A Tale of Two Traffics: Optimizing Tail Latency in the
Light-Tailed M/G/k

GEORGE YU, Cornell University, USA
AMIT HARLEV, Cornell University, USA
REEVU ADAKROQY, Cornell University, USA
ZIV SCULLY, Cornell University, USA

We consider the problem of scheduling to minimize asymptotic tail latency in the M/G/k queue with light-tailed
job size distribution. This problem combines the challenges of scheduling for tail latency and scheduling in
multiserver queues, but there is hope. In the simpler setting of the single-server M/G/1, the recently proposed
y-Boost policy is tail constant optimal, and it has excellent empirical tail latency. And for the simpler objective
of mean latency;, it is known that the optimal policy in the M/G/1, namely SRPT (shortest remaining processing
time), is also excellent in the M/G/k: it is provably optimal in heavy traffic and has state-of-the-art empirical
performance in lighter traffic.

One might therefore hope that y-Boost is similarly effective in the M/G/k, but our results paint a more
complicated picture. In heavy traffic, we prove that y-Boost is indeed tail constant optimal. We also prove
an analogous result for scheduling with unknown sizes, where y-Boost is replaced by its unknown-size
counterpart. But in lighter traffic, we find empirically that y-Boost can be even worse than FCFS (first-come,
first-served). This is a significant shortcoming, as the boundary between “lighter” and “heavy” traffic occurs at
higher load when the number of servers k is larger. To overcome this, we design a new variant of y-Boost that
outperforms the original by, counterintuitively, giving more priority to larger jobs. The new variant, which we
prove is also heavy-traffic optimal, has state-of-the-art empirical tail latency at lighter loads, outperforming
even a much more computationally intensive mixed-integer-programming heuristic.

CCS Concepts: » General and reference — Performance; « Mathematics of computing — Queue-
ing theory; « Networks — Network performance modeling; - Computing methodologies — Model
development and analysis; « Software and its engineering — Scheduling.

Additional Key Words and Phrases: scheduling; multiserver systems; response time; sojourn time; tail latency;
service level objective (SLO); M/G/1 queue; M/G/k queue; light-tailed distribution; Gittins index; Boost
scheduling; multi-armed bandit

ACM Reference Format:

George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully. 2025. A Tale of Two Traffics: Optimizing Tail Latency
in the Light-Tailed M/G/k. Proc. ACM Meas. Anal. Comput. Syst. 9, 3, Article 46 (December 2025), 40 pages.
https://doi.org/10.1145/3771561

1 Introduction

In today’s large-scale computer systems, operators often care about service level objectives (SLOs)
that relate to the tail of a system’s response time distribution T, where a job’s response time (a.k.a.

Authors’ Contact Information: George Yu, School of Operations Research and Information Engineering, Cornell University,
Ithaca, NY, USA; Amit Harlev, Center for Applied Mathematics, Cornell University, Ithaca, NY, USA; Reevu Adakroy, School
of Operations Research and Information Engineering, College of Computing and Information Science, Cornell University,
Ithaca, NY, USA; Ziv Scully, School of Operations Research and Information Engineering, Cornell University, Ithaca, NY,
USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2476-1249/2025/12-ART46

https://doi.org/10.1145/3771561

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

https://orcid.org/0009-0005-3013-8558
https://orcid.org/0000-0002-2627-0012
https://orcid.org/0000-0002-8547-1068
https://doi.org/10.1145/3771561
https://orcid.org/0009-0005-3013-8558
https://orcid.org/0000-0002-2627-0012
https://orcid.org/0000-0002-8547-1068
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3771561

46:2 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

sojourn time) is the total amount of time it spends in the system. In particular, SLOs often require
that high percentiles of T are small, or, dually, that the tail of response time P[T > t] is small for
large thresholds t. This work studies how to accomplish this via scheduling in the M/G/k multiserver
queueing model, resulting in a new state-of-the-art scheduling policy, called y-CombinedBoost, with
good theoretical and empirical performance.

1.1 Recent Progress: Single-server Tail Scheduling and Multiserver Mean Scheduling

Recent work in the M/G/1 queueing model [7, 21, 25, 47, 49] has shown that when the job size
distribution is light-tailed, aiming to asymptotically minimize P[T > t] in the t — co limit leads
to policies with state-of-the-art P[T > t] performance at practical thresholds t. In particular, the
y-Boost policy introduced by Yu and Scully [49] achieves tail constant optimality [6, 48], meaning it
achieves the best possible tail constant:
inf limsupe!'P[T, > t] = limsupe’* P[T} Boost > t],
policies 7 00 f—00

where e’ is an appropriate scaling factor (details in Section 2.3). Empirically, optimizing this
constant can lead to significantly less deadline violations for large thresholds ¢: Yu and Scully [49,
Section 6] show that compared to optimizing for the decay rate alone,! one can reduce “large-t”
violations by 30% or more by also optimizing the tail constant. This can be especially important in
settings where SLOs are tight and any reduction in large response times is impactful.

The basic idea of y-Boost is that it roughly mimics FCFS (first-come first-served), but it gives
short jobs partial priority by “boosting” their arrival times backwards, as if they had actually arrived
earlier. Short jobs get boosted more than long jobs: a job of size s has its arrival time boosted by

, (1.1)

1 1
by-Boost (s) =)—/log T

where y > 0 is a parameter depending on the load and size distribution. See Section 2.4 for a full
definition of y-Boost.

However, the single-server M/G/1 model is a poor match for large-scale computer systems, which
inevitably have multiple servers. And in the M/G/k, the M/G/1’s k-server analogue, scheduling
to optimize the tail P[T > ¢] remains an open problem. Instead, prior work on M/G/k scheduling
theory primarily covers only the simpler problem of optimizing mean response time E[T] and
weighted variants thereof [5, 9, 13-15, 17-19, 42-45]. Moreover, while these results prove bounds
on (weighted) mean response time that hold at all loads (a.k.a. utilizations) p € (0, 1), they are only
tight in heavy traffic as p — 1, and thus optimality results are similarly limited to heavy traffic.

Despite the limitation to heavy traffic, existing M/G/k scheduling theory seems to lead to the
right design decisions across a wide range of loads. For instance, while SRPT (shortest remaining
processing time), which minimizes E[T] in the M/G/1, is only proven to minimize E[T] in the
M/G/k in heavy traffic [18, 44], SRPT enjoys excellent empirical E[T] across a range of loads [16, 20],
with the best known alternative improving upon SRPT by less than 1% [20].

1.2 Our Work: Multiserver Tail Scheduling

Taken together, the two lines of work discussed in Section 1.1 clearly suggest two questions:

Q1: Is y-Boost tail constant optimal in the M/G/k in heavy traffic?

Q2: Does y-Boost have good empirical tail performance in the M/G/k in lighter traffic?
Our work answers these and other questions about tail scheduling in the M/G/k. We were genuinely
surprised by some of the answers, and we believe many readers will be, too. In an effort to mitigate

IPolicies that achieve the optimal decay rate are said to be weakly optimal, and it is well-known that FCFS does so [6].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:3

hindsight bias, this section gives a roughly chronological account of our findings. See Section 1.3
for a more straightforward statement of our contributions.

Throughout, we consider the M/G/k to have k servers of speed 1/k each, so that a job of size s
takes time ks to complete. This means that the same arrival process induces the same load, and
also the same value of y for use in (1.1), with any number of servers k.

1.2.1 Findings for y-Boost. Our first finding is the least surprising: we prove that Q1’s answer
is “yes” (Theorem 3.1). Namely, we show that y-Boost is heavy-traffic tail constant optimal by
showing that it achieves the same tail constant as y-Boost in the M/G/1 as p — 1:

lim SUpP;_00 eytP[TM/G/k y-Boost > t] 1
im — =1.
p—1 lim SUP; o0 e"'P[Tywen y-Boost > t]

To do this, we follow the same overall strategy as the prior work on E[T] in the M/G/k, but handling
the tail P[T > ¢] requires us to overcome new technical challenges. We discuss this in more detail
in Section 3.2, but in brief: in a step that compares the amount of work in an M/G/k to that of an
M/G/1 with the same arrival process, while simple worst-case bounds suffice for SRPT, we require
a stochastic bound, and we provide a new stochastic bound that holds under any non-idling policy.

We prove an analogous result for scheduling with unknown job sizes, showing that a variant
of y-Gittins, which is tail constant optimal in the unknown-size M/G/1 [25], is also tail constant
optimal in the unknown-size M/G/k in heavy traffic (Theorem 4.1). This latter result actually covers
not just unknown job sizes, but a general partial-information model with Markov-process jobs
[19, 25, 43, 44]. Simulations confirm that y-Boost’s “pre-asymptotic” tail performance is good at
very high loads, e.g. p = 0.99 (Section 5).

However, despite Q1’s answer being “yes”, Q2’s answer is “no”! We observe in simulations shown
in Fig. 1.1 and Section 5 that with k = 10 servers, y-Boost performs worse than FCFS even at loads
as high as p = 0.95. We initially found this surprising, but in hindsight, we can at least partly
explain it. The underlying reason why y-Boost is tail constant optimal in the M/G/1 is that it solves
a particular single-server batch scheduling problem with exponentially inflated response time costs
[49] (see also Appendix E). But the multiserver version of the batch problem is computationally
intractable to solve exactly, and it seems that y-Boost, which amounts to a greedy heuristic in the
multiserver setting, fails to find high-quality solutions. In contrast, in the corresponding story for
optimizing E[T], SRPT solves the corresponding multiserver batch problem [40, Theorem 5.3.1].

1.2.2 Improving Tail Performance in Lighter Traffic. Prompted by the failure of y-Boost outside of
heavy traffic, we ask:
Q3: Is improving upon FCFS’s tail possible in the M/G/k in lighter traffic?

To answer this, we simulate a policy that uses the Gurobi mixed-integer program solver [22] to solve
the batch scheduling problem discussed above after every arrival. As shown in Fig. 1.1, this policy,
which we call simply Gurobi, does indeed improve upon FCFS, so Q3’s answer is at least in principle
“yes”. We conjecture that an idealized version of Gurobi that exactly solves each mixed-integer
program is tail constant optimal, though this is far from certain. Either way, solving a mixed-integer
program with every arrival is infeasible in most practical applications, so the question of whether
we can practically improve upon FCFS remains.

One intuition about why multiserver scheduling is hard is that it requires thinking not just about
how to prioritize jobs relative to each other, but also about how to keep all of the servers busy,
which amounts to balancing work as equally as possible across servers [34]. In batch scheduling

2While the specific batch problem in question (Appendix E) has not been studied in the literature, many related problems
are known to be NP-hard [33, 40], and we believe a reduction from our problem to one of these is possible.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:4 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Exponential, load 0.8, 10 servers Exponential, load 0.95, 10 servers
.2 0.25 A A 0.4
5 - e e s
g A 0.2
= 0.00 + 2 : o
: —y
S -025 0.0 ¢ +
2
240,50 -0.2
g
3 -0.75 04
[_1

0 20 40 60 80 0 25 50 75 100 125 150
Latency Threshold
—— FCFS y-CombinedBoost —— y-Boost —— SizeBoost —— Gurobi
® 90th percentile ¢ 99th percentile A 99.9th percentile

Fig. 1.1. (Higher is better.) Plot of tail performance of policies for k = 10 servers for both p = 0.8 and
p = 0.95 load with job size distribution Exp(1). Tail improvement ratio of policy x at threshold ¢ is 1 —
P[T; > t]/P[Tpcrs > t]. Due to Gurobi’s heavy computational requirements, we were only able to run
for 100,000 samples for load 0.8 and 700,000 samples for load 0.95. Plotted results therefore may not have
reached convergence; however, the results from both loads suggest that y-CombinedBoost attains the same
performance as Gurobi. See Section 5 for simulations of the non-Gurobi policies with hundreds of millions or
billions of jobs.

problems, the key to doing this is to serve long jobs first [40, Theorems 5.1.1 and 5.2.7], which is in
direct tension with SRPT’s and y-Boost’s prioritizing short jobs.

Strictly prioritizing long jobs gives predictably poor tail performance (Appendix H), but the
general idea of y-Boost suggests a compromise: instead of boosting short jobs, we could boost long
Jjobs. Following this reasoning, we propose the SizeBoost policy, which boosts a job of size s by a
fraction, I%l of its processing time. Under our 1/k server speed convention (Section 2), where jobs
of size s have ks processing time, this amounts to a boost of

bSizeBoost(s) = (k - 1)3-

We have not carefully tuned the specific factor of k — 1, but rather chose it to make sense when
specialized to k = 1, in which case boosting long jobs is a poor plan.®> We see in Fig. 1.1 that
SizeBoost is partly successful.

o At the lower load of p = 0.8, SizeBoost’s tail P[T > t] matches Gurobi’s at large thresholds t,

which is essentially the best large-t behavior we can hope for.

o But at the higher load of p = 0.95, SizeBoost is significantly worse than FCFS.
It makes sense that SizeBoost should perform poorly in heavy traffic, because we know that y-Boost,
which boosts short jobs rather than long jobs, is the right choice in heavy traffic. But it seems
that as load increases, SizeBoost’s performance degrades before y-Boost’s improves, leaving a
“medium-high” load of p = 0.95 where neither matches even FCFS, let alone Gurobi.

1.2.3 Bridging the Gap Between Lighter and Heavy Traffic. Seeing as y-Boost and SizeBoost alone
are not enough to achieve good tail performance at all loads, we ask:

Q4: Can a practical heuristic match Gurobi at “medium-high” loads?
One might expect that if this were possible at all, it would require new ideas beyond those underlying
y-Boost and SizeBoost, given that both policies perform poorly at p = 0.95 in Fig. 1.1.

3Empirically, SizeBoost works well; whether boost functions of the form b(s) = cs for some constant ¢ are optimal is a
question we leave to future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:5

Surprisingly, we find that not only is Q4’s answer “yes”, but one can match Gurobi with a naive
combination of y-Boost and SizeBoost: just sum their boosts. We propose the y-CombinedBoost
policy, which boosts jobs of size s by

1
by-CombinedBoost(s) = by—Boost(s) + bsizeBoost () =)_/log +(k—1)s.

1—e7s
This policy improves upon Gurobi in Fig. 1.1 at both p = 0.8 and p = 0.95, with strictly better tail at
small thresholds and matching tail at large thresholds. y-CombinedBoost is also effective in heavy
traffic: using essentially the same strategy as for y-Boost, we prove that y-CombinedBoost is tail
constant optimal in heavy traffic (Theorem F.4). Additional simulations of y-CombinedBoost in
Section 5 show it to be a clear “overall best” among the policies we simulate, sometimes getting
close to theoretical limits on what can be achieved (e.g. M/G/co bounds).

A priori, we predicted that y-CombinedBoost might match y-Boost in heavy traffic and SizeBoost
in lighter traffic, because y is roughly proportional to 1 — p (Lemma A.1).

e In heavy traffic, we have y — 0. This means b poost(s) dominates bsi,epoost(s), and thus
y-CombinedBoost behaves like y-Boost.

e In lighter traffic, y is nonnegligible. This means b,.poost(s) is small except for very small
sizes s, and thus y-CombinedBoost behaves like a version of SizeBoost that gives extra priority
to very small jobs, which seems either harmless or actively helpful.

What we find surprising is that at loads between these extremes, y-CombinedBoost significantly
outperforms y-Boost and SizeBoost, despite being a naive interpolation between them.

1.3 Contributions and Outline

In this paper, we give the first theoretical optimality guarantees for multiserver tail scheduling,
specifically strong tail optimality in the M/G/k in heavy traffic.
e For known sizes, our guarantees apply to the y-Boost policy proposed by Yu and Scully [49]
(Section 3) and our newly proposed y-CombinedBoost policy (Appendix F).
e For unknown sizes, our guarantees apply to a variant of the y-Gittins policy, specifically
y-Surrogate, proposed by Harlev et al. [25] (Section 4).
We also perform a broad suite of simulation experiments to evaluate tail performance at practical
thresholds and outside of heavy traffic, finding that our newly proposed y-CombinedBoost policy sets
a new state-of-the-art (Section 5).

2 System Model

We consider an M/G/k queue with arrival rate A, job size distribution S, and load p = AE[S]. For
convenience, we assume that each of our k servers can complete work at rate 1/k. Therefore, the
M/G/k system has total service capacity 1. This will allow us to compare to a resource-pooled
M/G/1, i.e. a single-server system with speed 1, as a lower bound.

2.1 Load and Stability

Under our server speed assumption, the load is p = AE[S], and, because the system has total service
capacity 1, we assume that p < 1. One would hope that this would be sufficient for stability in the
M/G/k for non-idling scheduling policies, which we define formally in Definition 2.2. Similar to
other prior work in this area [18, 26, 44], we will assume stability indeed holds. While we expect
that p < 1 is indeed sufficient for stability, proving it is outside the scope of this paper. Hong and
Scully [26, Appendix D] provide a proof sketch for stability in the G/G/k, which should also handle
our M/G/k setting.

Assumption 2.1. If p < 1, the M/G/k is stable under all non-idling scheduling policies 7.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:6 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Our theoretical results are for the heavy-traffic limit. This limit, which we will denote by p — 1,
refers to the limit as A — 1/E[S], with the job size distribution S fixed.

2.2 Work in Multiserver Systems

Key to our analysis is quantifying the “work” in system, which is the amount of processing time a
speed 1 server needs to complete all remaining jobs in the system. In particular, under our server
speed convention, a job of size S contributes S work, because it takes S time to complete under
a speed 1 server. However, the processing time of this job in the M/G/k will be kS, because the
M/G/k servers only work at speed 1/k.

We denote the steady-state work distribution in an M/G/k under policy 7 by WX. For the M/G/1,
we write simply Whyg/1, as the work is unaffected by the policy provided it is non-idling. However,
in the M/G/k for k > 1, the work WX does depend on the scheduling policy 7. This is true even for
non-idling policies, which do not leave servers unnecessarily idle, and which we will focus on in
this paper.

Definition 2.2. A policy x is a non-idling policy if, under =, whenever there are fewer than k
jobs in the system, all jobs are in service, and whenever there are at least k jobs in the system, all
servers are busy.

Definition 2.3. The idleness is the fraction of servers that are idle. We denote by IX(¢) the idleness
under policy 7 at time ¢t and by I¥ the idleness under policy 7 in steady-state. If 7 is non-idling,
then we can write the idleness as

(k= NE()* i (k= NB?

k b y4 k b
where NX (t) and N¥ are the number of jobs in the system under policy at time ¢ and in steady-state,
respectively.

IHOE

The amount of work in the M/G/k under a policy & obeys a decomposition law that says, roughly,
that the amount of work in the M/G/k is the amount of work in the M/G/1, which is policy-invariant,
plus an amount related to how much work is in the system while servers are idle. The intuition
is that work present when servers are idle “persists” once all of the servers are busy again. The
statement below is from Scully [43, Theorem 8.3(b)], which in turn is a slight generalization of
classical decomposition laws for M/G/1-like systems [10, 37].%

THEOREM 2.4 (WORK DECOMPOSITION Law). For any non-idling scheduling policy = and any 0
such that E[e%®] < oo and 6 > A(E[e?°] - 1),

ke LOWE
(4] = pletor 2t]

1-p

Handling the wasted work term, E[I,’§69W7’fc 1/(1 — p), is a key challenge in our analysis. We cover
the techniques required to do so in Section 3.2.

2.3 Tail Asymptotics
Following Yu and Scully [49], we assume that the job size distribution S is light-tailed, specifically,
that it is class I [1, 2]:

4Strictly speaking, the proof given by Scully [43, Theorem 8.3(b)] covers the § < 0 case, i.e. the Laplace transform case, but
the result for 6 > 0 follows from the probabilistic interpretation of the Laplace transform, which is also given by Scully [43,
Theorem 8.3(a)].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:7

Assumption 2.5. The size distribution S is class I, meaning its moment generating function’s
leftmost singularity
0" = sup{0 € R | E[¢?°] < oo},
which may be oo, satisfies 8* > 0 and limg_,¢- E[e?] = co.

Many “typical examples” of light-tailed distributions are class I, including bounded distributions,
and distributions whose tails are asymptotically exponential, Gaussian, and Weibull with shape
parameter at least 1 (i.e. the “lighter than exponential case”). The distributions that are light-tailed
but not class I are exponentially damped heavy-tailed distributions [1, 2], such as those the form
P[S>t] ~ ct~%e~ P! for constants «, B,c>0.

Our metric of focus is the response time of jobs, which is the total amount of time a job spends in
the system. Let T¥ denote the steady-state response time distribution under scheduling policy 7 in
the M/G/k. Boxma and Zwart [6] show that in the M/G/1 with class I size distribution, policies 7
have

limsup e”’P[T} > t] = C, (2.1)

t—o00
for some policy-dependent constant C, which may be infinite, where y is the least positive real
solution [36] to
y = A(E[e¥S] = 1). (2.2)
Our goal is to find a policy that is tail constant optimal in the heavy-traffic limit. Roughly, we
want to find a policy 7 that attains the smallest possible C. Formally, we define the tail constant of
a policy 7 as follows:

Definition 2.6. Let X > 0 be a nonnegative random variable. Then the tail constant of X is

C*[X] = limsup e"'P[X > t].

t—o00

We also define the lower tail constant of X to be
C [X] = lign inf e’ P[X > t].

The tail constant and lower tail constant of a policy 7 in the M/G/k are given by C*[TX] and
C™[T¥], respectively.

Definition 2.7. A scheduling policy 7 is tail constant optimal® if

CH[Ty]
sup ——— =
o CH[T]
Heavy-traffic tail constant optimality therefore requires

o CHT]
lim sup ——— =1
Pl o CF [T!;/]

One subtlety here is that we allow the policy 7 in the numerator to be a parametrized family that
depends on the load p. For example, y-Boost, defined below, depends on the value of y from (2.2),
which varies with the load p.

The tail constants of policies can be difficult to analyze directly, so to compare policies, we
analyze their tail transform constants:

SWe define the notion of tail constant optimality, instead of using the more widespread notion of tail optimality [6], as the
policies we analyze from prior work [25, 49] turn out only to satisfy tail optimality under a certain class of policies, whereas
they satisfy tail constant optimality across all policies. That said, we believe that tail constant optimality still captures a
useful notion of optimal tail performance. Full details are provided in Appendix G.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:8 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Definition 2.8. Let X > 0 be a nonnegative random variable. Then the (upper) tail transform
constant of X is

. -0
C*[X] = lim sup Y—E[eex],
0—y Y

and the analogous lower tail transform constant is given by

))
E[X] = liminf L2 E[9X].
0—y Y

The tail transform constant and lower tail transform constant of a policy 7 are denoted by C* [TF]
and C~[TF], respectively.

In particular, a final value theorem [8] tells us that whenever the poles of E[egT!r(] are in the open
right half plane or at the origin, with at most one pole at the origin,

C™[1}] = C[T}] = C*[Tf] = C*[T}]. (2.3)

For example, when the job size distribution is class I, the work in an M/G/1 system Wjyyg/1, has
asymptotically exponential tail [21, Equation (2)], and

C™ [Wawen] = € [Waen] = CT [Wwen] = C* [Waan],

with a simple pole at y [1, 2]. Quantities we explicitly analyze in this paper (in, for example,
Section 3), have the same poles as the work transform, and so satisfy this property. For policies for
which this is not the case, we have, by Lemma A.3,

C™[TF] < C[TF] < C*[TF] < C*[TH. (2.4)

2.4 Boost Policies and y-Boost

A main theoretical result of our work is to prove heavy-traffic optimality of the scheduling policy
y-Boost in the M/G/k. y-Boost is tail constant optimal in the M/G/1, and so is a natural candidate
as a policy in the M/G/k. It belongs to a family of policies known as boost policies, introduced by Yu
and Scully [49].

Boost policies operate according to a simple rule: serve the job of smallest boosted arrival time. A
job’s boosted arrival time is defined to be

boosted arrival time = arrival time — boost = arrival time — b(size),

where a boost function b : Ry — [0, 00) maps a job’s size to its boost. Different boost policies differ
in their choice of boost function b. We write b, for the boost function of boost policy 7, or simply
b if the policy is generic or clear from context. The boost function of y-Boost is

by—Boost(s) =)l/log()’ (25)

1—e7Vs

where y is set according to (2.2).

One can consider either preemptive or nonpreemptive versions of any given boost policy [49].
We use nonpreemptive versions in our simulations, and one can check that our proofs in Section 3
and Appendix F apply to both versions.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:9

3 Proving Heavy-Traffic Optimality of Boost

To prove heavy-traffic optimality of y-Boost in the M/G/k, we will compare its tail constant in an
M/G/k system with server speeds 1/k to the tail constant it achieves in a resource-pooled M/G/1,
with server speed 1. Under our server speed convention, y-Boost’s M/G/1 tail constant provides a
lower bound on the optimal tail constant in the M/G/k, because y-Boost is tail constant optimal for
the M/G/1 [49]. Specifically, recalling (2.4), we have

C Ty poost] = € [Ty poow] < inf C*[T] < inf C*[T7],
where the infimum is taken over all policies that can be implemented in an M/G/k. Our main result

is that the gap in tail constants between y-Boost in the M/G/k and y-Boost in the resource-pooled
M/G/1 approaches 0 in the heavy-traffic limit.

THEOREM 3.1. For an M/G/k with class I job size distribution S, y-Boost is optimal in the heavy
traffic limit:

k
- . Bl poos®” 2] b oon (5)) TR o Vo oo (00)
o CT o] CT[Wawen] —=5———E[e" > Prmoon 2 | E[eF Ty poon 1]
h—>rnl Ct Tl - 1—>Inl + Y (S=by-Boost (S)) ¥ Vy-Boost (20) =L
P [T, oost] 7 C*[Wacn]Ele v [E[er"y]

where in the second limit, the numerator is an upper bound on the tail constant of y-Boost in the M/G/k,
and the denominator is the tail constant of y-Boost in the M/G/1.

Why is y-Boost’s performance in the M/G/k different than in the M/G/1? The key difference is
that the M/G/k system is not work-conserving. In particular, the system can have a variable amount
of idleness, which is policy-dependent. Proving Theorem 3.1 therefore requires characterizing the
effect of idleness on performance. In particular, for y-Boost, we need to bound:

(1) The effect of idleness on the amount of relevant work® served between a job’s boosted arrival

time and actual arrival time.

(2) The effect of idleness on the steady-state work in system.

Because proving Theorem 3.1 relies on bounding these two effects, we will next focus on bounding
them, and defer the proof of Theorem 3.1 to Section 3.3. For item (1), we prove an upper bound
on the tail constant for general boost policies (Theorem 3.3), which shows that for our purposes,
the effect of idleness on the amount of relevant work served is negligible. For item (2), we prove a
bound on the effect of idleness on steady-state work for all non-idling policies (including all general
boost policies) in Theorem 3.6, and show that in the heavy-traffic limit, the impact of idleness is
negligible. We handle item (1) in Section 3.1 and item (2) in Section 3.2.

3.1 Characterizing Boost’s Tail Constant in the M/G/k

To compare the tail constant of Boost in the M/G/k to that of Boost in the M/G/1, we will compare

the tail transform constants in the two settings. In particular, as we know that ct [T)}_Boost] isa

lower bound on the tail constant of any policy 7 in the M/G/k, it suffices to bound the gap of
cr [T)ZC-Boost] to C* [Tyl-Boost]'

We do this by proving a more general bound, which holds for any Boost policy 7z with boost
function b,;. To bound C*[T¥], we will employ a tagged job analysis similar to that in Yu and Scully
[49]. One key difference is that, because we do not characterize C*[TX] directly, we must instead
first bound C*[T¥] by C*[X,] for some appropriate quantity X, s/t C*[X,] = C*[X,]. We can

then show that when 7 is y-Boost, the gap between C*[X,;] and C* [T)}_Boost] (equivalently, C*[X,]

and C* [T)}_Boost]) vanishes. We update the notation here to handle multiple servers.

Relevant work to a job J can roughly be thought of as work that has better priority than J.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:10 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Notation 3.2.
(a) We will analyze the response time of a tagged job with boosted arrival time 0.
— We will write S for the tagged job’s size and B, = b, (S) for the tagged job’s boost under
boost policy 7, suppressing & when the policy is obvious from context.
(b) We denote the amount of work in the M/G/k at time 0 under policy 7 by W¥, which is
distributed according to the stationary work distribution.
— In contrast to the M/G/1, the distribution is policy-dependent for k > 1, because the idleness
(Definition 2.3) is policy-dependent.
(c) We denote crossing work and non-crossing work during (0, u) by V, () and V , (u), respec-
tively, again suppressing 7 when the policy is obvious from context.
— V(u) is the amount of work from jobs arriving in (0, u) with boosted arrival time in (—oo, 0].
— V(u) is the complementary quantity, the amount of work from jobs arriving in (0, u) with
boosted arrival time in (0, o).

We now adapt the analysis from Boost to handle the effect of idle servers in the M/G/k. Parts
of our analysis will apply specifically to Boost policies, while other parts apply, generally, to all
non-idling policies (which include boost policies). The end result is the following.

THEOREM 3.3. Let 7 be a boost policy and suppose that E[e"*V(®)] < oo, E[e"*5] < oo, and
E[I,’;e”wflrc] < 0o. The tail constant of = can be bounded above as follows:

k ,ywk
C+ [Tj:] < C+ [WM/G/l] E[Ilney] E[e)/(kS—B)]E[eYV(OO)] .

When k = 1, this bound reduces to the exact M/G/1 tail constant found by Yu and Scully [49,
Theorem 3.1]. When k > 1, there are two differences, but, importantly for Theorem 3.1, both vanish
in heavy traffic:

e The E[e"5~B)] becomes E[e’*S~B)], but this change is negligible in heavy traffic because
y — 0.

e There is an additional factor of E[I,]ieywjrC 1/(1 = p), which is related to the amount of work
present when there are k — 1 or fewer jobs in the system. We give an upper bound on
this quantity under any non-idling scheduling policy using a “last-job lemma” (Lemmas 3.7
and 3.8), and the bound approaches 1 in heavy traffic.

How does idleness affect the analysis from Yu and Scully [49]? In the M/G/1, whenever the
system has work, I (¢) = 0 for all policies 7. For boost policies, this means that we only need to
consider two cases in the analysis: W! > B, in which case the idleness is 0 throughout the tagged
job’s time in the system, and W,! < B, in which case W = 0 throughout the tagged job’s time in
the system. This is how Yu and Scully [49, Lemma 3.3] proceed in deriving the tail constant for
general boost policies. But in the M/G/k, the system might have W > B, but also nonzero idleness
after the tagged job’s boosted arrival time. Our goal is to show that even in this case, we can bound
a boost policy’s tail constant by assuming the idleness has no impact on the boost. In particular, we
want to handle cases when there was insufficient relevant work between the tagged job’s boosted
arrival time and actual arrival time. We can do so by capturing cases where we are guaranteed to
have only served relevant work, using the following event:

LEMMA 3.4. Let Q be the event that at the tagged job’s arrival time (i.e., time B), there are at least k
jobs in the system with arrival time earlier than time 0. Let u > 0. The tagged job’s response time

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:11

under boost policy r can be upper bounded by
" W — min{B,u} + kS + V(o) if Q holds
< —
" k(S +V(c0) + V(min{B,u})) ifQ does not hold.

PRrOOF. We first observe that decreasing the tagged job’s boost from B to B = min{B, u} can only
increase its response time, so it suffices to analyze the response time with this reduced boost. In
both cases, we will bound the amount of time the tagged job can spend in the system.

IfQ holds: At the tagged job’s true arrival time, there are at least k jobs in the system with priority
over it. In particular, these jobs have been in the system since the boosted arrival time of the tagged
job, by our definition of Q. This means that between the tagged job’s boosted arrival time and its
actual arrival time, there were always at least k jobs in the system with better boosted arrival time
than the tagged job’s boosted arrival time. This implies that all servers have only worked on jobs
with boosted arrival time better than the tagged job’s boosted arrival time.

An upper bound on the amount of work with boosted arrival time better than the tagged job’s
boosted arrival time is W + V(o). Between the tagged job’s boosted arrival time and actual arrival
time, all servers only worked on jobs belonging to this WX + V(c0) amount of work. Therefore, the
remaining amount of such work at the tagged job’s actual arrival time is WX + V' (co) — B. Once the
tagged job arrives, one of the following must be true until it departs the system:

(1) All servers are occupied with work that has boosted arrival time better than the tagged job’s

boosted arrival time, i.e., this work leaves the system at rate 1.
(2) If not all servers are occupied with such work, the tagged job must be in service, because
it has the best boosted arrival time among all remaining jobs. The tagged job is served at
rate 1/k.
The maximum amount of time that (1) can hold is WX +V (c0) — B, and the maximum amount of time
that (2) can hold is kS, so the maximum amount of time that either can hold is WX + V (c0) — B+kS,
which yields an upper bound on the amount of time the tagged job can spend in the system.

If Q does not hold: At the tagged job’s true arrival time, there are at most k — 1 jobs in the system
with arrival time before the tagged job’s boosted arrival time. In particular, even if all such jobs are
in service, they only occupy k — 1 of the k available servers. Then, once the tagged job arrives, one
of the following must be true until it departs the system:

(1) For nonpreemptive policies, there could be a server working on a job from V(min{B, u}),

with nothing from V(o) in service, and with the tagged job not in service.

(2) There is at least one server working on work from V(0), i.e. such work leaves the system at

rate at least 1/k.
(3) The tagged job is served at rate 1/k.
(1) can only hold at the tagged job’s arrival time. For each server that is serving a job from
V(min{B, u}), after that job’s completion, the server will take either the tagged job, or work from
V(e0) into service. Namely, after a job from V (min{B, u}) completes, either event (2) or (3) will
hold until the tagged job departs the system. A simple upper bound on how long (1) can hold is
to imagine that all the work in V(min{B, u}) is served on a single server, leaving at the rate 1/k,
before the other two events hold. (2) can hold for at most kV (o0), and (3) can only hold for at most
kS. Therefore, the tagged job will spend at most k(V (min{B, u}) + V (c0) + S) time in the system,
as desired. O

LEMMA 3.5. For any boost policy w and event Q as defined in Lemma 3.4,

P[TF > 1] < P[W¥ — min{B, u} + kS + V,(c0) > t] + P[k(V(c0) + V(min{B,u}) + S) > t].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:12 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

ProoF. From Lemma 3.4, we know that
P[T; > t] =P[{T; > t} N Q] + P[{T; > t} N Q°]
< P[{WF — min{B, u} + kS + V(c0) > t} N Q] + P[{k(V(c0) +S) > t} N QO°]
< P[WF — min{B, u} + kS + V(c0) > t] + P[k(V(c0) + V(min{B,u}) +S) > t]. O
With Lemmas 3.4 and 3.5 in hand, we can prove Theorem 3.3:

Proor SKETCH OF THEOREM 3.3. The proof requires applying the upper bound from Lemma 3.5
with the scaling factor e'’, then applying final value theorem to both terms on the RHS and
computing the requisite limits. The computations are similar to that of the Boost paper [49, Theorem

3.1], so we defer a complete proof to Appendix C. While the idleness does not impact the boost a

K oy WE .
job receives, it does impact the transform; the E[I’f_ I term comes from expanding the transform

of work in system, namely, by applying the work decomposition law (Theorem 2.4). O

3.2 Characterizing Work Under System ldleness

In Section 3.1, we derived an upper bound on C* [T)f‘_Boost] for general boost policies, showing that
it suffices to assume that between the tagged job’s boosted arrival time and actual arrival time, the
system worked solely on jobs with better priority than the tagged job. This bound also makes clear
the dependence of a boost policy’s tail constant on system idleness, namely, through the wasted

k
E Ik Yw,
work factor, L ’;e_ 5 il

the p — 1 limit.

Grosof et al. [18] bounded the effects of wasted work via a worst-case bound on the amount of
extra additional “relevant work” that can be present in the M/G/k system. However, this technique
cannot be used to bound the relevant work for boost policies, for the same reason it cannot be used
to provide bounds for FCFS. Namely, under FCFS, all jobs in the system at the arrival time of the
tagged job are permanently relevant to the tagged job, so with unbounded job size distributions S,
the relevant work contributed by each relevant job is unbounded. Similarly, for any boost policy,
all jobs in the system at the boosted arrival time of the tagged job are permanently relevant to
the tagged job, and so all boost policies run into the same issue as FCFS. Therefore, we approach
bounding the wasted work term via stochastic methods. In particular, we will prove the following,
general bound on the wasted work for all non-idling policies.

. Heavy-traffic optimality of y-Boost requires that this term approaches 1 in

THEOREM 3.6. For any non-idling policy r,

;Lnll CH{WS] < C*[Wagenl.

Proving Theorem 3.6 requires a bound on the work in system when the idleness I > 0. For these
non-idling policies, the amount of wasted processing time can be characterized as follows: we will
show that to bound the work, it suffices to provide a bound on the size of the largest job in the
system when the idleness is nonzero. Lemma 3.7 below provides such a bound in terms of the
excess Se of S, namely the distribution such that

P[S. > x| =ﬁ/ P[S > y] dy.

LEmMMA 3.7 (LAsT JoB LEMMA). Define L to be k X (size of largest job in the system). Then for any
x>0,

E[I51(L > x)] < kP[kS. > x].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:13

Proor. By Assumption 2.1, we can assume stationarity of the involved processes, namely, of L
and I¥. The key idea is then to apply Miyazawa’s rate conservation law [38] to show that the size
of the largest job in the system cannot be too big whenever the idleness I > 0. Formally, we apply
the rate conservation law to the function (L) = (L — x)*, for arbitrary x. This value can change in
the following ways:

e Work is done continuously whenever available. We denote the average continuous change in
F(L) by E[D f(L)].
e When a job arrives, it will increase L whenever its size is larger than L and x. By PASTA, the
average change from this is given by AE[(max{kS,L} — x)* — (L — x)*].
Miyazawa’s rate conservation law tells us that

E[D;f(L)] + AE[(max{kS,L} — x)* — (L — x)*] = 0.

We now observe that E[D, f(L)] is upper bounded by E[IX1(L > x)]. This is because we can
bound the rate of decrease of f(L):
e If0 < I,’§ < 1and L > x, then the largest job must be in service, since there are servers idle,
and work is done at rate 1/k at each server. Therefore, f(L) decreases at rate 1.
o If the above conditions do not hold, then f(L) decreases at least at rate 0.
Therefore, E[D, f(L)] < —E[1(0 < I¥ < 1)T1(L > x)]. Since I¥ is at most 1, 1(0 < I < 1) > I¥,
which implies that —E[1(0 < I¥ < 1)T(L > x)] < -E[I¥1(L > x)]. Applying this yields
—E[I*1(L > x)] + AE[(max{kS, L} — x)* —= (L —x)*] > 0.
For the second term, we observe that:
e If L < kS, then it equals (kS — x)* — (L — x)*.
o If L > kS, then it equals 0.
We can upper bound both cases by (kS — x)*. We now have
—E[I¥1(L > x)] + AE[(kS — x)*] > 0.
Some algebra and properties of S, [3, 24] now yields:
kE[S
E[I¥1(L > x)] < AE[(kS - x)*] = AﬁE[(kS —x)*] = kpP[kS, > x] < kP[kS. > x]. O
This immediately yields the following bound on the idleness-weighted work transform:
LEMMA 3.8. Let 7 be a non-idling policy. For a fixed ¢ > 0 and assuming E[e(Y*9)kS] < oo,
E[[}I;eyw,’f y+e kE[e(yﬂ)Se] y/(y+e)
< .
- (1-p)
Proor SKETcH. The complete proof is in Appendix B. The proof essentially involves some key
observations, and a direct application of the Last Job Lemma (Lemma 3.7). The first observation
is that if L = k X (size of the largest job in the system), then by definition, E[I,’ieewilr{] < E[I,]EeeL],

[kt

so it suffices to find a bound on ETp]' The second observation is that because E[If] = 1 - p
E[IX1(L>x)]
1-p

1-p £

(Lemma A.2), we have = P;[L > x|, where P;[-] represents the probability measure

k
given by P;[A] = E[%”;ﬂ, for an event A. Then a Chernoff bound argument applied to the Last Job
Lemma implies

eexPI [L > x] < min{ E[e(y+s)k56]ef(y+s)xet9x’ e€x}’

1-=p
after which the conclusion follows from applying the tail integral formula (Lemma A.4) and taking
limits. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:14 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Now we are ready to prove Theorem 3.6.

PROOF OF THEOREM 3.6. First, we use the fact that 1/p = E[e"*¢] (Lemma A.1, proof in Appen-

_ _E[er®]
T-p ~ E[erSe]-1"
taking the heavy traffic limit, we can assume that we start at sufficiently high load p’ (respectively,
aty € (0,y’]) such that for some ¢ > 0, E[e(Y*9)k5%] < oo for all y € (0,y’]. Using Theorem 2.4, we
know that

dix A). Therefore, as p — 1, we also have y — 0, and

In particular, since we will be

-0 -0 E 1’< oWy
llm sup Y—E[eewn] = hm Sup Y_E[GWM/CH] [71']
oy Y 6y

= |l Y- 9WM/C/1 k 9W 7]

= |lim sup lim sup
0—y 0—y - p

er+e)Se] \y/(y+e)
lim sup Y- [9WM/G/1]) ¥ (Y + 5) (Lemma 3.8)
0—y 4
KE[e<Y+f>5 v/(r+e) [y + ¢
= C*"[Wwenl () (Y)

It therefore suffices to show that

lim
p—1

(kE[e(V“)SE])Y/(Y+€) (y + 5) B
I-p Y
Rewriting our desired limit in terms of y—using again that 1/p = E[e"¢] (Lemma A.1):

lim

y—0

(kE[e(Y“)Se]E[e?’SC])y/(y+£) (Y+ 5)
E[erse] —1 vy

We begin by analyzing the first term. Because we are taking y — 0 and all terms are positive, we

can bound terms as follows:

(k)y/<y+s> B (kE[e<Y+f>5e]E[eY5e])y/<y+e> . (kE[e<Y'+f>5e]E[eY’5e])y/<y+s>
E[ers] E[erS] -1 YE[Se]

>

where
e For the lower bound, we use the fact that 1 < E[e"%] < E[e(Y*¥)%]. For the denominator, it
is clear that we have increased its value.
e For the upper bound, the numerator uses the fact that E[e?5] < E[e’'5] and E[e(r*)5] <
E[e(V'+9)5%]. The denominator uses the fact that e — 1 > x for all x > 0.
The numerator in both upper and lower bounds are finite and independent of y, namely k¥/(r+8) — 1
as y — 0, and similarly (kE[eY'*®)S]E[eV"%])Y/(r+) — 1asy — 0.

For the lower bound, it suffices to show that lim,_,o # log(1/E[e"*]) = 0. Clearly, the first term
goes to 0, and by monotone convergence, the second term goes to log 1 = 0, as desired. So the lower
bound converges to 1. It now remains for the upper bound to show that lim, _,o # log(yE[Se]) = 0.
This can be rewritten as 5 < logy + o5 Y logE[Se]. Clearly, the second term converges to 0. The first
term, by L’Hépital’s rule also converges to 0. Therefore, both lower and upper bounds converge
to 1 in the y — 0 limit. Finally, (y + ¢£) /e — 1 asy — 0, so the entire limit converges to 1. O

3.3 Proof of Heavy-Traffic Optimality

Having bounded the effects of idleness in Sections 3.1 and 3.2, we are now ready to prove our main
result, that y-Boost is heavy-traffic optimal in the M/G/k. To proceed, we first need to confirm

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:15

a technical assumption for y-Boost, namely that E[e/*V(*)] is finite. Specifically, we show the
following;:

LEMMA 3.9. Letu € R, U {co}. Then for y-Boost, if E[e"*5] < oo, then

E[¢"V)] = exp(AE[(¢"** ~ 1) min{B, u}]) < co.

Proor. We consider each new arrival as a triple (b, s, t), as in [49, Lemma 3.5], and let X corre-
spond to the set of random triples arriving after time 0, so that

V(u) = Z sT(t < min{b,u}).

(bs,t)eX

Then, kV (u) = X (p5.1)ex ks1(t < min{b, u}). To compute E[e"*V)] we apply Campbell’s theorem
[31, Section 3.2], which implies that

E[¢"*)] = exp(AE[(¢"™ - 1) min(B,u}).

so long as the RHS is finite. For y-Boost, we will show this is indeed the case. It suffices to show
that AE[(e"*S — 1) min{B, u}] is finite. We have:

ers

JE[(e”*S — 1) min{B, u}] < AE[(e"*S — 1)}1/10g()] (Equation (2.5))

ers —1
= A1 - 1 log(=2—)]
= e ogl s/

Recalling that x log xT“ < 1, which implies that log xT“ < 1/x, for all x > 0, we have:

%E[log(eyiyi 1)(eYk5 -1)] < &E[(eyks _ 1)/(eYS -1)].

~

Finally, we only need observe that E[(e"*S —1)/(e"S —=1)] = Zf:_ol E[e’*]. Since E[e"*%] < o0, each
term in the sum is finite, so our expression is finite, as desired. O
LEMMA 3.10. Under y-Boost,

E[ey(kS—B)]

P Efaem]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:16 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

PROOF. Since 1/p = E[e¥¢] (Lemma A.1), as p — 1, we have y — 0. Then it suffices to show

_ E[er*s-B)] E[eyks%]
;15(1) E[er(S-B)] ;li% E[erS — 1]
E[eV kDS (erS — 1)]

m

y—0 E[erS — 1]
_E[er*TDS(erS —1)] /y

= lim

y—0 E[erS —1]/y

E[limy—>0 ey(k—l)S(eyS - 1)/)’]
= Monot

E[limy_(e¥s - 1)/y] (Monotone convergence)
_ E[limy_ eVkS [y — ey (k=1 /y]
© E[limyo(erS - 1)/y]
_ E[limy0kS+o(y)/y — (k—=1)S - o(y)/y]
E[limy o S +o(y)/y]

= E[S]/E[S] = 1.

(Equation (2.5))

S P
€1 and e~ are both positive

The use of monotone convergence theorem is valid because
and increasing in y. O

Proor oF THEOREM 3.1. One can take any policy in the M/G/k and run it in the M/G/1. Because
y-Boost is optimal in the M/G/1 across all policies [49], this implies that any policy in the M/G/k

has tail constant at best equal to that of C* [T;_Boost]. In particular, we know that for all p,

CH[Tk,]

y-Boost > 1
CH[Wi JE[er =B]E[erV ()] — 7

where the denominator comes from [49, Theorem 3.1]. Therefore, it suffices to show that

CHTr g)

y-Boost

lim <1
p=1 C*[Wagn JE[eS-BI]E[erV(~)]

Since 1/p = E[e"%] (Lemma A.1), as we take p — 1, we have y — 0. Then, for sufficiently high

load p € (p’, 1), because the job size distribution is class I, we can assume that E[e"*5] < oo and,
0s1_

since E[e%%] = % [24, Chapter 25], that there exists ¢ > 0 such that E[e(Y*9)¥%] < co. Under

E[I),f-BOost('Zy‘/v)ﬁﬂoost]

15
that E[e"*V(*)] < o, so we can apply Theorem 3.3 to get:

these assumptions, Lemma 3.8 implies that is bounded, and Lemma 3.9 implies

k
k eYWy-Boost

E
y-Boost - 00
€' [Tpgoa] < C"[Mhwe]— = ———B[e/ P [B[e")]
Therefore, it suffices to show that
k
B g 700
i C*[Wawon] —2— o E[er(S-B)])
< - - <1.
o CH[Wwon] =0 0 E[er(S-B)] ~

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:17

The first inequality follows immediately from the fact that y-Boost is a non-idling policy, so
Theorem 2.4 implies that the numerator is CJ'[WYk_BO ost] and Theorem 3.6 implies the desired

inequality. The second inequality follows immediately from Lemma 3.10. O

4 Heavy-Traffic Optimality for Unknown Sizes

In this section we prove that y-Surrogate is heavy-traffic optimal in the M/G/k where job sizes are
unknown. Since we are considering the y-Surrogate policy, we use the system model introduced by
Harlev et al. [25], who introduced it, but extend it to the M/G/k setting. In particular, this means
that the system model in this section is the same as the one used throughout this paper except for
the following changes:

e Service is quantized, and we let the service quantum be length 1 without loss of generality.’
(The arrival process remains continuous.)

e Jobs are modeled as independent absorbing discrete-time Markov chains with countable state
space. When a job is served, its state advances once per unit of service, and the job completes
when it enters the unique absorbing state. The intuition is that a job’s state encodes all the
information the scheduler has about the job.

e Scheduling policies must be non-clairvoyant. That is, they must choose which job’s to serve
using only the information available at the time, which is each job’s state trajectory up to its
current state.

In this setting, boost policies assign each job’s boost based on its trajectory rather than its size.
This means that a job’s boost can change with service, which does not happen in the known size
model. If a job’s boosted arrival time exceeds that of a job in the queue, the boost policy will
preempt it and replace it with the job in the queue.

Harlev et al. [25] introduced three boost policies and proved that they are tail constant optimal
in the M/G/1 among all non-clairvoyant policies. We extend this result by showing that one of
these policies, y-Surrogate, is also heavy-traffic optimal in the M/G/k, using the same approach as
in the known-size setting. To define the three policies we introduce the following notation:

e We write X, for the random state of the job after u units of service.

o We denote a job’s trajectory during its first u units of service as Xo., = (Xo, X1, . - ., Xu)-

e We let S represent a job’s size, which is the hitting time of the unique absorbing state.

The three policies are the following:

o The y-Gittins boost policy has boost function

eY

eV -1

1 1
by—Gittins (Xow) = }_/ log L, (Xu) +)_/ log

Here y is the same solution to (2.2) as in the known-size model, I} (x) is a variant of the
Gittins index [11, 12] and defined in the appendix (Definition D.1), and the)1/ log efil
added by convention to ensure boosts are nonnegative.

e The y-Surrogate boost policy is a version of y-Gittins with decreasing boost function:

term is

by—Surrogate (XO:u) = min by—Gittins (XO:t)-
t€{0,...,u}

7One can rescale time to study arbitrarily small service quanta. We study quantized service because this is what Harlev et al.
[25] study, who in turn make this choice for purely technical reasons: prior work on the Gittins index in continuous time
[4, 29, 30, 35] treats the traditional case of time-discounted rewards, whereas the Gittins index developed by Harlev et al.
[25] is for time-inflated costs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:18 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

e The y-Insulated boost policy is a “minimally preemptive” version of y-Gittins:

{by—Gittins (XO:u) if by-Gittins (XO:u) = by—Surrogate (XO:u)
[o¢]

by1 1td(X0:)=
yrnsuate “ otherwise.

4.1 Proving Heavy-Traffic Optimality of y-Surrogate in the M/G/k
We will follow the approach of Section 3 to prove heavy-traffic optimality of y-Surrogate in the
M/G/k.8 In particular, we prove an analog of Theorem 3.1 for the unknown-size setting.

THEOREM 4.1. For an M/G/k with class I job size distribution, y-Surrogate is optimal in the heavy
traffic limit:

k E[g ateeywyk’s“'mga‘e] kS—B V(0
CH T} surrogate] C* [Wwon] ——5=; E[eV kS=BIE[erV (0)]
lim OB iy =1,
p—1 CH[T, | C*[Wawon JE[e¥ SB E[erV (0)]

y-Surrogate

where the numerator is an upper bound on the tail constant of y-Surrogate in the M/G/k, and the
denominator is the tail constant of y-Surrogate in the M/G/1.

While this looks notationally almost identical to the statement of Theorem 3.1, it is important
to note that both the boost term, B, and the crossing work term, V (0, c0), are defined differently
than their known-size setting counterparts. They do, however, capture the same ideas, adjusted
appropriately for the new setting:

e The boost term, B, represents the worst-ever boost experienced by a job under a boost policy
m, and is defined as B = min,eo,..s} b (Xo::). The intuition for why this quantity appears
is that it determines the worst priority a job gets prior to completion, and thus determines
which other work will eventually be prioritized over a job.

o The crossing work term, V (0, o), is similar to the crossing work in the known-size setting
(Notation 3.2(c)), but it is now possible for only certain parts of each arriving job to be
included in the crossing work.

To prove Theorem 4.1, we replicate the proof of Theorem 3.1, reusing results from the known-size
setting when possible, and otherwise proving analogues for the unknown-size setting. Since the
ideas are the same, we present only an outline with a sketch of the proofs, and then present a
complete proof in Appendix D.

Note that Theorem 3.6 and Lemma 3.8 hold for all non-idling policies, including y-Gittins, y-
Surrogate, and y-Insulated. The external result used in the proof Theorem 3.1 is [49, Theorem 3.1]
which has a direct analogue in the unknown-size setting, [25, Theorem 4.11]. The only other policy
specific results used in the proof of Theorem 3.1 are Theorem 3.3 and Lemmas 3.9 and 3.10:

e An analogue of Theorem 3.3 follows from considering the worst boosted arrival time of
a tagged job and then carefully checking that each step of the proof still holds for the
unknown-size setting definition of crossing work.

e An analogue of Lemma 3.9 follows almost immediately from the fact that boost is uniformly
bounded in the unknown-size setting due to the service quantization, and so it is impossible
for a job that arrives far in the future to affect the crossing work. See Lemma D.6.

e We prove an analogue of Lemma 3.10 in Lemma D.8. Just as in the known-size setting we
expand the boost term using its definition and then interchange the limit and the expectation
to get the desired result. Justifying the interchange in the unknown-size setting requires

80ur results in the unknown-size setting extend specifically to y-Surrogate and not the other two policies introduced in
Harlev et al. [25], y-Gittins and y-Insulated. This is because, as discussed in [45, Appendix A], nonmonotonic rank functions
are difficult to analyze in the multiserver setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:19

Exponential Hyperexponential Uniform

=¥
<
]
[} .
s 0.1 0.1 0.1
=]
£
5
<001 0.01 0.01
3]
~
—
=]
<
B
0.001 g | 0.001 0.001
So5S55S o o S S oS00SS o o S S Sooo5S o o S S
Jxxooo o © o o JImxooo © o o o JIxxooo © o o o
FYS& § 8] 3 88 3 8 3 3 Se8& 3 8 3 3
& S 8 g & & 8 g & S 8 g
Load
—— 90th percentile 99th percentile —4— 99.9th percentile —*— 99.99th percentile

Fig. 5.1. (Lower is better.) y-Boost’s heavy-traffic performance for k = 10 servers and different job size
distributions. We plot the Tail Performance Gap (TPG) against several loads and percentiles. Namely, let t;
denote the gth percentile response time of y-Boost in the M/G/1 and té‘ denote the gth percentile response
time of y-Boost in the M/G/k. Then the TPG at the gth percentile for load p is given by 1 — t‘}/tlg. As load
increases to 1, we would therefore expect the gap to go to 0 at higher percentiles. To compute values, we
run all simulations with load below 0.975 with 200 million samples, and all simulations with load 0.975 and
above with 2 billion samples. The job size distributions, from left to right, are Exp(1), Hyperexponential with
branches drawn from Exp(2) and Exp(3) and first branch probability 0.8, and Uniform(0, 2).

proving that E[sup,.; sE[S | Xo;]] < oo, and then using the dominated convergence
theorem. We prove this in Lemma D.11 using classical martingale results.
With these analogues in hand, the proof of Theorem 4.1 is identical to that of Theorem 3.1.

5 Simulations

We have shown that in the heavy-traffic regime, y-Boost is tail constant optimal among all policies
and y-Surrogate is tail constant optimal in the unknown size setting. Our results are asymptotic in
nature, so the question of whether y-Boost and y-Surrogate perform well outside of this regime
remains open. Analyzing scheduling policies theoretically in the multiserver setting outside of the
heavy-traffic regime is difficult [16], so we perform an empirical study with simulations. For mean
response times, SRPT, which is heavy-traffic optimal, is still among the best performing policies
outside of the heavy-traffic regime [16, 18], so one would hope that the same would hold for tails.
Surprisingly, our simulations show this is not the case; y-Boost can often perform poorly even
compared to FCFS. Specifically, we study the performance of policies in the following regimes.
These are not formal definitions, but roughly characterize system behaviors that we have seen:

o The heavy-traffic regime, i.e. in the p — 1 limit.

e The low-load regime. In this case, the M/G/k almost always has free servers, so one can think

of the system as acting like an M/G/co, where each server has speed 1/k.

e The moderate load regime, which falls between the low-load and heavy-traffic regimes.
As we see in Section 5.3, where each regime begins and ends will depend on system details, such as
the number of servers.

5.1 Heavy Traffic Performance

In Fig. 5.1, we evaluate the performance of y-Boost as p — 1. Namely, we compare the tail
performance in the M/G/k against its performance in the M/G/1. Our theory predicts that as load
increases, performance in the M/G/k should approach performance in the M/G/1. We see that at

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:20
10 10-60-140-2700 distribution, 10 servers
‘\"\c\\ —— 90th percentile
:%‘ 99th percentile
(2 —A— 99.9th percentile
8 0.1 99.99th percentile
<
g
3
S 001
5] -
== \ \
0.001 \\
D 9 H) S))
¥ 7 O N N S
N
Load

Fig. 5.2. (Lower is better.) y-Gittins’s heavy-traffic
performance for k = 10 servers. We plot the Tail
Performance Gap (TPG) against several loads and
percentiles. For unknown sizes, the TPG at the
qth percentile for load p is given by 1 — t}l/tk,
where t(} denotes the gth percentile response time
of y-Gittins in the M/G/1 and té‘ denotes the gth
percentile response time in the M/G/k. We run all
simulations with load below 0.975 with 200 mil-
lion samples, and all simulations with load 0.975

George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

10-60-140-2700, 10 Servers, Load 0.8
1.00 P o —
0.75 &
g
= 0507
~ i
-]
g 025 /
§ ook —
S 0.00 4
g V\N//’,\
-0.25
E
= 2050 ® 90th Percentile
= ¢ 99th Percentile — FCFS
— A 99.9th Percentile — y-Gittins
0.75 ¥
X 99.99th Percentile --== M/G/1 y-Gittins
1.00

0 10000 20000 30000 40000 50000 60000 70000 80000
Latency Threshold

Fig.5.3. (Higher is better.) y-Gittins’s performance
in the low-load regime. Similar to y-Boost, y-
Gittins significantly underperforms FCFS in this
regime. We plot the Tail Improvement Ratio (TIR)
against thresholds t. The TIR of a policy 7 is given
by 1 — P[T; > t]/P[Trcps > t]. Simulations are
run using 200 million jobs. The job size distribu-
tion is Unif{10, 60, 140, 2700}. As computing boost
changes at every timestep would be computation-
ally expensive, we use an insulated variant of y-

and above with 2 billion samples. The job size dis- Gittins for simulation.

tribution is Unif{10, 60, 140, 2700}. As computing
boost changes at every timestep would be compu-
tationally expensive, we use an insulated variant
of y-Gittins for simulation.

low loads, y-Boost’s performance in the M/G/k can be far from M/G/1 optimal, but at higher and
higher loads, as our theory suggests, performance in the M/G/k converges to performance in the
M/G/1. This suggests that in heavy traffic, scheduling with y-Boost leads to the best achievable
performance for the tail. We perform a similar evaluation in Fig. 5.2 when sizes are unknown, with
similar results.

5.2 What Happens Outside of Heavy Traffic?

Outside of heavy traffic, the question of what to do for the tail becomes more complicated. In
particular, under both the low-load and moderate-load regimes, we find that y-Boost’s performance
suffers. The degradation can be large: as Fig. 5.4 shows, y-Boost can significantly underperform
FCFS outside the heavy-traffic regime. Figure 5.3 shows that y-Gittins experiences a similar such
degradation outside the heavy-traffic regime, relative to FCFS.

5.2.1 Hypotheses for Poor y-Boost Performance. Why might y-Boost underperform? There are
several reasons this might be the case. The first has to do with jobs receiving implicit prioritization
due to the service mechanics of an M/G/k system. Namely, jobs can enter service before work with
priority over them completes, i.e., they receive some extra priority due to how server resources are
partitioned in an M/G/k. Yu and Scully [49, Section 6.4] have observed that boosts which are too
aggressive can lead to degraded tail performance, so if a similar over-prioritization is occurring
here, it could negatively impact performance in the M/G/k.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:21

Another factor that may arise in lower load settings is that of job packing; namely, that we may
want to pack jobs so that they finish with a smaller makespan. Consider an example where we have 2
servers and a batch of three jobs, of size 1, 1, and 2, which have arrival times —2, —1, —0, respectively.
Recall that with a single server, the rough intuition behind y-Boost is that it attempts to minimize
the exponential cost E[e!”],? which for this batch, is equivalent to minimizing: 33, e¥(%~%) With
multiple servers, this is no longer the case. The boosted arrival times of these jobs would suggest
serving both size 1 jobs, followed by the size 2 job. Because our servers run at speed 1/2, the
two size 1 jobs finish at time 2 and the size 2 job finishes at time 6. The cost of this schedule is
eV (=2)) 4 er(2=(=1)) 4 or(6=0) — ¢4y 4 &3¥ 4 ¢ We would do better, however, by prioritizing the
larger job in this case: by serving jobs 1 and 3 first, then serving job 2 once job 1 finishes, we obtain
a schedule with cost e¥ 2=(=2)) 4 o¥(4=(=1)) 4 o¥(4=0) — o4 4 ¢ 4 ¢4 The difference between the
two schedules is % + e% — (e* + ¢%), which is positive for all y > 0.

5.2.2 Corrective Boosting with y-CombinedBoost. These factors suggest that we might try and com-
pensate by corrective boosting: that is, boosting larger jobs more than small jobs. Namely, we consider
the y-CombinedBoost function, which combines y-Boost with the corrective SizeBoost function:

bSizeBoost(s) = (k - 1)5, by—CombinedBoost(s) = by-Boost(s) + bSizeBoost(s)~

The corrective (k — 1)s term gives large jobs more priority than small jobs. The choice of k — 1 is
somewhat arbitrary, but means that y-CombinedBoost naturally reduces to y-Boost when k = 1. It
turns out that y-CombinedBoost is also heavy-traffic optimal. We give the proof in Appendix F. It
is almost identical to that of Theorem 3.1, with one key difference: in Theorem 3.1, y-Boost has
crossing work term (Notation 3.2(c)) identical to that of M/G/1 y-Boost, in exchange for an altered
boosting term, E[e?kS=B)] The effect of the corrective boost in y-CombinedBoost is to instead
preserve the boosting term, in exchange for additional crossing work. Intuitively, at lower loads,
one would expect the amount of crossing work jobs experience to be lower, so the effects of other

terms might be more dominant.
Empirically, y-CombinedBoost performs well at all load regimes we study. At low loads, the
SizeBoost term dominates the y-Boost term, and vice versa at high loads. We can see this in Fig. 5.4:
¢ In the low-load regime (left column), y-CombinedBoost’s performance is similar to that of
SizeBoost’s performance. For the unbounded distributions,!” it actually approaches that of
the M/G/co with speed 1/k servers, which provides a bound on how well any policy can do

in the M/G/k.

e In the high-load regime (right column), y-CombinedBoost’s performance mirrors that of
y-Boost. This makes sense, as both policies are heavy-traffic optimal, and so will converge to
the performance of M/G/1 y-Boost.

e Finally, at moderate load (middle column), neither y-Boost nor SizeBoost alone can outperform
FCFS. y-CombinedBoost, on the other hand, is able to achieve a performance improvement
in all settings.

In summary, y-CombinedBoost seems to not only obtain the best of both worlds in the light-
and heavy-load regimes, but also exhibits performance that is more than the sum of its parts in
moderate load, outperforming FCFS where neither of its constituent boost functions alone produces
an improvement.

9This is of course only an informal statement, as E[eYT7 | = o, but for a finite batch, it captures the right scheduling
decisions. See [49, Section 1.5 and Section 4] for full details.

10For bounded distributions, such as the uniform distribution, the M/G/co effectively has P[T > spyax] = 0, so one should
not expect policies to be able to match its performance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:22 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Load 0.8 Load 0.95 Load 0.99
0.87— 0.8 0.8
/ o
0.6/ L e e] 0.6
0.4 0.4 0.4 \' e = s
: i/ T x| B
0.29 //‘M 0.2{/ 0.2 S
i _ i 5
0.0 0.0 \ 0.0 — =3
o
-0.2 -0.2 = -0.2 -
-0.4 -0.4 -0.4
0 20 40 60 80 100 0 25 50 75 100 125 150 175 200 0 200 400 600 800
o 0877 0.8 — 0.8
=] / Sy PRSI o
< / S —
~ 0.6 0.6 : 0.6 E
- i
S 04 0.41) 0.4 <
g 8
o
g 0.2 /\ - 402 0.2 &
g /,.f——u—A S
o 00 0.0 0.0 =1
a @
g -02 -0.2 -0.2 =
P pbi‘
T.-& -0.4 -0.4 -0.4
Il 0 50 100 150 200 250 300 0 50 100 150 200 250 300 350 400 450 0 500 1000 1500 2000 2500
0.8 7 0.8 0.8
0.61 / (X3 R S E— N 0.6
0.41/ 04/ 04
- + 4 - * (5:
0.27/ 0.2y 0.2 =
P N ™ : == B
-0.2 \)& -0.2 -0.2
A TR
-0.4 -0.4 -0.4
0 10 20 30 40 50 0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700 800
Latency Threshold
—— FCFS y-CombinedBoost — Y-Boost —— SizeBoost ~ ----- M/G/1 y-Boost M/G/®
® 90th percentile ¢ 99th percentile A 99.9th percentile X 99.99th percentile * 99.999th percentile

Fig. 5.4. (Higher is better.) Plot of performance of policies for k = 10 servers for different load regimes and
job size distributions. We plot the Tail Improvement Ratio (TIR) of policies against thresholds ¢. The TIR of
a policy 7 is given by TIR(t) = 1 — P[T; > t]/P[Trcrs > t], where higher TIR means better performance.
Simulations are run using 200 million jobs for loads 0.8 and load 0.95. For load 0.99, we run 2 billion jobs
for convergence. The job size distributions are, from top row to bottom row, Exp(1), Hyperexponential with
branches drawn from Exp(2) and Exp(1/3) and first branch probability 0.8, and Uniform(0, 2).

5.3 The Effect of More Servers

We run simulations under many more servers (k = 100), with results in Fig. 5.5. We find that, with
this number of servers, there are still three different load regimes, but the thresholds at which those
regimes change is different than that of the k = 10 server setting. Namely, we find that the low-load
regime ends at much higher load than it did for k = 10 servers. In Fig. 5.5, even at load 0.975,
our policies exhibit the same qualities as they did at load 0.8 for 10 servers:!! y-Boost performs
poorly, while SizeBoost performs well, as does y-CombinedBoost. At load 0.99, where y-Boost used
to perform well for k = 10 servers, it now performs poorly. The heavy-traffic regime kicks in at
load 0.999, and we see that y-Boost and y-CombinedBoost approach the performance of M/G/1
y-Boost, as theory predicts.

1 particular, we omit the plot at load 0.8 for k = 100 as the difference in performance across policies is negligible.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:23

o Load 0.975 Load 0.99 Load 0.999
210 > 1.0 — 1.0
< R a
o os 0.8 %mmeer 0.8] o
f—~S=xaa SRS
g os 0.6 = 06] S e d :§
£ [S S
0.4 0.4 0.4
g o | £
8 0.24 R e 0.21 0.2 =
g, ‘ /'/— o
g 0.0 + = * 0.0 + - * 0.0 + =3
= 02 0.2 \ 02 =
EE 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500 0 2000 4000 6000 8000 10000 12000
Latency Threshold
—— FCFS y-CombinedBoost — y-Boost SizeBoost ~ ----- M/G/1 y-Boost M/G/o
¢ 90th percentile ¢ 99th percentile A 99.9th percentile X 99.99th percentile * 99.999th percentile

Fig.5.5. (Higher is better.) Plot of performance of policies for k = 100 servers for different load regimes and job
size distributions. The tail improvement ratio is as defined in Fig. 5.4. Simulations are run using 2 billion jobs
for all loads. The job size distribution is Hyperexponential with branches drawn from Exp(2) and Exp(1/3)
with first branch probability 0.8.

5.4 Is There Still Room For Improvement?

Our experiments from Section 5.2 suggest that using y-CombinedBoost works well at all loads. A
natural question to ask is the following: how much additional room for improvement is there? In
Fig. 1.1, we present early experiments that suggest that additional improvements may be difficult
to achieve. Due to computational requirements, however, we are only able to obtain results under
limited samples, likely before convergence.

Recall that in the single-server setting, the key idea for y-Boost comes from solving a deterministic
scheduling problem [49, Section 4]. In the single server-setting, this problem can be solved easily by
scheduling in boosted arrival time order under y-Boost. In the multiserver setting, this scheduling
problem becomes a mixed-integer nonlinear program that does not, to the best of our knowledge,
have a simple solution. We can, however, attempt to optimize the objective function numerically.
We do so using Gurobi [22], solving for the optimal nonpreemptive schedule of all jobs in the
system on every new arrival. Our formulation is detailed in Appendix E. Because Gurobi is so
computationally expensive, we are only able to obtain limited samples. From these samples, we
observe in Fig. 1.1 that, despite y-CombinedBoost’s relative simplicity, it achieves performance
roughly equivalent to scheduling according to solutions found by Gurobi. Because we have only
limited samples, we leave a more detailed study of mathematical-programming-powered scheduling
to future work.

6 Conclusion

In this work, we analyze how to optimize the tail of response time via scheduling in the M/G/k
queueing model. We show that y-Boost is tail constant optimal in the heavy-traffic limit; however,
we also find that empirically, unlike for mean response time, good heavy-traffic performance is
insufficient as a proxy for good performance at different loads. In particular, y-Boost can significantly
underperform FCEFS at lighter loads. We take the first steps towards closing this gap with a new
state-of-the-art scheduling policy, y-CombinedBoost, which is theoretically heavy-traffic optimal,
demonstrates state-of-the-art empirical performance at lighter loads. Our findings suggest some
interesting questions to explore for future work.

For practitioners, the most immediate next step would be a more comprehensive empirical study.
While FCFS already optimizes the decay rate, the additional improvements from optimizing the tail

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:24 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

constant can still be important. Yu and Scully [49] showed in the single server case that empirically,
y-Boost improves over FCFS for many common distributions, across all thresholds ¢, not just large
ones. In the multiserver setting, our experiments in Section 5 are a first step towards quantifying
what performance improvements are possible, but our exploration across server scales, distributions,
and loads are far from a complete picture of multiserver tail scheduling. A more detailed study
of Gurobi’s performance would also help better quantify how much improvement is left on the
table. Another practical consideration would be to reexamine the single-central-queue assumption,
studying systems that combine immediate dispatching with scheduling.

On the theoretical side, all of our results are upper bounds, and we generally expect them to
only be tight in heavy traffic. Whether one can prove complementary lower bounds remains open.
We conjecture that one can prove lower bounds that match our Theorem 3.3 in heavy traffic.
However, this is nontrivial even for FCFS, the simplest special case of Boost: existing results either
show the existence of a tail constant without characterizing it [39, 41], or they show heavy-traffic
distributional limit theorems that are a limit interchange away from characterizing the tail constant
[32]. We suspect the techniques of Jhunjhunwala et al. [28] for the M/M/k could be extended to
handle the FCFS case. Another avenue of exploration would be to study the behavior of y-Boost
and y-CombinedBoost under different asymptotic regimes. In particular, understanding how y-
CombinedBoost and y-Boost behave differently under regimes such as the Halfin-Whitt scaling
[23] could provide new insight into the correct design decisions for multiserver tail scheduling.

Acknowledgments

This work was supported by the National Science Foundation (NSF) under grant nos. CMMI-
2307008 and CNS-1955997. Amit Harlev was supported by the Department of Defense (DoD)
through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program
(https://ndseg.sysplus.com/).

Code underlying plots and simulations was prepared in part using generative Al tools.

References

[1] Joseph Abate, Gagan L. Choudhury, and Ward Whitt. 1994. Waiting-Time Tail Probabilities in Queues with Long-Tail
Service-Time Distributions. Queueing Systems 16, 3-4 (Sept. 1994), 311-338. do0i:10.1007/BF01158960

[2] Joseph Abate and Ward Whitt. 1997. Asymptotics for M/G/1 Low-Priority Waiting-Time Tail Probabilities. Queueing
Systems 25, 1 (June 1997), 173-233. do0i:10.1023/A:1019104402024

[3] Seren Asmussen. 2003. Applied Probability and Queues (2 ed.). Number 51 in Stochastic Modelling and Applied
Probability. Springer, New York, NY. doi:10.1007/b97236

[4] Peter Bank and Christian Kiichler. 2007. On Gittins’ Index Theorem in Continuous Time. Stochastic Processes and their
Applications 117, 9 (Sept. 2007), 1357-1371. doi:10.1016/j.5pa.2007.01.006

[5] Dimitris Bertsimas and José Nifio-Mora. 1996. Conservation Laws, Extended Polymatroids and Multiarmed Bandit
Problems; a Polyhedral Approach to Indexable Systems. Mathematics of Operations Research 21, 2 (May 1996), 257-306.
doi:10.1287/moor.21.2.257

[6] Onno J. Boxma and Bert Zwart. 2007. Tails in Scheduling. ACM SIGMETRICS Performance Evaluation Review 34, 4
(March 2007), 13-20. doi:10.1145/1243401.1243406

[7] Nils Charlet and Benny Van Houdt. 2024. Tail Optimality and Performance Analysis of the Nudge-M Scheduling
Algorithm. arXiv:2403.06588 [cs, math] doi:10.48550/arXiv.2403.06588

[8] Jie Chen, Kent H. Lundberg, Daniel E. Davison, and Dennis S. Bernstein. 2007. The Final Value Theorem Revisited -
Infinite Limits and Irrational Functions. IEEE Control Systems Magazine 27,3 (2007), 97-99. d0i:10.1109/MCS.2007.365008

[9] Awi Federgruen and Harry Groenevelt. 1988. M/G/c Queueing Systems with Multiple Customer Classes: Characteri-
zation and Control of Achievable Performance under Nonpreemptive Priority Rules. Management Science 34, 9 (1988),
1121-1138. doi:10.1287/mnsc.34.9.1121

[10] S. W. Fuhrmann and Robert B. Cooper. 1985. Stochastic Decompositions in the M/G/1 Queue with Generalized
Vacations. Operations Research 33, 5 (Oct. 1985), 1117-1129. do0i:10.1287/opre.33.5.1117
[11] John C. Gittins. 1979. Bandit Processes and Dynamic Allocation Indices. Journal of the Royal Statistical Society: Series B

(Methodological) 41, 2 (Jan. 1979), 148-164. doi:10.1111/§.2517-6161.1979.tb01068.x

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

https://ndseg.sysplus.com/
https://doi.org/10.1007/BF01158960
https://doi.org/10.1023/A:1019104402024
https://doi.org/10.1007/b97236
https://doi.org/10.1016/j.spa.2007.01.006
https://doi.org/10.1287/moor.21.2.257
https://doi.org/10.1145/1243401.1243406
https://arxiv.org/abs/2403.06588
https://doi.org/10.48550/arXiv.2403.06588
https://doi.org/10.1109/MCS.2007.365008
https://doi.org/10.1287/mnsc.34.9.1121
https://doi.org/10.1287/opre.33.5.1117
https://doi.org/10.1111/j.2517-6161.1979.tb01068.x

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:25

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]

John C. Gittins, Kevin D. Glazebrook, and Richard R. Weber. 2011. Multi-Armed Bandit Allocation Indices (2 ed.). Wiley,
Chichester, UK. doi:10.1002/9780470980033

Kevin D. Glazebrook. 2003. An Analysis of Klimov’s Problem with Parallel Servers. Mathematical Methods of Operations
Research 58, 1 (Sept. 2003), 1-28. doi:10.1007/s001860300278

Kevin D. Glazebrook, David J. Hodge, Christopher Kirkbride, and R. J. Minty. 2014. Stochastic Scheduling: A Short
History of Index Policies and New Approaches to Index Generation for Dynamic Resource Allocation. Journal of
Scheduling 17, 5 (Oct. 2014), 407-425. doi:10.1007/s10951-013-0325-1

Kevin D. Glazebrook and José Nifio-Mora. 2001. Parallel Scheduling of Multiclass M/M/m Queues: Approximate and
Heavy-Traffic Optimization of Achievable Performance. Operations Research 49, 4 (Aug. 2001), 609-623. doi:10.1287/
opre.49.4.609.11225

Isaac Grosof. 2019. Open Problem—M/G/k/SRPT under Medium Load. Stochastic Systems 9, 3 (Sept. 2019), 297-298.
doi:10.1287/stsy.2019.0042

Isaac Grosof. 2023. Optimal Scheduling in Multiserver Queues. Ph.D. Dissertation. Carnegie Mellon University,
Pittsburgh, PA. https://isaacgl.github.io/assets/isaac-thesis.pdf

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2018. SRPT for Multiserver Systems. Performance Evaluation 127-128
(Nov. 2018), 154-175. doi:10.1016/j.peva.2018.10.001

Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. Optimal Scheduling in the Multiserver-Job
Model under Heavy Traffic. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 3, Article 51
(Dec. 2022), 32 pages. doi:10.1145/3570612

Isaac Grosof and Ziyuan Wang. 2024. Bounds on M/G/k Scheduling under Moderate Load Improving on SRPT-k and
Tightening Lower Bounds. ACM SIGMETRICS Performance Evaluation Review 52, 2 (Sept. 2024), 24-26. do0i:10.1145/
3695411.3695421

Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter. 2021. Nudge: Stochastically Improving upon FCFS.
Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, 2, Article 21 (June 2021), 29 pages.
doi:10.1145/3460088

Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual. https://www.gurobi.com

Shlomo Halfin and Ward Whitt. 1981. Heavy-Traffic Limits for Queues with Many Exponential Servers. Operations
Research 29, 3 (June 1981), 567-588. doi:10.1287/opre.29.3.567

Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing Theory in Action. Cambridge
University Press, Cambridge, UK. doi:10.1017/CB0O9781139226424

Amit Harlev, George Yu, and Ziv Scully. 2025. A Gittins Policy for Optimizing Tail Latency. Proceedings of the ACM on
Measurement and Analysis of Computing Systems 9, 2, Article 17 (June 2025), 40 pages. doi:10.1145/3727109

Yige Hong and Ziv Scully. 2023. Performance of the Gittins Policy in the G/G/1 and G/G/k, with and without Setup
Times. ACM SIGMETRICS Performance Evaluation Review 51, 2 (Sept. 2023), 33-35. do0i:10.1145/3626570.3626583
Donald L. Iglehart. 1972. Extreme Values in the GI/G/1 Queue. The Annals of Mathematical Statistics 43, 2 (April 1972),
627-635. doi:10.1214/aoms/1177692642

Prakirt Raj Jhunjhunwala, Daniela Hurtado-Lange, and Siva Theja Maguluri. 2023. Exponential Tail Bounds on Queues:
A Confluence of Non-Asymptotic Heavy Traffic and Large Deviations. arXiv:2306.10187 [math] doi:10.48550/arXiv.
2306.10187

Nicole El Karoui and Ioannis Karatzas. 1994. Dynamic Allocation Problems in Continuous Time. The Annals of Applied
Probability 4, 2 (May 1994), 255-286. doi:10.1214/a0ap/1177005062

Haya Kaspi and Avishai Mandelbaum. 1998. Multi-Armed Bandits in Discrete and Continuous Time. The Annals of
Applied Probability 8, 4 (Nov. 1998), 1270-1290. doi:10.1214/a0ap/1028903380

John F. C. Kingman. 1993. Poisson Processes. Number 3 in Oxford Studies in Probability. Oxford University Press,
Oxford.

Julian Koéllerstrom. 1974. Heavy Traffic Theory for Queues with Several Servers. I. Journal of Applied Probability 11, 3
(Sept. 1974), 544-552. doi:10.2307/3212698

Jan Karel Lenstra and David B. Shmoys. 2020. Elements of Scheduling. arXiv:2001.06005 [cs] doi:10.48550/arXiv.2001.
06005

Stefano Leonardi and Danny Raz. 2007. Approximating Total Flow Time on Parallel Machines. J. Comput. System Sci.
73, 6 (Sept. 2007), 875-891. doi:10.1016/].jcss.2006.10.018

Avi Mandelbaum. 1987. Continuous Multi-Armed Bandits and Multiparameter Processes. The Annals of Probability 15,
4 (Oct. 1987), 1527-1556. doi:10.1214/a0p/1176991992

Michel Mandjes and Onno Boxma. 2023. The Cramér-Lundberg Model and Its Variants: A Queueing Perspective. Springer,
Cham, Switzerland. doi:10.1007/978-3-031-39105-7

Masakiyo Miyazawa. 1994. Decomposition Formulas for Single Server Queues with Vacations : A Unified Approach by
the Rate Conservation Law. Communications in Statistics. Stochastic Models 10, 2 (Jan. 1994), 389-413. d0i:10.1080/

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

https://doi.org/10.1002/9780470980033
https://doi.org/10.1007/s001860300278
https://doi.org/10.1007/s10951-013-0325-1
https://doi.org/10.1287/opre.49.4.609.11225
https://doi.org/10.1287/opre.49.4.609.11225
https://doi.org/10.1287/stsy.2019.0042
https://isaacg1.github.io/assets/isaac-thesis.pdf
https://doi.org/10.1016/j.peva.2018.10.001
https://doi.org/10.1145/3570612
https://doi.org/10.1145/3695411.3695421
https://doi.org/10.1145/3695411.3695421
https://doi.org/10.1145/3460088
https://www.gurobi.com
https://doi.org/10.1287/opre.29.3.567
https://doi.org/10.1017/CBO9781139226424
https://doi.org/10.1145/3727109
https://doi.org/10.1145/3626570.3626583
https://doi.org/10.1214/aoms/1177692642
https://arxiv.org/abs/2306.10187
https://doi.org/10.48550/arXiv.2306.10187
https://doi.org/10.48550/arXiv.2306.10187
https://doi.org/10.1214/aoap/1177005062
https://doi.org/10.1214/aoap/1028903380
https://doi.org/10.2307/3212698
https://arxiv.org/abs/2001.06005
https://doi.org/10.48550/arXiv.2001.06005
https://doi.org/10.48550/arXiv.2001.06005
https://doi.org/10.1016/j.jcss.2006.10.018
https://doi.org/10.1214/aop/1176991992
https://doi.org/10.1007/978-3-031-39105-7
https://doi.org/10.1080/15326349408807301
https://doi.org/10.1080/15326349408807301

46:26 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

15326349408807301

[38] Masakiyo Miyazawa. 1994. Rate Conservation Laws: A Survey. Queueing Systems 15, 1 (March 1994), 1-58. doi:10.
1007/BF01189231

[39] Masakiyo Miyazawa. 2017. A Unified Approach for Large Queue Asymptotics in a Heterogeneous Multiserver Queue.
Advances in Applied Probability 49, 1 (March 2017), 182-220. doi:10.1017/apr.2016.84

[40] Michael Pinedo. 2016. Scheduling: Theory, Algorithms, and Systems (5 ed.). Springer, Cham, Switzerland.

[41] John S. Sadowsky and Wojciech Szpankowski. 1995. The Probability of Large Queue Lengths and Waiting Times
in a Heterogeneous Multiserver Queue I: Tight Limits. Advances in Applied Probability 27, 2 (June 1995), 532-566.
doi:10.2307/1427838

[42] Ziv Scully. 2022. Bounding Mean Slowdown in Multiserver Systems. ACM SIGMETRICS Performance Evaluation Review
49, 2 (Jan. 2022), 36-38. do0i:10.1145/3512798.3512812

[43] Ziv Scully. 2022. A New Toolbox for Scheduling Theory. Ph.D. Dissertation. Carnegie Mellon University, Pittsburgh, PA.
https://ziv.codes/pdf/scully-thesis.pdf

[44] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The Gittins Policy Is Nearly Optimal in the M/G/k under
Extremely General Conditions. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 3, Article
43 (Dec. 2020), 29 pages. doi:10.1145/3428328

[45] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2021. Optimal Multiserver Scheduling with Unknown Job Sizes in
Heavy Traffic. Performance Evaluation 145, Article 102150 (Jan. 2021), 31 pages. doi:10.1016/j.peva.2020.102150

[46] Daniel W. Stroock. 2011. Probability Theory: An Analytic View (2 ed.). Cambridge University Press, Cambridge, UK.

[47] Benny Van Houdt. 2022. On the Stochastic and Asymptotic Improvement of First-Come First-Served and Nudge
Scheduling. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 3 (Dec. 2022), 1-22.
doi:10.1145/3570610

[48] Adam Wierman and Bert Zwart. 2012. Is Tail-Optimal Scheduling Possible? Operations Research 60, 5 (Oct. 2012),
1249-1257. doi:10.1287/0pre.1120.1086

[49] George Yu and Ziv Scully. 2024. Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1. Proceedings of the ACM
on Measurement and Analysis of Computing Systems 8, 2, Article 27 (June 2024), 33 pages. doi:10.1145/3656011

A Miscellaneous proofs
LEMMA A.1. The decay rate y satisfies 1/p = E[eV"].

ProOOF. Since the job size distribution is class I, we have E[e’®] = % (24, Chapter 25].

Then this follows immediately from (2.2). O

LEMMA A.2. For any non-idling scheduling policy i in the M/G/k,
E[I¥] =1-p.

Proor. We apply Miyazawa’s rate conservation law [38] to W. Work is done continuously
whenever available, at rate 1/k for each occupied server. Therefore, by the definition of I,’;, the
average continuous change from work being completed is E[~1 + IX]. The rate conservation law
gives

E[-1+IK] + AE[(W +S) - W] =0,
so, recognizing that p = AE[S] and rearranging yields the desired result. O
LEMMA A.3. For any random variable X > 0,
C™[X] < C[X] < C*[X] < C*[X].

Proor. First, we show that C*[X] < C*[X]. By the definition of lim sup, for any § > 0, there
exists ms > 0 s/t C*[X] + 8 > e¥'P[X > t] for all t > ms. Therefore, fixing a § > 0 and applying

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

https://doi.org/10.1080/15326349408807301
https://doi.org/10.1080/15326349408807301
https://doi.org/10.1080/15326349408807301
https://doi.org/10.1007/BF01189231
https://doi.org/10.1007/BF01189231
https://doi.org/10.1017/apr.2016.84
https://doi.org/10.2307/1427838
https://doi.org/10.1145/3512798.3512812
https://ziv.codes/pdf/scully-thesis.pdf
https://doi.org/10.1145/3428328
https://doi.org/10.1016/j.peva.2020.102150
https://doi.org/10.1145/3570610
https://doi.org/10.1287/opre.1120.1086
https://doi.org/10.1145/3656011

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:27

the tail integral formula (Lemma A.4) yields

Efe(r-8)X _ 1 0
N [oo
0

y—¢
or-ems _ 1 o
<e— + s/ (C*[X] + S)e ¢ dt
y—¢ ms
e(Y—f)ma‘ -1
=e—— + (CH[X] + 8)e™ ™.
y—¢

Taking the lim sup as ¢ — 0 on both sides yields
C'[X] < C*[X] +36,

and since our choice of § > 0 was arbitrary, we have C*[X] < C*[X], as desired.

Next, we show that C~[X] < C~[X]. By the definition of lim inf, for any § > 0, there exists
ms > 0s/t C™[X] — & < e"'P[X > t] for all t > ms. Therefore, fixing a § > 0 and applying the tail
integral formula (Lemma A.4) yields:

eE[e=9X — 1]

= e/ P[X > t]eV™9 dt
y—¢ 0

[

> ¢ (CT[X] = 8)e dt
ms
= (CT[X] =)™,
and taking the liminf as ¢ — 0 on both sides yields

C[X] =C[X] -6,

and since our choice of § > 0 was arbitrary, we have C~[X] > C~[X], as desired. Finally, C"[X] <
C*[X] is immediate from the definitions of lim inf and lim sup.)

LEMMA A.4 (TaiL INTEGRAL FORMULA). Let X be a nonnegative random variable and f : [0, co) —
[0, c0) be an increasing differentiable function, i.e. f'(t) > 0 for allt > 0. Then

E[f(X)] =f(0)+/0mf’(t)P[X > t] dt.

Proor. We can write f(x) as

ﬂm=ﬂm+£mfmﬂa<mw

from which we get

E[f(X)] = f(0) +E

/mf’(t) 1(t < X)dt
0

=ﬂm+[ELF (1) 1(t < X)] dt
=ﬂ®+£waPW>ﬂw,

where the interchange of integral and expectation is justified by Tonelli’s theorem. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:28 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

B Proofs for Results on Wasted Work

LEmMMA 3.8. Let 7 be a non-idling policy. For a fixed ¢ > 0 and assuming E[e(V+9)kS¢] < oo,

k

ELIRe"™] _ y+e(KE[e%] y/w.
I-p € 1-p

ProoF. First, observe that E[I5e"™r] < E[IXe""], where L is k X (max job size in the system).

This is because both terms are 0 when IX = 0, and L > W¥ whenever I # 0. It therefore suffices to
bound E[I¥e''] by applying Lemma 3.7.

We have
1
—E[I*1(L > x)] < ——P[kS, > x].
1-p 1-p
We know that E[IX] = 1 — p by Lemma A.2, so that the LHS can be thought of as an expectation
k
under a change of measure, namely under the probability measure P;[-], where P;[A] = EU’{I;LA)]

for any event A.
Therefore, we have that P;[L > x] < %P[kSe > x]. By assumption, we have that E[e(Y*©)kS] <
o0, and a Chernoff bound argument on the RHS yields the bound

k
P/[L > x] < min{1

E[e(y+£)k56]e—(y+£)x’ 1}.

(y+e)Se
Let b = # log(%ps]). Observe that for x < b, ﬁE[e(Y”)kse]e’(Y*f)x > 1, and for x > b, it

is less than 1. For any 6 < y, we have the bounds

k
e Pr[L > x] < min{1

E[e(y+£)k56]e—(y+£)xe(9x’ e@x}.
-p

Integrating both sides and applying the tail integral formula (Lemma A.4) to the LHS yields

oL b kSe 00
Erfe” —1] _ / % dy s KE[e(r+e)kSe] / 0= (r+e))x gy

0 0 1-p b

Now computation yields

£)kSe
kE[e(r+e)kSe] 0 (0= (r+))b
I-p 0-(y+o)

and, taking the 8 — y limit, monotone convergence theorem yields

Ef[e?] -1<e® —1-

kE (y+e)kSe
Eflef]-1<e® -1+ Mxe*b.
1-p £

Finally, we have:

kE[e(y+£)kSe] Y
+ — e
1-p £

KE[e(y+e)kSe])_’e-(y+g)b)
1-p ¢ '

—eb

E;[e"'] < et?

E/[e"f] < eﬂ’(l +
Plugging in for the value of b yields the desired inequality. O

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:29

C Proof of Bound on Boost Policy Response Time Transform

THEOREM 3.3. Let 7 be a boost policy and suppose that E[e"*V(®)] < oo, E[e"*S] < oo, and
E[I,l;e”wflrc] < oo. The tail constant of = can be bounded above as follows:

E[IKerWr]

C*[Ty] < C*[Wang] ————E[e" P]E[e ()],

Proor. Fix an arbitrary u > 0, and let B = min{B, u}. First we analyze the transforms of
wk - B+ kS + V(o) and k(S + V() + V(B)). We have:

E[e9<w’};_B+V”(°°)+k5)] = E[eew’f]E[ee(ks_B)]E[eev’”(“’)] (Independence of W, S, and V)
E Ik HWf .
= E[¢?won] %E[ee(ksz)]E[eev”(“)]. (Theorem 2.4.)
—-P
E[eek(5+v”(°°)+v(é))] = E[eakv"(m)]E[eakV(B)]E[eakS] (Independence of V, V,and S.)
k YWk
By our finiteness assumptions on E[e? V()] E[eV*S], E[I,;efyp], the transforms above can only

have a pole where the transform of W¥ has a pole, so a final value theorem implies that
CH WK — B+ kS + Vy(0)]
= CHWF — B+ kS + Vy(0)]

Y — GE[eG(W,’f+V(oo)—B+kS)]

= lim
60—y Y
By E[IkefVr A
= élg}, YTE[eQWM/Gn] [1ﬂi p] E[ee(kS_B)]E[eQV(OO)]
-0 E[Ike®"r 5
= (lim Y_E[eewM/G/l] [pid])(lim E[ee(ks—B)]) (lim E[eev(oo)])
0y Yy 1-p 60—y 0—y
E[TkerWx ,
= C*[Wwenl %E[eY(kS_B)]E[eYV(W)] (Monotone convergence.)

and
C*[k(V(c0) + V(B) +kS)]
= C*[k(V(c0) + V(B) +kS)]

Y- 9E[eek(V(m)+V(B)+k5)]

= lim
0—y Y
-0 .
— lim © E[efFV ()| [eOFV (B)]E[£0%S]
0—y Y
=0-E[e"*V () E[e"V B]E[eF] (Monotone convergence.)
=0.

The final line follows from the fact that all three terms E[e?kV ()], E[eYV(B)], E[e"*5] are all finite:
e E[e" V()] is finite by assumption.
e E[e"*5] is finite by assumption.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:30 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

e E[e"*V(B)] < E[erk4®)] where A(u) is the amount of work that arrives to the system in
an interval of length u. E[e"*4®)] = exp(Au(E[e"*®] - 1)) by a standard M/G/1 result [24,
Chapter 25.6]. This is finite from the above assumption.
Applying Lemma 3.5 then yields:

CH[TF = lim e"'P[TF > 1]
< lim e""P[W, — min{B,u} + kS + Vi(c0) > t] +'"P[k(S + Vir(e0) + V(min{B, u})) > 1]
= C [WF — B+ kS + Vy(00)] + CT[k(S + V() + V(B)]
= CH[WF — B+ kS + Vi (00)] + CT[k(S + V() + V(B)]

E[IkerVx]

E[eY(kS—B)]E[eyV(OO)]_
1-

= C" [Wianl

Because this holds for all u, it also holds in the u — oo limit. Monotone convergence therefore
yields

k ywk
Elre ™ | o orks—B) g (), q

T
1-p

C*[TE] < C*[Wawen]

D Proof of y-Surrogate Heavy-Traffic Optimality in the M/G/k Unknown-Size Setting

In this appendix we provide a complete proof of Theorem 4.1, following the outline in Section 4.1.
To do this we first introduce the system model used in Harlev et al. [25] and summarize their
main result. This is done in Appendices D.1 and D.2. Then in Appendix D.3, we prove the lemmas
described in Section 4.1 and use them to prove Theorem 4.1.

D.1 System Model

Each job is modeled as an absorbing discrete-time Markov chains with countable state space that is
independent of the arrival process and all other jobs in the system. The state of the job contains all
information about the job relevant to the scheduler and advances once per unit of service. All jobs
are assumed to share a state space X U {x4one } and have the same Markovian dynamics. Each job
is initialized at a state drawn from distribution Xy, and completes and exits the system when it
reaches xgopne.
We use the following notation for the Markovian job model:
e We write X, for the random state of the job after u units of service.
e We let S represent a job’s size, which is the hitting time of the completion state.'? That is,
S=min{u > 0: X;, = X4one}
e We denote a job’s trajectory during its first u units of service as Xp.,, = (Xo, X1,...,Xy). A
job’s trajectory is only defined up to S units of service and it is always the case that Xs = Xgone-
Just as in the known-size model, the job size distribution S is assumed to be class I (Assumption 2.5).
Additionally, we assume without loss of generality that for every state y € X, there is some state x
with non-zero probability mass in Xy such that there is positive probability of reaching y starting
from x. If a state does not satisfy this condition, it is unreachable by all jobs and has no impact on
the system.

2Jyst as in [25], we mildly abuse terminology by writing S for both the job size distribution and, when convenient, the
random variable with that distribution corresponding to a generic job’s random size. We do the same for other distributions
in this section without further comment.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:31

Note that while this job model is discrete, we are still considering a continuous-time M/G/k. In
practice, the discrete time model just means that each job’s service is divided into time units of
length 1 and jobs cannot be preempted during a unit of service. Arrivals can still occur at any time.

D.2 Boost Policies for Markov Jobs

Boost policies can no longer depend on the size of the job, as sizes are unknown to the scheduler.
Instead, boost policies for Markov jobs map each job’s trajectory to a boost. They then operate
in much the same way as in the known-size model: serve the jobs in order from least to greatest
boosted arrival time, which is defined as a job’s arrival time minus its boost. Notably, since a job’s
boost depends on its trajectory, its boost may change with service, which does not happen in the
known-size model. If a job’s boosted arrival time exceeds that of a job in the queue, the boost policy
will preempt it and replace it with the job in the queue. Markov job boost policies are required
to assign every job that has not yet attained any service a finite boost with probability 1. This is
ensure that at most k jobs at a time have boost co and thus that (k + 1)-way ties are probability-zero
events.
Harlev et al. [25] introduced three related boost policies for Markov jobs:
e The y-Gittins boost policy has boost function

ey
eV —1°

1 1
by-citins (Xou) = 10g Ty (X,) + log

Here y is the same solution to (2.2) as in the known-size model, T}, (x) is a variant of the
Gittins index [11, 12] and defined below (Definition D.1), and the % log efil
convention to ensure boosts are nonnegative.

e The y-Surrogate boost policy is a version of y-Gittins with decreasing boost function:

term is added by

by-Surrogate (XO:u) = te?(’)l,i..r.l,u} by-Gittins (XO:t)-
e The y-Insulated boost policy is a “minimally preemptive” version of y-Gittins:

_ by—Gittins (XO:u) by—Gittins (XO:u) = by—Surrogate (XO:u)
by-lnsulated (XO:u) = .
00 otherwise.

The primary result of Harlev et al. [25] is that all three of these policies are tail constant optimal
in the M/G/1 among all non-clairvoyant policies, that is, policies that choose which job to serve
using only the information available at the time: the trajectories of all jobs in the system up to their
current states. Formally, they proved that for all non-clairvoyant policies 7,

1 1 1 1
c* [Tn'] >C* [Ty—Gittins] =C* [Ty—Surrogate] =C* [Ty—Insulated] :

D.3 Heavy-Traffic Optimality Proof

We now follow the outline in Section 4.1 to prove Theorem 4.1. To do so, we must first define some
notation.

Definition D.1.
(a) For all x € X and Y C X, define the following distributions:

S(x,Y) = (service needed for a job starting at state x to exit Y),

Completed(x, Y) = T(job starting at state x is at xqone after exiting Y).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:32 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

(b) For all x € X, the y-Gittins index, T}, (x), is defined as,

E [eyS(X,V) Completed(x, Y)]
I‘Y (x) = sup

{x}cyex £-E[erSxY) — 1]

Definition D.2. Let B, be the distribution of worst ever boost experienced by a job under the
y-Gittins, y-Surrogate, and y-Insulated policy (the worst ever boost of a job is the same under all
three). That is,

E = OrgnuiES bnyurrogate (XO:u) .

Definition D.3 (Crossing work, as defined in Harlev et al. [25]).

(a) The u-crossing work of a job is the amount of service until the first time its boosted arrival
time is after u.

(b) The u-non-crossing work of a job is its size minus its u-crossing work.

(c) The crossing work, V (u, v), is the sum of u-crossing work of each job that arrives in the system
after time u and up to time u + v.

(d) The non-crossing work, V (u,0) is the sum of u-non-crossing work of each job that arrives in
the system after time u and up to time u + v. Equivalently, this is the amount of work that
arrived in the system after time u and up to time u + v minus the crossing work V (u, v).

We start by extending Lemma 3.4 to the unknown-size setting.

LEmmA D.4. Let Q be the event that at at all times between the tagged job’s worst boosted arrival
time, —B, (assume without loss of generality that the arrival time is 0) and its true arrival time 0, there
are at least k jobs in the system with arrival time earlier than time —B,. Letu > 0. The tagged job’s
response time under y-Surrogate can be upper bounded by

Wyk-Surmgate - min{ﬁy, ut+kS+V(- min(ﬁy, u),) if Q holds
k(S+V(- min(ﬁy, u),00) + V(- min(ﬁy, u), min{ﬁy, u})) if Q does not hold.

k
Ty—Surrogate =

ProOF. First observe that assuming the tagged job has constant boost B = min(ﬁy, u) can only
increase its response time, so it suffices to analyze the response time under this assumption. Thus,
throughout this proof, we can simply refer to the tagged job’s boosted arrival time without worrying
about it changing with service. In both cases, we will bound the amount of time the tagged job can
spend in the system.

If Q holds: by our definition of Q, between the tagged job’s boosted arrival time and its actual
arrival time, all servers have only worked on work with boosted arrival time better than the tagged
job’s boosted arrival time.

An upper bound on the amount of work with boosted arrival time better than the tagged job’s

boosted arrival time is W;C_Surmgate + V (=B,). Between the tagged job’s boosted arrival time and

actual arrival time, all servers only worked on work belonging to this Wk_S + V(—B,)
y-Surrogate
amount of work. Therefore, the remaining amount of such work at the tagged job’s actual arrival
time is Wyk_Surr ogate V(—B, o) — B. Once the tagged job arrives, one of the following must be true
until it departs the system:
(1) All servers are occupied with work that has boosted arrival time better than the tagged job’s
boosted arrival time, i.e., this work leaves the system at rate 1.
(2) If not all servers are occupied with such work, the tagged job must be in service, because
it has the best boosted arrival time among all remaining jobs. The tagged job is served at

rate 1/k.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:33

The maximum amount of time that (1) can hold is Wyk Surrogate V (=B, %) — B, and the maximum
amount of time that (2) can hold is kS, so the maximum amount of time that either can hold is
Wyk_Surr ogate + V(-B, %) — B + kS, which yields an upper bound on the amount of time the tagged
job can spend in the system.

If Q does not hold: At the tagged job’s true arrival time, there are at most k — 1 jobs in the system
with arrival time before the tagged job’s boosted arrival time. In particular, even if all such jobs are
in service, they only occupy k — 1 of the k available servers. Then, once the tagged job arrives, one
of the following must be true until it departs the system:

(1) There is a server working on a job from V(-B, B), and nothing from V(-B, ») is in service,

nor is the tagged job in service.

(2) There is at least one server working on work from V (=B,), i.e. such work leaves the system

at rate at least 1/k.
(3) The tagged job is served at rate 1/k.
(1) can only hold at the tagged job’s arrival time. For each server that is serving a job from V (—B, B),
after that job’s completion, the server will take either the tagged job, or work from V(-B, o) into
service. Namely, after a job from V(-B,B) completes, either event (2) or (3) will hold until the
tagged job departs the system. A simple upper bound on how long (1) can hold is to imagine that
all the work in V(—B, B) is served on a single server, leaving at the rate 1/k, before the other two
events hold. (2) can hold for at most kV (=B, o), and (3) can only hold for at most kS. Therefore,

the tagged job will spend at most k(V(-B,B) + V(=B, o) + S) time in the system, as desired. O
Using Lemma D.4, we can now prove an analogue of Theorem 3.3 in the unknown-size setting.

k
THEOREM D.5. Assume that E[e?*V(%°)] < co, E[e!*S] < oo, and E[I)’f_SurmgateeYWY'Surmgate] < o0,

Let C*[Waycn] = limg_,, gE[eewl]. The tail constant of y-Surrogate can be bounded above as
follows:

Y= 0 0Tk E [Ik—Surro ateeyw)l(-Surrogate]
lim sup E[e/Trsumosae] < CH[Wil % g
60—y Y 1— P

E[eY(kS_B)]E[eyV(O’OO)].

Proor. The steps in the proof of Theorem 3.3 all hold in this case, except that we replace uses of
Lemma 3.4 with uses of Lemma D.4 and must use the fact that V(u, v) is stationary in u. m]

Following our outline in Section 4.1, the next step is to prove an analogue of Lemma 3.9 for the
unknown-size setting.

LemmA D.6. IfE[e"*5] < oo, then E[e"*V (%] < co.

However, this follows directly from the proof of [25, Lemma 4.7] for all boost policies in the
unknown-size setting. Finally, we must prove an analogue of Lemma 3.10 for the unknown-size
setting. Note that once we do so, Theorem 4.1 follows immediately from the proof of Theorem 3.1
with lemmas and theorems appropriately replaced with their analogues, including replacing [49,
Theorem 3.1] with [25, Theorem 4.11]. Thus, once we prove this next lemma, we are done. Before
doing so, we introduce the following notation for convenience.

Definition D.7.

(@) s(x) = E[S(x, X)], B[Completed ()]
ompleted(x,

(b) G(x) = sUp yjcvex — BRG]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:34 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

LemmA D.8. Under y-Surrogate,

E y(kS-B,)
g Cie i
p—1 E[eY(S_EY)]

Proor. First observe that if we expand B , using its definition, we get,

E[e"*8)] = E|- L kS|,
infrex,s zr— Iy (x)
By Lemmas D.9 and D.10,
1 1

lim = - < sup s(x).
y—0 infxeXg;S %FY()C) lnfxexo;s G(x) x€Xo.s

Then, since e¥*s

Yy <9,

— 1 almost surely as y — 0, there exists a § > 0 such that, almost surely, for all

eykS

< sup s(x)+1. (D.1)
infyex, eny;yl I, (x) xeXos

Lemma D.11 shows that E[sup, .y . s(x)] < 0, so (D.1) justifies the following use of the dominated

convergence theorem:!

COE[er*SBy E[Le R
;lal—>ml E[EY(S—EY)] -)lzlg(l) E[le)’(s—ﬁy)]
Y

E[limy_,o %e”ks_ﬁy)]

E[lim, %eﬂs—ﬁy)]

i ykS ., 1
E[lim, o e Infrexps GX)]

; S, 1
E[lim, e Mfrexys E9l

=1. O

LEMMA D.9. Forallx € X, G(x) > ﬁ

Proor. Recall that

G(x) E[Completed(x, Y)]
x)= sy
{x}Q\I?QX E[S(x, V)]

The bound follows by considering Y = X:

E[Completed(x, X)] 1

02 TR sGN] s

LEMmMmA D.10.
eV
lim inf
y—0xeXps eV — 1

I,(x) = inf G(x).
x€Xo:s
3The justification for the use of dominated convergence theorem in the denominator is identical.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:35

Proor. We start by plugging in the definition of I, (x) and then applying Taylor’s theorem:

Y E[e’S5Y) Completed(x, Y
inf ¢ I,(x)= inf sup vE[e ompleted(x, V)]
x€Xps e¥ — 1 x€Xp.s {x}cYcX E[eYS(X,V)] -1

- E[(1+yS(xY)+ Y—; S(x, Y)zegs(x’v)) Completed(x, Y)]
= in su
*EXos (1) v E[S(x,Y) + L S(x, V)2eZ50:Y)]

for some ¢ € (0,y). Now observe that since we assume that for all x € X there is a positive
probability of a trajectory containing x,

o0 > E[e"®] > E[e"® | x € Xo:5]P[x € Xo:5] = E[e" S P[x € Xp.s]

implies that E[e/5*X)] < co and so E[S(x, X)2ef5X)] < o since & € (0,y). Moreover, since
S(x,Y) < S(x,X) forall Y C X, it follows that E[S(x, Y)2efS*Y)] < 0o and
yer E[Completed(x, Y)]

li inf T, = inf = inf G(x).]
R N S A T A T

Lemma D.11. E[sup, .y, . S(x)] < 0.

Proor. Recall that we define S, the size of a job, as S = min{t > 0 : X; = Xgone }- Now define the
martingale M, = E[S | Xo.n], where we use the convention that Xs = Xs1 = - - - = Xdone 0 that M,
is defined for all n > 0. Observe that for any n > 0,

s(x) =E[S(x,X)] =E[S—n | X, = x],
which means that, for all p > 1,
E[sup s(X;)] =E[sup E[S—n | Xp.]]

0<i<S 0<i<S
< E[sup M;]
0<i<S
= E[sup M,]

n>0

< E[sup M%]

n>0

where the last step follows from the fact that S > 1 almost surely, and thus M, > 1. We now use
Doob’s inequality [46, Theorem 5.2.1], which tells us that for any p € (1, 00),

p

E[supM,f]ll’ <

n>0

1supE[M,‘?]fl’.

nx0
Expanding the expectation in the right hand side we get
E[My] = E[E[S | Xo:n]"] < E[E[S” | Xoun]] = E[S"],

where the inequality follows from the conditional Jensen’s inequality. Putting everything together,
we get the following bound:

p
E[sup s(x)] < (pp 1) E[S?],

0<i<S -

which is finite since S is class I, and thus has all finite moments. m]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:36 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

E Mathematical Program for Deterministic Multiserver Scheduling Problem

We use Gurobi to optimize the following mathematical program for scheduling, solving an instance
using the current system state (i.e., the remaining size and arrival time of each job still in the system)
on each new arrival. Namely, assume that we have n jobs in our instance, labeled {1, 2, ..., n}, each
with processing time ks; and arrival time a;. We assume that the first k jobs are already in service,
and the remaining k + 1,..., n jobs are, WLOG, sorted in boosted arrival time order, where the
boost is computed using the processing time of the job.
We have the following 0/1 decision variables:

® x,; represents whether job i is the first to be scheduled on a machine.

® X;in+1 represents whether job i is the last job to be scheduled on a machine.

e x; j represents whether job i precedes job j on a machine.
In particular, we only have x; ; decision variables whenever i < j, because on each machine, it is
locally optimal to schedule in boosted arrival time order. We then solve the following program to
compute a nonpreemptive schedule:

n

minimize Z eV (di=4))
x,d

M- 1
&

I.I

'

1l
_ =

such that

-
|

in,j—l forj=1,...,k
i=0
j-1

xi;=1 forj=k+1,...,n
i=1
j-1 n+1
in,jzz“xj’i fOI’jZL...,k
i=0 i=j+1
Jj-1 n+1

xi,j=ij,,- forj=k+1,....n
i=1 i=j+1

d; = ks; forj=1,...,k

j-1
dj=) (di+ks)x; forj=k+1,....n

i=1

Here the departure times d; are represented as continuous decision variables, but they are fully
constrained by the 0/1 decision variables x; ;.

F y-CombinedBoost’s Heavy-Traffic Optimality

Throughout this section, we shorten y-CombinedBoost to y-CB in subscripts to reduce clutter. We
first require the following lemmas:

LEMmmMmA F.1.
E [eY(kS—By—CB)]

P ————
p1—>nll E[ey(S_Bnyoost)]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:37

PrOOF.
lim E[er (K5 Bran)] = lim E[eVkS=Byoost—(k=1)S]
y—0 E[e¥(S=Byboost)] y—0 E[erGB)]
E[eY (S~ByBoost)]
T B[O By |
=1. .
Lemma F.2.

¢ E[By-ca(e"®-1)]

lim ——
p—1 AE[ByBooet(eyS 1)]

Proor. Observe that
lim e/lE[(k—l)S(eYS—l)] — elim/,H1 AE[(k=1)S(e¥5-1)] — eﬁ limy—o E[(k=1)S(e¥$-1)]]
p—1
Since (k—1)S(e*® —1) < 2(k—1)S for sufficiently small y, we can apply the dominated convergence
theorem to get,

limy o B[(k=1)S(e"5~1)] _ , gs7Ellimy—o (k=1)S(e~1)] _

eE[S]
Now,
¢ E[By-cs(e"~1)] e E[By-boost (€7 ~1)] LAE[(k=1)S(e"°~1)]
lim li 3
p1—>l AE[B)/]300st("3)/5 D] pl—>rr11 e/lE[By-Boost(eys_l)]
— lim e El(k=DS(e¥5-1)] _ 4 o
p—1

LEmMA F.3. For anyu € Ry U {oo}, if E[e"**1)S] < o, then

E[e"*Vron ()] = AEImin{By.cpu} (e -1)] _
Proor. As in Lemma 3.9, from Campbell’s Theorem [49, Lemma 3.5], we have
E[e"*Vr-ca ()] = (ABmin{By-cau} (e -1)]

so long as the RHS is finite. It suffices to show that E[BY_CB(eYkS —1)] is finite. Using the definition
of B cs, this is

2E[By.cn(¢" — 1)] = 2E[By.poost (" — 1)] + AE[(k - 1)S(e™ ~ 1)].

The first term is finite from Lemma 3.9. The second term is finite because when k = 1, the term is
just 0. When k > 1, we have:

AE[(k - DS~ 1)] = %(k _ DE[yS(eS — 1)]

< @E[e”s(d’ks -1)]

< —A(k — 1)E[e”(k“)s] < o0,
Y

since by assumption, E[e/F*D5] < co.

With these lemmas, proving heavy-traffic optimality is similar to that of Theorem 3.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:38 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

TueoRrREM F.4. Under y-CombinedBoost,

+171k
tim — o]
po1 CF [Tyl—Boost]

Proor. Because y-Boost is optimal in the M/G/1 across all policies, and any M/G/k policy can be
replicated in the resource-pooled M/G/1, we know that for all p,

ct [Ty’f_ gl
C+ [WM/G/I]E[eY(S*By-Boost)]E[eYVy-Boost(OO)]
where the denominator is the tail constant of y-Boost [49, Theorem 3.1]. Therefore, it suffices to
show that

> 1,

k
CH[TH]

C+[Wiy |E[e S Brsoost) |E[@) Vy-Boost (<)]
Since 1/p = E[e"%] (Lemma A.1), as we take p — 1, we have y — 0. Then, for sufficiently high
load p € (p’, 1), because the job size distribution is class I, we can assume that E[eY(k+1)5] < oo and,
that there exists ¢ > 0 such that E[e("*9)k%] < co. Under these assumptions, Lemma 3.8 implies

<1

k
YW
(e P

E
that is bounded, and Lemma F.3 implies that E[e"*"r3(®)] < oo, s0 we can apply

Theorem §.3pt0 get:
E[I k-CBeYWYk'CB]
CITy.cp] < C*Wanon] —————Ele/ @ JE[")],
Therefore, it suffices to show that
EIE et

lim —— =1,

p—1 1-p

. E[eY(kS—By-CB)] 1

p—1 E[e¥ (S~ Bysoost) | ’

E[e?Vrce()] .

pl—>rnl E [eYVy*Boost (o0)]
where we have simplified the first ratio by dividing off the C*[Wyyg/1] from both numerator and

denominator. The first equality follows immediately from Theorem 3.6. The second follows from
Lemma F.1. The third follows from Lemma F.2. O

G Amendments to Previous Results on Strong Tail Optimality

One may ask why we present results on tail constant optimality as opposed to the notion of strong
tail optimality as it is defined in Boxma and Zwart [6], given the work on tail-optimal scheduling
in Harlev et al. [25], Yu and Scully [49]. The reason is that [25, 49] prove bounds on C*[T,], but
not C~[T,], via bounds on C*[T,], C~[T,]. However, bounds on C~ [T}] are needed for strong tail
optimality.

Namely, Yu and Scully [49] construct a lower bound using y-Cheat s/t ct [Ty-Cheat] < C[T,]
for any policy 7 ([49, Theorem 4.3]). They then show that y-Boost, which satisfies the prop-
erty C™[T;] = C*[T,], attains c* [Ty—Boost] =C* [Ty—Cheat] ([49, Theorem 5.1]). This, along with
Lemma A.3, implies that C*[T,oost] < C*[T,], for any policy 7. Harlev et al. [25] employ a
similar approach, with y-Surrogate acting as a lower bound ([25, Theorem 3.7]) for y-Gittins ([25,
Proposition 4.3]).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

A Tale of Two Traffics: Optimizing Tail Latency in the Light-Tailed M/G/k 46:39

We know from Lemma A.3 that for any random variable X > 0,
C™[X] < C[X] < C*[X] < C*[X],

so we have C*[T,Boost] /C*[T;] < 1 in the known-size setting and C* [T, Gittins] /C*[Tz] < 1in
the unknown-size setting, i.e., y-Boost and y-Gittins are tail constant optimal in their respective
settings. However, strong tail optimality is defined as follows:

Definition G.1. A policy 7 is strongly tail-optimal among a class of policies IT if it satisfies
R, <1,

where R, is the tail competitive ratio

, P[T; > 1]
R; = sup limsup ——.
' ell t—o00 P[Tﬂ' > t]
In particular, for any two policies 7, 7/,
. P[T, >t] _ C'[I]
lim sup < — ,
t—o0 P[Tn’ > zL] C [Tﬂ']

so the results from [25, 49] are only meaningful as a bound on R, when C*[T;] = C™[T,] for all
policies 7 under consideration. In particular, we cannot conclude strong tail optimality when we
include policies where C*[T;] > C™[T,].

We can, however, conclude a strong tail competitiveness of a different kind, namely, strong tail
constant competitiveness. In particular, we let

R, = sup limsup ———
T e 0—y E[efTr]

be the tail constant competitive ratio, and say that a policy is strong tail constant competitive if R, = 1.
Then we have:

. y—0 0T, ~
_ E[e?Tr] limsup,_,, TE[e 1 ¢t [T,]
lim sup < =

o-y Bl " liminfy_,, “CE[e0Tx] CC[Te]

But since C*[T,-oost] = C+[T),_Boost] < inf, C~[C,], we know that C*[TY_BOOSt] JC™[T,] < 1 for
any policy 7.

In summary, y-Boost and y-Gittins attain tail constant optimality, which is a different notion than
that of strong tail optimality, but we believe it captures a useful notion of optimal tail performance:
if a policy is tail constant optimal, then it achieves the best possible tail constant competitive
ratio. We also note that y-Boost and y-Gittins achieves the best possible competitive ratio against
the universal lower bound of the form P[T, > t] > %P[Q > t] [6], where Q is a random
variable representing the maximum amount of work in a busy period, which is known to have

C*[Q] = C7[Q] [27].

While the y-Boost policy in Yu and Scully [49] and the y-Gittins policy in Harlev et al. [25] are
tail constant optimal among all policies in their respective settings, they are strongly tail optimal
only among the class of policies for which C™[T,;] = C*[T,]. We conjecture that among policies
including those for which C™[T;] < C*[T}], there may be no policy 7 which attains R, = 1, and
that y-Boost may still be optimal in the sense that R,.goost < Ry for all policies 7, even though it
may be that R, Boost > 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

46:40 George Yu, Amit Harlev, Reevu Adakroy, and Ziv Scully

Load 0.8 Load 0.95 Load 0.99
0.8 0.8 038
061/ 0.61 frrmemeneed RIS
/ { 1= \
0.4/ L N s I 0
0.21) 0.2 g
7]
0.0 0.0 MM// =4
\ =2
-0.2 -0.2 \
-0.4 -0.4 \
0 25 50 75 100 125 150 175 200 0 200 400 600 800
o 0.8 —— 08 -
S 0.61] 0.6 f\\ \
~ i ’ ,\;* oo
i : <
= 0.4 0.4 Ty =
< ?
g 0.2 0.2 &
> S
o 0.0 0.0 —]
- \
& u 2
£ 0.2 ~0.2 wﬁ\/ =S
— \ \ B
'.T‘._e -0.4 ‘ -0.4 \
= 0 50 100 150 200 250 300 350 400 450 0 500 1000 1500 2000 2500
0.8 0.877 -
| \
H \
0.6
04{//
{/ 5
0.2 Eh
; <
0.0 5
-0.2
\ 04 | 04 \
0 10 20 30 40 50 0 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700 800
Latency Threshold
—— FCFS y-CombinedBoost — Y-Boost — SizeBoost —— SRPT JF - M/G/1 y-Boost M/G/w
* 90th percentile ¢ 99th percentile A 99.9th percentile X 99.99th percentile * 99.999th percentile

Fig. H.1. (Higher is better.) Plot of performance of policies for k = 10 servers for different load regimes and
job size distributions. We plot the Tail Improvement Ratio (TIR) of policies against thresholds t. The TIR of
a policy 7 is given by TIR(t) = 1 — P[T; > t]/P[Trcps > t], where higher TIR means better performance.
Simulations are run using 200 million jobs for loads 0.8 and load 0.95. For load 0.99, we run 2 billion jobs
for convergence. The job size distributions are, from top row to bottom row, Exp(1), Hyperexponential with
branches drawn from Exp(2) and Exp(1/3) and first branch probability 0.8, and Uniform(0, 2). This figure is
the same as Fig. 5.4, except with the SRPT and Largest Job First (LJF) policies added.

H Additional Simulations

In this section we present simulation results for the SRPT and Largest Job First (LJF) policies
for a variety of loads and distributions. The results are presented in Fig. H.1 by adding each of
these policies to Fig. 5.4, which was presented in Section 5.2. The primary takeaway from these
simulations is that, although increasing the boost for large jobs can improve performance (as
discussed in Section 5), strictly prioritizing large (or small) jobs leads to terrible asymptotic tail
performance.

Received July 2025; revised September 2025; accepted October 2025

Proc. ACM Meas. Anal. Comput. Syst., Vol. 9, No. 3, Article 46. Publication date: December 2025.

	Abstract
	1 Introduction
	1.1 Recent Progress: Single-server Tail Scheduling and Multiserver Mean Scheduling
	1.2 Our Work: Multiserver Tail Scheduling
	1.3 Contributions and Outline

	2 System Model
	2.1 Load and Stability
	2.2 Work in Multiserver Systems
	2.3 Tail Asymptotics
	2.4 Boost Policies and γ-Boost

	3 Proving Heavy-Traffic Optimality of Boost
	3.1 Characterizing Boost's Tail Constant in the M/G/k
	3.2 Characterizing Work Under System Idleness
	3.3 Proof of Heavy-Traffic Optimality

	4 Heavy-Traffic Optimality for Unknown Sizes
	4.1 Proving Heavy-Traffic Optimality of γ-Surrogate in the M/G/k

	5 Simulations
	5.1 Heavy Traffic Performance
	5.2 What Happens Outside of Heavy Traffic?
	5.3 The Effect of More Servers
	5.4 Is There Still Room For Improvement?

	6 Conclusion
	Acknowledgments
	References
	A Miscellaneous proofs
	B Proofs for Results on Wasted Work
	C Proof of Bound on Boost Policy Response Time Transform
	D Proof of γ-Surrogate Heavy-Traffic Optimality in the M/G/k Unknown-Size Setting
	D.1 System Model
	D.2 Boost Policies for Markov Jobs
	D.3 Heavy-Traffic Optimality Proof

	E Mathematical Program for Deterministic Multiserver Scheduling Problem
	F γ-CombinedBoost's Heavy-Traffic Optimality
	G Amendments to Previous Results on Strong Tail Optimality
	H Additional Simulations

