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arrival departure

Question: is residence time…
• my size?
• E[T | empty]?

Pessimism Principle: 
replace my rank with 
my worst future rank

first 
service

my rank 
jumps up

E[R14] = E[T14 | empty] =
Z 14

0

da
1�⇢new(a)

e.g.
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Relevant work (w = 9):

age

rank
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7
6

4

8

Response time:
E[T14] = E[Q14] + E[R14]

⇢new(a) =

®
� · 1 0 a < 7
� · 0 7 a < 14
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Observations:

Suppose my size = 1

• at most one recycled job at a time
• recyclings occur only when no relevant work
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SOAP Insight #2: 
Vacation Transformation

Replace recycled jobs with server vacations
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1�⇢new(0)
= E[U[7]]
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E[R1] =
Z 1

0

da
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= 1

Relevant work (w = 7):

E[T1] = E[Q1] + E[R1]
Response time:

⇢new(a) = � · 0
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Bucketed SRPT

 38

Question: given number of priority levels, 
which job sizes go in which size buckets?
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r(a) = sup
�>0

E[min{X � a,�} | X > a]
P[X � a � | X > a]

Gittins

Minimizes E[T], but can be intractable

r(a) = E[X � a | X > a]
SERPT

Simple, but no E[T] guarantee

Question: is there a simple policy 
with near-optimal E[T]?
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M-SERPT is like SERPT, 
but rank never goes down E[T of M-SERPT]

E[T of Gittins]
 5

Theorem:

9

7
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SOAP Summary

 45

Result: universal 
response time analysis

Idea: schedule with 
rank functions

Impact: optimize and prove guarantees
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A SOAP policy is any policy expressible by a 
rank function of the form:

Full SOAP Definition

 50

descriptor × age → rank

size, class, etc.

SRPT
rx(a) = x – a

FB
r∅(a) = a

Descriptor can be anything that: 
• does not change while a job is in the system 
• is i.i.d. for each job
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FAQ: 
What isn’t a SOAP policy?

• Rank changes when not in service
• Rank depends on system-wide state
• Non-FCFS tiebreaking
Excludes: EDF, accumulating priority, PS
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 54

Ii[w] = ith interval when r(a) w

age

rank

Detail: start with i = 0 iff first interval 
contains age 0, else start with i = 1
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