future rank
Pessimism Principle

Replace my rank with my worst future rank

my size = 1
Pessimism Principle

Replace my rank with my worst future rank

my size = 1
Pessimism Principle

Replace my **rank** with my **worst** future rank

\[
\text{my size} = 1 \quad \text{my size} = 6
\]
Pessimism Principle

Replace my rank with my worst future rank

my size = 1 my size = 6
Pessimism Principle

Replace my **rank** with my **worst** future rank

my size = 1 my size = 6 my size = 14

Replace my rank with my worst future rank
Pessimism Principle

Replace my rank with my worst future rank

my size = 1 my size = 6 my size = 14
Pessimism Principle

Replace my **rank** with my **worst** future rank

my size = 14
Pessimism Principle

Replace my rank with my worst future rank

my size = 14
Pessimism Principle

Replace my rank with my worst future rank

my size = 14
Pessimism Principle

Replace my rank with my worst future rank

\[\rho_{\text{new}}(a) = \begin{cases}
\lambda \cdot 1 & 0 \leq a < 7 \\
\lambda \cdot 0 & 7 \leq a < 14
\end{cases} \]

my size = 14

[Diagram showing the relationship between age and rank with specific values and annotations for arrivals delaying or not delaying by 1.]
Pessimism Principle

Replace my \textbf{rank} with my \textbf{worst} future rank

\[\rho_{\text{new}}(a) = \begin{cases}
\lambda \cdot 1 & 0 \leq a < 7 \\
\lambda \cdot 0 & 7 \leq a < 14
\end{cases} \]

\[E[T_{14} | \text{empty}] = \int_0^{14} \frac{da}{1 - \rho_{\text{new}}(a)} \]

my size = 14

Arrivals delay me by 1

Arrivals don’t delay me
Response Time Analysis

arrival

response time

departure
Response Time Analysis

Arrival → First Service → Departure

Response Time
Response Time Analysis

arrival

waiting time

first service

response time

residence time

departure
Residence Time

arrival

first service

residence time

departure
Residence Time

Question: is residence time...
Question: is residence time...

- my size?
Question: is residence time...
• my size?
Residence Time

Question: is residence time...
- my size? ✗
Residence Time

Question: is residence time...

- my size? \(\times \)
- \(\mathbb{E}[T | \text{empty}] \)?
Question: is residence time...

- my size? \(\times \)
- \(E[T \mid \text{empty}] \)?
Residence Time

arrival

• my size? ×

E[T | empty]?

departure

Question: is residence time...

first service
Residence Time

arrival

first service

departure

my rank jumps up

Question: is residence time...

• my size? ✗

• $E[T \mid \text{empty}]$?
Residence Time

Question: is residence time...

- my size? \(\times \)
- \(\mathbb{E}[T \mid \text{empty}] \)?
Residence Time

Question: is residence time...

• my size? ×
• $\mathbb{E}[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with my worst future rank
Residence Time

Question: is residence time...

- my size? ×
- $E[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with my worst future rank
Question: is residence time...
- my size? \times
- $E[T \mid \text{empty}]$?

Pessimism Principle:
replace my rank with my worst future rank
Residence Time

Question: is residence time...

- my size? \times
- $E[T \mid \text{empty}]$?

Pessimism Principle: replace my rank with my worst future rank.
Residence Time

Question: is residence time...
- my size? ✗
- $E[T \mid \text{empty}]$? ✓

Pessimism Principle: replace my rank with my worst future rank.
Question: is residence time...

- my size? \(\times \)
- \(E[T | \text{empty}] \)? \(\checkmark \)

Pessimism Principle: replace my rank with my worst future rank

e.g. \[E[R_{14}] = E[T_{14} | \text{empty}] = \int_0^{14} \frac{da}{1 - \rho_{\text{new}}(a)} \]
Waiting Time

arrival

waiting time

first service

departure
Waiting Time

arrival

waiting time

worst future rank = w

first service

departure
Waiting Time

arrival

waiting time

worst future rank = \(w \)

See relevant work with \(\text{rank} \leq w \)

first service

departure
Waiting Time

arrival

waiting time

worst future rank = \(w \)

See relevant work with rank \(\leq w \)

departure

\[U[w] = \text{relevant work} \]
Waiting Time

arrival

waiting time

worst future rank = w

See relevant work with rank $\leq w$

first service

 Relevant jobs gone

departure

$U[w] = \text{relevant work}$
$U[w] = \text{relevant work}$

Waiting time is \textit{busy period} started by $U[w]$
Response Time: Size 14
Response Time: Size 14
Response Time: Size 14
Response Time: Size 14

Relevant work ($w = 9$):
Response Time: Size 14

Relevant work \((w = 9) \):

\[
E[U[9]] = \frac{\lambda}{2} \cdot \frac{E[X^2]}{1 - \rho}
\]
Response Time: Size 14

Relevant work ($w = 9$):

$$E[U[9]] = \frac{\lambda}{2} \cdot \frac{E[X^2]}{1 - \rho}$$

Waiting time:

$$E[Q_{14}] = \frac{E[U[9]]}{1 - \rho_{new}(0)}$$
Response Time: Size 14

Relevant work ($w = 9$):

$$E[U[9]] = \frac{\lambda}{2} \cdot \frac{E[X^2]}{1 - \rho}$$

Waiting time:

$$E[Q_{14}] = \frac{E[U[9]]}{1 - \rho_{new}(0)}$$

Residence time:

$$E[R_{14}] = \int_0^{14} \frac{da}{1 - \rho_{new}(a)}$$
Response Time: Size 14

Relevant work ($w = 9$):

$$E[U[9]] = \frac{\lambda}{2} \cdot \frac{E[X^2]}{1 - \rho}$$

Waiting time:

$$E[Q_{14}] = \frac{E[U[9]]}{1 - \rho_{new}(0)}$$

Residence time:

$$E[R_{14}] = \int_0^{14} \frac{da}{1 - \rho_{new}(a)}$$

Response time:

$$E[T_{14}] = E[Q_{14}] + E[R_{14}]$$
Response Time: Size 14

Relevant work ($w = 9$):

\[E[U[9]] = \frac{\lambda}{2} \cdot \frac{E[X^2]}{1 - \rho} \]

Waiting time:

\[E[Q_{14}] = \frac{E[U[9]]}{1 - \rho_{\text{new}}(0)} \]

Residence time:

\[E[R_{14}] = \int_{0}^{14} \frac{da}{1 - \rho_{\text{new}}(a)} \]

E[\(T_{14}\)] = E[Q_{14}] + E[R_{14}]

\(\rho_{\text{new}}(a) = \begin{cases}
\lambda \cdot 1 & 0 \leq a < 7 \\
\lambda \cdot 0 & 7 \leq a < 14
\end{cases}\)
Response Time: Size 1
Response Time: Size 1
Response Time: Size 1
Response Time: Size 1

Relevant work ($w = 7$):
Response Time: Size 1

Relevant work ($w = 7$):

$$E[U[7]] = ???$$
Relevant Work

Suppose my size = 1
Relevant Work

Suppose my size = 1

\[w = 7 \]
Relevant Work

Suppose my size = 1

$w = 7$

I_0

rank

age
Relevant Work

Suppose my size = 1

\(w = 7 \)

\(I_0 \)

\(I_1 \)

1 6 14
Relevant Work

Suppose my size = 1

\[w = 7 \]

\[I_0 \quad I_1 \quad I_2 \]

1 6 14
Relevant Work

Two causes of relevant work:

Suppose my size = 1

$w = 7$

I_0, I_1, I_2
Relevant Work

Two causes of relevant work:

• I_0: arrivals
Relevant Work

Two causes of relevant work:

- I_0: arrivals
- I_1, I_2: recyclings

Suppose my size = 1

$w = 7$
Relevant Work

Two causes of relevant work:

- I_0: arrivals
- I_1, I_2: recyclings

Suppose my size = 1

Two causes:
- go from *rank* $> w$ to *rank* $\leq w$
Relevant Work

Suppose my size = 1

Observations:

\[w = 7 \]

\[w \]
Relevant Work

Observations:

• at most one recycled job at a time
Relevant Work

Suppose my size = 1

Observations:
- at most one **recycled** job at a time
Relevant Work

Suppose my size = 1

Observations:
• at most one *recycled* job at a time
Relevant Work

Observations:
- at most one recycled job at a time
Relevant Work

Suppose my size = 1

Observations:
- at most one recycled job at a time
- recyclings occur only when no relevant work
 SOAP Insight #2: Vacation Transformation

Replace recycled jobs with server vacations
Vacation Transformation

\[w = 7 \]

\(I_0 \) \(I_1 \) \(I_2 \)
Vacation Transformation

\[w = 7 \]

\[\text{rank} \]

\[\begin{align*}
I_0 & \hspace{1cm} I_1 & \hspace{1cm} I_2 \\
1 & \hspace{1cm} 6 & \hspace{1cm} 14
\end{align*} \]
\[w = 7 \]

\[E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]} \]

(Fuhrmann and Cooper, 1985)
Vacation Transformation

\[X_i = \text{service a job receives in } I_i \]

\[w = 7 \]

\[E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]} \]

(Fuhrmann and Cooper, 1985)
Vacation Transformation

$X_i = \text{service a job receives in } I_i$

$X_0 = \ldots$

$X_1 = \ldots$

$X_2 = \ldots$

$\mathbb{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbb{E}[X_0^2] + \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2]}{1 - \lambda \mathbb{E}[X_0]}$

(Fuhrmann and Cooper, 1985)
\[X_i = \text{service a job receives in } I_i \]

\[X_0 = 1 \]

\[X_1 = \]

\[X_2 = \]

\[\mathbb{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbb{E}[X_0^2] + \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2]}{1 - \lambda \mathbb{E}[X_0]} \]

(Fuhrmann and Cooper, 1985)
Vacation Transformation

\[X_i = \text{service a job receives in } I_i \]

\[X_0 = 1 \]

\[X_1 = \begin{cases}
0 & \text{w.p. } \frac{1}{3} \\
3 & \text{w.p. } \frac{2}{3}
\end{cases} \]

\[X_2 = \]

\[
E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]}
\]

(Fuhrmann and Cooper, 1985)
Vacation Transformation

\[X_i = \text{service a job receives in } I_i \]

\[X_0 = 1 \]

\[X_1 = \begin{cases} 0 & \text{w.p. } \frac{1}{3} \\ 3 & \text{w.p. } \frac{2}{3} \end{cases} \]

\[X_2 = \begin{cases} 0 & \text{w.p. } \frac{2}{3} \\ 7 & \text{w.p. } \frac{1}{3} \end{cases} \]

\[E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]} \]

(Fuhrmann and Cooper, 1985)
Response Time: Size 1

Relevant work ($w = 7$):

$$E[U[7]] = ???$$
Response Time: Size 1

Relevant work ($w = 7$):

$$E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]}$$
Response Time: Size 1

Relevant work ($w = 7$):

$$
\mathbb{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbb{E}[X_0^2] + \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2]}{1 - \lambda \mathbb{E}[X_0]}
$$

Waiting time:

$$
\mathbb{E}[Q_1] = \frac{\mathbb{E}[U[7]]}{1 - \rho_{new}(0)}
$$
Response Time: Size 1

Relevant work \((w = 7)\):

\[
E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X^2_0] + E[X^2_1] + E[X^2_2]}{1 - \lambda E[X_0]}
\]

Waiting time:

\[
E[Q_1] = \frac{E[U[7]]}{1 - \rho_{\text{new}}(0)}
\]

Residence time:

\[
E[R_1] = \int_0^1 \frac{da}{1 - \rho_{\text{new}}(a)}
\]
Response Time: Size 1

Relevant work ($w = 7$):

$$\mathbb{E}[U[7]] = \frac{\lambda}{2} \cdot \frac{\mathbb{E}[X_0^2] + \mathbb{E}[X_1^2] + \mathbb{E}[X_2^2]}{1 - \lambda \mathbb{E}[X_0]}$$

Waiting time:

$$\mathbb{E}[Q_1] = \frac{\mathbb{E}[U[7]]}{1 - \rho_{\text{new}}(0)}$$

Residence time: $\rho_{\text{new}}(a) = \lambda \cdot 0$

$$\mathbb{E}[R_1] = \int_{0}^{1} \frac{da}{1 - \rho_{\text{new}}(a)}$$
Response Time: Size 1

Relevant work ($w = 7$):

$$E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]}$$

Waiting time:

$$E[Q_1] = \frac{E[U[7]]}{1 - \rho_{\text{new}}(0)} = E[U[7]]$$

Residence time: \(\rho_{\text{new}}(a) = \lambda \cdot 0\)

$$E[R_1] = \int_0^1 \frac{da}{1 - \rho_{\text{new}}(a)} = 1$$
Response Time: Size 1

Relevant work \((w = 7)\):

\[
E[U[7]] = \frac{\lambda}{2} \cdot \frac{E[X_0^2] + E[X_1^2] + E[X_2^2]}{1 - \lambda E[X_0]}
\]

Waiting time:

\[
E[Q_1] = \frac{E[U[7]]}{1 - \rho_{new}(0)} = E[U[7]]
\]

Residence time:

\[
E[R_1] = \int_0^1 \frac{\rho_{new}(a) = \lambda \cdot 0}{1 - \rho_{new}(a)} \, da = 1
\]

Response time:

\[
E[T_1] = E[Q_1] + E[R_1]
\]
Running example: SERPT

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Running example:

SERPT

\[
X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}
\]
$E[T]$ of any SOAP Policy
Worst Future Rank
Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]
Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]
Relevant Intervals
Relevant Intervals

\[I_i[w] = \text{ith interval when } r(a) \leq w \]
$I_i[w] = \text{ith interval when } r(a) \leq w$
Relevant Intervals

\[I_i[w] = \text{ith interval when } r(a) \leq w \]

Detail: start with \(i = 0 \) iff first interval contains age 0, else start with \(i = 1 \)
Relevant Intervals

\[I_i[w] = i \text{th interval when } r(a) \leq w \]

Detail: start with \(i = 0 \) iff first interval contains age 0, else start with \(i = 1 \)

Detail: interval can be empty
SOAP Analysis: One Descriptor
SOAP Analysis: One Descriptor

Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]

Relevant Intervals

\[I_i[w] = \text{ith interval when } r(a) \leq w \]
SOAP Analysis: One Descriptor

Worst Future Rank
\[w_x(a) = \sup_{a \leq b < x} r(b) \]

Relevant Intervals
\[I_i[w] = i\text{th interval when } r(a) \leq w \]

\[
E[T_x] = \frac{\lambda}{2} \sum_{i=0}^{\infty} E[X_i[w_x]^2] \frac{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])}{(1 - \rho_{\text{new}}[w_x])} \\
+ \int_0^x \frac{da}{1 - \rho_{\text{new}}[w_x(a)]}
\]
Worst Future Rank

\[
w_x(a) = \sup_{a \leq b < x} r(b)
\]

\[
w_x = w_x(0)
\]

Relevant Intervals

\[
I_i[w] = \text{ith interval when } r(a) \leq w
\]
SOAP Analysis: One Descriptor

Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]

\[w_x = w_x(0) \]

Relevant Intervals

\[I_i[w] = \text{ith interval when } r(a) \leq w \]

\[X_i[w] = \text{service a job receives in } I_i[w] \]
SOAP Analysis: One Descriptor

Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]

\[w_x = w_x(0) \]

Relevant Intervals

\[I_i[w] = \text{ith interval when } r(a) \leq w \]

\[X_i[w] = \text{service a job receives in } I_i[w] \]

\[\rho_0[w] = \lambda \mathbb{E}[X_0[w]] \]

\[
\mathbb{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbb{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} \\
+ \int_0^x \frac{d\alpha}{1 - \rho_{\text{new}}[w_x(a)]}
\]
SOAP Analysis: One Descriptor

Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]

\[w_x = w_x(0) \]

Relevant Intervals

\[I_i[w] = i\text{th interval when } r(a) \leq w \]

\[X_i[w] = \text{service a job receives in } I_i[w] \]

\[\rho_0[w] = \lambda \mathbb{E}[X_0[w]] \]

\[\rho_{\text{new}}[w] = \lambda \mathbb{E}[X_0[w-]] \]

\[
\mathbb{E}[T_x] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} \mathbb{E}[X_i[w_x]^2]}{(1 - \rho_0[w_x])(1 - \rho_{\text{new}}[w_x])} + \int_{0}^{x} \frac{\text{da}}{1 - \rho_{\text{new}}[w_x(a)]}
\]
Worst Future Rank

\[w_x(a) = \sup_{a \leq b < x} r(b) \]

Relevant Intervals

\[I_i[w] = \text{ith interval when } r(a) \leq w \]
SOAP Analysis: Complete

Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_d(b) \]

Relevant Intervals

\[I_{i,d}[w] = i\text{th interval when } r_d(a) \leq w \]
SOAP Analysis: Complete

Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_d(b) \]

Relevant Intervals

\[I_{i,d}[w] = \text{ith interval when } r_d(a) \leq w \]

\[X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w] \]
SOUP Analysis: Complete

Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_d(b) \]

Relevant Intervals

\[I_{i,d}[w] = \text{ith interval when } r_d(a) \leq w \]

\[X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w] \]

\[X_d = \text{size distribution for descriptor } d \]
SOAP Analysis: Complete

Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_d(b) \]

Relevant Intervals

\[I_{i,d}[w] = \text{ith interval when } r_d(a) \leq w \]

\[X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w] \]

\[X_i[w] = X_{i,D}[w] \]

\[X_d = \text{size distribution for descriptor } d \]
SOAP Analysis: Complete

Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_{d}(b) \]

Relevant Intervals

\[I_{i,d}[w] = \text{ith interval when } r_{d}(a) \leq w \]

\[X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w] \]

\[X_{i}[w] = X_{i,D}[w] \]

\[D = \text{descriptor distribution} \]

\[X_{d} = \text{size distribution for descriptor } d \]
Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_d(b) \]
\[w_{d,x} = w_{d,x}(0) \]

Relevant Intervals

\[I_{i,d}[w] = \text{ith interval when } r_d(a) \leq w \]
\[X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w] \]
\[X_i[w] = X_{i,D}[w] \]
\[\rho_0[w] = \lambda E[X_0[w]] \]
\[\rho_{\text{new}}[w] = \lambda E[X_0[w-]] \]

\(X_d = \text{size distribution for descriptor } d \)

\(D = \text{descriptor distribution} \)
SOAP Analysis: Complete

Worst Future Rank

\[w_{d,x}(a) = \sup_{a \leq b < x} r_d(b) \]

\[w_{d,x} = w_{d,x}(0) \]

** Relevant Intervals**

\[I_{i,d}[w] = \text{ith interval when } r_d(a) \leq w \]

\[X_{i,d}[w] = \text{service a job of descriptor } d \text{ receives in } I_{i,d}[w] \]

\[X_i[w] = X_{i,D}[w] \]

\[\rho_0[w] = \lambda E[X_0[w]] \]

\[\rho_{new}[w] = \lambda E[X_0[w-]] \]

\[E[T_{d,x}] = \frac{\frac{\lambda}{2} \sum_{i=0}^{\infty} E[X_i[w_{d,x}]^2]}{(1 - \rho_0[w_{d,x}])(1 - \rho_{new}[w_{d,x}])} \]

\[+ \int_{0}^{x} \frac{da}{1 - \rho_{new}[w_{d,x}(a)]} \]

\[X_d = \text{size distribution for descriptor } d \]

\[D = \text{descriptor distribution} \]
Example: Preemptive Priority

- normal: 2
- urgent: 1
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)

Normal \((d = N, r = 2)\)
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs

Normal \((d = N, r = 2)\)
Example: Preemptive Priority

Urgent \((d = U, r = 1) \)
- \(1/4 \) of all jobs
- Size distribution \(X_U \)

Normal \((d = N, r = 2) \)
Example: Preemptive Priority

Urgent \((d = U, r = 1) \)
- 1/4 of all jobs
- Size distribution \(X_U \)

Normal \((d = N, r = 2) \)
- 3/4 of all jobs
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
\begin{align*}
I_{0,U}[1-] &= \\
I_{0,U}[1] &= \\
I_{0,U}[2-] &= \\
I_{0,U}[2] &= \\
I_{0,N}[1-] &= \\
I_{0,N}[1] &= \\
I_{0,N}[2-] &= \\
I_{0,N}[2] &= \\
\end{align*}
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
I_{0,U}[1-] = \quad I_{0,N}[1-] = \\
I_{0,U}[1] = \quad I_{0,N}[1] = \\
I_{0,U}[2-] = \quad I_{0,N}[2-] = \\
I_{0,U}[2] = \quad I_{0,N}[2] =
\]
Example: Preemptive Priority

Urgent \((d = U, \ r = 1) \)
- 1/4 of all jobs
- Size distribution \(X_U \)

Normal \((d = N, \ r = 2) \)
- 3/4 of all jobs
- Size distribution \(X_N \)

\[
\begin{align*}
I_{0,U}[1-] &= \emptyset \\
I_{0,U}[1] &= \\
I_{0,U}[2-] &= \\
I_{0,U}[2] &= \\
I_{0,N}[1-] &= \\
I_{0,N}[1] &= \\
I_{0,N}[2-] &= \\
I_{0,N}[2] &=
\end{align*}
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
I_{0,U}[1-] = \emptyset
data1
I_{0,U}[1] =
data2
I_{0,U}[2-] =
data3
I_{0,U}[2] =
data4
\]

\[
I_{0,N}[1-] = \emptyset
data5
I_{0,N}[1] =
data6
I_{0,N}[2-] =
data7
I_{0,N}[2] =
data8
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
\begin{align*}
I_{0,U}[1-] &= \emptyset \\
I_{0,U}[1] &= \\
I_{0,U}[2-] &= \\
I_{0,U}[2] &= \\
I_{0,N}[1-] &= \emptyset \\
I_{0,N}[1] &= \\
I_{0,N}[2-] &= \\
I_{0,N}[2] &=
\end{align*}
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1) \)
- 1/4 of all jobs
- Size distribution \(X_U \)

Normal \((d = N, r = 2) \)
- 3/4 of all jobs
- Size distribution \(X_N \)

\[
\begin{align*}
I_{0,U}[1-] &= \emptyset \\
I_{0,U}[1] &= [0, \infty) \\
I_{0,U}[2-] &= \\
I_{0,U}[2] &= \\
I_{0,N}[1-] &= \emptyset \\
I_{0,N}[1] &= \\
I_{0,N}[2-] &= \\
I_{0,N}[2] &= \\
\end{align*}
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1) \)
- 1/4 of all jobs
- Size distribution \(X_U \)

Normal \((d = N, r = 2) \)
- 3/4 of all jobs
- Size distribution \(X_N \)

\[
I_{0,U}[1-] = \emptyset \\
I_{0,U}[1] = [0, \infty) \\
I_{0,U}[2-] = \\
I_{0,U}[2] = \\
I_{0,N}[1-] = \emptyset \\
I_{0,N}[1] = \emptyset \\
I_{0,N}[2-] = \\
I_{0,N}[2] =
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1) \)
- 1/4 of all jobs
- Size distribution \(X_U \)

Normal \((d = N, r = 2) \)
- 3/4 of all jobs
- Size distribution \(X_N \)

\[
I_{0,U}[1\right] = \emptyset \\
I_{0,U}[1] = [0, \infty) \\
I_{0,U}[2\right] = \\
I_{0,U}[2] = \\
I_{0,N}[1\right] = \emptyset \\
I_{0,N}[1] = \emptyset \\
I_{0,N}[2\right] = \\
I_{0,N}[2] =
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
\begin{align*}
I_{0,U}[1-] &= \emptyset \\
I_{0,U}[1] &= [0, \infty) \\
I_{0,U}[2-] &= [0, \infty) \\
I_{0,U}[2] &= \\
I_{0,N}[1-] &= \emptyset \\
I_{0,N}[1] &= \emptyset \\
I_{0,N}[2-] &= \\
I_{0,N}[2] &=
\end{align*}
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\(I_{0,U}[1] = \emptyset\)	\(I_{0,N}[1] = \emptyset\)
\(I_{0,U}[1] = [0, \infty)\)	\(I_{0,N}[1] = \emptyset\)
\(I_{0,U}[2] = [0, \infty)\)	\(I_{0,N}[2] = \emptyset\)
\(I_{0,U}[2] = \)	\(I_{0,N}[2] = \)
Example: Preemptive Priority

Urgent \((d = \text{U}, \ r = 1) \)
- 1/4 of all jobs
- Size distribution \(X_{\text{U}} \)

Normal \((d = \text{N}, \ r = 2) \)
- 3/4 of all jobs
- Size distribution \(X_{\text{N}} \)

\[
\begin{align*}
\mathcal{I}_{0,\text{U}}[1-] &= \emptyset \\
\mathcal{I}_{0,\text{U}}[1] &= [0, \infty) \\
\mathcal{I}_{0,\text{U}}[2-] &= [0, \infty) \\
\mathcal{I}_{0,\text{U}}[2] &= \\
\mathcal{I}_{0,\text{N}}[1-] &= \emptyset \\
\mathcal{I}_{0,\text{N}}[1] &= [0, \infty) \\
\mathcal{I}_{0,\text{N}}[2-] &= \emptyset \\
\mathcal{I}_{0,\text{N}}[2] &= \\
\end{align*}
\]
Example: Preemptive Priority

Urgent \((d = U, \, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, \, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
I_{0,U}[\, \mathcal{1}\,] = \emptyset \\
I_{0,U}[\, \mathcal{1}\,] = [0, \infty) \\
I_{0,U}[\, \mathcal{2}\,] = [0, \infty) \\
I_{0,U}[\, \mathcal{2}\,] = [0, \infty) \\
\]

\[
I_{0,N}[\, \mathcal{1}\,] = \emptyset \\
I_{0,N}[\, \mathcal{1}\,] = \emptyset \\
I_{0,N}[\, \mathcal{2}\,] = \emptyset \\
I_{0,N}[\, \mathcal{2}\,] = \emptyset \\
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
I_{0,U}[1-] = \emptyset \\
I_{0,U}[1] = [0, \infty) \\
I_{0,U}[2-] = [0, \infty) \\
I_{0,U}[2] = [0, \infty)
\]

\[
I_{0,N}[1-] = \emptyset \\
I_{0,N}[1] = \emptyset \\
I_{0,N}[2-] = \emptyset \\
I_{0,N}[2] = [0, \infty)
\]
Example: Preemptive Priority

Urgent \((d = U, r = 1)\)
- 1/4 of all jobs
- Size distribution \(X_U\)

Normal \((d = N, r = 2)\)
- 3/4 of all jobs
- Size distribution \(X_N\)

\[
\begin{align*}
X_{0, U}[1-] &= 0 \\
X_{0, U}[1] &= X_U \\
X_{0, U}[2-] &= X_U \\
X_{0, U}[2] &= X_U \\
X_{0, N}[1-] &= 0 \\
X_{0, N}[1] &= 0 \\
X_{0, N}[2-] &= 0 \\
X_{0, N}[2] &= X_N
\end{align*}
\]
Example: Preemptive Priority

Urgent:
\[X_0[1-] = 0 \]
- \(\frac{1}{4} \) w.p. \(X_U \)
- \(\frac{3}{4} \) w.p. 0

Normal:
\[X_0[2-] = \begin{cases}
X_U & \text{w.p. } \frac{1}{4} \\
0 & \text{w.p. } \frac{3}{4}
\end{cases} \]

- 3/4 of all jobs
- Size distribution \(X \) where:
 \[X_0[1] = \begin{cases}
X_U & \text{w.p. } \frac{1}{4} \\
0 & \text{w.p. } \frac{3}{4}
\end{cases} \]

\[X_0[2] = \begin{cases}
X_U & \text{w.p. } \frac{1}{4} \\
X_N & \text{w.p. } \frac{3}{4}
\end{cases} \]

- \(\frac{1}{4} \) w.p. \(X_U \)
- \(\frac{3}{4} \) w.p. \(X_N \)

\[X_0, U[2-] = X_U \]
\[X_0, U[2] = X_U \]

\[X_0, N[1-] = 0 \]
\[X_0, N[1] = 0 \]
\[X_0, N[2-] = 0 \]
\[X_0, N[2] = X_N \]
Part 2: analyzing SOAP policies
Part 2: analyzing SOAP policies
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Part 3: policy design with SOAP
Two Design Problems

Bucketed SRPT

Noisy Systems
Bucketed SRPT

Question: given number of priority levels, which job sizes go in which size buckets?
Two Buckets

\[X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1 \]
Two Buckets

\[X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1 \]

\[t = \text{threshold between buckets} \]
Two Buckets

$X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1$

$t = \text{threshold between buckets}$

Bucketed SRPT
Two Buckets

\[X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1 \]

\[t = \text{threshold between buckets} \]

Bucketed SRPT

\[
\begin{align*}
E[T] & \quad t = 10^1 \\
& \quad t = 10^2 \\
& \quad t = 10^3 \\
& \quad t = 10^4 \\
& \quad t = 10^5 \\
\end{align*}
\]
Two Buckets

$X = \text{bounded Pareto on } [1, 10^6] \text{ with } \alpha = 1$

t = threshold between buckets

Bucketed PSJF

\[E[T] \]

- $t = 10^1$
- $t = 10^2$
- $t = 10^3$
- $t = 10^4$
- $t = 10^5$
Noisy System
Noisy System

Gittins minimizes $E[T]$

$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$
Gittins minimizes $E[T]$.

$X = \begin{cases} 1 \text{ w.p. } \frac{1}{3} \\ 6 \text{ w.p. } \frac{1}{3} \\ 14 \text{ w.p. } \frac{1}{3} \end{cases}$

Q: What if we have noisy age information?
Noisy System

Gittins minimizes $\mathbb{E}[T]$.

$X = \begin{cases} 1 & \text{w.p. } \frac{1}{3} \\ 6 & \text{w.p. } \frac{1}{3} \\ 14 & \text{w.p. } \frac{1}{3} \end{cases}$

Q: What if we have noisy age information?
Noisy System

Gittins minimizes $E[T]$

$$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$$

Q: What if we have noisy age information?
Noisy System

Gittins minimizes $E[T]$

Q: What if we have noisy age information?

$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$
Noisy System

Gittins minimizes $E[T]$

Q: What if we have noisy age information?

A: Each age has rank range

$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$
Gittins minimizes $E[T]$.

$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$

Q: What if we have noisy age information?
A: Each age has rank range.
Gittins minimizes $E[T]$

- $X = \{1 \text{ w.p. } \frac{1}{3}, 6 \text{ w.p. } \frac{1}{3}, 14 \text{ w.p. } \frac{1}{3}\}$

Q: What if we have noisy age information?
A: Each age has rank range

Q: How do we analyze resulting scheduling policy?
Gittins minimizes $E[T]$

$X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases}$

Q: What if we have noisy age information?
A: Each age has rank range

Q: How do we analyze resulting scheduling policy?
A: SOAP Bubble analysis
Idea: do tagged job analysis, but...
Idea: do tagged job analysis, but…
 • I get worst possible rank
Idea: do tagged job analysis, but…

• I get worst possible rank
• Everyone else gets best possible rank
Idea: do tagged job analysis, but...

- I get worst possible rank
- Everyone else gets best possible rank

Theorem: this always gives an upper bound on $E[T]$
Idea: do tagged job analysis, but...
• I get worst possible rank
• Everyone else gets best possible rank

Theorem: this always gives an upper bound on $E[T]$

Noise could be adversarial!
Designing for Noisy Systems

Gittins

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Designing for Noisy Systems

Gittins

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Problem:
I can jump up to rank 9 before age 1
Designing for Noisy Systems

Problem:
I can jump up to rank 9 before age 1

Solution: shift

Gittins

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Problem:
I can jump up to rank 9 before age 1
Solution: shift

Shift Gittins

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Designing for Noisy Systems

Problem:
I can jump up to rank 9 before age 1

Solution: shift

Problem:
other jobs might not reach rank 9

Shift Gittins

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Designing for Noisy Systems

Problem:
I can jump up to rank 9 before age 1
Solution: shift

Problem:
other jobs might not reach rank 9
Solution: flatten

Shift Gittins

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Designing for Noisy Systems

Problem:
I can jump up to rank 9 before age 1
Solution: shift

Problem:
other jobs might not reach rank 9
Solution: flatten
Designing for Noisy Systems

Problem: I can jump up to rank 9 before age 1
Solution: *shift*

Problem: other jobs might not reach rank 9
Solution: *flatten*

Theorem:
\[
E[T \text{ of Shift-Flat Gittins with noise } \Delta] = E[T \text{ of Gittins without noise}] + O(\Delta)
\]
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Part 4: *optimality proofs with SOAP*
Gittins vs. SERPT
Gittins vs. SERPT

Gittins

\[r(a) = \sup_{\Delta > 0} \frac{\mathbb{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbb{P}[X - a \leq \Delta \mid X > a]} \]
Gittins vs. SERPT

Gittins

\[r(a) = \sup_{\Delta > 0} \frac{\mathbb{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbb{P}[X - a \leq \Delta \mid X > a]} \]

SERPT

\[r(a) = \mathbb{E}[X - a \mid X > a] \]
Gittins vs. SERPT

Gittins

\[r(a) = \sup_{\Delta > 0} \frac{E[\min\{X - a, \Delta\} | X > a]}{P[X - a \leq \Delta | X > a]} \]

⚠️ Minimizes \(E[T] \), but can be intractable

SERPT

\[r(a) = E[X - a | X > a] \]
Gittins vs. SERPT

Gittins

\[r(a) = \sup_{\Delta > 0} \frac{\mathbb{E}[\min\{X - a, \Delta\} | X > a]}{\mathbb{P}[X - a \leq \Delta | X > a]} \]

⚠️ Minimizes \(\mathbb{E}[T] \), but can be intractable

SERPT

\[r(a) = \mathbb{E}[X - a | X > a] \]

⚠️ Simple, but no \(\mathbb{E}[T] \) guarantee
Gittins vs. SERPT

Gittins

\[r(a) = \sup_{\Delta > 0} \frac{\mathbb{E}[\min\{X - a, \Delta\} \mid X > a]}{\mathbb{P}[X - a \leq \Delta \mid X > a]} \]

⚠️ Minimizes \(\mathbb{E}[T] \), but can be intractable

SERPT

\[r(a) = \mathbb{E}[X - a \mid X > a] \]

⚠️ Simple, but no \(\mathbb{E}[T] \) guarantee

Question: is there a *simple* policy with *near-optimal* \(\mathbb{E}[T] \)?
Monotonic SERPT

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Monotonic SERPT

M-SERPT is like SERPT, but \textit{rank} never goes down
Monotonic SERPT

M-SERPT is like SERPT, but \textit{rank} never goes down

\[X = \begin{cases}
1 & \text{w.p. } \frac{1}{3} \\
6 & \text{w.p. } \frac{1}{3} \\
14 & \text{w.p. } \frac{1}{3}
\end{cases} \]
Monotonic SERPT

M-SERPT is like SERPT, but rank never goes down

Theorem:
\[
\frac{E[T \text{ of M-SERPT}]}{E[T \text{ of Gittins}]} \leq 5
\]
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Outline

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP
Idea: schedule with rank functions
SOAP Summary

Idea: schedule with **rank** functions

Result: universal response time analysis
SOAP Summary

Idea: schedule with **rank** functions

Result: universal response time analysis

Impact: optimize and prove guarantees

References: Possible Applications

