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We consider the problem of scheduling to minimize asymptotic tail latency in the M/G/𝑘 queue with light-tailed

job size distribution. This problem combines the challenges of scheduling for tail latency and scheduling in

multiserver queues, but there is hope. In the simpler setting of the single-server M/G/1, the recently proposed

𝛾-Boost policy is tail constant optimal, and it has excellent empirical tail latency. And for the simpler objective

of mean latency, it is known that the optimal policy in the M/G/1, namely SRPT (shortest remaining processing

time), is also excellent in the M/G/𝑘 : it is provably optimal in heavy traffic and has state-of-the-art empirical

performance in lighter traffic.

One might therefore hope that 𝛾-Boost is similarly effective in the M/G/𝑘 , but our results paint a more

complicated picture. In heavy traffic, we prove that 𝛾-Boost is indeed tail constant optimal. We also prove

an analogous result for scheduling with unknown sizes, where 𝛾-Boost is replaced by its unknown-size

counterpart. But in lighter traffic, we find empirically that 𝛾-Boost can be even worse than FCFS (first-come,

first-served). This is a significant shortcoming, as the boundary between “lighter” and “heavy” traffic occurs at

higher load when the number of servers 𝑘 is larger. To overcome this, we design a new variant of 𝛾-Boost that

outperforms the original by, counterintuitively, giving more priority to larger jobs. The new variant, which we

prove is also heavy-traffic optimal, has state-of-the-art empirical tail latency at lighter loads, outperforming

even a much more computationally intensive mixed-integer-programming heuristic.
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ing theory; • Networks→ Network performance modeling; • Computing methodologies→ Model
development and analysis; • Software and its engineering → Scheduling.
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1 Introduction
In today’s large-scale computer systems, operators often care about service level objectives (SLOs)

that relate to the tail of a system’s response time distribution 𝑇 , where a job’s response time (a.k.a.
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sojourn time) is the total amount of time it spends in the system. In particular, SLOs often require

that high percentiles of 𝑇 are small, or, dually, that the tail of response time P[𝑇 > 𝑡] is small for

large thresholds 𝑡 . This work studies how to accomplish this via scheduling in theM/G/𝑘 multiserver

queueing model, resulting in a new state-of-the-art scheduling policy, called 𝛾-CombinedBoost, with
good theoretical and empirical performance.

1.1 Recent Progress: Single-server Tail Scheduling and Multiserver Mean Scheduling
Recent work in the M/G/1 queueing model [7, 21, 25, 47, 49] has shown that when the job size

distribution is light-tailed, aiming to asymptotically minimize P[𝑇 > 𝑡] in the 𝑡 → ∞ limit leads

to policies with state-of-the-art P[𝑇 > 𝑡] performance at practical thresholds 𝑡 . In particular, the

𝛾-Boost policy introduced by Yu and Scully [49] achieves tail constant optimality [6, 48], meaning it

achieves the best possible tail constant:

inf

policies 𝜋
lim sup

𝑡→∞
𝑒𝛾𝑡P[𝑇𝜋 > 𝑡] = lim sup

𝑡→∞
𝑒𝛾𝑡P[𝑇𝛾 -Boost > 𝑡],

where 𝑒𝛾𝑡 is an appropriate scaling factor (details in Section 2.3). Empirically, optimizing this

constant can lead to significantly less deadline violations for large thresholds 𝑡 : Yu and Scully [49,

Section 6] show that compared to optimizing for the decay rate alone,
1
one can reduce “large-𝑡”

violations by 30% or more by also optimizing the tail constant. This can be especially important in

settings where SLOs are tight and any reduction in large response times is impactful.

The basic idea of 𝛾-Boost is that it roughly mimics FCFS (first-come first-served), but it gives

short jobs partial priority by “boosting” their arrival times backwards, as if they had actually arrived

earlier. Short jobs get boosted more than long jobs: a job of size 𝑠 has its arrival time boosted by

𝑏𝛾 -Boost (𝑠) =
1

𝛾
log

1

1 − 𝑒−𝛾𝑠
, (1.1)

where 𝛾 > 0 is a parameter depending on the load and size distribution. See Section 2.4 for a full

definition of 𝛾-Boost.

However, the single-server M/G/1 model is a poor match for large-scale computer systems, which

inevitably have multiple servers. And in the M/G/𝑘 , the M/G/1’s 𝑘-server analogue, scheduling

to optimize the tail P[𝑇 > 𝑡] remains an open problem. Instead, prior work on M/G/𝑘 scheduling

theory primarily covers only the simpler problem of optimizing mean response time E[𝑇 ] and
weighted variants thereof [5, 9, 13–15, 17–19, 42–45]. Moreover, while these results prove bounds

on (weighted) mean response time that hold at all loads (a.k.a. utilizations) 𝜌 ∈ (0, 1), they are only

tight in heavy traffic as 𝜌 → 1, and thus optimality results are similarly limited to heavy traffic.

Despite the limitation to heavy traffic, existing M/G/𝑘 scheduling theory seems to lead to the

right design decisions across a wide range of loads. For instance, while SRPT (shortest remaining

processing time), which minimizes E[𝑇 ] in the M/G/1, is only proven to minimize E[𝑇 ] in the

M/G/𝑘 in heavy traffic [18, 44], SRPT enjoys excellent empirical E[𝑇 ] across a range of loads [16, 20],
with the best known alternative improving upon SRPT by less than 1% [20].

1.2 Our Work: Multiserver Tail Scheduling
Taken together, the two lines of work discussed in Section 1.1 clearly suggest two questions:

Q1: Is 𝛾-Boost tail constant optimal in the M/G/𝑘 in heavy traffic?
Q2: Does 𝛾-Boost have good empirical tail performance in the M/G/𝑘 in lighter traffic?

Our work answers these and other questions about tail scheduling in the M/G/𝑘 . We were genuinely

surprised by some of the answers, and we believe many readers will be, too. In an effort to mitigate

1
Policies that achieve the optimal decay rate are said to be weakly optimal, and it is well-known that FCFS does so [6].
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hindsight bias, this section gives a roughly chronological account of our findings. See Section 1.3

for a more straightforward statement of our contributions.

Throughout, we consider the M/G/𝑘 to have 𝑘 servers of speed 1/𝑘 each, so that a job of size 𝑠

takes time 𝑘𝑠 to complete. This means that the same arrival process induces the same load, and

also the same value of 𝛾 for use in (1.1), with any number of servers 𝑘 .

1.2.1 Findings for 𝛾-Boost. Our first finding is the least surprising: we prove that Q1’s answer

is “yes” (Theorem 3.1). Namely, we show that 𝛾-Boost is heavy-traffic tail constant optimal by

showing that it achieves the same tail constant as 𝛾-Boost in the M/G/1 as 𝜌 → 1:

lim

𝜌→1

lim sup𝑡→∞ 𝑒𝛾𝑡P[𝑇M/G/𝑘 𝛾 -Boost > 𝑡]
lim sup𝑡→∞ 𝑒𝛾𝑡P[𝑇M/G/1 𝛾 -Boost > 𝑡] = 1.

To do this, we follow the same overall strategy as the prior work on E[𝑇 ] in the M/G/𝑘 , but handling

the tail P[𝑇 > 𝑡] requires us to overcome new technical challenges. We discuss this in more detail

in Section 3.2, but in brief: in a step that compares the amount of work in an M/G/𝑘 to that of an

M/G/1 with the same arrival process, while simple worst-case bounds suffice for SRPT, we require

a stochastic bound, and we provide a new stochastic bound that holds under any non-idling policy.

We prove an analogous result for scheduling with unknown job sizes, showing that a variant

of 𝛾-Gittins, which is tail constant optimal in the unknown-size M/G/1 [25], is also tail constant

optimal in the unknown-size M/G/𝑘 in heavy traffic (Theorem 4.1). This latter result actually covers

not just unknown job sizes, but a general partial-information model with Markov-process jobs
[19, 25, 43, 44]. Simulations confirm that 𝛾-Boost’s “pre-asymptotic” tail performance is good at

very high loads, e.g. 𝜌 = 0.99 (Section 5).

However, despite Q1’s answer being “yes”, Q2’s answer is “no”! We observe in simulations shown

in Fig. 1.1 and Section 5 that with 𝑘 = 10 servers, 𝛾-Boost performs worse than FCFS even at loads

as high as 𝜌 = 0.95. We initially found this surprising, but in hindsight, we can at least partly

explain it. The underlying reason why 𝛾-Boost is tail constant optimal in the M/G/1 is that it solves

a particular single-server batch scheduling problem with exponentially inflated response time costs

[49] (see also Appendix E). But the multiserver version of the batch problem is computationally

intractable to solve exactly,
2
and it seems that 𝛾-Boost, which amounts to a greedy heuristic in the

multiserver setting, fails to find high-quality solutions. In contrast, in the corresponding story for

optimizing E[𝑇 ], SRPT solves the corresponding multiserver batch problem [40, Theorem 5.3.1].

1.2.2 Improving Tail Performance in Lighter Traffic. Prompted by the failure of 𝛾-Boost outside of

heavy traffic, we ask:

Q3: Is improving upon FCFS’s tail possible in the M/G/𝑘 in lighter traffic?
To answer this, we simulate a policy that uses the Gurobi mixed-integer program solver [22] to solve

the batch scheduling problem discussed above after every arrival. As shown in Fig. 1.1, this policy,

which we call simply Gurobi, does indeed improve upon FCFS, so Q3’s answer is at least in principle

“yes”. We conjecture that an idealized version of Gurobi that exactly solves each mixed-integer

program is tail constant optimal, though this is far from certain. Either way, solving a mixed-integer

program with every arrival is infeasible in most practical applications, so the question of whether

we can practically improve upon FCFS remains.

One intuition about why multiserver scheduling is hard is that it requires thinking not just about

how to prioritize jobs relative to each other, but also about how to keep all of the servers busy,

which amounts to balancing work as equally as possible across servers [34]. In batch scheduling

2
While the specific batch problem in question (Appendix E) has not been studied in the literature, many related problems

are known to be NP-hard [33, 40], and we believe a reduction from our problem to one of these is possible.
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Fig. 1.1. (Higher is better.) Plot of tail performance of policies for 𝑘 = 10 servers for both 𝜌 = 0.8 and
𝜌 = 0.95 load with job size distribution Exp(1). Tail improvement ratio of policy 𝜋 at threshold 𝑡 is 1 −
P[𝑇𝜋 > 𝑡]/P[𝑇FCFS > 𝑡]. Due to Gurobi’s heavy computational requirements, we were only able to run
for 100,000 samples for load 0.8 and 700,000 samples for load 0.95. Plotted results therefore may not have
reached convergence; however, the results from both loads suggest that 𝛾-CombinedBoost attains the same
performance as Gurobi. See Section 5 for simulations of the non-Gurobi policies with hundreds of millions or
billions of jobs.

problems, the key to doing this is to serve long jobs first [40, Theorems 5.1.1 and 5.2.7], which is in

direct tension with SRPT’s and 𝛾-Boost’s prioritizing short jobs.

Strictly prioritizing long jobs gives predictably poor tail performance (Appendix H), but the

general idea of 𝛾-Boost suggests a compromise: instead of boosting short jobs, we could boost long
jobs. Following this reasoning, we propose the SizeBoost policy, which boosts a job of size 𝑠 by a

fraction,
𝑘−1
𝑘

, of its processing time. Under our 1/𝑘 server speed convention (Section 2), where jobs

of size 𝑠 have 𝑘𝑠 processing time, this amounts to a boost of

𝑏SizeBoost (𝑠) = (𝑘 − 1)𝑠 .

We have not carefully tuned the specific factor of 𝑘 − 1, but rather chose it to make sense when

specialized to 𝑘 = 1, in which case boosting long jobs is a poor plan.
3
We see in Fig. 1.1 that

SizeBoost is partly successful.

• At the lower load of 𝜌 = 0.8, SizeBoost’s tail P[𝑇 > 𝑡] matches Gurobi’s at large thresholds 𝑡 ,
which is essentially the best large-𝑡 behavior we can hope for.

• But at the higher load of 𝜌 = 0.95, SizeBoost is significantly worse than FCFS.

It makes sense that SizeBoost should perform poorly in heavy traffic, because we know that 𝛾-Boost,

which boosts short jobs rather than long jobs, is the right choice in heavy traffic. But it seems

that as load increases, SizeBoost’s performance degrades before 𝛾-Boost’s improves, leaving a

“medium-high” load of 𝜌 = 0.95 where neither matches even FCFS, let alone Gurobi.

1.2.3 Bridging the Gap Between Lighter and Heavy Traffic. Seeing as 𝛾-Boost and SizeBoost alone

are not enough to achieve good tail performance at all loads, we ask:

Q4: Can a practical heuristic match Gurobi at “medium-high” loads?
Onemight expect that if this were possible at all, it would require new ideas beyond those underlying

𝛾-Boost and SizeBoost, given that both policies perform poorly at 𝜌 = 0.95 in Fig. 1.1.

3
Empirically, SizeBoost works well; whether boost functions of the form 𝑏 (𝑠 ) = 𝑐𝑠 for some constant 𝑐 are optimal is a

question we leave to future work.
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Surprisingly, we find that not only is Q4’s answer “yes”, but one can match Gurobi with a naive

combination of 𝛾-Boost and SizeBoost: just sum their boosts. We propose the 𝛾-CombinedBoost
policy, which boosts jobs of size 𝑠 by

𝑏𝛾 -CombinedBoost (𝑠) = 𝑏𝛾 -Boost (𝑠) + 𝑏SizeBoost (𝑠) =
1

𝛾
log

1

1 − 𝑒−𝛾𝑠
+ (𝑘 − 1)𝑠 .

This policy improves upon Gurobi in Fig. 1.1 at both 𝜌 = 0.8 and 𝜌 = 0.95, with strictly better tail at

small thresholds and matching tail at large thresholds. 𝛾-CombinedBoost is also effective in heavy

traffic: using essentially the same strategy as for 𝛾-Boost, we prove that 𝛾-CombinedBoost is tail

constant optimal in heavy traffic (Theorem F.4). Additional simulations of 𝛾-CombinedBoost in

Section 5 show it to be a clear “overall best” among the policies we simulate, sometimes getting

close to theoretical limits on what can be achieved (e.g. M/G/∞ bounds).

A priori, we predicted that 𝛾-CombinedBoost might match 𝛾-Boost in heavy traffic and SizeBoost

in lighter traffic, because 𝛾 is roughly proportional to 1 − 𝜌 (Lemma A.1).

• In heavy traffic, we have 𝛾 → 0. This means 𝑏𝛾 -Boost (𝑠) dominates 𝑏SizeBoost (𝑠), and thus

𝛾-CombinedBoost behaves like 𝛾-Boost.

• In lighter traffic, 𝛾 is nonnegligible. This means 𝑏𝛾 -Boost (𝑠) is small except for very small

sizes 𝑠 , and thus𝛾-CombinedBoost behaves like a version of SizeBoost that gives extra priority

to very small jobs, which seems either harmless or actively helpful.

What we find surprising is that at loads between these extremes, 𝛾-CombinedBoost significantly

outperforms 𝛾-Boost and SizeBoost, despite being a naive interpolation between them.

1.3 Contributions and Outline
In this paper, we give the first theoretical optimality guarantees for multiserver tail scheduling,
specifically strong tail optimality in the M/G/𝑘 in heavy traffic.

• For known sizes, our guarantees apply to the 𝛾-Boost policy proposed by Yu and Scully [49]

(Section 3) and our newly proposed 𝛾-CombinedBoost policy (Appendix F).

• For unknown sizes, our guarantees apply to a variant of the 𝛾-Gittins policy, specifically

𝛾-Surrogate, proposed by Harlev et al. [25] (Section 4).

We also perform a broad suite of simulation experiments to evaluate tail performance at practical

thresholds and outside of heavy traffic, finding that our newly proposed 𝛾-CombinedBoost policy sets
a new state-of-the-art (Section 5).

2 System Model
We consider an M/G/𝑘 queue with arrival rate 𝜆, job size distribution 𝑆 , and load 𝜌 = 𝜆E[𝑆]. For
convenience, we assume that each of our 𝑘 servers can complete work at rate 1/𝑘 . Therefore, the
M/G/𝑘 system has total service capacity 1. This will allow us to compare to a resource-pooled

M/G/1, i.e. a single-server system with speed 1, as a lower bound.

2.1 Load and Stability
Under our server speed assumption, the load is 𝜌 = 𝜆E[𝑆], and, because the system has total service

capacity 1, we assume that 𝜌 < 1. One would hope that this would be sufficient for stability in the

M/G/𝑘 for non-idling scheduling policies, which we define formally in Definition 2.2. Similar to

other prior work in this area [18, 26, 44], we will assume stability indeed holds. While we expect

that 𝜌 < 1 is indeed sufficient for stability, proving it is outside the scope of this paper. Hong and

Scully [26, Appendix D] provide a proof sketch for stability in the G/G/𝑘 , which should also handle

our M/G/𝑘 setting.

Assumption 2.1. If 𝜌 < 1, the M/G/𝑘 is stable under all non-idling scheduling policies 𝜋 .
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Our theoretical results are for the heavy-traffic limit. This limit, which we will denote by 𝜌 → 1,

refers to the limit as 𝜆 → 1/E[𝑆], with the job size distribution 𝑆 fixed.

2.2 Work in Multiserver Systems
Key to our analysis is quantifying the “work” in system, which is the amount of processing time a

speed 1 server needs to complete all remaining jobs in the system. In particular, under our server

speed convention, a job of size 𝑆 contributes 𝑆 work, because it takes 𝑆 time to complete under

a speed 1 server. However, the processing time of this job in the M/G/𝑘 will be 𝑘𝑆 , because the

M/G/𝑘 servers only work at speed 1/𝑘 .
We denote the steady-state work distribution in an M/G/𝑘 under policy 𝜋 by𝑊 𝑘

𝜋 . For the M/G/1,

we write simply𝑊M/G/1, as the work is unaffected by the policy provided it is non-idling. However,

in the M/G/𝑘 for 𝑘 > 1, the work𝑊 𝑘
𝜋 does depend on the scheduling policy 𝜋 . This is true even for

non-idling policies, which do not leave servers unnecessarily idle, and which we will focus on in

this paper.

Definition 2.2. A policy 𝜋 is a non-idling policy if, under 𝜋 , whenever there are fewer than 𝑘

jobs in the system, all jobs are in service, and whenever there are at least 𝑘 jobs in the system, all

servers are busy.

Definition 2.3. The idleness is the fraction of servers that are idle. We denote by 𝐼𝑘𝜋 (𝑡) the idleness
under policy 𝜋 at time 𝑡 and by 𝐼𝑘𝜋 the idleness under policy 𝜋 in steady-state. If 𝜋 is non-idling,

then we can write the idleness as

𝐼𝑘𝜋 (𝑡) =
(𝑘 − 𝑁𝑘

𝜋 (𝑡))+
𝑘

, 𝐼𝑘𝜋 =
(𝑘 − 𝑁𝑘

𝜋 )+
𝑘

,

where𝑁𝑘
𝜋 (𝑡) and𝑁𝑘

𝜋 are the number of jobs in the system under policy 𝜋 at time 𝑡 and in steady-state,

respectively.

The amount of work in the M/G/𝑘 under a policy 𝜋 obeys a decomposition law that says, roughly,

that the amount of work in the M/G/𝑘 is the amount of work in the M/G/1, which is policy-invariant,

plus an amount related to how much work is in the system while servers are idle. The intuition

is that work present when servers are idle “persists” once all of the servers are busy again. The

statement below is from Scully [43, Theorem 8.3(b)], which in turn is a slight generalization of

classical decomposition laws for M/G/1-like systems [10, 37].
4

Theorem 2.4 (Work Decomposition Law). For any non-idling scheduling policy 𝜋 and any 𝜃
such that E[𝑒𝜃𝑆 ] < ∞ and 𝜃 > 𝜆(E[𝑒𝜃𝑆 ] − 1),

E[𝑒𝜃𝑊 𝑘
𝜋 ] = E[𝑒𝜃𝑊M/G/1 ]

E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ]

1 − 𝜌
.

Handling the wasted work term, E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ]/(1 − 𝜌), is a key challenge in our analysis. We cover

the techniques required to do so in Section 3.2.

2.3 Tail Asymptotics
Following Yu and Scully [49], we assume that the job size distribution 𝑆 is light-tailed, specifically,

that it is class I [1, 2]:

4
Strictly speaking, the proof given by Scully [43, Theorem 8.3(b)] covers the 𝜃 ≤ 0 case, i.e. the Laplace transform case, but

the result for 𝜃 > 0 follows from the probabilistic interpretation of the Laplace transform, which is also given by Scully [43,

Theorem 8.3(a)].
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Assumption 2.5. The size distribution 𝑆 is class I, meaning its moment generating function’s

leftmost singularity

𝜃 ∗ = sup{𝜃 ∈ ℝ | E[𝑒𝜃𝑆 ] < ∞},
which may be∞, satisfies 𝜃 ∗ > 0 and lim𝜃→𝜃 ∗ E[𝑒𝜃𝑆 ] = ∞.

Many “typical examples” of light-tailed distributions are class I, including bounded distributions,

and distributions whose tails are asymptotically exponential, Gaussian, and Weibull with shape

parameter at least 1 (i.e. the “lighter than exponential case”). The distributions that are light-tailed

but not class I are exponentially damped heavy-tailed distributions [1, 2], such as those the form

P[𝑆 > 𝑡] ∼ 𝑐𝑡−𝛼𝑒−𝛽𝑡 for constants 𝛼, 𝛽, 𝑐 > 0.

Our metric of focus is the response time of jobs, which is the total amount of time a job spends in

the system. Let 𝑇𝑘
𝜋 denote the steady-state response time distribution under scheduling policy 𝜋 in

the M/G/𝑘 . Boxma and Zwart [6] show that in the M/G/1 with class I size distribution, policies 𝜋

have

lim sup

𝑡→∞
𝑒𝛾𝑡P[𝑇 1

𝜋 > 𝑡] = 𝐶, (2.1)

for some policy-dependent constant 𝐶 , which may be infinite, where 𝛾 is the least positive real

solution [36] to

𝛾 = 𝜆(E[𝑒𝛾𝑆 ] − 1). (2.2)

Our goal is to find a policy that is tail constant optimal in the heavy-traffic limit. Roughly, we

want to find a policy 𝜋 that attains the smallest possible 𝐶 . Formally, we define the tail constant of

a policy 𝜋 as follows:

Definition 2.6. Let 𝑋 ≥ 0 be a nonnegative random variable. Then the tail constant of 𝑋 is

C+ [𝑋 ] = lim sup

𝑡→∞
𝑒𝛾𝑡P[𝑋 > 𝑡] .

We also define the lower tail constant of 𝑋 to be

C− [𝑋 ] = lim inf

𝑡→∞
𝑒𝛾𝑡P[𝑋 > 𝑡] .

The tail constant and lower tail constant of a policy 𝜋 in the M/G/𝑘 are given by C+ [𝑇𝑘
𝜋 ] and

C− [𝑇𝑘
𝜋 ], respectively.

Definition 2.7. A scheduling policy 𝜋 is tail constant optimal5 if

sup

𝜋 ′

C+ [𝑇𝑘
𝜋 ]

C+ [𝑇𝑘
𝜋 ′ ]

= 1.

Heavy-traffic tail constant optimality therefore requires

lim

𝜌→1

sup

𝜋 ′

C+ [𝑇𝑘
𝜋 ]

C+ [𝑇𝑘
𝜋 ′ ]

= 1.

One subtlety here is that we allow the policy 𝜋 in the numerator to be a parametrized family that

depends on the load 𝜌 . For example, 𝛾-Boost, defined below, depends on the value of 𝛾 from (2.2),

which varies with the load 𝜌 .

The tail constants of policies can be difficult to analyze directly, so to compare policies, we

analyze their tail transform constants:
5
We define the notion of tail constant optimality, instead of using the more widespread notion of tail optimality [6], as the

policies we analyze from prior work [25, 49] turn out only to satisfy tail optimality under a certain class of policies, whereas

they satisfy tail constant optimality across all policies. That said, we believe that tail constant optimality still captures a

useful notion of optimal tail performance. Full details are provided in Appendix G.
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Definition 2.8. Let 𝑋 ≥ 0 be a nonnegative random variable. Then the (upper) tail transform
constant of 𝑋 is

C̃+ [𝑋 ] = lim sup

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑋 ],

and the analogous lower tail transform constant is given by

C̃− [𝑋 ] = lim inf

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑋 ] .

The tail transform constant and lower tail transform constant of a policy 𝜋 are denoted by C̃+ [𝑇𝑘
𝜋 ]

and C̃− [𝑇𝑘
𝜋 ], respectively.

In particular, a final value theorem [8] tells us that whenever the poles of E[𝑒𝜃𝑇𝑘
𝜋 ] are in the open

right half plane or at the origin, with at most one pole at the origin,

C− [𝑇𝑘
𝜋 ] = C̃− [𝑇𝑘

𝜋 ] = C̃+ [𝑇𝑘
𝜋 ] = C+ [𝑇𝑘

𝜋 ] . (2.3)

For example, when the job size distribution is class I, the work in an M/G/1 system𝑊M/G/1, has

asymptotically exponential tail [21, Equation (2)], and

C− [𝑊M/G/1] = C̃− [𝑊M/G/1] = C̃+ [𝑊M/G/1] = C+ [𝑊M/G/1],

with a simple pole at 𝛾 [1, 2]. Quantities we explicitly analyze in this paper (in, for example,

Section 3), have the same poles as the work transform, and so satisfy this property. For policies for

which this is not the case, we have, by Lemma A.3,

C− [𝑇𝑘
𝜋 ] ≤ C̃− [𝑇𝑘

𝜋 ] ≤ C̃+ [𝑇𝑘
𝜋 ] ≤ C+ [𝑇𝑘

𝜋 ] . (2.4)

2.4 Boost Policies and 𝜸-Boost
A main theoretical result of our work is to prove heavy-traffic optimality of the scheduling policy

𝛾-Boost in the M/G/𝑘 . 𝛾-Boost is tail constant optimal in the M/G/1, and so is a natural candidate

as a policy in the M/G/𝑘 . It belongs to a family of policies known as boost policies, introduced by Yu

and Scully [49].

Boost policies operate according to a simple rule: serve the job of smallest boosted arrival time. A
job’s boosted arrival time is defined to be

boosted arrival time = arrival time − boost = arrival time − 𝑏 (size),

where a boost function 𝑏 : ℝ+ → [0,∞) maps a job’s size to its boost. Different boost policies differ

in their choice of boost function 𝑏. We write 𝑏𝜋 for the boost function of boost policy 𝜋 , or simply

𝑏 if the policy is generic or clear from context. The boost function of 𝛾-Boost is

𝑏𝛾 -Boost (𝑠) =
1

𝛾
log

(
1

1 − 𝑒−𝛾𝑠

)
, (2.5)

where 𝛾 is set according to (2.2).

One can consider either preemptive or nonpreemptive versions of any given boost policy [49].

We use nonpreemptive versions in our simulations, and one can check that our proofs in Section 3

and Appendix F apply to both versions.
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3 Proving Heavy-Traffic Optimality of Boost
To prove heavy-traffic optimality of 𝛾-Boost in the M/G/𝑘 , we will compare its tail constant in an

M/G/𝑘 system with server speeds 1/𝑘 to the tail constant it achieves in a resource-pooled M/G/1,

with server speed 1. Under our server speed convention, 𝛾-Boost’s M/G/1 tail constant provides a

lower bound on the optimal tail constant in the M/G/𝑘 , because 𝛾-Boost is tail constant optimal for

the M/G/1 [49]. Specifically, recalling (2.4), we have

C+ [𝑇 1

𝛾 -Boost] = C̃+ [𝑇 1

𝛾 -Boost] ≤ inf

𝜋
C̃+ [𝑇𝑘

𝜋 ] ≤ inf

𝜋
C+ [𝑇𝑘

𝜋 ],

where the infimum is taken over all policies that can be implemented in an M/G/𝑘 . Our main result

is that the gap in tail constants between 𝛾-Boost in the M/G/𝑘 and 𝛾-Boost in the resource-pooled

M/G/1 approaches 0 in the heavy-traffic limit.

Theorem 3.1. For an M/G/𝑘 with class I job size distribution 𝑆 , 𝛾-Boost is optimal in the heavy
traffic limit:

lim

𝜌→1

C+ [𝑇𝑘
𝛾 -Boost

]
C+ [𝑇 1

𝛾 -Boost
]
≤ lim

𝜌→1

C+ [𝑊M/G/1]
E[𝐼𝑘

𝛾 -Boost
𝑒
𝛾𝑊𝑘

𝛾 -Boost ]
1−𝜌 E[𝑒𝛾 (𝑘𝑆−𝑏𝛾 -Boost (𝑆 ) ) ]E[𝑒𝛾𝑉𝛾 -Boost (∞) ]

C+ [𝑊M/G/1]E[𝑒𝛾 (𝑆−𝑏𝛾 -Boost (𝑆 ) ) ]E[𝑒𝛾𝑉𝛾 -Boost (∞) ]
= 1,

where in the second limit, the numerator is an upper bound on the tail constant of 𝛾-Boost in the M/G/𝑘 ,
and the denominator is the tail constant of 𝛾-Boost in the M/G/1.

Why is 𝛾-Boost’s performance in the M/G/𝑘 different than in the M/G/1? The key difference is

that the M/G/𝑘 system is not work-conserving. In particular, the system can have a variable amount

of idleness, which is policy-dependent. Proving Theorem 3.1 therefore requires characterizing the

effect of idleness on performance. In particular, for 𝛾-Boost, we need to bound:

(1) The effect of idleness on the amount of relevant work
6
served between a job’s boosted arrival

time and actual arrival time.

(2) The effect of idleness on the steady-state work in system.

Because proving Theorem 3.1 relies on bounding these two effects, we will next focus on bounding

them, and defer the proof of Theorem 3.1 to Section 3.3. For item (1), we prove an upper bound

on the tail constant for general boost policies (Theorem 3.3), which shows that for our purposes,

the effect of idleness on the amount of relevant work served is negligible. For item (2), we prove a

bound on the effect of idleness on steady-state work for all non-idling policies (including all general

boost policies) in Theorem 3.6, and show that in the heavy-traffic limit, the impact of idleness is

negligible. We handle item (1) in Section 3.1 and item (2) in Section 3.2.

3.1 Characterizing Boost’s Tail Constant in the M/G/𝒌
To compare the tail constant of Boost in the M/G/𝑘 to that of Boost in the M/G/1, we will compare

the tail transform constants in the two settings. In particular, as we know that C̃+ [𝑇 1

𝛾 -Boost
] is a

lower bound on the tail constant of any policy 𝜋 in the M/G/𝑘 , it suffices to bound the gap of

C+ [𝑇𝑘
𝛾 -Boost

] to C̃+ [𝑇 1

𝛾 -Boost
].

We do this by proving a more general bound, which holds for any Boost policy 𝜋 with boost

function 𝑏𝜋 . To bound C+ [𝑇𝑘
𝜋 ], we will employ a tagged job analysis similar to that in Yu and Scully

[49]. One key difference is that, because we do not characterize C+ [𝑇𝑘
𝜋 ] directly, we must instead

first bound C+ [𝑇𝑘
𝜋 ] by C+ [𝑋𝜋 ] for some appropriate quantity 𝑋𝜋 s/t C+ [𝑋𝜋 ] = C̃+ [𝑋𝜋 ]. We can

then show that when 𝜋 is 𝛾-Boost, the gap between C̃+ [𝑋𝜋 ] and C̃+ [𝑇 1

𝛾 -Boost
] (equivalently, C+ [𝑋𝜋 ]

and C+ [𝑇 1

𝛾 -Boost
]) vanishes. We update the notation here to handle multiple servers.

6
Relevant work to a job 𝐽 can roughly be thought of as work that has better priority than 𝐽 .
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Notation 3.2.
(a) We will analyze the response time of a tagged job with boosted arrival time 0.

– We will write 𝑆 for the tagged job’s size and 𝐵𝜋 = 𝑏𝜋 (𝑆) for the tagged job’s boost under

boost policy 𝜋 , suppressing 𝜋 when the policy is obvious from context.

(b) We denote the amount of work in the M/G/𝑘 at time 0 under policy 𝜋 by𝑊 𝑘
𝜋 , which is

distributed according to the stationary work distribution.

– In contrast to the M/G/1, the distribution is policy-dependent for 𝑘 > 1, because the idleness

(Definition 2.3) is policy-dependent.

(c) We denote crossing work and non-crossing work during (0, 𝑢) by 𝑉𝜋 (𝑢) and 𝑉 𝜋 (𝑢), respec-
tively, again suppressing 𝜋 when the policy is obvious from context.

– 𝑉 (𝑢) is the amount of work from jobs arriving in (0, 𝑢) with boosted arrival time in (−∞, 0].
– 𝑉 (𝑢) is the complementary quantity, the amount of work from jobs arriving in (0, 𝑢) with
boosted arrival time in (0,∞).

We now adapt the analysis from Boost to handle the effect of idle servers in the M/G/𝑘 . Parts

of our analysis will apply specifically to Boost policies, while other parts apply, generally, to all

non-idling policies (which include boost policies). The end result is the following.

Theorem 3.3. Let 𝜋 be a boost policy and suppose that E[𝑒𝛾𝑘𝑉 (∞) ] < ∞, E[𝑒𝛾𝑘𝑆 ] < ∞, and
E[𝐼𝑘𝜋𝑒𝛾𝑊

𝑘
𝜋 ] < ∞. The tail constant of 𝜋 can be bounded above as follows:

C+ [𝑇𝑘
𝜋 ] ≤ C+ [𝑊M/G/1]

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝛾 (𝑘𝑆−𝐵) ]E[𝑒𝛾𝑉 (∞) ] .

When 𝑘 = 1, this bound reduces to the exact M/G/1 tail constant found by Yu and Scully [49,

Theorem 3.1]. When 𝑘 > 1, there are two differences, but, importantly for Theorem 3.1, both vanish

in heavy traffic:

• The E[𝑒𝛾 (𝑆−𝐵) ] becomes E[𝑒𝛾 (𝑘𝑆−𝐵) ], but this change is negligible in heavy traffic because

𝛾 → 0.

• There is an additional factor of E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]/(1 − 𝜌), which is related to the amount of work

present when there are 𝑘 − 1 or fewer jobs in the system. We give an upper bound on

this quantity under any non-idling scheduling policy using a “last-job lemma” (Lemmas 3.7

and 3.8), and the bound approaches 1 in heavy traffic.

How does idleness affect the analysis from Yu and Scully [49]? In the M/G/1, whenever the

system has work, 𝐼 1𝜋 (𝑡) = 0 for all policies 𝜋 . For boost policies, this means that we only need to

consider two cases in the analysis:𝑊 1

𝜋 > 𝐵, in which case the idleness is 0 throughout the tagged

job’s time in the system, and𝑊 1

𝜋 ≤ 𝐵, in which case𝑊 1

𝜋 = 0 throughout the tagged job’s time in

the system. This is how Yu and Scully [49, Lemma 3.3] proceed in deriving the tail constant for

general boost policies. But in the M/G/𝑘 , the system might have𝑊 𝑘
𝜋 > 𝐵, but also nonzero idleness

after the tagged job’s boosted arrival time. Our goal is to show that even in this case, we can bound

a boost policy’s tail constant by assuming the idleness has no impact on the boost. In particular, we

want to handle cases when there was insufficient relevant work between the tagged job’s boosted

arrival time and actual arrival time. We can do so by capturing cases where we are guaranteed to

have only served relevant work, using the following event:

Lemma 3.4. Let 𝑄 be the event that at the tagged job’s arrival time (i.e., time 𝐵), there are at least 𝑘
jobs in the system with arrival time earlier than time 0. Let 𝑢 ≥ 0. The tagged job’s response time
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under boost policy 𝜋 can be upper bounded by

𝑇𝑘
𝜋 ≤

{
𝑊 𝑘

𝜋 −min{𝐵,𝑢} + 𝑘𝑆 +𝑉 (∞) if 𝑄 holds

𝑘 (𝑆 +𝑉 (∞) +𝑉 (min{𝐵,𝑢})) if 𝑄 does not hold.

Proof. We first observe that decreasing the tagged job’s boost from 𝐵 to 𝐵̂ = min{𝐵,𝑢} can only

increase its response time, so it suffices to analyze the response time with this reduced boost. In

both cases, we will bound the amount of time the tagged job can spend in the system.

If𝑄 holds: At the tagged job’s true arrival time, there are at least 𝑘 jobs in the system with priority

over it. In particular, these jobs have been in the system since the boosted arrival time of the tagged

job, by our definition of 𝑄 . This means that between the tagged job’s boosted arrival time and its

actual arrival time, there were always at least 𝑘 jobs in the system with better boosted arrival time

than the tagged job’s boosted arrival time. This implies that all servers have only worked on jobs

with boosted arrival time better than the tagged job’s boosted arrival time.

An upper bound on the amount of work with boosted arrival time better than the tagged job’s

boosted arrival time is𝑊 𝑘
𝜋 +𝑉 (∞). Between the tagged job’s boosted arrival time and actual arrival

time, all servers only worked on jobs belonging to this𝑊 𝑘
𝜋 +𝑉 (∞) amount of work. Therefore, the

remaining amount of such work at the tagged job’s actual arrival time is𝑊 𝑘
𝜋 +𝑉 (∞) − 𝐵̂. Once the

tagged job arrives, one of the following must be true until it departs the system:

(1) All servers are occupied with work that has boosted arrival time better than the tagged job’s

boosted arrival time, i.e., this work leaves the system at rate 1.

(2) If not all servers are occupied with such work, the tagged job must be in service, because

it has the best boosted arrival time among all remaining jobs. The tagged job is served at

rate 1/𝑘 .
The maximum amount of time that (1) can hold is𝑊 𝑘

𝜋 +𝑉 (∞)− 𝐵̂, and the maximum amount of time

that (2) can hold is 𝑘𝑆 , so the maximum amount of time that either can hold is𝑊 𝑘
𝜋 +𝑉 (∞) − 𝐵̂ +𝑘𝑆 ,

which yields an upper bound on the amount of time the tagged job can spend in the system.

If 𝑄 does not hold: At the tagged job’s true arrival time, there are at most 𝑘 − 1 jobs in the system

with arrival time before the tagged job’s boosted arrival time. In particular, even if all such jobs are

in service, they only occupy 𝑘 − 1 of the 𝑘 available servers. Then, once the tagged job arrives, one

of the following must be true until it departs the system:

(1) For nonpreemptive policies, there could be a server working on a job from 𝑉 (min{𝐵,𝑢}),
with nothing from 𝑉 (∞) in service, and with the tagged job not in service.

(2) There is at least one server working on work from 𝑉 (∞), i.e. such work leaves the system at

rate at least 1/𝑘 .
(3) The tagged job is served at rate 1/𝑘 .

(1) can only hold at the tagged job’s arrival time. For each server that is serving a job from

𝑉 (min{𝐵,𝑢}), after that job’s completion, the server will take either the tagged job, or work from

𝑉 (∞) into service. Namely, after a job from 𝑉 (min{𝐵,𝑢}) completes, either event (2) or (3) will

hold until the tagged job departs the system. A simple upper bound on how long (1) can hold is

to imagine that all the work in 𝑉 (min{𝐵,𝑢}) is served on a single server, leaving at the rate 1/𝑘 ,
before the other two events hold. (2) can hold for at most 𝑘𝑉 (∞), and (3) can only hold for at most

𝑘𝑆 . Therefore, the tagged job will spend at most 𝑘 (𝑉 (min{𝐵,𝑢}) +𝑉 (∞) + 𝑆) time in the system,

as desired. □

Lemma 3.5. For any boost policy 𝜋 and event 𝑄 as defined in Lemma 3.4,

P[𝑇𝑘
𝜋 > 𝑡] ≤ P[𝑊 𝑘

𝜋 −min{𝐵,𝑢} + 𝑘𝑆 +𝑉𝜋 (∞) > 𝑡] + P[𝑘 (𝑉 (∞) +𝑉 (min{𝐵,𝑢}) + 𝑆) > 𝑡] .
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Proof. From Lemma 3.4, we know that

P[𝑇𝜋 > 𝑡] = P[{𝑇𝜋 > 𝑡} ∩𝑄] + P[{𝑇𝜋 > 𝑡} ∩𝑄𝑐 ]
≤ P[{𝑊 𝑘

𝜋 −min{𝐵,𝑢} + 𝑘𝑆 +𝑉 (∞) > 𝑡} ∩𝑄] + P[{𝑘 (𝑉 (∞) + 𝑆) > 𝑡} ∩𝑄𝑐 ]
≤ P[𝑊 𝑘

𝜋 −min{𝐵,𝑢} + 𝑘𝑆 +𝑉 (∞) > 𝑡] + P[𝑘 (𝑉 (∞) +𝑉 (min{𝐵,𝑢}) + 𝑆) > 𝑡] . □

With Lemmas 3.4 and 3.5 in hand, we can prove Theorem 3.3:

Proof Sketch of Theorem 3.3. The proof requires applying the upper bound from Lemma 3.5

with the scaling factor 𝑒𝛾𝑡 , then applying final value theorem to both terms on the RHS and

computing the requisite limits. The computations are similar to that of the Boost paper [49, Theorem

3.1], so we defer a complete proof to Appendix C. While the idleness does not impact the boost a

job receives, it does impact the transform; the
E[𝐼𝑘𝜋𝑒𝛾𝑊

𝑘
𝜋 ]

1−𝜌 term comes from expanding the transform

of work in system, namely, by applying the work decomposition law (Theorem 2.4). □

3.2 Characterizing Work Under System Idleness
In Section 3.1, we derived an upper bound on C̃+ [𝑇𝑘

𝛾 -Boost
] for general boost policies, showing that

it suffices to assume that between the tagged job’s boosted arrival time and actual arrival time, the

system worked solely on jobs with better priority than the tagged job. This bound also makes clear

the dependence of a boost policy’s tail constant on system idleness, namely, through the wasted

work factor,
E[𝐼𝑘𝜋𝑒𝛾𝑊

𝑘
𝜋 ]

1−𝜌 . Heavy-traffic optimality of 𝛾-Boost requires that this term approaches 1 in

the 𝜌 → 1 limit.

Grosof et al. [18] bounded the effects of wasted work via a worst-case bound on the amount of

extra additional “relevant work” that can be present in the M/G/𝑘 system. However, this technique

cannot be used to bound the relevant work for boost policies, for the same reason it cannot be used

to provide bounds for FCFS. Namely, under FCFS, all jobs in the system at the arrival time of the

tagged job are permanently relevant to the tagged job, so with unbounded job size distributions 𝑆 ,

the relevant work contributed by each relevant job is unbounded. Similarly, for any boost policy,

all jobs in the system at the boosted arrival time of the tagged job are permanently relevant to

the tagged job, and so all boost policies run into the same issue as FCFS. Therefore, we approach

bounding the wasted work term via stochastic methods. In particular, we will prove the following,

general bound on the wasted work for all non-idling policies.

Theorem 3.6. For any non-idling policy 𝜋 ,

lim

𝜌→1

C̃+ [𝑊 𝑘
𝜋 ] ≤ C+ [𝑊M/G/1] .

Proving Theorem 3.6 requires a bound on the work in system when the idleness 𝐼 > 0. For these

non-idling policies, the amount of wasted processing time can be characterized as follows: we will

show that to bound the work, it suffices to provide a bound on the size of the largest job in the

system when the idleness is nonzero. Lemma 3.7 below provides such a bound in terms of the

excess 𝑆e of 𝑆 , namely the distribution such that

P[𝑆e > 𝑥] = 1

E[𝑆]

∫ ∞

𝑥

P[𝑆 > 𝑦] d𝑦.

Lemma 3.7 (Last Job Lemma). Define 𝐿 to be 𝑘 × (size of largest job in the system). Then for any
𝑥 > 0,

E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)] ≤ 𝑘P[𝑘𝑆e > 𝑥] .
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Proof. By Assumption 2.1, we can assume stationarity of the involved processes, namely, of 𝐿

and 𝐼𝑘𝜋 . The key idea is then to apply Miyazawa’s rate conservation law [38] to show that the size

of the largest job in the system cannot be too big whenever the idleness 𝐼𝑘𝜋 > 0. Formally, we apply

the rate conservation law to the function 𝑓 (𝐿) = (𝐿 − 𝑥)+, for arbitrary 𝑥 . This value can change in

the following ways:

• Work is done continuously whenever available. We denote the average continuous change in

𝑓 (𝐿) by E[𝐷𝑡 𝑓 (𝐿)].
• When a job arrives, it will increase 𝐿 whenever its size is larger than 𝐿 and 𝑥 . By PASTA, the

average change from this is given by 𝜆E[(max{𝑘𝑆, 𝐿} − 𝑥)+ − (𝐿 − 𝑥)+].
Miyazawa’s rate conservation law tells us that

E[𝐷𝑡 𝑓 (𝐿)] + 𝜆E[(max{𝑘𝑆, 𝐿} − 𝑥)+ − (𝐿 − 𝑥)+] = 0.

We now observe that E[𝐷𝑡 𝑓 (𝐿)] is upper bounded by E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)]. This is because we can
bound the rate of decrease of 𝑓 (𝐿):

• If 0 < 𝐼𝑘𝜋 < 1 and 𝐿 > 𝑥 , then the largest job must be in service, since there are servers idle,

and work is done at rate 1/𝑘 at each server. Therefore, 𝑓 (𝐿) decreases at rate 1.
• If the above conditions do not hold, then 𝑓 (𝐿) decreases at least at rate 0.

Therefore, E[𝐷𝑡 𝑓 (𝐿)] ≤ −E[𝟙(0 < 𝐼𝑘𝜋 < 1)𝟙(𝐿 > 𝑥)]. Since 𝐼𝑘𝜋 is at most 1, 1(0 < 𝐼𝑘𝜋 < 1) ≥ 𝐼𝑘𝜋 ,

which implies that −E[𝟙(0 < 𝐼𝑘𝜋 < 1)𝟙(𝐿 > 𝑥)] ≤ −E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)]. Applying this yields

−E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)] + 𝜆E[(max{𝑘𝑆, 𝐿} − 𝑥)+ − (𝐿 − 𝑥)+] ≥ 0.

For the second term, we observe that:

• If 𝐿 < 𝑘𝑆 , then it equals (𝑘𝑆 − 𝑥)+ − (𝐿 − 𝑥)+.
• If 𝐿 ≥ 𝑘𝑆 , then it equals 0.

We can upper bound both cases by (𝑘𝑆 − 𝑥)+. We now have

−E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)] + 𝜆E[(𝑘𝑆 − 𝑥)+] ≥ 0.

Some algebra and properties of 𝑆e [3, 24] now yields:

E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)] ≤ 𝜆E[(𝑘𝑆 − 𝑥)+] = 𝜆
𝑘E[𝑆]
𝑘E[𝑆] E[(𝑘𝑆 − 𝑥)+] = 𝑘𝜌P[𝑘𝑆e > 𝑥] ≤ 𝑘P[𝑘𝑆e > 𝑥] . □

This immediately yields the following bound on the idleness-weighted work transform:

Lemma 3.8. Let 𝜋 be a non-idling policy. For a fixed 𝜀 > 0 and assuming E[𝑒 (𝛾+𝜀 )𝑘𝑆e ] < ∞,

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]

1 − 𝜌
≤ 𝛾 + 𝜀

𝜀

(
𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]

1 − 𝜌

)𝛾/(𝛾+𝜀 )
.

Proof Sketch. The complete proof is in Appendix B. The proof essentially involves some key

observations, and a direct application of the Last Job Lemma (Lemma 3.7). The first observation

is that if 𝐿 = 𝑘 × (size of the largest job in the system), then by definition, E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ] ≤ E[𝐼𝑘𝜋𝑒𝜃𝐿],

so it suffices to find a bound on
E[𝐼𝑘𝜋𝑒𝜃𝐿 ]

1−𝜌 . The second observation is that because E[𝐼𝑘𝜋 ] = 1 − 𝜌

(Lemma A.2), we have
E[𝐼𝑘𝜋𝟙(𝐿>𝑥 ) ]

1−𝜌 = P𝐼 [𝐿 > 𝑥], where P𝐼 [·] represents the probability measure

given by P𝐼 [𝐴] = E[𝐼𝑘𝜋𝐴]
1−𝜌 , for an event 𝐴. Then a Chernoff bound argument applied to the Last Job

Lemma implies

𝑒𝜃𝑥P𝐼 [𝐿 > 𝑥] ≤ min{ 𝑘

1 − 𝜌
E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]𝑒−(𝛾+𝜀 )𝑥𝑒𝜃𝑥 , 𝑒𝜃𝑥 },

after which the conclusion follows from applying the tail integral formula (Lemma A.4) and taking

limits. □
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Now we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. First, we use the fact that 1/𝜌 = E[𝑒𝛾𝑆e ] (Lemma A.1, proof in Appen-

dix A). Therefore, as 𝜌 → 1, we also have 𝛾 → 0, and
1

1−𝜌 =
E[𝑒𝛾𝑆e ]

E[𝑒𝛾𝑆e ]−1 . In particular, since we will be

taking the heavy traffic limit, we can assume that we start at sufficiently high load 𝜌 ′ (respectively,
at 𝛾 ∈ (0, 𝛾 ′]) such that for some 𝜀 > 0, E[𝑒 (𝛾+𝜀 )𝑘𝑆e ] < ∞ for all 𝛾 ∈ (0, 𝛾 ′]. Using Theorem 2.4, we

know that

lim sup

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑊𝜋 ] = lim sup

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑊M/G/1 ]

E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ]

1 − 𝜌

=

(
lim sup

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑊M/G/1 ]

) (
lim sup

𝜃→𝛾

E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ]

1 − 𝜌

)
≤

(
lim sup

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑊M/G/1 ]

) (𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]
1 − 𝜌

)𝛾/(𝛾+𝜀 ) (𝛾 + 𝜀

𝛾

)
(Lemma 3.8)

= C+ [𝑊M/G/1]
(𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]

1 − 𝜌

)𝛾/(𝛾+𝜀 ) (𝛾 + 𝜀

𝜀

)
.

It therefore suffices to show that

lim

𝜌→1

(𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]
1 − 𝜌

)𝛾/(𝛾+𝜀 ) (𝛾 + 𝜀

𝛾

)
= 1.

Rewriting our desired limit in terms of 𝛾—using again that 1/𝜌 = E[𝑒𝛾𝑆𝑒 ] (Lemma A.1):

lim

𝛾→0

(𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]E[𝑒𝛾𝑆e ]
E[𝑒𝛾𝑆e ] − 1

)𝛾/(𝛾+𝜀 ) (𝛾 + 𝜀

𝛾

)
.

We begin by analyzing the first term. Because we are taking 𝛾 → 0 and all terms are positive, we

can bound terms as follows:( 𝑘

E[𝑒𝛾𝑆e ]

)𝛾/(𝛾+𝜀 )
≤

(𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]E[𝑒𝛾𝑆e ]
E[𝑒𝛾𝑆e ] − 1

)𝛾/(𝛾+𝜀 )
≤

(𝑘E[𝑒 (𝛾 ′+𝜀 )𝑆e ]E[𝑒𝛾 ′𝑆e ]
𝛾E[𝑆e]

)𝛾/(𝛾+𝜀 )
,

where

• For the lower bound, we use the fact that 1 ≤ E[𝑒𝛾𝑆e ] ≤ E[𝑒 (𝛾+𝜀 )𝑆e ]. For the denominator, it

is clear that we have increased its value.

• For the upper bound, the numerator uses the fact that E[𝑒𝛾𝑆e ] ≤ E[𝑒𝛾 ′𝑆e ] and E[𝑒 (𝛾+𝜀 )𝑆e ] ≤
E[𝑒 (𝛾 ′+𝜀 )𝑆e ]. The denominator uses the fact that 𝑒𝑥 − 1 ≥ 𝑥 for all 𝑥 ≥ 0.

The numerator in both upper and lower bounds are finite and independent of𝛾 , namely 𝑘𝛾/(𝛾+𝜀 ) → 1

as 𝛾 → 0, and similarly (𝑘E[𝑒 (𝛾 ′+𝜀 )𝑆e ]E[𝑒𝛾 ′𝑆e ])𝛾/(𝛾+𝜀 ) → 1 as 𝛾 → 0.

For the lower bound, it suffices to show that lim𝛾→0

𝛾

𝛾+𝜀 log(1/E[𝑒
𝛾𝑆e ]) = 0. Clearly, the first term

goes to 0, and by monotone convergence, the second term goes to log 1 = 0, as desired. So the lower

bound converges to 1. It now remains for the upper bound to show that lim𝛾→0

𝛾

𝛾+𝜀 log(𝛾E[𝑆e]) = 0.

This can be rewritten as
𝛾

𝛾+𝜀 log𝛾 + 𝛾

𝛾+𝜀 log E[𝑆e]. Clearly, the second term converges to 0. The first

term, by L’Hôpital’s rule, also converges to 0. Therefore, both lower and upper bounds converge

to 1 in the 𝛾 → 0 limit. Finally, (𝛾 + 𝜀)/𝜀 → 1 as 𝛾 → 0, so the entire limit converges to 1. □

3.3 Proof of Heavy-Traffic Optimality
Having bounded the effects of idleness in Sections 3.1 and 3.2, we are now ready to prove our main

result, that 𝛾-Boost is heavy-traffic optimal in the M/G/𝑘 . To proceed, we first need to confirm
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a technical assumption for 𝛾-Boost, namely that E[𝑒𝛾𝑘𝑉 (∞) ] is finite. Specifically, we show the

following:

Lemma 3.9. Let 𝑢 ∈ ℝ+ ∪ {∞}. Then for 𝛾-Boost, if E[𝑒𝛾𝑘𝑆 ] < ∞, then

E[𝑒𝛾𝑘𝑉 (𝑢 ) ] = exp(𝜆E[(𝑒𝛾𝑘𝑆 − 1)min{𝐵,𝑢}]) < ∞.

Proof. We consider each new arrival as a triple (𝑏, 𝑠, 𝑡), as in [49, Lemma 3.5], and let 𝑋 corre-

spond to the set of random triples arriving after time 0, so that

𝑉 (𝑢) =
∑︁

(𝑏,𝑠,𝑡 ) ∈𝑋
𝑠𝟙(𝑡 ≤ min{𝑏,𝑢}) .

Then,𝑘𝑉 (𝑢) = ∑
(𝑏,𝑠,𝑡 ) ∈𝑋 𝑘𝑠𝟙(𝑡 ≤ min{𝑏,𝑢}). To compute E[𝑒𝛾𝑘𝑉 (𝑢 ) ], we apply Campbell’s theorem

[31, Section 3.2], which implies that

E[𝑒𝛾𝑘𝑉 (𝑢 ) ] = exp(𝜆E[(𝑒𝛾𝑘𝑆 − 1)min{𝐵,𝑢}]),

so long as the RHS is finite. For 𝛾-Boost, we will show this is indeed the case. It suffices to show

that 𝜆E[(𝑒𝛾𝑘𝑆 − 1)min{𝐵,𝑢}] is finite. We have:

𝜆E[(𝑒𝛾𝑘𝑆 − 1)min{𝐵,𝑢}] ≤ 𝜆E[(𝑒𝛾𝑘𝑆 − 1) 1
𝛾
log

( 𝑒𝛾𝑆

𝑒𝛾𝑆 − 1

)
] (Equation (2.5))

=
𝜆

𝛾
E[(𝑒𝛾𝑘𝑆 − 1) log

( 𝑒𝛾𝑆

𝑒𝛾𝑆 − 1

)
] .

Recalling that 𝑥 log 𝑥+1
𝑥

≤ 1, which implies that log
𝑥+1
𝑥

≤ 1/𝑥 , for all 𝑥 > 0, we have:

𝜆

𝛾
E[log

( 𝑒𝛾𝑆

𝑒𝛾𝑆 − 1

)
(𝑒𝛾𝑘𝑆 − 1)] ≤ 𝜆

𝛾
E[(𝑒𝛾𝑘𝑆 − 1)/(𝑒𝛾𝑆 − 1)] .

Finally, we only need observe that E[(𝑒𝛾𝑘𝑆 − 1)/(𝑒𝛾𝑆 − 1)] = ∑𝑘−1
𝑖=0 E[𝑒𝛾𝑖𝑆 ]. Since E[𝑒𝛾𝑘𝑆 ] < ∞, each

term in the sum is finite, so our expression is finite, as desired. □

Lemma 3.10. Under 𝛾-Boost,

lim

𝜌→1

E[𝑒𝛾 (𝑘𝑆−𝐵) ]
E[𝑒𝛾 (𝑆−𝐵) ]

= 1.
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Proof. Since 1/𝜌 = E[𝑒𝛾𝑆e ] (Lemma A.1), as 𝜌 → 1, we have 𝛾 → 0. Then it suffices to show

lim

𝛾→0

E[𝑒𝛾 (𝑘𝑆−𝐵) ]
E[𝑒𝛾 (𝑆−𝐵) ]

= lim

𝛾→0

E[𝑒𝛾𝑘𝑆 𝑒𝛾𝑆−1
𝑒𝛾𝑆

]
E[𝑒𝛾𝑆 − 1]

(Equation (2.5))

= lim

𝛾→0

E[𝑒𝛾 (𝑘−1)𝑆 (𝑒𝛾𝑆 − 1)]
E[𝑒𝛾𝑆 − 1]

= lim

𝛾→0

E[𝑒𝛾 (𝑘−1)𝑆 (𝑒𝛾𝑆 − 1)]/𝛾
E[𝑒𝛾𝑆 − 1]/𝛾

=
E[lim𝛾→0 𝑒

𝛾 (𝑘−1)𝑆 (𝑒𝛾𝑆 − 1)/𝛾]
E[lim𝛾→0 (𝑒𝛾𝑆 − 1)/𝛾]

(Monotone convergence)

=
E[lim𝛾→0 𝑒

𝛾𝑘𝑆/𝛾 − 𝑒𝛾 (𝑘−1)𝑆/𝛾]
E[lim𝛾→0 (𝑒𝛾𝑆 − 1)/𝛾]

=
E[lim𝛾→0 𝑘𝑆 + 𝑜 (𝛾)/𝛾 − (𝑘 − 1)𝑆 − 𝑜 (𝛾)/𝛾]

E[lim𝛾→0 𝑆 + 𝑜 (𝛾)/𝛾]
= E[𝑆]/E[𝑆] = 1.

The use of monotone convergence theorem is valid because
𝑒𝛾𝑆−1

𝛾
and 𝑒𝛾 (𝑘−1)𝑆 are both positive

and increasing in 𝛾 . □

Proof of Theorem 3.1. One can take any policy in the M/G/𝑘 and run it in the M/G/1. Because

𝛾-Boost is optimal in the M/G/1 across all policies [49], this implies that any policy in the M/G/𝑘

has tail constant at best equal to that of C+ [𝑇 1

𝛾 -Boost
]. In particular, we know that for all 𝜌 ,

C+ [𝑇𝑘
𝛾 -Boost

]
C+ [𝑊M/G/1]E[𝑒𝛾 (𝑆−𝐵) ]E[𝑒𝛾𝑉 (∞) ]

≥ 1,

where the denominator comes from [49, Theorem 3.1]. Therefore, it suffices to show that

lim

𝜌→1

C+ [𝑇𝑘
𝛾 -Boost

]
C+ [𝑊M/G/1]E[𝑒𝛾 (𝑆−𝐵) ]E[𝑒𝛾𝑉 (∞) ]

≤ 1.

Since 1/𝜌 = E[𝑒𝛾𝑆e ] (Lemma A.1), as we take 𝜌 → 1, we have 𝛾 → 0. Then, for sufficiently high

load 𝜌 ∈ (𝜌 ′, 1), because the job size distribution is class I, we can assume that E[𝑒𝛾𝑘𝑆 ] < ∞ and,

since E[𝑒𝜃𝑆e ] = E[𝑒𝜃𝑆 ]−1
𝛾E[𝑆 ] [24, Chapter 25], that there exists 𝜀 > 0 such that E[𝑒 (𝛾+𝜀 )𝑘𝑆e ] < ∞. Under

these assumptions, Lemma 3.8 implies that

E[𝐼𝑘
𝛾 -Boost

𝑒
𝛾𝑊𝑘

𝛾 -Boost ]
1−𝜌 is bounded, and Lemma 3.9 implies

that E[𝑒𝛾𝑘𝑉 (∞) ] < ∞, so we can apply Theorem 3.3 to get:

C+ [𝑇𝑘
𝛾 -Boost] ≤ C+ [𝑊M/G/1]

E[𝐼𝑘
𝛾 -Boost

𝑒
𝛾𝑊 𝑘

𝛾 -Boost ]
1 − 𝜌

E[𝑒𝛾 (𝑘𝑆−𝐵) ]E[𝑒𝛾𝑉 (∞) ] .

Therefore, it suffices to show that

lim

𝜌→1

C+ [𝑊M/G/1]
E[𝐼𝑘

𝛾 -Boost
𝑒
𝛾𝑊𝑘

𝛾 -Boost ]
1−𝜌

C+ [𝑊M/G/1]
≤ 1, lim

𝜌→1

E[𝑒𝛾 (𝑘𝑆−𝐵) ]
E[𝑒𝛾 (𝑆−𝐵) ]

≤ 1.
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The first inequality follows immediately from the fact that 𝛾-Boost is a non-idling policy, so

Theorem 2.4 implies that the numerator is C̃+ [𝑊 𝑘
𝛾 -Boost

] and Theorem 3.6 implies the desired

inequality. The second inequality follows immediately from Lemma 3.10. □

4 Heavy-Traffic Optimality for Unknown Sizes
In this section we prove that 𝛾-Surrogate is heavy-traffic optimal in the M/G/𝑘 where job sizes are

unknown. Since we are considering the 𝛾-Surrogate policy, we use the system model introduced by

Harlev et al. [25], who introduced it, but extend it to the M/G/𝑘 setting. In particular, this means

that the system model in this section is the same as the one used throughout this paper except for

the following changes:

• Service is quantized, and we let the service quantum be length 1 without loss of generality.
7

(The arrival process remains continuous.)

• Jobs are modeled as independent absorbing discrete-time Markov chains with countable state

space. When a job is served, its state advances once per unit of service, and the job completes

when it enters the unique absorbing state. The intuition is that a job’s state encodes all the

information the scheduler has about the job.

• Scheduling policies must be non-clairvoyant. That is, they must choose which job’s to serve

using only the information available at the time, which is each job’s state trajectory up to its

current state.

In this setting, boost policies assign each job’s boost based on its trajectory rather than its size.

This means that a job’s boost can change with service, which does not happen in the known size

model. If a job’s boosted arrival time exceeds that of a job in the queue, the boost policy will

preempt it and replace it with the job in the queue.

Harlev et al. [25] introduced three boost policies and proved that they are tail constant optimal

in the M/G/1 among all non-clairvoyant policies. We extend this result by showing that one of

these policies, 𝛾-Surrogate, is also heavy-traffic optimal in the M/G/𝑘 , using the same approach as

in the known-size setting. To define the three policies we introduce the following notation:

• We write 𝑋𝑢 for the random state of the job after 𝑢 units of service.

• We denote a job’s trajectory during its first 𝑢 units of service as 𝑋0:𝑢 = (𝑋0, 𝑋1, . . . , 𝑋𝑢).
• We let 𝑆 represent a job’s size, which is the hitting time of the unique absorbing state.

The three policies are the following:

• The 𝛾-Gittins boost policy has boost function

𝑏𝛾 -Gittins (𝑋0:𝑢) =
1

𝛾
log Γ𝛾 (𝑋𝑢) +

1

𝛾
log

𝑒𝛾

𝑒𝛾 − 1

.

Here 𝛾 is the same solution to (2.2) as in the known-size model, Γ𝛾 (𝑥) is a variant of the

Gittins index [11, 12] and defined in the appendix (Definition D.1), and the
1

𝛾
log

𝑒𝛾

𝑒𝛾 −1 term is

added by convention to ensure boosts are nonnegative.

• The 𝛾-Surrogate boost policy is a version of 𝛾-Gittins with decreasing boost function:

𝑏𝛾 -Surrogate (𝑋0:𝑢) = min

𝑡 ∈{0,...,𝑢}
𝑏𝛾 -Gittins (𝑋0:𝑡 ) .

7
One can rescale time to study arbitrarily small service quanta. We study quantized service because this is what Harlev et al.

[25] study, who in turn make this choice for purely technical reasons: prior work on the Gittins index in continuous time

[4, 29, 30, 35] treats the traditional case of time-discounted rewards, whereas the Gittins index developed by Harlev et al.

[25] is for time-inflated costs.
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• The 𝛾-Insulated boost policy is a “minimally preemptive” version of 𝛾-Gittins:

𝑏𝛾 -Insulated (𝑋0:𝑢) =
{
𝑏𝛾 -Gittins (𝑋0:𝑢) if 𝑏𝛾 -Gittins (𝑋0:𝑢) = 𝑏𝛾 -Surrogate (𝑋0:𝑢)
∞ otherwise.

4.1 Proving Heavy-Traffic Optimality of 𝜸-Surrogate in the M/G/𝒌
We will follow the approach of Section 3 to prove heavy-traffic optimality of 𝛾-Surrogate in the

M/G/𝑘 .8 In particular, we prove an analog of Theorem 3.1 for the unknown-size setting.

Theorem 4.1. For an M/G/𝑘 with class I job size distribution, 𝛾-Surrogate is optimal in the heavy
traffic limit:

lim

𝜌→1

C+ [𝑇𝑘
𝛾 -Surrogate

]
C+ [𝑇 1

𝛾 -Surrogate
]
≤ lim

𝜌→1

C+ [𝑊M/G/1]
E[𝐼𝑘

𝛾 -Surrogate
𝑒
𝛾𝑊𝑘

𝛾 -Surrogate ]
1−𝜌 E[𝑒𝛾 (𝑘𝑆−𝐵) ]E[𝑒𝛾𝑉 (0,∞) ]

C+ [𝑊M/G/1]E[𝑒𝛾 (𝑆−𝐵) ]E[𝑒𝛾𝑉 (0,∞) ]
= 1,

where the numerator is an upper bound on the tail constant of 𝛾-Surrogate in the M/G/𝑘 , and the
denominator is the tail constant of 𝛾-Surrogate in the M/G/1.

While this looks notationally almost identical to the statement of Theorem 3.1, it is important

to note that both the boost term, 𝐵, and the crossing work term, 𝑉 (0,∞), are defined differently

than their known-size setting counterparts. They do, however, capture the same ideas, adjusted

appropriately for the new setting:

• The boost term, 𝐵, represents the worst-ever boost experienced by a job under a boost policy

𝜋 , and is defined as 𝐵 = min𝑡 ∈{0,...,𝑆 } 𝑏𝜋 (𝑋0:𝑡 ). The intuition for why this quantity appears

is that it determines the worst priority a job gets prior to completion, and thus determines

which other work will eventually be prioritized over a job.

• The crossing work term, 𝑉 (0,∞), is similar to the crossing work in the known-size setting

(Notation 3.2(c)), but it is now possible for only certain parts of each arriving job to be

included in the crossing work.

To prove Theorem 4.1, we replicate the proof of Theorem 3.1, reusing results from the known-size

setting when possible, and otherwise proving analogues for the unknown-size setting. Since the

ideas are the same, we present only an outline with a sketch of the proofs, and then present a

complete proof in Appendix D.

Note that Theorem 3.6 and Lemma 3.8 hold for all non-idling policies, including 𝛾-Gittins, 𝛾-

Surrogate, and 𝛾-Insulated. The external result used in the proof Theorem 3.1 is [49, Theorem 3.1]

which has a direct analogue in the unknown-size setting, [25, Theorem 4.11]. The only other policy

specific results used in the proof of Theorem 3.1 are Theorem 3.3 and Lemmas 3.9 and 3.10:

• An analogue of Theorem 3.3 follows from considering the worst boosted arrival time of

a tagged job and then carefully checking that each step of the proof still holds for the

unknown-size setting definition of crossing work.

• An analogue of Lemma 3.9 follows almost immediately from the fact that boost is uniformly

bounded in the unknown-size setting due to the service quantization, and so it is impossible

for a job that arrives far in the future to affect the crossing work. See Lemma D.6.

• We prove an analogue of Lemma 3.10 in Lemma D.8. Just as in the known-size setting we

expand the boost term using its definition and then interchange the limit and the expectation

to get the desired result. Justifying the interchange in the unknown-size setting requires

8
Our results in the unknown-size setting extend specifically to 𝛾-Surrogate and not the other two policies introduced in

Harlev et al. [25], 𝛾 -Gittins and 𝛾 -Insulated. This is because, as discussed in [45, Appendix A], nonmonotonic rank functions

are difficult to analyze in the multiserver setting.
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Fig. 5.1. (Lower is better.) 𝛾-Boost’s heavy-traffic performance for 𝑘 = 10 servers and different job size
distributions. We plot the Tail Performance Gap (TPG) against several loads and percentiles. Namely, let 𝑡1𝑞
denote the 𝑞th percentile response time of 𝛾-Boost in the M/G/1 and 𝑡𝑘𝑞 denote the 𝑞th percentile response

time of 𝛾-Boost in the M/G/𝑘 . Then the TPG at the 𝑞th percentile for load 𝜌 is given by 1 − 𝑡1𝑞/𝑡𝑘𝑞 . As load
increases to 1, we would therefore expect the gap to go to 0 at higher percentiles. To compute values, we
run all simulations with load below 0.975 with 200 million samples, and all simulations with load 0.975 and
above with 2 billion samples. The job size distributions, from left to right, are Exp(1), Hyperexponential with
branches drawn from Exp(2) and Exp(3) and first branch probability 0.8, and Uniform(0, 2).

proving that E[sup
0≤𝑖<𝑆 E[𝑆 | 𝑋0:𝑖 ]] < ∞, and then using the dominated convergence

theorem. We prove this in Lemma D.11 using classical martingale results.

With these analogues in hand, the proof of Theorem 4.1 is identical to that of Theorem 3.1.

5 Simulations
We have shown that in the heavy-traffic regime, 𝛾-Boost is tail constant optimal among all policies

and 𝛾-Surrogate is tail constant optimal in the unknown size setting. Our results are asymptotic in

nature, so the question of whether 𝛾-Boost and 𝛾-Surrogate perform well outside of this regime

remains open. Analyzing scheduling policies theoretically in the multiserver setting outside of the

heavy-traffic regime is difficult [16], so we perform an empirical study with simulations. For mean

response times, SRPT, which is heavy-traffic optimal, is still among the best performing policies

outside of the heavy-traffic regime [16, 18], so one would hope that the same would hold for tails.

Surprisingly, our simulations show this is not the case; 𝛾-Boost can often perform poorly even

compared to FCFS. Specifically, we study the performance of policies in the following regimes.

These are not formal definitions, but roughly characterize system behaviors that we have seen:

• The heavy-traffic regime, i.e. in the 𝜌 → 1 limit.

• The low-load regime. In this case, the M/G/𝑘 almost always has free servers, so one can think

of the system as acting like an M/G/∞, where each server has speed 1/𝑘 .
• The moderate load regime, which falls between the low-load and heavy-traffic regimes.

As we see in Section 5.3, where each regime begins and ends will depend on system details, such as

the number of servers.

5.1 Heavy Traffic Performance
In Fig. 5.1, we evaluate the performance of 𝛾-Boost as 𝜌 → 1. Namely, we compare the tail

performance in the M/G/𝑘 against its performance in the M/G/1. Our theory predicts that as load

increases, performance in the M/G/𝑘 should approach performance in the M/G/1. We see that at
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Fig. 5.2. (Lower is better.) 𝛾-Gittins’s heavy-traffic
performance for 𝑘 = 10 servers. We plot the Tail
Performance Gap (TPG) against several loads and
percentiles. For unknown sizes, the TPG at the
𝑞th percentile for load 𝜌 is given by 1 − 𝑡1𝑞/𝑡𝑘𝑞 ,
where 𝑡1𝑞 denotes the 𝑞th percentile response time

of 𝛾-Gittins in the M/G/1 and 𝑡𝑘𝑞 denotes the 𝑞th
percentile response time in the M/G/𝑘 . We run all
simulations with load below 0.975 with 200 mil-
lion samples, and all simulations with load 0.975

and above with 2 billion samples. The job size dis-
tribution is Unif{10, 60, 140, 2700}. As computing
boost changes at every timestep would be compu-
tationally expensive, we use an insulated variant
of 𝛾-Gittins for simulation.

0 10000 20000 30000 40000 50000 60000 70000 80000
Latency Threshold

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ta
il 

Im
pr

ov
em

en
t R

at
io

10-60-140-2700, 10 Servers, Load 0.8

FCFS
-Gittins

M/G/1 -Gittins

90th Percentile
99th Percentile
99.9th Percentile
99.99th Percentile

Fig. 5.3. (Higher is better.)𝛾-Gittins’s performance
in the low-load regime. Similar to 𝛾-Boost, 𝛾-
Gittins significantly underperforms FCFS in this
regime. We plot the Tail Improvement Ratio (TIR)
against thresholds 𝑡 . The TIR of a policy 𝜋 is given
by 1 − P[𝑇𝜋 > 𝑡]/P[𝑇FCFS > 𝑡]. Simulations are
run using 200 million jobs. The job size distribu-
tion is Unif{10, 60, 140, 2700}. As computing boost
changes at every timestep would be computation-
ally expensive, we use an insulated variant of 𝛾-
Gittins for simulation.

low loads, 𝛾-Boost’s performance in the M/G/𝑘 can be far from M/G/1 optimal, but at higher and

higher loads, as our theory suggests, performance in the M/G/𝑘 converges to performance in the

M/G/1. This suggests that in heavy traffic, scheduling with 𝛾-Boost leads to the best achievable

performance for the tail. We perform a similar evaluation in Fig. 5.2 when sizes are unknown, with

similar results.

5.2 What Happens Outside of Heavy Traffic?
Outside of heavy traffic, the question of what to do for the tail becomes more complicated. In

particular, under both the low-load and moderate-load regimes, we find that 𝛾-Boost’s performance

suffers. The degradation can be large: as Fig. 5.4 shows, 𝛾-Boost can significantly underperform
FCFS outside the heavy-traffic regime. Figure 5.3 shows that 𝛾-Gittins experiences a similar such

degradation outside the heavy-traffic regime, relative to FCFS.

5.2.1 Hypotheses for Poor 𝛾-Boost Performance. Why might 𝛾-Boost underperform? There are

several reasons this might be the case. The first has to do with jobs receiving implicit prioritization

due to the service mechanics of an M/G/𝑘 system. Namely, jobs can enter service before work with

priority over them completes, i.e., they receive some extra priority due to how server resources are

partitioned in an M/G/𝑘 . Yu and Scully [49, Section 6.4] have observed that boosts which are too

aggressive can lead to degraded tail performance, so if a similar over-prioritization is occurring

here, it could negatively impact performance in the M/G/𝑘 .
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Another factor that may arise in lower load settings is that of job packing; namely, that we may

want to pack jobs so that they finish with a smaller makespan. Consider an example where we have 2

servers and a batch of three jobs, of size 1, 1, and 2, which have arrival times −2,−1,−0, respectively.
Recall that with a single server, the rough intuition behind 𝛾-Boost is that it attempts to minimize

the exponential cost E[𝑒𝛾𝑇 ],9 which for this batch, is equivalent to minimizing:

∑
3

𝑖=1 𝑒
𝛾 (𝑑𝑖−𝑎𝑖 )

. With

multiple servers, this is no longer the case. The boosted arrival times of these jobs would suggest

serving both size 1 jobs, followed by the size 2 job. Because our servers run at speed 1/2, the
two size 1 jobs finish at time 2 and the size 2 job finishes at time 6. The cost of this schedule is

𝑒𝛾 (2−(−2) ) + 𝑒𝛾 (2−(−1) ) + 𝑒𝛾 (6−0) = 𝑒4𝛾 + 𝑒3𝛾 + 𝑒6𝛾 . We would do better, however, by prioritizing the

larger job in this case: by serving jobs 1 and 3 first, then serving job 2 once job 1 finishes, we obtain

a schedule with cost 𝑒𝛾 (2−(−2) ) + 𝑒𝛾 (4−(−1) ) + 𝑒𝛾 (4−0) = 𝑒4𝛾 + 𝑒5𝛾 + 𝑒4𝛾 . The difference between the

two schedules is 𝑒3𝛾 + 𝑒6𝛾 − (𝑒4𝛾 + 𝑒5𝛾 ), which is positive for all 𝛾 > 0.

5.2.2 Corrective Boosting with 𝛾-CombinedBoost. These factors suggest that we might try and com-

pensate by corrective boosting: that is, boosting larger jobs more than small jobs. Namely, we consider

the 𝛾-CombinedBoost function, which combines 𝛾-Boost with the corrective SizeBoost function:

𝑏SizeBoost (𝑠) = (𝑘 − 1)𝑠, 𝑏𝛾 -CombinedBoost (𝑠) = 𝑏𝛾 -Boost (𝑠) + 𝑏SizeBoost (𝑠).

The corrective (𝑘 − 1)𝑠 term gives large jobs more priority than small jobs. The choice of 𝑘 − 1 is

somewhat arbitrary, but means that 𝛾-CombinedBoost naturally reduces to 𝛾-Boost when 𝑘 = 1. It

turns out that 𝛾-CombinedBoost is also heavy-traffic optimal. We give the proof in Appendix F. It

is almost identical to that of Theorem 3.1, with one key difference: in Theorem 3.1, 𝛾-Boost has

crossing work term (Notation 3.2(c)) identical to that of M/G/1 𝛾-Boost, in exchange for an altered

boosting term, E[𝑒𝛾 (𝑘𝑆−𝐵) ]. The effect of the corrective boost in 𝛾-CombinedBoost is to instead

preserve the boosting term, in exchange for additional crossing work. Intuitively, at lower loads,

one would expect the amount of crossing work jobs experience to be lower, so the effects of other

terms might be more dominant.

Empirically, 𝛾-CombinedBoost performs well at all load regimes we study. At low loads, the

SizeBoost term dominates the 𝛾-Boost term, and vice versa at high loads. We can see this in Fig. 5.4:

• In the low-load regime (left column), 𝛾-CombinedBoost’s performance is similar to that of

SizeBoost’s performance. For the unbounded distributions,
10
it actually approaches that of

the M/G/∞ with speed 1/𝑘 servers, which provides a bound on how well any policy can do

in the M/G/𝑘 .

• In the high-load regime (right column), 𝛾-CombinedBoost’s performance mirrors that of

𝛾-Boost. This makes sense, as both policies are heavy-traffic optimal, and so will converge to

the performance of M/G/1 𝛾-Boost.

• Finally, at moderate load (middle column), neither𝛾-Boost nor SizeBoost alone can outperform

FCFS. 𝛾-CombinedBoost, on the other hand, is able to achieve a performance improvement

in all settings.

In summary, 𝛾-CombinedBoost seems to not only obtain the best of both worlds in the light-

and heavy-load regimes, but also exhibits performance that is more than the sum of its parts in

moderate load, outperforming FCFS where neither of its constituent boost functions alone produces

an improvement.

9
This is of course only an informal statement, as E[𝑒𝛾𝑇𝜋 ] = ∞, but for a finite batch, it captures the right scheduling

decisions. See [49, Section 1.5 and Section 4] for full details.

10
For bounded distributions, such as the uniform distribution, the M/G/∞ effectively has P[𝑇 > 𝑠max ] = 0, so one should

not expect policies to be able to match its performance.
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Fig. 5.4. (Higher is better.) Plot of performance of policies for 𝑘 = 10 servers for different load regimes and
job size distributions. We plot the Tail Improvement Ratio (TIR) of policies against thresholds 𝑡 . The TIR of
a policy 𝜋 is given by TIR(𝑡) = 1 − P[𝑇𝜋 > 𝑡]/P[𝑇FCFS > 𝑡], where higher TIR means better performance.
Simulations are run using 200 million jobs for loads 0.8 and load 0.95. For load 0.99, we run 2 billion jobs
for convergence. The job size distributions are, from top row to bottom row, Exp(1), Hyperexponential with
branches drawn from Exp(2) and Exp(1/3) and first branch probability 0.8, and Uniform(0, 2).

5.3 The Effect of More Servers
We run simulations under many more servers (𝑘 = 100), with results in Fig. 5.5. We find that, with

this number of servers, there are still three different load regimes, but the thresholds at which those

regimes change is different than that of the 𝑘 = 10 server setting. Namely, we find that the low-load

regime ends at much higher load than it did for 𝑘 = 10 servers. In Fig. 5.5, even at load 0.975,

our policies exhibit the same qualities as they did at load 0.8 for 10 servers:11 𝛾-Boost performs

poorly, while SizeBoost performs well, as does 𝛾-CombinedBoost. At load 0.99, where 𝛾-Boost used

to perform well for 𝑘 = 10 servers, it now performs poorly. The heavy-traffic regime kicks in at

load 0.999, and we see that 𝛾-Boost and 𝛾-CombinedBoost approach the performance of M/G/1

𝛾-Boost, as theory predicts.

11
In particular, we omit the plot at load 0.8 for 𝑘 = 100 as the difference in performance across policies is negligible.
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Fig. 5.5. (Higher is better.) Plot of performance of policies for 𝑘 = 100 servers for different load regimes and job
size distributions. The tail improvement ratio is as defined in Fig. 5.4. Simulations are run using 2 billion jobs
for all loads. The job size distribution is Hyperexponential with branches drawn from Exp(2) and Exp(1/3)
with first branch probability 0.8.

5.4 Is There Still Room For Improvement?
Our experiments from Section 5.2 suggest that using 𝛾-CombinedBoost works well at all loads. A

natural question to ask is the following: how much additional room for improvement is there? In

Fig. 1.1, we present early experiments that suggest that additional improvements may be difficult

to achieve. Due to computational requirements, however, we are only able to obtain results under

limited samples, likely before convergence.

Recall that in the single-server setting, the key idea for𝛾-Boost comes from solving a deterministic

scheduling problem [49, Section 4]. In the single server-setting, this problem can be solved easily by

scheduling in boosted arrival time order under 𝛾-Boost. In the multiserver setting, this scheduling

problem becomes a mixed-integer nonlinear program that does not, to the best of our knowledge,

have a simple solution. We can, however, attempt to optimize the objective function numerically.

We do so using Gurobi [22], solving for the optimal nonpreemptive schedule of all jobs in the

system on every new arrival. Our formulation is detailed in Appendix E. Because Gurobi is so

computationally expensive, we are only able to obtain limited samples. From these samples, we

observe in Fig. 1.1 that, despite 𝛾-CombinedBoost’s relative simplicity, it achieves performance

roughly equivalent to scheduling according to solutions found by Gurobi. Because we have only

limited samples, we leave a more detailed study of mathematical-programming-powered scheduling

to future work.

6 Conclusion
In this work, we analyze how to optimize the tail of response time via scheduling in the M/G/𝑘

queueing model. We show that 𝛾-Boost is tail constant optimal in the heavy-traffic limit; however,

we also find that empirically, unlike for mean response time, good heavy-traffic performance is

insufficient as a proxy for good performance at different loads. In particular,𝛾-Boost can significantly

underperform FCFS at lighter loads. We take the first steps towards closing this gap with a new

state-of-the-art scheduling policy, 𝛾-CombinedBoost, which is theoretically heavy-traffic optimal,

demonstrates state-of-the-art empirical performance at lighter loads. Our findings suggest some

interesting questions to explore for future work.

For practitioners, the most immediate next step would be a more comprehensive empirical study.

While FCFS already optimizes the decay rate, the additional improvements from optimizing the tail
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constant can still be important. Yu and Scully [49] showed in the single server case that empirically,

𝛾-Boost improves over FCFS for many common distributions, across all thresholds 𝑡 , not just large

ones. In the multiserver setting, our experiments in Section 5 are a first step towards quantifying

what performance improvements are possible, but our exploration across server scales, distributions,

and loads are far from a complete picture of multiserver tail scheduling. A more detailed study

of Gurobi’s performance would also help better quantify how much improvement is left on the

table. Another practical consideration would be to reexamine the single-central-queue assumption,

studying systems that combine immediate dispatching with scheduling.

On the theoretical side, all of our results are upper bounds, and we generally expect them to

only be tight in heavy traffic. Whether one can prove complementary lower bounds remains open.

We conjecture that one can prove lower bounds that match our Theorem 3.3 in heavy traffic.

However, this is nontrivial even for FCFS, the simplest special case of Boost: existing results either

show the existence of a tail constant without characterizing it [39, 41], or they show heavy-traffic

distributional limit theorems that are a limit interchange away from characterizing the tail constant

[32]. We suspect the techniques of Jhunjhunwala et al. [28] for the M/M/𝑘 could be extended to

handle the FCFS case. Another avenue of exploration would be to study the behavior of 𝛾-Boost

and 𝛾-CombinedBoost under different asymptotic regimes. In particular, understanding how 𝛾-

CombinedBoost and 𝛾-Boost behave differently under regimes such as the Halfin-Whitt scaling

[23] could provide new insight into the correct design decisions for multiserver tail scheduling.
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A Miscellaneous proofs
Lemma A.1. The decay rate 𝛾 satisfies 1/𝜌 = E[𝑒𝛾𝑆e ].

Proof. Since the job size distribution is class I, we have E[𝑒𝛾𝑆e ] =
E[𝑒𝛾𝑆 ]−1
𝛾E[𝑆 ] [24, Chapter 25].

Then this follows immediately from (2.2). □

Lemma A.2. For any non-idling scheduling policy 𝜋 in the M/G/𝑘 ,

E[𝐼𝑘𝜋 ] = 1 − 𝜌.

Proof. We apply Miyazawa’s rate conservation law [38] to 𝑊 . Work is done continuously

whenever available, at rate 1/𝑘 for each occupied server. Therefore, by the definition of 𝐼𝑘𝜋 , the

average continuous change from work being completed is E[−1 + 𝐼𝑘𝜋 ]. The rate conservation law

gives

E[−1 + 𝐼𝑘𝜋 ] + 𝜆E[(𝑊 + 𝑆) −𝑊 ] = 0,

so, recognizing that 𝜌 = 𝜆E[𝑆] and rearranging yields the desired result. □

Lemma A.3. For any random variable 𝑋 ≥ 0,

C− [𝑋 ] ≤ C̃− [𝑋 ] ≤ C̃+ [𝑋 ] ≤ C+ [𝑋 ] .

Proof. First, we show that C̃+ [𝑋 ] ≤ C+ [𝑋 ]. By the definition of lim sup, for any 𝛿 > 0, there

exists𝑚𝛿 > 0 s/t C+ [𝑋 ] + 𝛿 > 𝑒𝛾𝑡P[𝑋 > 𝑡] for all 𝑡 > 𝑚𝛿 . Therefore, fixing a 𝛿 > 0 and applying
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the tail integral formula (Lemma A.4) yields

𝜀E[𝑒 (𝛾−𝜀 )𝑋 − 1]
𝛾 − 𝜀

= 𝜀

∫ ∞

0

P[𝑋 > 𝑡]𝑒 (𝛾−𝜀 )𝑡 d𝑡

≤ 𝜀
𝑒 (𝛾−𝜀 )𝑚𝛿 − 1

𝛾 − 𝜀
+ 𝜀

∫ ∞

𝑚𝛿

(C+ [𝑋 ] + 𝛿)𝑒−𝜀𝑡 d𝑡

= 𝜀
𝑒 (𝛾−𝜀 )𝑚𝛿 − 1

𝛾 − 𝜀
+ (C+ [𝑋 ] + 𝛿)𝑒−𝜀𝑚𝛿 .

Taking the lim sup as 𝜀 → 0 on both sides yields

C̃+ [𝑋 ] ≤ C+ [𝑋 ] + 𝛿,

and since our choice of 𝛿 > 0 was arbitrary, we have C̃+ [𝑋 ] ≤ C+ [𝑋 ], as desired.
Next, we show that C− [𝑋 ] ≤ C̃− [𝑋 ]. By the definition of lim inf, for any 𝛿 > 0, there exists

𝑚𝛿 > 0 s/t C− [𝑋 ] − 𝛿 < 𝑒𝛾𝑡P[𝑋 > 𝑡] for all 𝑡 > 𝑚𝛿 . Therefore, fixing a 𝛿 > 0 and applying the tail

integral formula (Lemma A.4) yields:

𝜀E[𝑒 (𝛾−𝜀 )𝑋 − 1]
𝛾 − 𝜀

= 𝜀

∫ ∞

0

P[𝑋 > 𝑡]𝑒 (𝛾−𝜀 )𝑡 d𝑡

≥ 𝜀

∫ ∞

𝑚𝛿

(C− [𝑋 ] − 𝛿)𝑒−𝜀𝑡 d𝑡

= (C− [𝑋 ] − 𝛿)𝑒−𝜀𝑚𝛿 ,

and taking the lim inf as 𝜀 → 0 on both sides yields

C̃− [𝑋 ] ≥ C− [𝑋 ] − 𝛿,

and since our choice of 𝛿 > 0 was arbitrary, we have C̃− [𝑋 ] ≥ C− [𝑋 ], as desired. Finally, C̃− [𝑋 ] ≤
C̃+ [𝑋 ] is immediate from the definitions of lim inf and lim sup. □

Lemma A.4 (Tail Integral Formula). Let 𝑋 be a nonnegative random variable and 𝑓 : [0,∞) →
[0,∞) be an increasing differentiable function, i.e. 𝑓 ′ (𝑡) ≥ 0 for all 𝑡 ≥ 0. Then

E[𝑓 (𝑋 )] = 𝑓 (0) +
∫ ∞

0

𝑓 ′ (𝑡) P[𝑋 > 𝑡] d𝑡 .

Proof. We can write 𝑓 (𝑥) as

𝑓 (𝑥) = 𝑓 (0) +
∫ ∞

0

𝑓 ′ (𝑡) 𝟙(𝑡 < 𝑥) d𝑡,

from which we get

E[𝑓 (𝑋 )] = 𝑓 (0) + E
[∫ ∞

0

𝑓 ′ (𝑡) 𝟙(𝑡 < 𝑋 ) d𝑡
]

= 𝑓 (0) +
∫ ∞

0

E[𝑓 ′ (𝑡) 𝟙(𝑡 < 𝑋 )] d𝑡

= 𝑓 (0) +
∫ ∞

0

𝑓 ′ (𝑡) P[𝑋 > 𝑡] d𝑡,

where the interchange of integral and expectation is justified by Tonelli’s theorem. □
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B Proofs for Results on Wasted Work
Lemma 3.8. Let 𝜋 be a non-idling policy. For a fixed 𝜀 > 0 and assuming E[𝑒 (𝛾+𝜀 )𝑘𝑆e ] < ∞,

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]

1 − 𝜌
≤ 𝛾 + 𝜀

𝜀

(
𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]

1 − 𝜌

)𝛾/(𝛾+𝜀 )
.

Proof. First, observe that E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ] ≤ E[𝐼𝑘𝜋𝑒𝛾𝐿], where 𝐿 is 𝑘 × (max job size in the system).

This is because both terms are 0 when 𝐼𝑘𝜋 = 0, and 𝐿 ≥𝑊 𝑘
𝜋 whenever 𝐼 ≠ 0. It therefore suffices to

bound E[𝐼𝑘𝜋𝑒𝛾𝐿] by applying Lemma 3.7.

We have

1

1 − 𝜌
E[𝐼𝑘𝜋𝟙(𝐿 > 𝑥)] ≤ 𝑘

1 − 𝜌
P[𝑘𝑆e > 𝑥] .

We know that E[𝐼𝑘𝜋 ] = 1 − 𝜌 by Lemma A.2, so that the LHS can be thought of as an expectation

under a change of measure, namely under the probability measure P𝐼 [·], where P𝐼 [𝐴] = E[𝐼𝑘𝜋𝟙(𝐴) ]
1−𝜌

for any event 𝐴.

Therefore, we have that P𝐼 [𝐿 > 𝑥] ≤ 𝑘
1−𝜌 P[𝑘𝑆e > 𝑥]. By assumption, we have that E[𝑒 (𝛾+𝜀 )𝑘𝑆e ] <

∞, and a Chernoff bound argument on the RHS yields the bound

P𝐼 [𝐿 > 𝑥] ≤ min

{ 𝑘

1 − 𝜌
E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]𝑒−(𝛾+𝜀 )𝑥 , 1

}
.

Let 𝑏 = 1

𝛾+𝜀 log
(
𝑘E[𝑒 (𝛾+𝜀 )𝑆e ]

1−𝜌

)
. Observe that for 𝑥 ≤ 𝑏, 𝑘

1−𝜌 E[𝑒
(𝛾+𝜀 )𝑘𝑆e ]𝑒−(𝛾+𝜀 )𝑥 ≥ 1, and for 𝑥 > 𝑏, it

is less than 1. For any 𝜃 < 𝛾 , we have the bounds

𝑒𝜃𝑥P𝐼 [𝐿 > 𝑥] ≤ min

{ 𝑘

1 − 𝜌
E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]𝑒−(𝛾+𝜀 )𝑥𝑒𝜃𝑥 , 𝑒𝜃𝑥

}
.

Integrating both sides and applying the tail integral formula (Lemma A.4) to the LHS yields

E𝐼 [𝑒𝜃𝐿 − 1]
𝜃

≤
∫ 𝑏

0

𝑒𝜃𝑥 d𝑥 + 𝑘E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]
1 − 𝜌

∫ ∞

𝑏

𝑒 (𝜃−(𝛾+𝜀 ) )𝑥
d𝑥 .

Now computation yields

E𝐼 [𝑒𝜃𝐿] − 1 ≤ 𝑒𝜃𝑏 − 1 − 𝑘E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]
1 − 𝜌

𝜃

𝜃 − (𝛾 + 𝜀) 𝑒
(𝜃−(𝛾+𝜀 ) )𝑏,

and, taking the 𝜃 → 𝛾 limit, monotone convergence theorem yields

E𝐼 [𝑒𝛾𝐿] − 1 ≤ 𝑒𝛾𝑏 − 1 + 𝑘E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]
1 − 𝜌

𝛾

𝜀
𝑒−𝜀𝑏 .

Finally, we have:

E𝐼 [𝑒𝛾𝐿] ≤ 𝑒𝛾𝑏 + 𝑘E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]
1 − 𝜌

𝛾

𝜀
𝑒−𝜀𝑏

E𝐼 [𝑒𝛾𝐿] ≤ 𝑒𝛾𝑏
(
1 + 𝑘E[𝑒 (𝛾+𝜀 )𝑘𝑆e ]

1 − 𝜌

𝛾

𝜀
𝑒−(𝛾+𝜀 )𝑏

)
.

Plugging in for the value of 𝑏 yields the desired inequality. □
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C Proof of Bound on Boost Policy Response Time Transform
Theorem 3.3. Let 𝜋 be a boost policy and suppose that E[𝑒𝛾𝑘𝑉 (∞) ] < ∞, E[𝑒𝛾𝑘𝑆 ] < ∞, and

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ] < ∞. The tail constant of 𝜋 can be bounded above as follows:

C+ [𝑇𝑘
𝜋 ] ≤ C+ [𝑊M/G/1]

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝛾 (𝑘𝑆−𝐵) ]E[𝑒𝛾𝑉 (∞) ] .

Proof. Fix an arbitrary 𝑢 ≥ 0, and let 𝐵̂ = min{𝐵,𝑢}. First we analyze the transforms of

𝑊 𝑘
𝜋 − 𝐵̂ + 𝑘𝑆 +𝑉𝜋 (∞) and 𝑘 (𝑆 +𝑉𝜋 (∞) +𝑉 (𝐵̂)). We have:

E[𝑒𝜃 (𝑊 𝑘
𝜋 −𝐵̂+𝑉𝜋 (∞)+𝑘𝑆 ) ] = E[𝑒𝜃𝑊 𝑘

𝜋 ]E[𝑒𝜃 (𝑘𝑆−𝐵̂) ]E[𝑒𝜃𝑉𝜋 (∞) ] (Independence of𝑊 𝑘
𝜋 , 𝑆, and 𝑉 )

= E[𝑒𝜃𝑊M/G/1 ]
E[𝐼𝑘𝜋𝑒𝜃𝑊

𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝜃 (𝑘𝑆−𝐵̂) ]E[𝑒𝜃𝑉𝜋 (∞) ] . (Theorem 2.4.)

E[𝑒𝜃𝑘 (𝑆+𝑉𝜋 (∞)+𝑉 (𝐵̂) ) ] = E[𝑒𝜃𝑘𝑉𝜋 (∞) ]E[𝑒𝜃𝑘𝑉 (𝐵̂) ]E[𝑒𝜃𝑘𝑆 ] (Independence of 𝑉 ,𝑉 , and 𝑆 .)

By our finiteness assumptions on E[𝑒𝛾𝑘𝑉𝜋 (∞) ], E[𝑒𝛾𝑘𝑆 ], E[𝐼
𝑘
𝜋𝑒

𝛾𝑊𝑘
𝜋 ]

1−𝜌 , the transforms above can only

have a pole where the transform of𝑊 𝑘
𝜋 has a pole, so a final value theorem implies that

C+ [𝑊 𝑘
𝜋 − 𝐵̂ + 𝑘𝑆 +𝑉𝜋 (∞)]
= C̃+ [𝑊 𝑘

𝜋 − 𝐵̂ + 𝑘𝑆 +𝑉𝜋 (∞)]

= lim

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃 (𝑊 𝑘

𝜋 +𝑉 (∞)−𝐵̂+𝑘𝑆 ) ]

= lim

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑊M/G/1 ]

E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝜃 (𝑘𝑆−𝐵̂) ]E[𝑒𝜃𝑉 (∞) ]

=

(
lim

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑊M/G/1 ]

E[𝐼𝑘𝜋𝑒𝜃𝑊
𝑘
𝜋 ]

1 − 𝜌

) (
lim

𝜃→𝛾
E[𝑒𝜃 (𝑘𝑆−𝐵̂) ]

) (
lim

𝜃→𝛾
E[𝑒𝜃𝑉 (∞) ]

)
= C+ [𝑊M/G/1]

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝛾 (𝑘𝑆−𝐵̂) ]E[𝑒𝛾𝑉 (∞) ] (Monotone convergence.)

and

C+ [𝑘 (𝑉 (∞) +𝑉 (𝐵̂) + 𝑘𝑆)]
= C̃+ [𝑘 (𝑉 (∞) +𝑉 (𝐵̂) + 𝑘𝑆)]

= lim

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑘 (𝑉 (∞)+𝑉 (𝐵̂)+𝑘𝑆 ) ]

= lim

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑘𝑉 (∞) ]E[𝑒𝜃𝑘𝑉 (𝐵̂) ]E[𝑒𝜃𝑘𝑆 ]

= 0 · E[𝑒𝛾𝑘𝑉 (∞) ]E[𝑒𝛾𝑘𝑉 (𝐵̂) ]E[𝑒𝛾𝑘𝑆 ] (Monotone convergence.)

= 0.

The final line follows from the fact that all three terms E[𝑒𝛾𝑘𝑉 (∞) ], E[𝑒𝛾𝑉 (𝐵̂) ], E[𝑒𝛾𝑘𝑆 ] are all finite:
• E[𝑒𝛾𝑘𝑉 (∞) ] is finite by assumption.

• E[𝑒𝛾𝑘𝑆 ] is finite by assumption.
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• E[𝑒𝛾𝑘𝑉 (𝐵̂) ] ≤ E[𝑒𝛾𝑘𝐴(𝑢 ) ], where 𝐴(𝑢) is the amount of work that arrives to the system in

an interval of length 𝑢. E[𝑒𝛾𝑘𝐴(𝑢 ) ] = exp(𝜆𝑢 (E[𝑒𝛾𝑘𝑆 ] − 1)) by a standard M/G/1 result [24,

Chapter 25.6]. This is finite from the above assumption.

Applying Lemma 3.5 then yields:

C+ [𝑇𝑘
𝜋 ] = lim

𝑡→∞
𝑒𝛾𝑡P[𝑇𝑘

𝜋 > 𝑡]

≤ lim

𝑡→∞
𝑒𝛾𝑡P[𝑊 𝑘

𝜋 −min{𝐵,𝑢} + 𝑘𝑆 +𝑉𝜋 (∞) > 𝑡] + 𝑒𝛾𝑡P[𝑘 (𝑆 +𝑉𝜋 (∞) +𝑉 (min{𝐵,𝑢})) > 𝑡]

= C+ [𝑊 𝑘
𝜋 − 𝐵̂ + 𝑘𝑆 +𝑉𝜋 (∞)] + C+ [𝑘 (𝑆 +𝑉𝜋 (∞)) +𝑉 (𝐵̂)]

= C̃+ [𝑊 𝑘
𝜋 − 𝐵̂ + 𝑘𝑆 +𝑉𝜋 (∞)] + C̃+ [𝑘 (𝑆 +𝑉𝜋 (∞)) +𝑉 (𝐵̂)]

= C+ [𝑊M/G/1]
E[𝐼𝑘𝜋𝑒𝛾𝑊

𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝛾 (𝑘𝑆−𝐵̂) ]E[𝑒𝛾𝑉 (∞) ] .

Because this holds for all 𝑢, it also holds in the 𝑢 → ∞ limit. Monotone convergence therefore

yields

C+ [𝑇𝑘
𝜋 ] ≤ C+ [𝑊M/G/1]

E[𝐼𝑘𝜋𝑒𝛾𝑊
𝑘
𝜋 ]

1 − 𝜌
E[𝑒𝛾 (𝑘𝑆−𝐵) ]E[𝑒𝛾𝑉 (∞) ] . □

D Proof of 𝜸-Surrogate Heavy-Traffic Optimality in the M/G/𝒌 Unknown-Size Setting
In this appendix we provide a complete proof of Theorem 4.1, following the outline in Section 4.1.

To do this we first introduce the system model used in Harlev et al. [25] and summarize their

main result. This is done in Appendices D.1 and D.2. Then in Appendix D.3, we prove the lemmas

described in Section 4.1 and use them to prove Theorem 4.1.

D.1 System Model
Each job is modeled as an absorbing discrete-time Markov chains with countable state space that is
independent of the arrival process and all other jobs in the system. The state of the job contains all

information about the job relevant to the scheduler and advances once per unit of service. All jobs

are assumed to share a state space 𝕏 ⊔ {𝑥done} and have the same Markovian dynamics. Each job

is initialized at a state drawn from distribution 𝑋new, and completes and exits the system when it

reaches 𝑥done.

We use the following notation for the Markovian job model:

• We write 𝑋𝑢 for the random state of the job after 𝑢 units of service.

• We let 𝑆 represent a job’s size, which is the hitting time of the completion state.
12
That is,

𝑆 = min{𝑢 ≥ 0 : 𝑋𝑢 = 𝑥done}.
• We denote a job’s trajectory during its first 𝑢 units of service as 𝑋0:𝑢 = (𝑋0, 𝑋1, . . . , 𝑋𝑢). A
job’s trajectory is only defined up to 𝑆 units of service and it is always the case that𝑋𝑆 = 𝑥done.

Just as in the known-sizemodel, the job size distribution 𝑆 is assumed to be class I (Assumption 2.5).

Additionally, we assume without loss of generality that for every state 𝑦 ∈ 𝕏, there is some state 𝑥

with non-zero probability mass in 𝑋new such that there is positive probability of reaching 𝑦 starting

from 𝑥 . If a state does not satisfy this condition, it is unreachable by all jobs and has no impact on

the system.

12
Just as in [25], we mildly abuse terminology by writing 𝑆 for both the job size distribution and, when convenient, the

random variable with that distribution corresponding to a generic job’s random size. We do the same for other distributions

in this section without further comment.
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Note that while this job model is discrete, we are still considering a continuous-time M/G/𝑘 . In

practice, the discrete time model just means that each job’s service is divided into time units of

length 1 and jobs cannot be preempted during a unit of service. Arrivals can still occur at any time.

D.2 Boost Policies for Markov Jobs
Boost policies can no longer depend on the size of the job, as sizes are unknown to the scheduler.

Instead, boost policies for Markov jobs map each job’s trajectory to a boost. They then operate

in much the same way as in the known-size model: serve the jobs in order from least to greatest

boosted arrival time, which is defined as a job’s arrival time minus its boost. Notably, since a job’s

boost depends on its trajectory, its boost may change with service, which does not happen in the

known-size model. If a job’s boosted arrival time exceeds that of a job in the queue, the boost policy

will preempt it and replace it with the job in the queue. Markov job boost policies are required

to assign every job that has not yet attained any service a finite boost with probability 1. This is

ensure that at most 𝑘 jobs at a time have boost∞ and thus that (𝑘 + 1)-way ties are probability-zero
events.

Harlev et al. [25] introduced three related boost policies for Markov jobs:

• The 𝛾-Gittins boost policy has boost function

𝑏𝛾 -Gittins (𝑋0:𝑢) =
1

𝛾
log Γ𝛾 (𝑋𝑢) +

1

𝛾
log

𝑒𝛾

𝑒𝛾 − 1

.

Here 𝛾 is the same solution to (2.2) as in the known-size model, Γ𝛾 (𝑥) is a variant of the

Gittins index [11, 12] and defined below (Definition D.1), and the
1

𝛾
log

𝑒𝛾

𝑒𝛾 −1 term is added by

convention to ensure boosts are nonnegative.

• The 𝛾-Surrogate boost policy is a version of 𝛾-Gittins with decreasing boost function:

𝑏𝛾 -Surrogate (𝑋0:𝑢) = min

𝑡 ∈{0,...,𝑢}
𝑏𝛾 -Gittins (𝑋0:𝑡 ) .

• The 𝛾-Insulated boost policy is a “minimally preemptive” version of 𝛾-Gittins:

𝑏𝛾 -Insulated (𝑋0:𝑢) =
{
𝑏𝛾 -Gittins (𝑋0:𝑢) 𝑏𝛾 -Gittins (𝑋0:𝑢) = 𝑏𝛾 -Surrogate (𝑋0:𝑢)
∞ otherwise.

The primary result of Harlev et al. [25] is that all three of these policies are tail constant optimal

in the M/G/1 among all non-clairvoyant policies, that is, policies that choose which job to serve

using only the information available at the time: the trajectories of all jobs in the system up to their

current states. Formally, they proved that for all non-clairvoyant policies 𝜋 ,

C+ [𝑇 1

𝜋 ] ≥ C+ [𝑇 1

𝛾 -Gittins] = C+ [𝑇 1

𝛾 -Surrogate] = C+ [𝑇 1

𝛾 -Insulated] .

D.3 Heavy-Traffic Optimality Proof
We now follow the outline in Section 4.1 to prove Theorem 4.1. To do so, we must first define some

notation.

Definition D.1.
(a) For all 𝑥 ∈ 𝕏 and 𝕐 ⊆ 𝕏, define the following distributions:

S(𝑥,𝕐) = (service needed for a job starting at state 𝑥 to exit 𝕐),
Completed(𝑥,𝕐) = 𝟙(job starting at state 𝑥 is at 𝑥done after exiting 𝕐).
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(b) For all 𝑥 ∈ 𝕏, the 𝛾-Gittins index, Γ𝛾 (𝑥), is defined as,

Γ𝛾 (𝑥) = sup

{𝑥 }⊆𝕐⊆𝕏

E[𝑒𝛾 S(𝑥,𝕐)
Completed(𝑥,𝕐)]

𝑒𝛾

𝑒𝛾 −1E[𝑒𝛾 S(𝑥,𝕐) − 1]
.

Definition D.2. Let 𝐵
𝛾
be the distribution of worst ever boost experienced by a job under the

𝛾-Gittins, 𝛾-Surrogate, and 𝛾-Insulated policy (the worst ever boost of a job is the same under all

three). That is,

𝐵
𝛾
= min

0≤𝑢<𝑆
𝑏𝛾 -Surrogate (𝑋0:𝑢).

Definition D.3 (Crossing work, as defined in Harlev et al. [25]).
(a) The u-crossing work of a job is the amount of service until the first time its boosted arrival

time is after 𝑢.

(b) The u-non-crossing work of a job is its size minus its 𝑢-crossing work.

(c) The crossing work,𝑉 (𝑢, 𝑣), is the sum of𝑢-crossing work of each job that arrives in the system

after time 𝑢 and up to time 𝑢 + 𝑣 .

(d) The non-crossing work, 𝑉 (𝑢, 𝑣) is the sum of 𝑢-non-crossing work of each job that arrives in

the system after time 𝑢 and up to time 𝑢 + 𝑣 . Equivalently, this is the amount of work that

arrived in the system after time 𝑢 and up to time 𝑢 + 𝑣 minus the crossing work 𝑉 (𝑢, 𝑣).

We start by extending Lemma 3.4 to the unknown-size setting.

Lemma D.4. Let 𝑄 be the event that at at all times between the tagged job’s worst boosted arrival
time, −𝐵

𝛾
(assume without loss of generality that the arrival time is 0) and its true arrival time 0, there

are at least 𝑘 jobs in the system with arrival time earlier than time −𝐵
𝛾
. Let 𝑢 ≥ 0. The tagged job’s

response time under 𝛾-Surrogate can be upper bounded by

𝑇𝑘
𝛾 -Surrogate ≤

{
𝑊 𝑘

𝛾 -Surrogate −min{𝐵
𝛾
, 𝑢} + 𝑘𝑆 +𝑉 (−min(𝐵

𝛾
, 𝑢),∞) if 𝑄 holds

𝑘 (𝑆 +𝑉 (−min(𝐵
𝛾
, 𝑢),∞) +𝑉 (−min(𝐵

𝛾
, 𝑢),min{𝐵

𝛾
, 𝑢})) if 𝑄 does not hold.

Proof. First observe that assuming the tagged job has constant boost 𝐵̂ = min(𝐵
𝛾
, 𝑢) can only

increase its response time, so it suffices to analyze the response time under this assumption. Thus,

throughout this proof, we can simply refer to the tagged job’s boosted arrival time without worrying

about it changing with service. In both cases, we will bound the amount of time the tagged job can

spend in the system.

If 𝑄 holds: by our definition of 𝑄 , between the tagged job’s boosted arrival time and its actual

arrival time, all servers have only worked on work with boosted arrival time better than the tagged

job’s boosted arrival time.

An upper bound on the amount of work with boosted arrival time better than the tagged job’s

boosted arrival time is𝑊 𝑘
𝛾 -Surrogate

+𝑉 (−𝐵̂,∞). Between the tagged job’s boosted arrival time and

actual arrival time, all servers only worked on work belonging to this𝑊 𝑘
𝛾 -Surrogate

+ 𝑉 (−𝐵̂,∞)
amount of work. Therefore, the remaining amount of such work at the tagged job’s actual arrival

time is𝑊 𝑘
𝛾 -Surrogate

+𝑉 (−𝐵̂,∞) − 𝐵̂. Once the tagged job arrives, one of the following must be true

until it departs the system:

(1) All servers are occupied with work that has boosted arrival time better than the tagged job’s

boosted arrival time, i.e., this work leaves the system at rate 1.

(2) If not all servers are occupied with such work, the tagged job must be in service, because

it has the best boosted arrival time among all remaining jobs. The tagged job is served at

rate 1/𝑘 .
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The maximum amount of time that (1) can hold is𝑊 𝑘
𝛾 -Surrogate

+𝑉 (−𝐵̂,∞) − 𝐵̂, and the maximum

amount of time that (2) can hold is 𝑘𝑆 , so the maximum amount of time that either can hold is

𝑊 𝑘
𝛾 -Surrogate

+𝑉 (−𝐵̂,∞) − 𝐵̂ + 𝑘𝑆 , which yields an upper bound on the amount of time the tagged

job can spend in the system.

If 𝑄 does not hold: At the tagged job’s true arrival time, there are at most 𝑘 − 1 jobs in the system

with arrival time before the tagged job’s boosted arrival time. In particular, even if all such jobs are

in service, they only occupy 𝑘 − 1 of the 𝑘 available servers. Then, once the tagged job arrives, one

of the following must be true until it departs the system:

(1) There is a server working on a job from 𝑉 (−𝐵̂, 𝐵̂), and nothing from 𝑉 (−𝐵̂,∞) is in service,

nor is the tagged job in service.

(2) There is at least one server working on work from𝑉 (−𝐵̂,∞), i.e. such work leaves the system

at rate at least 1/𝑘 .
(3) The tagged job is served at rate 1/𝑘 .

(1) can only hold at the tagged job’s arrival time. For each server that is serving a job from𝑉 (−𝐵̂, 𝐵̂),
after that job’s completion, the server will take either the tagged job, or work from 𝑉 (−𝐵̂,∞) into
service. Namely, after a job from 𝑉 (−𝐵̂, 𝐵̂) completes, either event (2) or (3) will hold until the

tagged job departs the system. A simple upper bound on how long (1) can hold is to imagine that

all the work in 𝑉 (−𝐵̂, 𝐵̂) is served on a single server, leaving at the rate 1/𝑘 , before the other two
events hold. (2) can hold for at most 𝑘𝑉 (−𝐵̂,∞), and (3) can only hold for at most 𝑘𝑆 . Therefore,

the tagged job will spend at most 𝑘 (𝑉 (−𝐵̂, 𝐵̂) +𝑉 (−𝐵̂,∞) + 𝑆) time in the system, as desired. □

Using Lemma D.4, we can now prove an analogue of Theorem 3.3 in the unknown-size setting.

Theorem D.5. Assume that E[𝑒𝛾𝑘𝑉 (0,∞) ] < ∞, E[𝑒𝛾𝑘𝑆 ] < ∞, and E[𝐼𝑘
𝛾 -Surrogate

𝑒
𝛾𝑊 𝑘

𝛾 -Surrogate ] < ∞.

Let C+ [𝑊M/G/1] = lim𝜃→𝛾
𝛾−𝜃
𝛾

E[𝑒𝜃𝑊 1 ]. The tail constant of 𝛾-Surrogate can be bounded above as
follows:

lim sup

𝜃→𝛾

𝛾 − 𝜃

𝛾
E[𝑒𝜃𝑇

𝑘
𝛾 -Surrogate ] ≤ C+ [𝑊M/G/1]

E[𝐼𝑘
𝛾 -Surrogate

𝑒
𝛾𝑊 𝑘

𝛾 -Surrogate ]
1 − 𝜌

E[𝑒𝛾 (𝑘𝑆−𝐵) ]E[𝑒𝛾𝑉 (0,∞) ] .

Proof. The steps in the proof of Theorem 3.3 all hold in this case, except that we replace uses of

Lemma 3.4 with uses of Lemma D.4 and must use the fact that 𝑉 (𝑢, 𝑣) is stationary in 𝑢. □

Following our outline in Section 4.1, the next step is to prove an analogue of Lemma 3.9 for the

unknown-size setting.

Lemma D.6. If E[𝑒𝛾𝑘𝑆 ] < ∞, then E[𝑒𝛾𝑘𝑉 (0,∞) ] < ∞.

However, this follows directly from the proof of [25, Lemma 4.7] for all boost policies in the

unknown-size setting. Finally, we must prove an analogue of Lemma 3.10 for the unknown-size

setting. Note that once we do so, Theorem 4.1 follows immediately from the proof of Theorem 3.1

with lemmas and theorems appropriately replaced with their analogues, including replacing [49,

Theorem 3.1] with [25, Theorem 4.11]. Thus, once we prove this next lemma, we are done. Before

doing so, we introduce the following notation for convenience.

Definition D.7.
(a) 𝑠 (𝑥) = E[S(𝑥,𝕏)],
(b) 𝐺 (𝑥) = sup{𝑥 }⊆𝕐⊆𝕏

E[Completed(𝑥,𝕐) ]
E[S(𝑥,𝕐) ] .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.



46:34 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Lemma D.8. Under 𝛾-Surrogate,

lim

𝜌→1

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 ) ]
E[𝑒𝛾 (𝑆−𝐵𝛾 ) ]

= 1

Proof. First observe that if we expand 𝐵
𝛾
using its definition, we get,

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 ) ] = E

[
1

inf𝑥∈𝑋0:𝑆

𝑒𝛾

𝑒𝛾 −1Γ𝛾 (𝑥)
𝑒𝛾𝑘𝑆

]
.

By Lemmas D.9 and D.10,

lim

𝛾→0

1

inf𝑥∈𝑋0:𝑆

𝛾𝑒𝛾

𝑒𝛾 −1Γ𝛾 (𝑥)
=

1

inf𝑥∈𝑋0:𝑆
𝐺 (𝑥) ≤ sup

𝑥∈𝑋0:𝑆

𝑠 (𝑥).

Then, since 𝑒𝛾𝑘𝑆 → 1 almost surely as 𝛾 → 0, there exists a 𝛿 > 0 such that, almost surely, for all

𝛾 < 𝛿 ,

𝑒𝛾𝑘𝑆

inf𝑥∈𝑋0:𝑆

𝛾𝑒𝛾

𝑒𝛾 −1Γ𝛾 (𝑥)
≤ sup

𝑥∈𝑋0:𝑆

𝑠 (𝑥) + 1. (D.1)

Lemma D.11 shows that E[sup𝑥∈𝑋0:𝑆
𝑠 (𝑥)] < ∞, so (D.1) justifies the following use of the dominated

convergence theorem:
13

lim

𝜌→1

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 ) ]
E[𝑒𝛾 (𝑆−𝐵𝛾 ) ]

= lim

𝛾→0

E[ 1
𝛾
𝑒
𝛾 (𝑘𝑆−𝐵𝛾 ) ]

E[ 1
𝛾
𝑒
𝛾 (𝑆−𝐵𝛾 ) ]

=
E[lim𝛾→0

1

𝛾
𝑒
𝛾 (𝑘𝑆−𝐵𝛾 ) ]

E[lim𝛾→0

1

𝛾
𝑒
𝛾 (𝑆−𝐵𝛾 ) ]

=

E[lim𝛾→0 𝑒
𝛾𝑘𝑆 · 1

inf𝑥 ∈𝑋
0:𝑆

𝐺 (𝑥 ) ]

E[lim𝛾→0 𝑒
𝛾𝑆 · 1

inf𝑥 ∈𝑋
0:𝑆

𝐺 (𝑥 ) ]
= 1. □

Lemma D.9. For all 𝑥 ∈ 𝕏, 𝐺 (𝑥) ≥ 1

𝑠 (𝑥 ) .

Proof. Recall that

𝐺 (𝑥) = sup

{𝑥 }⊆𝕐⊆𝕏

E[Completed(𝑥,𝕐)]
E[S(𝑥,𝕐)] .

The bound follows by considering 𝕐 = 𝕏:

𝐺 (𝑥) ≥ E[Completed(𝑥,𝕏)]
E[S(𝑥,𝕏)] =

1

𝑠 (𝑥) . □

Lemma D.10.

lim

𝛾→0

inf

𝑥∈𝑋0:𝑆

𝛾𝑒𝛾

𝑒𝛾 − 1

Γ𝛾 (𝑥) = inf

𝑥∈𝑋0:𝑆

𝐺 (𝑥) .

13
The justification for the use of dominated convergence theorem in the denominator is identical.
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Proof. We start by plugging in the definition of Γ𝛾 (𝑥) and then applying Taylor’s theorem:

inf

𝑥∈𝑋0:𝑆

𝛾𝑒𝛾

𝑒𝛾 − 1

Γ𝛾 (𝑥) = inf

𝑥∈𝑋0:𝑆

sup

{𝑥 }⊆𝕐⊆𝕏

𝛾E[𝑒𝛾 S(𝑥,𝕐)
Completed(𝑥,𝕐)]

E[𝑒𝛾 S(𝑥,𝕐) ] − 1

= inf

𝑥∈𝑋0:𝑆

sup

{𝑥 }⊆𝕐⊆𝕏

E[
(
1 + 𝛾 S(𝑥,𝕐) + 𝛾2

2
S(𝑥,𝕐)2𝑒𝜉 S(𝑥,𝕐)

)
Completed(𝑥,𝕐)]

E[S(𝑥,𝕐) + 𝛾

2
S(𝑥,𝕐)2𝑒𝜉 S(𝑥,𝕐) ]

for some 𝜉 ∈ (0, 𝛾). Now observe that since we assume that for all 𝑥 ∈ 𝕏 there is a positive

probability of a trajectory containing 𝑥 ,

∞ > E[𝑒𝛾𝑆 ] ≥ E[𝑒𝛾𝑆 | 𝑥 ∈ 𝑋0:𝑆 ]P[𝑥 ∈ 𝑋0:𝑆 ] ≥ E[𝑒𝛾 S(𝑥,𝕏) ]P[𝑥 ∈ 𝑋0:𝑆 ]

implies that E[𝑒𝛾 S(𝑥,𝕏) ] < ∞ and so E[S(𝑥,𝕏)2𝑒𝜉 S(𝑥,𝕏) ] < ∞ since 𝜉 ∈ (0, 𝛾). Moreover, since

S(𝑥,𝕐) ≤ S(𝑥,𝕏) for all 𝕐 ⊆ 𝕏, it follows that E[S(𝑥,𝕐)2𝑒𝜉 S(𝑥,𝕐) ] < ∞ and

lim

𝛾→0

inf

𝑥∈𝑋0:𝑆

𝛾𝑒𝛾

𝑒𝛾 − 1

Γ𝛾 (𝑥) = inf

𝑥∈𝑋0:𝑆

sup

{𝑥 }⊆𝕐⊆𝕏

E[Completed(𝑥,𝕐)]
E[S(𝑥,𝕐)] = inf

𝑥∈𝑋0:𝑆

𝐺 (𝑥). □

Lemma D.11. E[sup𝑥∈𝑋0:𝑆
𝑠 (𝑥)] < ∞.

Proof. Recall that we define 𝑆 , the size of a job, as 𝑆 = min{𝑡 ≥ 0 : 𝑋𝑡 = 𝑥done}. Now define the

martingale𝑀𝑛 = E[𝑆 | 𝑋0:𝑛], where we use the convention that 𝑋𝑆 = 𝑋𝑆+1 = · · · = 𝑥done so that𝑀𝑛

is defined for all 𝑛 ≥ 0. Observe that for any 𝑛 ≥ 0,

𝑠 (𝑥) = E[S(𝑥,𝕏)] = E[𝑆 − 𝑛 | 𝑋𝑛 = 𝑥],

which means that, for all 𝑝 > 1,

E[ sup
0≤𝑖≤𝑆

𝑠 (𝑋𝑖 )] = E[ sup
0≤𝑖≤𝑆

E[𝑆 − 𝑛 | 𝑋0:𝑖 ]]

≤ E[ sup
0≤𝑖≤𝑆

𝑀𝑖 ]

= E[sup
𝑛≥0

𝑀𝑛]

≤ E[sup
𝑛≥0

𝑀
𝑝
𝑛 ]

where the last step follows from the fact that 𝑆 ≥ 1 almost surely, and thus𝑀𝑛 ≥ 1. We now use

Doob’s inequality [46, Theorem 5.2.1], which tells us that for any 𝑝 ∈ (1,∞),

E[sup
𝑛≥0

𝑀
𝑝
𝑛 ]

1

𝑝 ≤ 𝑝

𝑝 − 1

sup

𝑛≥0
E[𝑀𝑝

𝑛 ]
1

𝑝 .

Expanding the expectation in the right hand side we get

E[𝑀𝑝
𝑛 ] = E[E[𝑆 | 𝑋0:𝑛]𝑝 ] ≤ E[E[𝑆𝑝 | 𝑋0:𝑛]] = E[𝑆𝑝 ],

where the inequality follows from the conditional Jensen’s inequality. Putting everything together,

we get the following bound:

E[ sup
0≤𝑖≤𝑆

𝑠 (𝑥)] ≤
(

𝑝

𝑝 − 1

)𝑝
E[𝑆𝑝 ],

which is finite since 𝑆 is class I, and thus has all finite moments. □
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E Mathematical Program for Deterministic Multiserver Scheduling Problem
We use Gurobi to optimize the following mathematical program for scheduling, solving an instance

using the current system state (i.e., the remaining size and arrival time of each job still in the system)

on each new arrival. Namely, assume that we have 𝑛 jobs in our instance, labeled {1, 2, . . . , 𝑛}, each
with processing time 𝑘𝑠𝑖 and arrival time 𝑎𝑖 . We assume that the first 𝑘 jobs are already in service,

and the remaining 𝑘 + 1, . . . , 𝑛 jobs are, WLOG, sorted in boosted arrival time order, where the

boost is computed using the processing time of the job.

We have the following 0/1 decision variables:

• 𝑥0,𝑖 represents whether job 𝑖 is the first to be scheduled on a machine.

• 𝑥𝑖,𝑛+1 represents whether job 𝑖 is the last job to be scheduled on a machine.

• 𝑥𝑖, 𝑗 represents whether job 𝑖 precedes job 𝑗 on a machine.

In particular, we only have 𝑥𝑖, 𝑗 decision variables whenever 𝑖 < 𝑗 , because on each machine, it is

locally optimal to schedule in boosted arrival time order. We then solve the following program to

compute a nonpreemptive schedule:

minimize

𝒙,𝒅

𝑛∑︁
𝑖=1

𝑒𝛾 (𝑑 𝑗−𝑎 𝑗 )

such that

𝑘∑︁
𝑖=1

𝑥0,𝑖 = 𝑘

𝑗−1∑︁
𝑖=0

𝑥𝑖, 𝑗 = 1 for 𝑗 = 1, . . . , 𝑘

𝑗−1∑︁
𝑖=1

𝑥𝑖, 𝑗 = 1 for 𝑗 = 𝑘 + 1, . . . , 𝑛

𝑗−1∑︁
𝑖=0

𝑥𝑖, 𝑗 =

𝑛+1∑︁
𝑖=𝑗+1

𝑥 𝑗,𝑖 for 𝑗 = 1, . . . , 𝑘

𝑗−1∑︁
𝑖=1

𝑥𝑖, 𝑗 =

𝑛+1∑︁
𝑖=𝑗+1

𝑥 𝑗,𝑖 for 𝑗 = 𝑘 + 1, . . . , 𝑛

𝑑 𝑗 = 𝑘𝑠 𝑗 for 𝑗 = 1, . . . , 𝑘

𝑑 𝑗 =

𝑗−1∑︁
𝑖=1

(𝑑𝑖 + 𝑘𝑠 𝑗 )𝑥𝑖, 𝑗 for 𝑗 = 𝑘 + 1, . . . , 𝑛.

Here the departure times 𝑑 𝑗 are represented as continuous decision variables, but they are fully

constrained by the 0/1 decision variables 𝑥𝑖, 𝑗 .

F 𝜸-CombinedBoost’s Heavy-Traffic Optimality
Throughout this section, we shorten 𝛾-CombinedBoost to 𝛾-CB in subscripts to reduce clutter. We

first require the following lemmas:

Lemma F.1.

lim

𝜌→1

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 -CB ) ]
E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]

= 1
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Proof.

lim

𝛾→0

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 -CB ) ]
E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]

= lim

𝛾→0

E[𝑒𝛾𝑘𝑆−𝐵𝛾 -Boost−(𝑘−1)𝑆 ]
E[𝑒𝛾 (𝑆−𝐵) ]

= lim

𝛾→0

E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]
E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]

= 1. □

Lemma F.2.

lim

𝜌→1

𝑒𝜆E[𝐵𝛾 -CB (𝑒
𝛾𝑆−1) ]

𝑒𝜆E[𝐵𝛾 -Boost (𝑒
𝛾𝑆−1) ] = 1.

Proof. Observe that

lim

𝜌→1

𝑒𝜆E[ (𝑘−1)𝑆 (𝑒
𝛾𝑆−1) ] = 𝑒 lim𝜌→1 𝜆E[ (𝑘−1)𝑆 (𝑒𝛾𝑆−1) ] = 𝑒

1

E[𝑆 ] lim𝛾→0 E[ (𝑘−1)𝑆 (𝑒𝛾𝑆−1) ] .

Since (𝑘−1)𝑆 (𝑒𝛾𝑆 −1) ≤ 2(𝑘−1)𝑆 for sufficiently small 𝛾 , we can apply the dominated convergence

theorem to get,

𝑒
1

E[𝑆 ] lim𝛾→0 E[ (𝑘−1)𝑆 (𝑒𝛾𝑆−1) ] = 𝑒
1

E[𝑆 ] E[lim𝛾→0 (𝑘−1)𝑆 (𝑒𝛾𝑆−1) ] = 1.

Now,

lim

𝜌→1

𝑒𝜆E[𝐵𝛾 -CB (𝑒
𝛾𝑆−1) ]

𝑒𝜆E[𝐵𝛾 -Boost (𝑒
𝛾𝑆−1) ] = lim

𝜌→1

𝑒𝜆E[𝐵𝛾 -Boost (𝑒
𝛾𝑆−1) ]𝑒𝜆E[ (𝑘−1)𝑆 (𝑒

𝛾𝑆−1) ]

𝑒𝜆E[𝐵𝛾 -Boost (𝑒
𝛾𝑆−1) ]

= lim

𝜌→1

𝑒𝜆E[ (𝑘−1)𝑆 (𝑒
𝛾𝑆−1) ] = 1 □

Lemma F.3. For any 𝑢 ∈ ℝ+ ∪ {∞}, if E[𝑒𝛾 (𝑘+1)𝑆 ] < ∞, then

E[𝑒𝛾𝑘𝑉𝛾 -CB (∞) ] = 𝑒𝜆E[min{𝐵𝛾 -CB,𝑢} (𝑒𝛾𝑘𝑆−1) ] < ∞.

Proof. As in Lemma 3.9, from Campbell’s Theorem [49, Lemma 3.5], we have

E[𝑒𝛾𝑘𝑉𝛾 -CB (∞) ] = 𝑒𝜆E[min{𝐵𝛾 -CB,𝑢} (𝑒𝛾𝑘𝑆−1) ],

so long as the RHS is finite. It suffices to show that E[𝐵𝛾 -CB (𝑒𝛾𝑘𝑆 − 1)] is finite. Using the definition
of 𝐵𝛾 -CB, this is

𝜆E[𝐵𝛾 -CB (𝑒𝛾𝑘𝑆 − 1)] = 𝜆E[𝐵𝛾 -Boost (𝑒𝛾𝑘𝑆 − 1)] + 𝜆E[(𝑘 − 1)𝑆 (𝑒𝛾𝑘𝑆 − 1)] .

The first term is finite from Lemma 3.9. The second term is finite because when 𝑘 = 1, the term is

just 0. When 𝑘 > 1, we have:

𝜆E[(𝑘 − 1)𝑆 (𝑒𝛾𝑘𝑆 − 1)] = 𝜆

𝛾
(𝑘 − 1)E[𝛾𝑆 (𝑒𝛾𝑘𝑆 − 1)]

≤ 𝜆(𝑘 − 1)
𝛾

E[𝑒𝛾𝑆 (𝑒𝛾𝑘𝑆 − 1)]

≤ 𝜆(𝑘 − 1)
𝛾

E[𝑒𝛾 (𝑘+1)𝑆 ] < ∞,

since by assumption, E[𝑒𝛾 (𝑘+1)𝑆 ] < ∞. □

With these lemmas, proving heavy-traffic optimality is similar to that of Theorem 3.1.
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Theorem F.4. Under 𝛾-CombinedBoost,

lim

𝜌→1

C+ [𝑇𝑘
𝛾 -CB

]
C+ [𝑇 1

𝛾 -Boost
]
= 1.

Proof. Because 𝛾-Boost is optimal in the M/G/1 across all policies, and any M/G/𝑘 policy can be

replicated in the resource-pooled M/G/1, we know that for all 𝜌 ,

C+ [𝑇𝑘
𝛾 -CB

]

C+ [𝑊M/G/1]E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]E[𝑒𝛾𝑉𝛾 -Boost (∞) ]
≥ 1,

where the denominator is the tail constant of 𝛾-Boost [49, Theorem 3.1]. Therefore, it suffices to

show that

C+ [𝑇𝑘
𝛾 -CB

]

C+ [𝑊M/G/1]E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]E[𝑒𝛾𝑉𝛾 -Boost (∞) ]
≤ 1.

Since 1/𝜌 = E[𝑒𝛾𝑆e ] (Lemma A.1), as we take 𝜌 → 1, we have 𝛾 → 0. Then, for sufficiently high

load 𝜌 ∈ (𝜌 ′, 1), because the job size distribution is class I, we can assume that E[𝑒𝛾 (𝑘+1)𝑆 ] < ∞ and,

that there exists 𝜀 > 0 such that E[𝑒 (𝛾+𝜀 )𝑘𝑆e ] < ∞. Under these assumptions, Lemma 3.8 implies

that

E[𝐼𝑘
𝛾 -CB

𝑒
𝛾𝑊𝑘

𝛾 -CB ]
1−𝜌 is bounded, and Lemma F.3 implies that E[𝑒𝛾𝑘𝑉𝛾 -CB (∞) ] < ∞, so we can apply

Theorem 3.3 to get:

C+ [𝑇𝑘
𝛾 -CB] ≤ C+ [𝑊M/G/1]

E[𝐼𝑘
𝛾 -CB

𝑒
𝛾𝑊 𝑘

𝛾 -CB ]
1 − 𝜌

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 -CB ) ]E[𝑒𝛾𝑉𝛾 -CB (∞) ] .

Therefore, it suffices to show that

lim

𝜌→1

E[𝐼𝑘
𝛾 -CB

𝑒
𝛾𝑊 𝑘

𝛾 -CB ]
1 − 𝜌

= 1,

lim

𝜌→1

E[𝑒𝛾 (𝑘𝑆−𝐵𝛾 -CB ) ]
E[𝑒𝛾 (𝑆−𝐵𝛾 -Boost ) ]

= 1,

lim

𝜌→1

E[𝑒𝛾𝑉𝛾 -CB (∞) ]
E[𝑒𝛾𝑉𝛾 -Boost (∞) ]

= 1,

where we have simplified the first ratio by dividing off the C+ [𝑊M/G/1] from both numerator and

denominator. The first equality follows immediately from Theorem 3.6. The second follows from

Lemma F.1. The third follows from Lemma F.2. □

G Amendments to Previous Results on Strong Tail Optimality
One may ask why we present results on tail constant optimality as opposed to the notion of strong

tail optimality as it is defined in Boxma and Zwart [6], given the work on tail-optimal scheduling

in Harlev et al. [25], Yu and Scully [49]. The reason is that [25, 49] prove bounds on C+ [𝑇𝜋 ], but
not C− [𝑇𝜋 ], via bounds on C̃+ [𝑇𝜋 ], C̃− [𝑇𝜋 ]. However, bounds on C− [𝑇𝜋 ] are needed for strong tail

optimality.

Namely, Yu and Scully [49] construct a lower bound using 𝛾-Cheat s/t C̃+ [𝑇𝛾 -Cheat] ≤ C̃− [𝑇𝜋 ]
for any policy 𝜋 ([49, Theorem 4.3]). They then show that 𝛾-Boost, which satisfies the prop-

erty C− [𝑇𝜋 ] = C+ [𝑇𝜋 ], attains C̃+ [𝑇𝛾 -Boost] = C̃+ [𝑇𝛾 -Cheat] ([49, Theorem 5.1]). This, along with

Lemma A.3, implies that C+ [𝑇𝛾 -Boost] ≤ C+ [𝑇𝜋 ], for any policy 𝜋 . Harlev et al. [25] employ a

similar approach, with 𝛾-Surrogate acting as a lower bound ([25, Theorem 3.7]) for 𝛾-Gittins ([25,

Proposition 4.3]).
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We know from Lemma A.3 that for any random variable 𝑋 ≥ 0,

C− [𝑋 ] ≤ C̃− [𝑋 ] ≤ C̃+ [𝑋 ] ≤ C+ [𝑋 ],

so we have C+ [𝑇𝛾 -Boost]/C+ [𝑇𝜋 ] ≤ 1 in the known-size setting and C+ [𝑇𝛾 -Gittins]/C+ [𝑇𝜋 ] ≤ 1 in

the unknown-size setting, i.e., 𝛾-Boost and 𝛾-Gittins are tail constant optimal in their respective

settings. However, strong tail optimality is defined as follows:

Definition G.1. A policy 𝜋 is strongly tail-optimal among a class of policies Π if it satisfies

𝑅𝜋 ≤ 1,

where 𝑅𝜋 is the tail competitive ratio

𝑅𝜋 = sup

𝜋 ′∈Π
lim sup

𝑡→∞

P[𝑇𝜋 > 𝑡]
P[𝑇𝜋 ′ > 𝑡] .

In particular, for any two policies 𝜋, 𝜋 ′
,

lim sup

𝑡→∞

P[𝑇𝜋 > 𝑡]
P[𝑇𝜋 ′ > 𝑡] ≤ C+ [𝑇𝜋 ]

C− [𝑇𝜋 ′ ] ,

so the results from [25, 49] are only meaningful as a bound on 𝑅𝜋 when C+ [𝑇𝜋 ] = C− [𝑇𝜋 ] for all
policies 𝜋 under consideration. In particular, we cannot conclude strong tail optimality when we

include policies where C+ [𝑇𝜋 ] > C− [𝑇𝜋 ].
We can, however, conclude a strong tail competitiveness of a different kind, namely, strong tail

constant competitiveness. In particular, we let

𝑅̃𝜋 = sup

𝜋 ′∈Π
lim sup

𝜃→𝛾

E[𝑒𝜃𝑇𝜋 ]
E[𝑒𝜃𝑇𝜋 ′ ]

be the tail constant competitive ratio, and say that a policy is strong tail constant competitive if 𝑅̃𝜋 = 1.

Then we have:

lim sup

𝜃→𝛾

E[𝑒𝜃𝑇𝜋 ]
E[𝑒𝜃𝑇𝜋 ′ ]

≤
lim sup𝜃→𝛾

𝛾−𝜃
𝛾

E[𝑒𝜃𝑇𝜋 ]

lim inf𝜃→𝛾
𝛾−𝜃
𝛾

E[𝑒𝜃𝑇𝜋 ′ ]
=

C̃+ [𝑇𝜋 ]
C̃− [𝑇𝜋 ′ ]

.

But since C+ [𝑇𝛾 -Boost] = C̃+ [𝑇𝛾 -Boost] ≤ inf𝜋 C̃− [𝐶𝜋 ], we know that C̃+ [𝑇𝛾 -Boost]/C̃− [𝑇𝜋 ] ≤ 1 for

any policy 𝜋 .

In summary, 𝛾-Boost and 𝛾-Gittins attain tail constant optimality, which is a different notion than

that of strong tail optimality, but we believe it captures a useful notion of optimal tail performance:

if a policy is tail constant optimal, then it achieves the best possible tail constant competitive

ratio. We also note that 𝛾-Boost and 𝛾-Gittins achieves the best possible competitive ratio against

the universal lower bound of the form P[𝑇𝜋 > 𝑡] ≥ 1−𝜌
𝜌E[𝑆e ]P[𝑄 > 𝑡] [6], where 𝑄 is a random

variable representing the maximum amount of work in a busy period, which is known to have

C+ [𝑄] = C− [𝑄] [27].
While the 𝛾-Boost policy in Yu and Scully [49] and the 𝛾-Gittins policy in Harlev et al. [25] are

tail constant optimal among all policies in their respective settings, they are strongly tail optimal

only among the class of policies for which C− [𝑇𝜋 ] = C+ [𝑇𝜋 ]. We conjecture that among policies

including those for which C− [𝑇𝜋 ] < C+ [𝑇𝜋 ], there may be no policy 𝜋 which attains 𝑅𝜋 = 1, and

that 𝛾-Boost may still be optimal in the sense that 𝑅𝛾 -Boost ≤ 𝑅𝜋 for all policies 𝜋 , even though it

may be that 𝑅𝛾 -Boost > 1.
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Fig. H.1. (Higher is better.) Plot of performance of policies for 𝑘 = 10 servers for different load regimes and
job size distributions. We plot the Tail Improvement Ratio (TIR) of policies against thresholds 𝑡 . The TIR of
a policy 𝜋 is given by TIR(𝑡) = 1 − P[𝑇𝜋 > 𝑡]/P[𝑇FCFS > 𝑡], where higher TIR means better performance.
Simulations are run using 200 million jobs for loads 0.8 and load 0.95. For load 0.99, we run 2 billion jobs
for convergence. The job size distributions are, from top row to bottom row, Exp(1), Hyperexponential with
branches drawn from Exp(2) and Exp(1/3) and first branch probability 0.8, and Uniform(0, 2). This figure is
the same as Fig. 5.4, except with the SRPT and Largest Job First (LJF) policies added.

H Additional Simulations
In this section we present simulation results for the SRPT and Largest Job First (LJF) policies

for a variety of loads and distributions. The results are presented in Fig. H.1 by adding each of

these policies to Fig. 5.4, which was presented in Section 5.2. The primary takeaway from these

simulations is that, although increasing the boost for large jobs can improve performance (as

discussed in Section 5), strictly prioritizing large (or small) jobs leads to terrible asymptotic tail

performance.
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