
SOAP:
One Clean Analysis of All
Age-Based Scheduling Policies

Ziv Scully
Mor Harchol-Balter
Alan Scheller-Wolf
Carnegie Mellon University

 1

M/G/1 Queue

 2

M/G/1 Queue

 2

serverqueue

M/G/1 Queue

 2

serverqueue

job

size

M/G/1 Queue

 2

serverqueue

job

size

M/G/1 Queue

 2

serverqueue

job

size

M/G/1 Queue

 2

serverqueue

job

size

M/G/1 Queue

 2

serverqueue

job

size

M/G/1 Queue

 2

serverqueue

age

remaining size
job

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

job

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

job

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

job

X = size distribution

� = arrival rate

⇢ = �E[X]< 1

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

Scheduling policy:
picks which job to serve

job

X = size distribution

� = arrival rate

⇢ = �E[X]< 1

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

Scheduling policy:
picks which job to serve

job

X = size distribution

� = arrival rate

⇢ = �E[X]< 1

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

Scheduling policy:
picks which job to serve

job

X = size distribution

� = arrival rate

⇢ = �E[X]< 1

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

Scheduling policy:
picks which job to serve

job

X = size distribution

� = arrival rate

⇢ = �E[X]< 1

size

M/G/1 Queue

 2

serverqueue

age

remaining size

random
arrivals

Scheduling policy:
picks which job to serve

job

X = size distribution

� = arrival rate

⇢ = �E[X]< 1

Response Time

 3

Response Time

 3

Response Time

 3

= T = response time

Response Time

 3

= T = response time

Goal: analyze mean response time E[T]

Response Time

 3

= T = response time

Goal: analyze mean response time E[T]
Depends on scheduling policy

Impact of Scheduling

 4

What scheduling policy
minimizes E[T]?

Impact of Scheduling

 4

Shortest remaining
processing time (SRPT)

What scheduling policy
minimizes E[T]?

Impact of Scheduling

 4

Shortest remaining
processing time (SRPT)

What scheduling policy
minimizes E[T]?

0.5 0.6 0.7 0.8 0.9
ρ0

5

10

15

20

E[T]
FCFS

PS

FB

SRPT

Impact of Scheduling

 4

… but nobody uses SRPT!

Shortest remaining
processing time (SRPT)

What scheduling policy
minimizes E[T]?

0.5 0.6 0.7 0.8 0.9
ρ0

5

10

15

20

E[T]
FCFS

PS

FB

SRPT

Why Not SRPT?

 5

Why Not SRPT?

 5

Unknown job sizes

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints
“Discrete” SRPT, FB, etc.  
(preempt only at checkpoints)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints
“Discrete” SRPT, FB, etc.  
(preempt only at checkpoints)

“Bucketed” SRPT, FB, etc.  
(limited number of priority levels)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints
“Discrete” SRPT, FB, etc.  
(preempt only at checkpoints)

“Bucketed” SRPT, FB, etc.  
(limited number of priority levels)

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints
“Discrete” SRPT, FB, etc.  
(preempt only at checkpoints)

“Bucketed” SRPT, FB, etc.  
(limited number of priority levels)

Metric other than E[T]

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints
“Discrete” SRPT, FB, etc.  
(preempt only at checkpoints)

“Bucketed” SRPT, FB, etc.  
(limited number of priority levels)

Metric other than E[T] Priority classes

Why Not SRPT?

 5

Unknown job sizes

FCFS (first come, first served)

FB (foreground-background: least age)

SERPT (least expected remaining size)

Gittins (optimal!)

Hardware constraints
“Discrete” SRPT, FB, etc.  
(preempt only at checkpoints)

“Bucketed” SRPT, FB, etc.  
(limited number of priority levels)

Metric other than E[T] Priority classes
RS (optimal for mean slowdown)

Many Scheduling Policies

 6

Many Scheduling Policies

 6

E[T] known

Many Scheduling Policies

 6

E[T] known
SRPT

Many Scheduling Policies

 6

E[T] known
SRPT
FCFS

Many Scheduling Policies

 6

E[T] known
SRPT
FCFS
FB

Many Scheduling Policies

 6

E[T] known
SRPT
FCFS
FB
Simple priority classes

Many Scheduling Policies

 6

E[T] known E[T] unknown!
SRPT
FCFS
FB
Simple priority classes

Many Scheduling Policies

 6

E[T] known E[T] unknown!
SRPT
FCFS
FB
Simple priority classes

SERPT
Gittins
Discrete SRPT
Discrete FB
Bucketed SRPT
Bucketed FB
RS*
Complex priority classes
… and more!

Many Scheduling Policies

 6

E[T] known E[T] unknown!

SOAP

SRPT
FCFS
FB
Simple priority classes

SERPT
Gittins
Discrete SRPT
Discrete FB
Bucketed SRPT
Bucketed FB
RS*
Complex priority classes
… and more!

 7

SOAP
Broad class of scheduling policies…

 7

SOAP

… with universal response time analysis
Broad class of scheduling policies…

 7

SOAP
Schedule Ordered by Age-based Priority

… with universal response time analysis
Broad class of scheduling policies…

Outline

 8

Outline

 8

Part 1: defining SOAP policies

Outline

 8

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Outline

 8

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Outline

 8

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 1:
defining SOAP policies

 9

Scheduling with Ranks

 10

Scheduling with Ranks

 10

FB
serve by least age

Scheduling with Ranks

 10

FB
serve by least age

Scheduling with Ranks

 10

FB
serve by least age

SRPT
serve by least remaining size

Scheduling with Ranks

 10

FB
serve by least age

SRPT
serve by least remaining size

Scheduling with Ranks

 10

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank
(priority) depends on its age

rank

age

lower is
better

rank

age

Scheduling with Ranks

 10

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank
(priority) depends on its age

rank

age

lower is
better

rank

age

Scheduling with Ranks

 10

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank
(priority) depends on its age

large

medium

small

rank

age

lower is
better

rank

age

Scheduling with Ranks

 10

FB
serve by least age

SRPT
serve by least remaining size

Common theme: a job’s rank
(priority) depends on its age

A SOAP policy is a
rank function with
one rule:

 11

A SOAP policy is a
rank function with
one rule:

 11

always serve the job of
minimum rank

A SOAP policy is a
rank function with
one rule:

 11

always serve the job of
minimum rank

(break ties FCFS)

Classic SOAP Policies

 12

large

medium

small

rank

age

SRPT
rank

age

FB

Classic SOAP Policies

 12

large

medium

small

rank

age

SRPT
rank

age

FB

rank

age

FCFS

Classic SOAP Policies

 12

large

medium

small

rank

age

SRPT
rank

age

FB

rank

age

FCFS

normal

urgent

rank

age

Preemptive Priority

Classic SOAP Policies

 12

large

medium

small

rank

age

SRPT
rank

age

FB

rank

age

FCFS

normal

urgent

rank

age

Preemptive Priority
E[T] known

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

Rank nonmonotonic in age

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

E[T] unknown!

Rank nonmonotonic in age

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

E[T] unknown!

Rank nonmonotonic in age

SOAP Policy: SERPT

 13

age

rank

7
6

1

4

8
9

6 14

Job size distribution:

SOAP Policy: Gittins

 14

Job size distribution:

age

rank

3

8
9

1 6 142

SOAP Policy: Gittins

 14

Job size distribution:

age

rank

3

8
9

1 6 142

E[T] unknown!

SOAP Policy: Discrete FB

 15

age

rank

SOAP Policy: Discrete FB

 15

age

rank
FB, but preempt only at age checkpoints

SOAP Policy: Discrete FB

 15

age

rank
FB, but preempt only at age checkpoints

SOAP Policy: Discrete FB

 15

age

rank
FB, but preempt only at age checkpoints

SOAP Policy: Discrete FB

 15

age

rank

E[T] unknown!

FB, but preempt only at age checkpoints

SOAP Policy: Bucketed SRPT

 16

age

rank

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2
• Large: [7, ∞), rank = 3

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2
• Large: [7, ∞), rank = 3

1

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2
• Large: [7, ∞), rank = 3

2

1
2 remaining

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2
• Large: [7, ∞), rank = 3

2

1

3

2 remaining

7 remaining

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2
• Large: [7, ∞), rank = 3

2

1

3

2 remaining

7 remaining

SOAP Policy: Bucketed SRPT

 16

age

rank SRPT with three size buckets:
• Small: [0, 2), rank = 1
• Medium: [2, 7), rank = 2
• Large: [7, ∞), rank = 3

2

1

3

2 remaining

7 remaining
E[T] unknown!

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

Priority: small robots, humans, large robots

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

size < xH size ≥ xH

Priority: small robots, humans, large robots

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

size < xH size ≥ xH

Priority: small robots, humans, large robots

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

rank

age

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

rank

age
xH

rank

age

SOAP Policy: Mixture

 17

Two customer classes: humans and robots

Humans
• unknown size
• nonpreemptible
• FCFS

Robots
• known size
• preemptible
• SRPT

rank

age
xH

rank

age

E[T] unknown!

Outline

 18

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

 18

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 2:
analyzing SOAP policies

 19

Tagged Job Analysis

 20

random system state
“me”

Tagged Job Analysis

 20

 = rank

random system state
“me”

Tagged Job Analysis

 20

 = rank

random system state
“me”

Tagged Job Analysis

 20

 = rank

random system state
“me”

Tagged Job Analysis

 20

random system state
“me”

rank

Nonmonotonic
rank function

age

Tagged Job Analysis

 20

Two obstacles:

random system state
“me”

rank

Nonmonotonic
rank function

age

Tagged Job Analysis

 20

Two obstacles:
• My rank goes up and down

random system state
“me”

rank

Nonmonotonic
rank function

age

Tagged Job Analysis

 20

Two obstacles:
• My rank goes up and down
• Others’ ranks go up and down too

random system state
“me”

rank

Nonmonotonic
rank function

age

Running example:
SERPT

 21

9

age

rank

7
6

1

4

8

6 14

Warmup: Empty System

 22

age

rank

1 6 14

9

7
6

4

8

Warmup: Empty System

 22

me
age

rank

1 6 14

9

7
6

4

8

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none n/a

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none n/a

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none n/a

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none
when 0 ≤ my age < 3

n/a

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none
when 0 ≤ my age < 3

n/a
1

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none
when 0 ≤ my age < 3

n/a
1

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none
when 0 ≤ my age < 3

n/a
1

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none
when 0 ≤ my age < 3
when 0 ≤ my age < 7

n/a
1

Warmup: Empty System

 22

melater arrivals
age

rank

1 6 14

9

7
6

4

8

My size Which arrivals delay me? By how much?

1
6
14

none
when 0 ≤ my age < 3
when 0 ≤ my age < 7

n/a
1
1

SOAP Insight #1:
Pessimism Principle

 23

Replace my rank with my worst future rank

Pessimism Principle

 24

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

Arrivals delay
me by 1

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

Arrivals delay
me by 1

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Arrivals don’t
delay me

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

Arrivals delay
me by 1

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Arrivals don’t
delay me

⇢new(a) =

®
� · 1 0 a < 7
� · 0 7 a < 14

Pessimism Principle

 24

age

rank

1

9

7
6

4

8

my size = 1

age

rank

1 6

9

7
6

4

8

my size = 6

Arrivals delay
me by 1

age

rank

1 6 14

9

7
6

4

8

my size = 14

Replace my rank with my worst future rank

Arrivals don’t
delay me

⇢new(a) =

®
� · 1 0 a < 7
� · 0 7 a < 14

E[T14 | empty] =
Z 14

0

da
1�⇢new(a)

response time

Response Time Analysis

 25

arrival departure

response time

Response Time Analysis

 25

arrival departurefirst
service

response time

Response Time Analysis

 25

waiting time residence time

arrival departurefirst
service

residence time

Residence Time

 26

arrival departurefirst
service

residence time

Residence Time

 26

arrival departure

Question: is residence time…

first
service

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?

first
service

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?

more arrivals

first
service

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?

more arrivals

first
service

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

first
service

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

first
service

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

first
service

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

first
service

my rank
jumps up

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

first
service

my rank
jumps up

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle:
replace my rank with
my worst future rank

first
service

my rank
jumps up

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle:
replace my rank with
my worst future rank

first
service

my rank
jumps up

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle:
replace my rank with
my worst future rank

first
service

my rank
jumps up

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle:
replace my rank with
my worst future rank

first
service

my rank
jumps up

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle:
replace my rank with
my worst future rank

first
service

my rank
jumps up

residence time

Residence Time

 26

arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle:
replace my rank with
my worst future rank

first
service

my rank
jumps up

E[R14] = E[T14 | empty] =
Z 14

0

da
1�⇢new(a)

e.g.

Waiting Time

 27

waiting time

arrival departurefirst
service

Waiting Time

 27

waiting time

arrival departurefirst
service

worst future rank = w

Waiting Time

 27

waiting time

arrival departure

See relevant work
with rank ≤ w

first
service

worst future rank = w

U[w] = relevant work

Waiting Time

 27

waiting time

arrival departure

See relevant work
with rank ≤ w

first
service

worst future rank = w

U[w] = relevant work

Waiting Time

 27

waiting time

arrival departure

Relevant
jobs goneSee relevant work

with rank ≤ w

first
service

worst future rank = w

U[w] = relevant work
Waiting time is busy period started by U[w]

Waiting Time

 27

waiting time

arrival departure

Relevant
jobs goneSee relevant work

with rank ≤ w

first
service

worst future rank = w

Response Time: Size 14

 28

Response Time: Size 14

 28

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 14

 28

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 14

 28

Relevant work (w = 9):

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 14

 28

E[U[9]] =
�

2
· E[X

2]
1�⇢

Relevant work (w = 9):

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 14

 28

E[U[9]] =
�

2
· E[X

2]
1�⇢

Waiting time:

E[Q14] =
E[U[9]]

1�⇢new(0)

Relevant work (w = 9):

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 14

 28

E[U[9]] =
�

2
· E[X

2]
1�⇢

Waiting time:

E[Q14] =
E[U[9]]

1�⇢new(0)

Residence time:

E[R14] =
Z 14

0

da
1�⇢new(a)

Relevant work (w = 9):

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 14

 28

E[U[9]] =
�

2
· E[X

2]
1�⇢

Waiting time:

E[Q14] =
E[U[9]]

1�⇢new(0)

Residence time:

E[R14] =
Z 14

0

da
1�⇢new(a)

Relevant work (w = 9):

age

rank

1 6 14

9

7
6

4

8

Response time:
E[T14] = E[Q14] + E[R14]

Response Time: Size 14

 28

E[U[9]] =
�

2
· E[X

2]
1�⇢

Waiting time:

E[Q14] =
E[U[9]]

1�⇢new(0)

Residence time:

E[R14] =
Z 14

0

da
1�⇢new(a)

Relevant work (w = 9):

age

rank

1 6 14

9

7
6

4

8

Response time:
E[T14] = E[Q14] + E[R14]

⇢new(a) =

®
� · 1 0 a < 7
� · 0 7 a < 14

Response Time: Size 1

 29

Response Time: Size 1

 29

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 1

 29

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 1

 29

Relevant work (w = 7):

age

rank

1 6 14

9

7
6

4

8

Response Time: Size 1

 29

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

E[U[7]] = ???

Relevant work (w = 7):

age

rank

1 6 14

9

7
6

4

8

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

Two causes of relevant work:

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

Two causes of relevant work:
• I0: arrivals

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

Two causes of relevant work:
• I0: arrivals
• I1, I2: recyclings

w = 7

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

Two causes of relevant work:
• I0: arrivals
• I1, I2: recyclings

w = 7

go from rank > w
to rank ≤ w

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Observations:

Suppose my size = 1

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Observations:

Suppose my size = 1

• at most one recycled job at a time

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Observations:

Suppose my size = 1

• at most one recycled job at a time

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Observations:

Suppose my size = 1

• at most one recycled job at a time

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Observations:

Suppose my size = 1

• at most one recycled job at a time

age

rank

1 6 14

I1 I2I0

Relevant Work

 30

w = 7

Observations:

Suppose my size = 1

• at most one recycled job at a time
• recyclings occur only when no relevant work

 31

SOAP Insight #2:
Vacation Transformation

Replace recycled jobs with server vacations

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

(Fuhrmann and Cooper, 1985)

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

(Fuhrmann and Cooper, 1985)

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Xi = service a job receives in Ii

X0 = 1

X1 =

®
0 w.p. 1

3

3 w.p. 2
3

X2 =

®
0 w.p. 2

3

7 w.p. 1
3

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

(Fuhrmann and Cooper, 1985)

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Xi = service a job receives in Ii

X0 = 1

X1 =

®
0 w.p. 1

3

3 w.p. 2
3

X2 =

®
0 w.p. 2

3

7 w.p. 1
3

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

(Fuhrmann and Cooper, 1985)

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Xi = service a job receives in Ii

X0 = 1

X1 =

®
0 w.p. 1

3

3 w.p. 2
3

X2 =

®
0 w.p. 2

3

7 w.p. 1
3

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

(Fuhrmann and Cooper, 1985)

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Xi = service a job receives in Ii

X0 = 1

X1 =

®
0 w.p. 1

3

3 w.p. 2
3

X2 =

®
0 w.p. 2

3

7 w.p. 1
3

Vacation Transformation

 32

I1 I2I0

w = 7

age

rank

1 6 14

(Fuhrmann and Cooper, 1985)

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Xi = service a job receives in Ii

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

E[U[7]] = ???

Relevant work (w = 7):

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

Relevant work (w = 7):

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

Waiting time:

E[Q1] =
E[U[7]]

1�⇢new(0)
= E[U[7]]

Relevant work (w = 7):

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

Waiting time:

E[Q1] =
E[U[7]]

1�⇢new(0)
= E[U[7]]

Residence time:

E[R1] =
Z 1

0

da
1�⇢new(a)

= 1

Relevant work (w = 7):

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

Waiting time:

E[Q1] =
E[U[7]]

1�⇢new(0)
= E[U[7]]

Residence time:

E[R1] =
Z 1

0

da
1�⇢new(a)

= 1

Relevant work (w = 7):

⇢new(a) = � · 0

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

Waiting time:

E[Q1] =
E[U[7]]

1�⇢new(0)
= E[U[7]]

Residence time:

E[R1] =
Z 1

0

da
1�⇢new(a)

= 1

Relevant work (w = 7):

⇢new(a) = � · 0

E[U[7]] =
�

2
·
E[X 2

0] + E[X 2
1] + E[X 2

2]
1��E[X0]

Response Time: Size 1

 33

Waiting time:

E[Q1] =
E[U[7]]

1�⇢new(0)
= E[U[7]]

Residence time:

E[R1] =
Z 1

0

da
1�⇢new(a)

= 1

Relevant work (w = 7):

E[T1] = E[Q1] + E[R1]
Response time:

⇢new(a) = � · 0

Running example:
SERPT

 34

9

age

rank

7
6

1

4

8

6 14

Running example:
SERPT

 34

9

age

rank

7
6

1

4

8

6 14

E[T] of any SOAP Policy

 35

E[T] of any SOAP Policy

 35

age

rank

Worst Future Rank

E[T] of any SOAP Policy

 35

age

rank

Worst Future Rank

age

rank

Relevant Intervals

Outline

 36

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAPPart 4: optimality proofs with SOAP

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Outline

 36

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAPPart 4: optimality proofs with SOAP

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 3:
policy design with SOAP

 37

Bucketed SRPT

 38

Question: given number of priority levels,
which job sizes go in which size buckets?

Two Buckets

 39

X = bounded Pareto on [1,106] with ↵= 1

t = threshold between buckets

Two Buckets

 39

X = bounded Pareto on [1,106] with ↵= 1

t = threshold between buckets

Two Buckets

 39

X = bounded Pareto on [1,106] with ↵= 1

t = threshold between buckets

Bucketed SRPT

0 0.2 0.4 0.6 0.8 1
ρ0

2000

4000

6000

8000

10 000
E[T]

t = 101

t = 102

t = 103

t = 104

t = 105

Two Buckets

 39

X = bounded Pareto on [1,106] with ↵= 1

t = threshold between buckets

Bucketed SRPT

0 0.2 0.4 0.6 0.8 1
ρ0

2000

4000

6000

8000

10 000
E[T]

t = 101

t = 102

t = 103

t = 104

t = 105

0 0.7 0.9 0.97 0.99 0.997 0.999
ρ100

101

102

103

104

105

106

107

E[T]
t = 101

t = 102

t = 103

t = 104

t = 105

Two Buckets

 39

X = bounded Pareto on [1,106] with ↵= 1

t = threshold between buckets

Bucketed SRPT

0 0.2 0.4 0.6 0.8 1
ρ0

2000

4000

6000

8000

10 000
E[T]

t = 101

t = 102

t = 103

t = 104

t = 105

0 0.7 0.9 0.97 0.99 0.997 0.999
ρ100

101

102

103

104

105

106

107

E[T]
t = 101

t = 102

t = 103

t = 104

t = 105

0 0.7 0.9 0.97 0.99 0.997 0.999
ρ100

101

102

103

104

105

106

107

E[T]
t = 101

t = 102

t = 103

t = 104

t = 105

Bucketed PSJF
(no “upgrades”)

Outline

 40

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

 40

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Part 4:
optimality proofs with SOAP

 41

Gittins vs. SERPT

 42

Gittins vs. SERPT

 42

r(a) = sup
�>0

E[min{X � a,�} | X > a]
P[X � a � | X > a]

Gittins

Gittins vs. SERPT

 42

r(a) = sup
�>0

E[min{X � a,�} | X > a]
P[X � a � | X > a]

Gittins

r(a) = E[X � a | X > a]
SERPT

Gittins vs. SERPT

 42

r(a) = sup
�>0

E[min{X � a,�} | X > a]
P[X � a � | X > a]

Gittins

Minimizes E[T], but can be intractable

r(a) = E[X � a | X > a]
SERPT

Gittins vs. SERPT

 42

r(a) = sup
�>0

E[min{X � a,�} | X > a]
P[X � a � | X > a]

Gittins

Minimizes E[T], but can be intractable

r(a) = E[X � a | X > a]
SERPT

Simple, but no E[T] guarantee

Gittins vs. SERPT

 42

r(a) = sup
�>0

E[min{X � a,�} | X > a]
P[X � a � | X > a]

Gittins

Minimizes E[T], but can be intractable

r(a) = E[X � a | X > a]
SERPT

Simple, but no E[T] guarantee

Question: is there a simple policy
with near-optimal E[T]?

6

4

8

Monotonic SERPT

 43

age

rank

1 6 14

9

7

6

4

8

Monotonic SERPT

 43

age

rank

1 6 14

M-SERPT is like SERPT,
but rank never goes down

9

7

6

4

8

Monotonic SERPT

 43

age

rank

1 6 14

M-SERPT is like SERPT,
but rank never goes down

9

7

6

4

8

Monotonic SERPT

 43

age

rank

1 6 14

M-SERPT is like SERPT,
but rank never goes down E[T of M-SERPT]

E[T of Gittins]
 5

Theorem:

9

7

Outline

 44

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

Outline

 44

Part 1: defining SOAP policies

Part 2: analyzing SOAP policies

Part 3: policy design with SOAP

Part 4: optimality proofs with SOAP

SOAP Summary

 45

SOAP Summary

 45

Idea: schedule with
rank functions

SOAP Summary

 45

Result: universal
response time analysis

Idea: schedule with
rank functions

SOAP Summary

 45

Result: universal
response time analysis

Idea: schedule with
rank functions

Impact: optimize and prove guarantees

Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf (2018). SOAP: One Clean Analysis
of All Age-Based Scheduling Policies. Proceedings of the ACM on Measurement and
Analysis of Computing Systems (POMACS), 2(1), 16. Presented at SIGMETRICS 2018.

Z. Scully and M. Harchol-Balter (2018). SOAP Bubbles: Robust Scheduling Under
Adversarial Noise. In 56th Annual Allerton Conference on Communication, Control, and
Computing (pp. 144–154). IEEE.

Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf (2019). Simple Near-Optimal
Scheduling for the M/G/1. ACM SIGMETRICS Performance Evaluation Review, to
appear. Presenting at MAMA 2019 this Friday!

 46

References: SOAP

L. Kleinrock and R. R. Muntz (1972). Processor sharing queueing models of mixed
scheduling disciplines for time shared system. Journal of the ACM (JACM), 19(3),
464–482.

S. W. Furhmann and R. B. Cooper (1985). Stochastic Decompositions in the M/G/1
Queue with Generalized Vacations. Operations Research, 33(5), 1117–1129.

M. Harchol-Balter (2013). Performance Modeling and Design of Computer Systems:
Queueing Theory in Action. Cambridge University Press.

 47

References: Analyzing E[T]

M. Harchol-Balter, Schroeder, B., Bansal, N., and Agrawal, M. (2003). Size-based
scheduling to improve web performance. ACM Transactions on Computer Systems
(TOCS), 21(2), 207–233.

B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout (2018). Homa: A receiver-driven
low-latency transport protocol using network priorities. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication (pp. 221–235).
ACM.

S. Emadi, R. Ibrahim, and S. Kesavan (2019). Can “very noisy” information go a
long way? An exploratory analysis of personalized scheduling in service systems.
Working paper.

M. Mitzenmacher (2019). Scheduling with Predictions and the Price of
Misprediction. Preprint, arXiv:1902.00732.

B. Kamphorst (2018). Heavy-traffic behaviour of scheduling policies in queues
(Doctoral dissertation, Technische Universiteit Eindhoven).

Y. Chen and J. Dong (2019). The Power of Two in Queue Scheduling. Working paper.

 48

References: Possible Applications

Bonus Slides

 49

A SOAP policy is any policy expressible by a
rank function of the form:

Full SOAP Definition

 50

A SOAP policy is any policy expressible by a
rank function of the form:

Full SOAP Definition

 50

descriptor × age → rank

A SOAP policy is any policy expressible by a
rank function of the form:

Full SOAP Definition

 50

descriptor × age → rank

size, class, etc.

A SOAP policy is any policy expressible by a
rank function of the form:

Full SOAP Definition

 50

descriptor × age → rank

size, class, etc.

FB
r∅(a) = a

A SOAP policy is any policy expressible by a
rank function of the form:

Full SOAP Definition

 50

descriptor × age → rank

size, class, etc.

SRPT
rx(a) = x – a

FB
r∅(a) = a

A SOAP policy is any policy expressible by a
rank function of the form:

Full SOAP Definition

 50

descriptor × age → rank

size, class, etc.

SRPT
rx(a) = x – a

FB
r∅(a) = a

Descriptor can be anything that:
• does not change while a job is in the system
• is i.i.d. for each job

 51

FAQ:
What isn’t a SOAP policy?

 51

FAQ:
What isn’t a SOAP policy?

• Rank changes when not in service

 51

FAQ:
What isn’t a SOAP policy?

• Rank changes when not in service
• Rank depends on system-wide state

 51

FAQ:
What isn’t a SOAP policy?

• Rank changes when not in service
• Rank depends on system-wide state
• Non-FCFS tiebreaking

 51

FAQ:
What isn’t a SOAP policy?

• Rank changes when not in service
• Rank depends on system-wide state
• Non-FCFS tiebreaking
Excludes: EDF, accumulating priority, PS

E[T] of any SOAP Policy

 52

Worst Future Rank

 53

Worst Future Rank

 53

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank

 53

age

rank

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Relevant Intervals

 54

Relevant Intervals

 54

Ii[w] = ith interval when r(a) w

Relevant Intervals

 54

Ii[w] = ith interval when r(a) w

age

rank

Relevant Intervals

 54

Ii[w] = ith interval when r(a) w

age

rank

Detail: start with i = 0 iff first interval
contains age 0, else start with i = 1

Relevant Intervals

 54

Ii[w] = ith interval when r(a) w

age

rank

Detail: start with i = 0 iff first interval
contains age 0, else start with i = 1

Detail: interval can be empty

SOAP Analysis: One Descriptor

 55

SOAP Analysis: One Descriptor

 55

Worst Future Rank
wx(a) = sup

ab<x
r(b)

wx = wx(0)

Relevant Intervals
Ii[w] = ith interval when r(a) w

Xi[w] = service a job receives in Ii[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

SOAP Analysis: One Descriptor

 55

Worst Future Rank
wx(a) = sup

ab<x
r(b)

wx = wx(0)

Relevant Intervals
Ii[w] = ith interval when r(a) w

Xi[w] = service a job receives in Ii[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

E[Tx] =
�
2

P1
i=0 E[Xi[wx]2]

(1�⇢0[wx])(1�⇢new[wx])

+
Z x

0

da
1�⇢new[wx(a)]

SOAP Analysis: One Descriptor

 55

Worst Future Rank
wx(a) = sup

ab<x
r(b)

wx = wx(0)

Relevant Intervals
Ii[w] = ith interval when r(a) w

Xi[w] = service a job receives in Ii[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

E[Tx] =
�
2

P1
i=0 E[Xi[wx]2]

(1�⇢0[wx])(1�⇢new[wx])

+
Z x

0

da
1�⇢new[wx(a)]

SOAP Analysis: One Descriptor

 55

Worst Future Rank
wx(a) = sup

ab<x
r(b)

wx = wx(0)

Relevant Intervals
Ii[w] = ith interval when r(a) w

Xi[w] = service a job receives in Ii[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

E[Tx] =
�
2

P1
i=0 E[Xi[wx]2]

(1�⇢0[wx])(1�⇢new[wx])

+
Z x

0

da
1�⇢new[wx(a)]

SOAP Analysis: One Descriptor

 55

Worst Future Rank
wx(a) = sup

ab<x
r(b)

wx = wx(0)

Relevant Intervals
Ii[w] = ith interval when r(a) w

Xi[w] = service a job receives in Ii[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

E[Tx] =
�
2

P1
i=0 E[Xi[wx]2]

(1�⇢0[wx])(1�⇢new[wx])

+
Z x

0

da
1�⇢new[wx(a)]

SOAP Analysis: One Descriptor

 55

Worst Future Rank
wx(a) = sup

ab<x
r(b)

wx = wx(0)

Relevant Intervals
Ii[w] = ith interval when r(a) w

Xi[w] = service a job receives in Ii[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

E[Tx] =
�
2

P1
i=0 E[Xi[wx]2]

(1�⇢0[wx])(1�⇢new[wx])

+
Z x

0

da
1�⇢new[wx(a)]

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank

Ii[w] = ith interval when r(a) w

Relevant Intervals

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

Xd = size distribution for descriptor d
D = descriptor distribution

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

Xd = size distribution for descriptor d
D = descriptor distribution

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

Xd = size distribution for descriptor d
D = descriptor distribution

Xd = size distribution for descriptor d
D = descriptor distribution

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

Xd = size distribution for descriptor d
D = descriptor distribution

Xd = size distribution for descriptor d
D = descriptor distribution

SOAP Analysis: Complete

 56

wx(a) = sup
ab<x

r(b)

wx = wx(0)

Worst Future Rank
wd,x(a) = sup

ab<x
rd(b)

wd,x = wd,x(0)

Ii[w] = ith interval when r(a) w

Relevant Intervals
Ii,d[w] = ith interval when rd(a) w

Xi,d[w] = service a job of descriptor d receives in Ii,d[w]
Xi[w] = Xi,D[w]
⇢0[w] = �E[X0[w]]
⇢new[w] = �E[X0[w�]]

E[Td,x] =
�
2

P1
i=0 E[Xi[wd,x]2]

(1�⇢0[wd,x])(1�⇢new[wd,x])

+
Z x

0

da
1�⇢new[wd,x(a)]

Xd = size distribution for descriptor d
D = descriptor distribution

Xd = size distribution for descriptor d
D = descriptor distribution

