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Abstract
We consider the problem of scheduling to minimize asymptotic
tail latency in an M/G/1 queue with unknown job sizes. When the
job size distribution is heavy-tailed, numerous policies that do not
require job size information (e.g. Processor Sharing, Least Attained
Service) are known to be strongly tail optimal, meaning that their
response time tail has the fastest possible asymptotic decay. In
contrast, for light-tailed size distributions, only in the last few years
have policies been developed that outperform simple First-Come
First-Served (FCFS). The most recent of these is 𝛾-Boost, which
achieves strong tail optimality in the light-tailed setting. But thus
far, all policies that outperform FCFS in the light-tailed setting,
including 𝛾-Boost, require known job sizes.

In this paper, we design a new scheduling policy that achieves
strong tail optimality in the light-tailed M/G/1 with unknown job
sizes. Surprisingly, the optimal policy turns out to be a variant of
the Gittins policy, but with a novel and unusual feature: it uses a
negative discount rate. Our work also applies to systems with partial
information about job sizes, covering 𝛾-Boost as an extreme case
when job sizes are in fact fully known. This abstract summarizes
our full paper [7].

CCS Concepts
• General and reference → Performance; • Mathematics of
computing → Queueing theory; • Networks→ Network per-
formance modeling; • Computing methodologies → Model
development and analysis; • Software and its engineering →
Scheduling.
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1 Motivation
Service level objectives (SLOs) for queueing systems typically relate
to the tail of the system’s response time distribution 𝑇 . The tail is
the function mapping a time 𝑡 to the probability P[𝑇 > 𝑡]. SLOs
typically ask that high percentiles of 𝑇 are not too large, i.e. that
P[𝑇 > 𝑡] is small for large 𝑡 .

Motivated by the problem of optimizing SLOs, we consider the
problem of asymptotically minimizing P[𝑇 > 𝑡] in the 𝑡 → ∞
limit in an M/G/1. While SLOs often put requirements on a specific
deadline 𝑡 , it turns out that roughly, minimizing P[𝑇 > 𝑡] “for all
large values of 𝑡” works well, and current state-of-the-art methods
for minimizing tail latency come from minimizing this asymptotic
objective [16]. For light-tailed job size distributions, this problem
was open for some time [15] until recent work [4, 6, 13] culminated
in an optimal policy for systems with known sizes [16]. However,
the case of unknown sizes remains open.

In this work, we resolve the problem for unknown job sizes. Our
job model, a discrete-time variant of the Markov-process job model
[10, Chapter 14], actually handles a range of information models,
covering: unknown sizes, where only the job size distribution is
known to the scheduler; known sizes, where each job’s exact size
is known—for which we recover prior results [16]; and settings
where the scheduler has partial information about each job’s size.
For concreteness, we focus our discussion on the case of unknown
sizes; see the full paper [7] for a description of our full model.

2 Background on tail optimality
To understand what it means to optimize the response time tail, we
first define the notion of asymptotic optimality. Consider an M/G/1
setting with job size distribution 𝑆 and arrival rate 𝜆. Let𝑇𝜋 denote
the response time distribution under a scheduling policy 𝜋 . We say
that a policy 𝜋 is weakly tail-optimal if there exists a constant 𝑐 ≥ 1
such that

sup
𝜋 ′

lim sup
𝑡→∞

P[𝑇𝜋 > 𝑡]
P[𝑇𝜋 ′ > 𝑡] ≤ 𝑐. (2.1)

We further say 𝜋 is strongly tail-optimal if 𝑐 = 1. In the known-size
case we take the supremum over all policies, but in the unknown-
size setting, we limit to non-clairvoyant policies. We assume a
preempt-resume model: the job in service may be paused and re-
sumed at a later point without loss of progress.

The asymptotic tail behavior under a policy𝜋 depends onwhether
the job’s distribution is light- or heavy-tailed; Wierman and Zwart
[15] showed that a policy cannot be tail-optimal for both heavy-
tailed and light-tailed distributions. Recently, Yu and Scully [16,
Appendix A], leveraging results of Wierman and Zwart [15], ob-
serve that for an important class of heavy-tailed distributions, many
well-known policies are strongly tail-optimal. Several of these poli-
cies, such as Least Attained Service and Processor Sharing, do not
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use job size information, so the problem of strong tail optimality
for unknown sizes is largely solved in the heavy-tailed setting.

In the light-tailed setting, this is not the case. First-Come-First-
Served (FCFS) was the best performing policy for some time in
both the known and unknown size cases. In the known-size setting,
FCFS was known to be weakly tail-optimal and conjectured to be
strongly tail-optimal. In particular, the tail of FCFS is asymptotically
exponential for light-tailed distributions, that is,

P[𝑇FCFS > 𝑡] ∼ 𝐶FCFS𝑒
−𝛾𝑡 ,

where 𝛾 is called the decay rate and is known [8] to be the least
positive real solution to

𝛾 = 𝜆(E[exp(𝛾𝑆)] − 1), (2.2)

and 𝐶FCFS is FCFS’s tail constant. No policy has decay rate better
than 𝛾 [3, 12], so strong tail optimality amounts to minimizing

𝐶𝜋 = lim
𝑡→∞

𝑒𝛾𝑡P[𝑇𝜋 > 𝑡] .

Recently, new policies have emerged with better tail constant
than FCFS, disproving the conjecture that it was strongly tail-
optimal [4, 6, 13]. This line of work culminated in a strongly tail-
optimal policy, 𝛾-Boost, which optimizes the tail constant for class I
light-tailed distributions when job sizes are known [16]. However,
all of these policies make crucial use of job size information. Strong
tail optimality for unknown job sizes is thus still open in the light-
tailed setting,1 so we ask:

In the light-tailed M/G/1 with unknown job sizes, what
scheduling policy minimizes the tail constant 𝐶𝜋 ?

3 A recent advance: boost policies for known
job sizes

The policy that achieves strong-tail optimality in the known-size
case belongs to the family of policies known as Boost policies, which
are introduced and analyzed in [16]. We give a brief overview of
the main ideas of [16] below, explaining how we adapt them to
unknown sizes in Section 4.

Boost policies work by assigning every job a boosted arrival time
and then serving jobs in order of increasing boosted arrival time. A
job’s boosted arrival time is given by

boosted arrival time = arrival time − boost,

where the boost of a job is given by a boost function 𝑏 (𝑠) that maps
each job size to a non-negative boost. The strongly tail-optimal
boost policy strikes the right balance between prioritizing short
jobs vs. prioritizing jobs that have been in the system for a long
time.

The key idea in [16] is to relate the problem of strong tail op-
timality in the M/G/1 queue to a deterministic batch scheduling
problem. This idea follows from an alternative expression for the
tail constant,

𝐶𝜋 = lim
𝜃→𝛾

𝛾 − 𝜃

𝛾
E[exp(𝜃𝑇𝜋 )], (3.1)

1Throughout this abstract when we refer to light-tailed distributions, we mean specifi-
cally class I light-tailed distributions [1]. Class I distributions include many common
light-tailed distributions and it is common to only consider this subset of light-tailed
distributions when considering tail behavior (see for example [2, 8]).

which comes from final value theorem [6, Theorem 4.3].2 Infor-
mally, (3.1) tells us that minimizing 𝐶𝜋 is morally equivalent to
“minimizing E[exp(𝛾𝑇𝜋 )]”. Although this expectation is infinite for
any policy in the M/G/1 queue, an analogous average is finite in
the finite batch setting, where we start with a fixed set of jobs and
there are no further arrivals. Yu and Scully [16] show that the op-
timal policy for the finite batch simplification of the problem also
minimizes 𝐶𝜋 in the M/G/1 queue.

4 Key ideas
The optimal policy identified by Yu and Scully [16] requires knowl-
edge of each job’s size. We wish to use a similar approach when job
sizes are unknown. We model jobs with unknown sizes as Markov
chains with a terminating state. We then consider state-based sched-
uling policies, which, broadly speaking, alter a job’s priority based
on its trajectory of states. An example of an important class of
policies that this captures is the class of policies that only use the
amount of attained service, or age, of a job [11]. State-based sched-
uling is discussed formally in the full paper [7, Section 2]. For these
policies, we ask:

(a) What is the optimal state-based scheduling policy?
(b) How do we prove its optimality?

Both of these require new ideas relative to the known-size case [16].
In brief, (a) requires a new observation but is resolved relatively
easily once that observation is made, whereas (b) is more technically
challenging and is where the main technical novelty of our work
lies.

4.1 Finding the optimal scheduling policy
In the known-size case [16], the optimal policy arises by simplifying
the problem from scheduling in an M/G/1 queue to scheduling a
finite batch of jobs. In fact, the optimal policy for the known-size
batch problem was (a minor variant of) a well-established policy in
the literature [9, Section 3.1].

We also use a simplification to a batch problem to discover the
optimal policy, but the optimal batch policy is different because it
must use preemption. Our key insight is to frame the finite batch
version of unknown-size scheduling as a Markovian multi-armed
bandit problem, but with inflation instead of the usual discounting
(see the full paper for more details [7, Section 3]). While this is at
some level just a sign flip, i.e. inflation is simply a negative discount
rate, to the best of our knowledge, the multi-armed bandit problem
with inflation has never been studied in the literature. The key
benefit of the multi-armed bandit framing is that the optimal policy
is known, at least under discounting: it is the Gittins index policy.
By adapting the “prevailing charge” argument of Weber [14], we
confirm that an inflation variant of Gittins is indeed optimal for the
finite batch simplification of our scheduling problem.

4.2 Proving optimality
For (b), our approach differs significantly from that of [16]. Roughly
speaking, [16] proves optimality in the queueing setting by directly
relating it to the batch setting. Their idea is to treat each busy period
as a random instance of a deterministic batch problem. However,

2While this is stated for specific policies in [6], the proof of (3.1) presented therein
holds for any policy as long as the job size distribution is class I.
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Figure 5.1: Performance of𝛾-Gittins, the strongly tail-optimal
policy for unknown sizes, on two different job size distri-
butions. The plots show the tail improvement ratio (TIR),
1 − P[𝑇𝛾 -Gittins>𝑡 ]

P[𝑇FCFS>𝑡 ] , plotted against response time 𝑡 . The dotted
blue horizontal line indicates the numerical value of the
theoretical asymptotic TIR, 1 −𝐶𝛾 -Gittins/𝐶FCFS. The vertical
dashed blue line indicates the 99th percentile response time
of 𝛾-Gittins. On the left the job size distribution takes values
1/7, 6/7, 14/7, with equal probability 1/3. We refer to this as
the 1-6-14 job size distribution, but divide everything by 7
to normalize the mean. Service is provided in discrete time
steps of length 0.1/7. On the right is a discretized Hyperex-
ponential distribution with two branches Exp(2),Exp(1/3)
and first branch probability 0.8, with service provided in dis-
crete time steps of length 0.1. The load for both simulations
is 𝜌 = 0.8. Simulations run for one million busy periods. See
the full paper [7, Section 5] for more simulations and details
on parameters.

with unknown sizes, setting busy periods as batches yields random
instances of stochastic batch problems with non-independent job
sizes [16, Appendix B]. Because independence is a crucial assump-
tion for Gittins policies [5], the busy-period approach of [16] seems
unlikely to work with unknown sizes.

Our main technical contribution is a new approach for (b) that
proves optimality directly in the queueing setting, without going
via the batch problem. Like our approach to the batch problem,
our approach is based on Weber’s proof [14] of the Gittins policy’s
optimality, with one key difference: our proof is “quantitative”,
rather than “qualitative”. That is, Weber proves the Gittins policy
is optimal without quantifying the performance it achieves. This
qualitative approach does not work in the queueing setting for two
main reasons.

The first problem is arrivals. Gittins policies are known to not be
optimal in the presence of arrivals, except for in the special case of
homogeneous Poisson arrivals [5]. While our arrivals are Poisson,
they are time-inhomogeneous: the cost of a job depends directly on
its arrival time.

The second problem is that we cannot reason directly about
inflation rate 𝛾 because E[𝑒𝛾𝑇𝜋 ] = ∞ for all policies 𝜋 . Instead, we
consider policies under inflation rate 𝜃 < 𝛾 and then let 𝜃 → 𝛾 . Due
to the mismatch between 𝜃 and 𝛾 , we should not expect Gittins for
inflation rate 𝛾 to minimize E[𝑒𝜃𝑇𝜋 ] for any fixed 𝜃 < 𝛾 .

We overcome both obstacles by using a quantitative approach.
We quantify the performance of both Gittins and of a lower bound,
and show that they match at the 𝜃 → 𝛾 limit. We obtain the lower
bound by quantitatively analyzing the lower bound from the quali-
tative proof of Weber [14].

5 Primary result
We present the first strongly tail-optimal scheduling policy in the
unknown-size setting, 𝛾-Gittins, for the M/G/1 queue with light-
tailed job size distributions. In particular, we show that the boost
policy with the following boost function is strongly tail optimal:

𝑏𝛾 -Gittins (𝑥) =
1
𝛾
log

(
Γ𝛾 (𝑥)

)
+ 1
𝛾
log

(
𝑒𝛾

𝑒𝛾 − 1

)
,

where 𝑥 is the state of the job, and Γ𝛾 (𝑥) is the 𝛾-Gittins index of
that state. See the full paper [7] for a description of the 𝛾-Gittins
index.
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