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We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job

sizes, to asymptotically optimize the response time tail. This means scheduling to make P[𝑇 > 𝑡], the chance a
job’s response time exceeds 𝑡 , decay as quickly as possible in the 𝑡 → ∞ limit. For some time, the best known

policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[𝑇 > 𝑡] ∼ 𝐶𝑒−𝛾𝑡 .
FCFS achieves the optimal decay rate 𝛾 , but its tail constant 𝐶 is suboptimal. Only recently have policies that

improve upon FCFS’s tail constant been discovered. But it is unknown what the optimal tail constant is, let

alone what policy might achieve it.

In this paper, we derive a closed-form expression for the optimal tail constant𝐶 , and we introduce 𝛾-Boost, a
new policy that achieves this optimal tail constant. Roughly speaking, 𝛾-Boost operates similarly to FCFS, but

it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response

time of small jobs without unduly delaying large jobs, improving upon FCFS’s tail constant by up to 50% with

only moderate job size variability, with even larger improvements for higher variability. While these results

are for systems with full job size information, we also introduce and analyze a version of 𝛾-Boost that works

in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we

show via simulation that 𝛾-Boost has excellent practical performance.
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1 INTRODUCTION, BACKGROUND, AND KEY IDEAS
Service Level Objectives (SLOs) for practical queueing systems often relate to the tail of the system’s

response time distribution 𝑇 . The tail is the function that maps an amount of time 𝑡 to P[𝑇 > 𝑡],
the probability that a job’s response time 𝑇 exceeds 𝑡 , where a job’s response time is the amount of

time between the job’s arrival and departure.

Motivated by the problem of meeting SLOs, we consider the problem of scheduling jobs to

minimize the tail P[𝑇 > 𝑡] in the M/G/1 queue. We actually focus on asymptotically minimizing the

tail, optimizing the decay of P[𝑇 > 𝑡] in the 𝑡 → ∞ limit. This is an extensively studied problem in

queueing theory [6, 7, 13–15, 21, 29–32, 34, 39, 40, 44–46, 48] for a number of reasons:
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• Optimizing the tail P[𝑇 > 𝑡] for any particular value of 𝑡 is seldom the sole design objective.

Instead, one generally hopes to achieve low P[𝑇 > 𝑡] for a range of values of 𝑡 .
• Because practical SLOs relate to high-quantile response times, meeting those SLOs corre-

sponds to optimizing P[𝑇 > 𝑡] for large values of 𝑡 .
• Optimizing P[𝑇 > 𝑡] for fixed finite 𝑡 appears to be theoretically intractable, but there has

been promising recent progress on asymptotic improvements in the 𝑡 → ∞ limit [21, 45].

In this paper, we study the M/G/1 with light-tailed job size distributions. We propose a new

policy, called 𝛾-Boost, and prove it has asymptotically optimal response time tail in a sense made

precise in Section 1.1 below. This resolves a significant open problem in queueing theory [7, 46].

Moreover, 𝛾-Boost has excellent practical performance, as illustrated in Fig. 1.2.

The rest of this section gives background on the problem of asymptotically optimal tail scheduling,

with discussion of prior work integrated throughout, and describes the main ideas behind our

solution. See Section 1.7 for a summary of our contributions and an outline of the rest of the paper.

1.1 Background on weak and strong tail optimality
Consider an M/G/1 with job size distribution 𝑆 . For now, we primarily focus on the full-information
setting where job sizes are known to the scheduler, but some of our results apply more broadly to

partial-information settings (Section 2.2).

Let 𝑇𝜋 denote the response time distribution under policy 𝜋 . Following Boxma and Zwart [7],

we say a policy 𝜋 is weakly tail-optimal if there exists a constant 𝑐 ≥ 1 such that

sup

𝜋 ′
lim sup

𝑡→∞

P[𝑇𝜋 > 𝑡]
P[𝑇𝜋 ′ > 𝑡] = 𝑐.

If additionally 𝑐 = 1, we say 𝜋 is strongly tail-optimal.
Whether a scheduling policy is weakly tail-optimal depends critically on whether the job size

distribution 𝑆 is heavy-tailed or light-tailed. If 𝑆 is heavy-tailed, then several preemptive policies

like Shortest Remaining Processing Time (SRPT) and Least Attained Service (LAS) are known to be

weakly tail-optimal and conjectured to to be strongly tail-optimal [7, 46]. In fact, we observe in

Appendix A that a result of Wierman and Zwart [46] implies strong tail optimality of SRPT, LAS,

and other policies for an important class of heavy-tailed distributions. The problem of achieving

strong tail optimality is thus largely solved in the heavy-tailed case.

In this work, we focus on the case of light-tailed job size distributions 𝑆 , specifically so-called

class I distributions [1, 2] (Definition 2.1), for which strong tail optimality is a significant open

problem [7, 46]. For some time, the only common policy known to be weakly tail-optimal was

First-Come First-Served (FCFS), which has asymptotically exponential response time tail. That is,

P[𝑇FCFS > 𝑡] ∼ 𝐶FCFS exp(−𝛾𝑡),

where 𝛾 > 0 is a constant called the decay rate, and 𝐶FCFS > 0 is a constant we call FCFS’s tail
constant. Both 𝛾 and 𝐶FCFS depend on 𝑆 and the system’s arrival rate.

It is known that no policy can achieve asymptotic decay rate greater than 𝛾 [7, 44], so we can

measure the performance of a weakly tail-optimal policy 𝜋 by its tail constant

𝐶𝜋 = lim

𝑡→∞
exp(𝛾𝑡) P[𝑇 > 𝑡] . (1.1)

The question of finding a strongly tail-optimal policy thus amounts to minimizing 𝐶𝜋 over all

policies 𝜋 . Until recently, it was conjectured that FCFS may be strongly tail-optimal, but recent

progress has improved upon FCFS’s tail constant [21, 45] (Section 1.3). This prompts a question:

What is the smallest possible tail constant 𝐶𝜋 , and what policy 𝜋 achieves it?
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1.2 Obstacle: prioritizing short jobs without delaying long jobs
As explained in Section 1.1, optimizing tail asymptotics with light-tailed job sizes is an open problem,

in contrast to the heavy-tailed case. Why is the light-tailed case so much more difficult? The main

obstacle is that there is a tension between prioritizing short jobs and delaying long jobs. This

tension is best illustrated by contrasting two policies, FCFS and SRPT.

Suppose a “tagged” job of random size 𝑆 arrives to a steady-state system and observes work𝑊 ,

meaning the total remaining service time of jobs in the system is𝑊 .

• FCFS serves jobs in the order they arrive. This means the tagged job’s response time is

𝑇FCFS =𝑊 + 𝑆 . In particular, the job’s response time is unaffected by future arrivals.

• SRPT always preemptively serves the job of least remaining service time. This means the

tagged job may not need to wait for all of the work𝑊 to be completed before entering service.

But future arrivals of size less than 𝑆 may be prioritized over the tagged job.

The reason SRPT is good in the heavy-tailed setting is that the amount of work from future arrivals

that delays the tagged job, which we denote by 𝑅SRPT (𝑆), has a lighter tail than𝑊 . But in the

light-tailed setting, 𝑅SRPT (𝑆) is heavier-tailed than𝑊 , with a decay rate less than 𝛾 . See Nuyens

et al. [31], who prove these results for SRPT and a class of related policies, for details.

The takeaway of the above comparison is that for light-tailed job size distributions, strictly

prioritizing short jobs delays long jobs too much for good tail performance. But prioritizing short

jobs is essentially the only tool we have for improving response times. The question is thus: how

should one partially prioritize short jobs to improve tail performance?

A number of works have studied scheduling with some sort of partial priority, whether by having

just a few priority buckets [10, 23, 28] or by dynamically changing priority over time [11, 12, 43].

While the tail asymptotics of most of these policies have not been formally studied, they seem

unlikely to be weakly tail-optimal. This is because they still have the property that a sufficiently

long tagged job might be delayed by a constant fraction of future arrivals. A result of Scully and van

Kreveld [39, Proposition 9.9] suggests this should lead to worse decay rate, though their result does

not directly apply to all of the other policies cited. Scully and van Kreveld [39, Theorem 5.5] also

show that no policy in the recently proposed class of “SOAP” policies [34, 36, 38] can improve upon

FCFS’s tail constant, because all SOAP policies other than FCFS have decay rate worse than 𝛾 .1

1.3 Nudge: a promising but limited first step
The first improvement upon FCFS’s tail constant was through the Nudge family of policies, intro-

duced by Grosof et al. [21] and expanded upon by Van Houdt [45] and Charlet and Van Houdt [9].

In its simplest variant, Nudge creates two classes of jobs, short and long, then runs FCFS with a

small modification, illustrated in Fig. 1.1(a):

• When a short job arrives, it is allowed to pass in front of up to 𝐾 large jobs, where 𝐾 is a

fixed constant.

• Each large job can be passed by a limited number of short jobs. Different variants of Nudge

differ in exactly how the limiting works. The two most important variants are the following:

– Nudge-K [45]: Each large job can be passed only once.

– Nudge-M [9]: Small jobs only pass large jobs that are within the 𝐾 most recent arrivals.

When 𝐾 = 1, Nudge-K and Nudge-M coincide, and are called simply “Nudge” [21].

Nudge is a family of policies rather than a single policy, because there are many ways to decide

which jobs are short and which are long; one can vary the parameter𝐾 ; and one can choose between

Nudge-K, Nudge-M, and other variants [9]. One can think of these parameters as controlling the

1
Scully and van Kreveld [39] actually consider only a subset of SOAP policies, but one can generalize the relevant part of

their argument to cover all SOAP policies.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.



27:4 George Yu and Ziv Scully

earlier

arrival

later

arrival

job X

job Y

𝑠X
𝑠Y

(a) Nudge always serves X after Y,
regardless of their arrival times.
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job Y

𝑏 (𝑠X)
𝑏 (𝑠Y)

time

𝑎X 𝑎Y
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(b) Boost serves X after Y if their
arrival times are close together.

job X

job Y

𝑏 (𝑠X)
𝑏 (𝑠Y)

time

𝑎X 𝑎Y

𝑠X
𝑠Y

(c) Boost serves X before Y if their
arrival times are far apart.

Fig. 1.1. Comparison between how Nudge and Boost each handle a long job X arriving before a short job Y.
Suppose that Y arrives before X enters service. Nudge decides the order to serve the jobs based only on the
arrival order, as shown in (a). In contrast, Boost uses not just the arrival order but also the respective arrival
times, as shown in (b) and (c). Notation: job 𝑖’s arrival time is 𝑎𝑖 , its size is 𝑠𝑖 , and its boost is 𝑏 (𝑠𝑖 ).

degree to which short jobs are prioritized over long jobs. For instance, larger values of 𝐾 further

prioritize short jobs, and for a fixed value of 𝐾 , Nudge-K is more conservative about letting short

jobs pass long jobs than Nudge-M.

Recent progress on Nudge has yielded several improvements to the best known tail constant.

Grosof et al. [21] introduce Nudge with 𝐾 = 1 and show that with appropriate tuning, Nudge

achieves 𝐶Nudge < 𝐶FCFS, thus demonstrating that FCFS is not strongly tail-optimal. In fact, they

show that with sufficiently conservative tuning, Nudge stochastically improves upon FCFS, meaning

P[𝑇Nudge > 𝑡] ≤ P[𝑇FCFS > 𝑡] for all 𝑡 > 0.

Building on this progress, Van Houdt [45] introduces Nudge-K for 𝐾 ≥ 2 and, for any given split

between small and large jobs, characterizes the value of 𝐾 that minimizes 𝐶Nudge-K. The optimal

value is generally neither 𝐾 = 1 nor 𝐾 = ∞. This reflects the fact that while short jobs should get

some priority, giving them too much priority hurts long jobs, and thereby the tail constant𝐶Nudge-K.

Concurrently with this work, Charlet and Van Houdt [9] introduce the Nudge-M variant and

show several results about it. The most important of these is that for any given split between small

and large jobs, Nudge-M with the optimal value of 𝐾 achieves the minimum possible tail constant
out of any variant of Nudge. That is, Nudge-M is strongly tail-optimal among Nudge policies.

Charlet and Van Houdt [9] also characterize the value of 𝐾 that leads to this minimal 𝐶Nudge-M,

showing that it coincides with the value that minimizes 𝐶Nudge-K.

While Nudge is significant due to its improving upon FCFS, there are two reasons to believe that

Nudge can also be improved upon. First, it seems likely that it would help to have finer-grained

distinctions between job sizes, as opposed to grouping them into just two classes, and it may be

beneficial to allow jobs to move many spots in the queue. As an extreme example, if a job were

size 0, it would make sense to let it jump straight to the front of the queue. Second, while Nudge

makes use of the order in which jobs arrive, it does not make use of the amounts of time between
arrivals. For instance, suppose a job X arrives before a shorter job Y. If the time between the arrivals

is very small, as in Fig. 1.1(b), it may make sense to serve the shorter Y before X. But if there is a

long interarrival time between X and Y, as in Fig. 1.1(c), it may make sense to keep X in front of Y,

because Y will not have been waiting as long by the time the system starts serving X.
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(a) Boost’s tail improvement ratio for several job size
distributions.
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(b) Several policies’ tail improvement ratios for an
exponential job size distribution.

Fig. 1.2. Empirical performance (higher is better) of Boost, specifically the strongly tail-optimal 𝛾-Boost,
(a) on several job size distributions, and (b) compared to two other policies, Nudge (and the K and M variants
with optimal parameter 𝐾 ) and SRPT. The plots show tail improvement ratio 1 − P[𝑇𝜋 > 𝑡]/P[𝑇FCFS > 𝑡] as a
function of 𝑡 . Dotted lines indicate the asymptotic tail improvement ratio 1 −𝐶𝜋/𝐶FCFS. The load is 𝜌 = 0.8,
and the mean job size is E[𝑆] = 1. See Section 6 for additional details on the job size distributions and other
simulation parameters.

1.4 Our answer: Boost
Motivated by the limitations of Nudge discussed above, we define Boost, a new family of scheduling

policies. In the full-information setting where job sizes are known to the scheduler, an instance of

Boost is specified by a boost function 𝑏 : R+ → R, where 𝑏 (𝑠) is called the boost of a job of size 𝑠 .
The rough idea is that Boost acts like FCFS, except it pretends that a job of size 𝑠 arrives 𝑏 (𝑠) time

earlier than it actually does. Specifically, if a job of size 𝑠 arrives at time 𝑎, we define its boosted
arrival time to be

boosted arrival time = arrival time − boost = 𝑎 − 𝑏 (𝑠).

Boost then follows one scheduling rule: prioritize jobs from least to greatest boosted arrival time. See
Figs. 1.1(b) and 1.1(c) for an illustration. Notice that Boost, unlike Nudge, takes into account not

just the arrival order but also the arrival times.

One can define preemptive and nonpreemptive versions of Boost, depending on whether the

priority rule is applied at every moment in time or only when a job completes. The distinction

turns out not to affect Boost’s tail asymptotics, so our results apply to both versions.

The boost function 𝑏 determines how Boost balances the tension between prioritizing short jobs

and prioritizing jobs that have been waiting a long time. For example, setting 𝑏 (𝑠) = 0 reduces the

policy to FCFS, whereas setting 𝑏 (𝑠) = 𝑟/𝑠 for a large constant 𝑟 results in prioritizing jobs nearly

entirely based on their size, similar to SRPT. We therefore ask: what boost function is best?

We prove two main theoretical results about Boost. First, we find an explicit formula for its tail
constant𝐶Boost in terms of the boost function 𝑏 (Theorem 3.1). Second, we study a particular version

of Boost, which we call 𝛾-Boost, where the boost function is

𝑏𝛾 (𝑠) =
1

𝛾
log

1

1 − exp(−𝛾𝑠) . (1.2)
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We show that 𝛾-Boost is strongly tail-optimal, meaning 𝐶𝛾 -Boost ≤ 𝐶𝜋 for every other scheduling

policy 𝜋 (Theorem 5.1). This solves the open problem of finding a strongly tail-optimal policy, as

well as the problem of characterizing the best possible tail constant inf𝜋 𝐶𝜋 .

Of course, strong tail optimality is a theoretical property, and one would hope that pursuing it as

an objective yields a policy with good practical performance. We confirm via simulation that this

is indeed the case for 𝛾-Boost. Observe in Fig. 1.2 that 𝛾-Boost’s improvement over FCFS is often

even better than one would predict from the asymptotic tail constants.

Above, we have focused on the case of full job size information, but Boost and 𝛾-Boost can also

be defined for systems with partial job size information. The specific partial-information model we

consider has multiple types of jobs, each with a distinct label, and the scheduler knows each job’s

label, but not its size. In this partial-information setting, a job’s boost is a function of its label rather

than its size. Our analysis of Boost’s tail constant also applies to the partial-information setting

(Theorem 3.1). We also show that partial-information 𝛾-Boost achieves better tail constant than

any other Boost policy (Appendix C) and the previous state-of-the-art, Nudge-M (Appendix D).

1.5 Key idea: relate strong tail optimality to an easier scheduling problem
Where does the boost function in (1.2) come from, and how does one show that the resulting

𝛾-Boost policy is strongly-tail optimal? Our key idea is to relate the problem of minimizing the tail

constant 𝐶𝜋 to a more traditional scheduling problem involving a type of weighted cost.

We begin by considering the following alternative characterization of 𝐶𝜋 , which follows from

final value theorem [21, Theorem 4.3]:

𝐶𝜋 = lim

𝜃→𝛾

𝛾 − 𝜃
𝛾

E[exp(𝜃𝑇𝜋 )] .

There is thus a vague sense in which minimizing𝐶𝜋 is equivalent to minimizing E[exp(𝛾𝑇𝜋 )]. This
is only an informal statement because, as one can deduce from (1.1), we have E[exp(𝛾𝑇𝜋 )] = ∞ for

all policies 𝜋 , even those that are weakly tail-optimal.

While minimizing the always-infinite quantity E[exp(𝛾𝑇𝜋 )] is not a well-posed problem in the

M/G/1, it is analogous to a well-posed problem in deterministic single-machine scheduling [27, 33].

Consider an arbitrary finite batch of jobs I = {(𝑎1, 𝑠1), . . . , (𝑎𝑛, 𝑠𝑛)}. Here 𝑎𝑖 is the arrival time of

job 𝑖 , and 𝑠𝑖 is its size. Additionally, let 𝑑𝜋,𝑖 be the departure time of job 𝑖 under policy 𝜋 , and let

the 𝜃-cost of policy 𝜋 be 𝐾𝜋 (𝜃,I) =
∑𝑛
𝑖=1

exp(𝜃 (𝑑𝜋,𝑖 − 𝑎𝑖 )). Minimizing E[exp(𝛾𝑇𝜋 )] is analogous
to minimizing 𝛾-cost 𝐾𝜋 (𝛾,I) in the deterministic setting.

For 𝜃 < 0, minimizing 𝜃 -cost is actually a variation of a classic single-machine scheduling

problem: minimizing total weighted discounted completion time [27, 33], where job 𝑖’s weight

is exp(−𝜃𝑎𝑖 ). This problem is hard, but only because of arrival times. In the batch relaxation, in
which we allow job 𝑖 to be served even before time 𝑎𝑖 , the optimal policy is an index policy called

Weighted Discounted Shortest Processing Time (WDSPT) [33, Theorem 3.1.6]. To clarify, the arrival

times 𝑎𝑖 still matter in the batch relaxation, because they determine the weights exp(−𝜃𝑎𝑖 ).
Because 𝛾 > 0, one can view minimizing 𝛾-cost as an instance of minimizing total weighted

discounted completion time, but with a negative discount rate. To the best of our knowledge, this

variant of the problem has not been considered in the literature. Nevertheless, essentially the same

proof as in the standard positive-discount case shows that a version of WDSPT is optimal in the

negative-discount case.
2
The 𝛾-Boost policy arises from finding a function 𝑏𝛾 such that WDSPT is

equivalent to serving jobs in order of increasing boosted arrival time 𝑎𝑖 − 𝑏𝛾 (𝑠𝑖 ).

2
See, for instance, the interchange argument in Pinedo [33, Theorem 3.1.6]. We believe this result may be folklore, but we

sketch a proof in Section 4 for completeness.
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Above, we have focused on the full-information case, but nearly the same reasoning works in

the partial-information case. The difference is that we base the optimal boost function on Weighted

Discounted Shortest Expected Processing Time (WDSEPT) [33, Theorem 10.1.3] instead of WDSPT.

1.6 Technical challenge: translating from the batch relaxation to the M/G/1
The fact that 𝛾-Boost minimizes 𝛾-cost in the batch relaxation is a promising sign that it is strongly

tail-optimal, meaning𝐶𝛾 -Boost = inf𝜋 𝐶𝜋 , in the M/G/1. There are two significant obstacles between

this intuition and a proof of 𝛾-Boost’s strong tail optimality.

The first obstacle is that the batch relaxation allows jobs to be served at any time, whereas in the

M/G/1, jobs cannot be served before they arrive. We therefore need to show that adjusting 𝛾-Boost’s

schedule from the batch relaxation to not serve jobs before they arrive does not significantly

degrade its performance. If we consider an arbitrarily long sequence of arrivals, this might not

be true, so the first step is to figure out how to split up the M/G/1’s infinite sequence of arrivals

into finite batches. It turns out that using busy periods as batches works well. The main technical

challenge then becomes showing that “honest” 𝛾-Boost, which only serves jobs after they arrive, is

nearly as good as “cheating” 𝛾-Boost, which is allowed to serve any job in the current busy period,

even if it has not arrived yet.

The second obstacle is that minimizing steady-state mean 𝛾-cost E[exp(𝛾𝑇𝜋 )] is not a well-posed
problem in the M/G/1, because the expectation is infinite for all policies. Instead, we must make

do with the fact that for any weakly tail-optimal policy 𝜋 , mean 𝜃 -cost E[exp(𝜃𝑇𝜋 )] is finite for
all 𝜃 < 𝛾 . We therefore work with 𝜃 → 𝛾 limits of 𝜃 -cost throughout the paper, as opposed to

working directly with 𝛾-cost. The main technical challenge is to show that 𝛾-Boost is near-optimal

for minimizing not just mean 𝛾-cost but also mean 𝜃 -cost, provided 𝜃 is close enough to 𝛾 .

Above, we have focused on the full-information case, and for good reason: we have not been

able to generalize part of this argument to the partial-information case. The issue has to do with a

subtle difference between the traditional stochastic batch setting [33, Section 10.1], which assumes

independent job sizes, and the instances that arise from busy periods, which can have subtle

dependencies between jobs’ sizes (Appendix B). Nevertheless, we show 𝛾-Boost outperforms all

other versions of Boost (Appendix C) and Nudge-M (Appendix D) in the partial-information setting.

1.7 Contributions
In this work, we present the first strongly tail-optimal scheduling policy, namely 𝛾-Boost, for the

M/G/1 with light-tailed job size distributions. This solves a significant open problem in queueing

and scheduling theory. We also study Boost more generally in both theory and simulation, making

the following specific contributions:

• (Section 2) We propose Boost, a new family of scheduling policies that balance the tradeoff

between prioritizing short jobs and prioritizing jobs that have been waiting a long time.

• (Section 3) We theoretically analyze Boost, giving an explicit formula for its tail constant

𝐶Boost in terms of the boost function used (Theorem 3.1).

• (Section 4) We draw a new connection between minimizing the tail constant in the M/G/1

and a batch scheduling problem with negative discounting. We solve the batch scheduling

problem using 𝛾-Boost, a specific instance of Boost.
• (Section 5) In the full-information setting, we prove 𝛾-Boost is strongly tail-optimal in the

M/G/1 with light-tailed job size distribution (Theorem 5.1).

• (Section 6)We show in simulation that𝛾-Boost has excellent practical performance, improving

upon FCFS’s tail performance by more than 50% in some cases. We observe that 𝛾-Boost’s

performance is robust to using the wrong value of 𝛾 or noisily estimated job sizes.
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We also make an observation about strong tail optimality in the heavy-tailed case in Appendix A,

though it follows nearly immediately from known results.

2 SYSTEMMODEL AND BOOST POLICIES
We consider an M/G/1 queue with arrival rate 𝜆, job size distribution 𝑆 , and load 𝜌 = 𝜆E[𝑆]. We

make the standard assumption that 𝜌 < 1, ensuring stability, and we assume that 𝑆 > 0 almost

surely to avoid trivial jobs of size 0. We assume that 𝑆 is light-tailed, considering the following

specific class of light-tailed distributions initially identified by Abate et al. [1].

Definition 2.1. A distribution 𝑆 is class I if its moment generating function’s leftmost singularity

𝜃 ∗ = sup{𝜃 ∈ R | E[exp(𝜃𝑆) < ∞]},
which may be∞, satisfies 𝜃 ∗ > 0 and lim𝜃→𝜃 ∗ E[exp(𝜃𝑆)] = ∞. In informal discussion, “light-tailed”

is understood to refer to class I unless otherwise stated.

The main metric we are concerned with is response time, the amount of time between a job’s

arrival and departure. We denote the response time distribution under scheduling policy 𝜋 by 𝑇𝜋 .

Thanks to the “PASTA” property of Poisson arrivals [47], we can interpret 𝑇𝜋 as the response time

of a random “tagged” job arriving to a steady-state system. We discuss the details of the scheduling

policies 𝜋 we consider in Section 2.2.

The quantity that has the largest impact on the system’s response time is the work, the total
remaining processing time of jobs currently in the system. We denote the steady-state amount

of work in the M/G/1 by𝑊 . This amount is the same under all non-idling (aka work-conserving)

scheduling policies.

Our main objective is to find the strongly tail-optimal scheduling policy, defined in Section 1.1

and recalled below.

Definition 2.2. A scheduling policy 𝜋 is weakly tail-optimal if there exists finite 𝑐 ≥ 1 such that

sup

𝜋 ′
lim sup

𝑡→∞

P[𝑇𝜋 > 𝑡]
P[𝑇𝜋 ′ > 𝑡] = 𝑐,

If additionally 𝑐 = 1, we say 𝜋 is strongly tail-optimal.

The supremum in Definition 2.2 ranges over all preemptive scheduling policies 𝜋 ′
that have

access to full information about the sizes and arrival times of all arrivals. In particular, 𝜋 ′
could in

principle use information about future arrivals. However, none of the policies we consider use this
information (aside from the “cheating” policy introduced in Section 2.4), and we achieve strong tail

optimality without it.

2.1 Asymptotic tails
The key property of class I distributions is that they ensure that the work𝑊 has asymptotically

exponential tail. Specifically, there exist constants 𝛾 > 0 and 𝐶𝑊 > 0 such that [21, equation (2)]
3

𝐶𝑊 = lim

𝑡→∞
exp(−𝛾𝑡)E[exp(𝛾𝑊 )] = lim

𝜃→𝛾

𝛾 − 𝜃
𝛾

E[exp(𝜃𝑊 )], (2.1)

with the equivalence of the two limits being due to final value theorem [21, Theorem 4.3]. We call

𝛾 the decay rate and 𝐶𝑊 the tail constant of the work distribution𝑊 . It is known that 𝛾 is the least

positive real solution to

𝛾 = 𝜆(E[exp(𝛾𝑆)] − 1). (2.2)

3
Throughout the paper, 𝜃 → 𝛾 limits are understood as being limits from below, seeing as E[exp(𝜃𝑊 ) ] = ∞ for all 𝜃 ≥ 𝛾 .
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When 𝑆 is class I, 𝛾 is a simple pole of𝑊 ’s moment generating function 𝜃 ↦→ E[exp(𝜃𝑊 )] [1, 2],
regardless of the arrival rate 𝜆. Our results likely generalize to other combinations of 𝜆 and 𝑆 for

which this is the case.

We define the tail constant of scheduling policy 𝜋, denoted𝐶𝜋 , in the same way as the tail constant

of the work distribution:
4

𝐶𝜋 = lim

𝑡→∞
exp(−𝛾𝑡)E[exp(𝛾𝑇𝜋 )] = lim

𝜃→𝛾

𝛾 − 𝜃
𝛾

E[exp(𝜃𝑇𝜋 )] . (2.3)

As an example, FCFS’s tail constant is easily shown to be

𝐶FCFS = 𝐶𝑊 E[exp(𝛾𝑆)],

where finiteness of E[exp(𝛾𝑆)] follows from (2.2).

2.2 Scheduling model and what information the scheduler has
We consider both nonpreemptive scheduling, where once a job begins service, it will complete

without interruption, and preemptive scheduling, where jobs may be paused in the middle of service.

In the latter case, we assume a standard preempt-resume model in which jobs may be paused and

resumed without delay, overhead, or loss of progress.

We wish to study both the full-information setting, in which the scheduler learns each job’s

exact size (aka service time) when it arrives; as well as partial-information settings, in which the

scheduler has some limited but incomplete information about job sizes. For instance, perhaps there

are two types of arrivals, each with its own size distribution, but we do not know the size of any

particular job.
5

To capture a wide range of information settings, we use the flexible label-size pair model from

recent work on M/G/1 scheduling [34, 38]. In this model, each job has an i.i.d. pair (𝐿, 𝑆) of a label 𝐿
and size 𝑆 . The space of possible labels, denoted L, can be arbitrary, and there may be an arbitrary

joint distribution between labels and sizes. For example:

• To model known job sizes, let L = R+ and 𝐿 = 𝑆 .

– We call this case the full-information setting.

• To model a scenario with two types of jobs A and B, where job types are known but job

sizes are unknown, let L = {A,B}, and define the joint distribution such that, for instance,

(𝑆 | 𝐿 = A) is the size distribution of type A jobs.

– We call any case where 𝐿 ≠ 𝑆 with positive probability, of which the above is one example,

the partial-information setting.

Of course, one can imagine more complicated label-size pair distributions. As a final example,

perhaps some jobs are labeled with their exact size, while others are labeled only type A or type B.

This can be modeled using L = R+ ∪ {A, B}.
We assume that the scheduler has access to each job’s arrival time and label, but that it has

no information about each job’s size beyond what can be deduced from its label. That is, if a job

is labeled 𝑙 , the scheduler knows its size is distributed as (𝑆 | 𝐿 = 𝑙), but it does not learn the

realization until the job is complete.

4
The limits below may not exist, so strictly speaking, we should define lower and upper constants using lim inf𝑡→∞ and

lim sup𝑡→∞ in place of lim𝑡→∞. But the limits exist for all policies we consider, so we omit this additional complexity.

5
If there is no information at all to distinguish different jobs from one another, then, at least among nonpreemptive

policies, there is no way to improve upon FCFS, due to𝑇FCFS being minimal in the convex order [41]. Investigating whether

preemptive policies could improve upon FCFS in this setting is an interesting future direction.
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2.3 Defining the Boost family of policies
We introduce a new scheduling policy called Boost. Strictly speaking, Boost is a family of scheduling

policies, where an instance of the family is determined by a boost function 𝑏 : L→ R+.6 The boost
function maps each label 𝑙 ∈ L to a quantity 𝑏 (𝑙) called the boost of a job with label 𝑙 .

Boost operates as follows. Suppose a job with label 𝑙 has arrival time 𝑎. We define the job’s

boosted arrival time to be 𝑎 −𝑏 (𝑙). Boost uses the same basic rule with any boost function: prioritize
jobs in order from least to greatest boosted arrival time.7 As a trivial example, choosing 𝑏 (𝑙) = 0

reduces Boost to FCFS.

One can define preemptive or nonpreemptive versions of Boost. The preemptive version makes

scheduling decisions continuously, always serving the job of least boosted arrival time. The non-

preemptive version, after it serves the first job in each busy period, makes scheduling decisions

whenever a job completes, each time choosing the job of least boosted arrival time. One can also

define intermediate versions where a job may be preempted by some, but not necessarily all, arrivals

with lower boosted arrival time.

All of our theoretical results hold for the preemptive, nonpreemptive, and intermediate versions

of Boost (Remark 3.4). As such, we leave the exact preemption rule unspecified throughout our

theoretical results. But for concreteness, the reader may safely imagine that nonpreemptive Boost

is used throughout, and we use nonpreemptive Boost in our simulations (Section 6).

There is one family of boost functions that is especially important, as they result in strong tail

optimality.

Definition 2.3. For any 𝜃 > 0, the 𝜃 -Boost policy for label-size pair distribution (𝐿, 𝑆) is the
version of Boost with the following boost function, which we call the 𝜃-optimal boost function:

𝑏𝜃 (𝑙) =
1

𝜃
log

E[exp(𝜃𝑆) | 𝐿 = 𝑙]
E[exp(𝜃𝑆) | 𝐿 = 𝑙] − 1

.

While the definitions of 𝜃 -Boost and 𝑏𝜃 depend on the label-size pair distribution (𝐿, 𝑆), we leave
this implicit in our notation.

The 𝛾-Boost policy alluded to in Section 1 is simply 𝜃 -Boost with 𝜃 = 𝛾 . In the full-information

case where 𝐿 = 𝑆 , we have E[exp(𝛾𝑆) | 𝐿 = 𝑠] = exp(𝛾𝑠), and so 𝑏𝛾 reduces to the formula in (1.2).

We use the name “Boost” when referring to a version with generic boost function 𝑏, and we use

the name “𝜃 -Boost” when referring to a version using the 𝜃 -optimal boost function 𝑏𝜃 , with 𝜃 = 𝛾

being the most important case.

If one uses an overly aggressive boost function, such as boosting small jobs too much, then Boost

may not be weakly tail-optimal, let alone strongly tail-optimal. Our results (Theorem 3.1) show

that as long as

E[𝑏 (𝐿) (exp(𝛾𝑆) − 1)] < ∞, (2.4)

then Boost is indeed weakly tail-optimal. There are two important special cases where (2.4) holds.

• It always holds if one uses the 𝛾-optimal boost function 𝑏𝛾 (Lemma 5.3).

• In the full-information case where 𝐿 = 𝑆 , one can show using finiteness of E[exp(𝛾𝑆)] that
(2.4) holds if 𝑏 (𝑠) ≤ 𝑂 (1/𝑠) in the 𝑠 → 0 limit and 𝑏 (𝑠) ≤ 𝑂 (1) in the 𝑠 → ∞ limit. The

intuition behind why we need such a condition is that if small jobs have too large of a

boost, then each large job could be overtaken by so many small jobs that we lose weak tail

optimality.

6
One can in principle allow negative boosts, but we focus our analysis on the case where boosts are always nonnegative.

7
To clarify, at any moment in time, Boost is only aware of jobs whose arrival time 𝑎 is in the past. There may be jobs that

will arrive in the future with boosted arrival time 𝑎 − 𝑏 (𝑙 ) in the past. But Boost is not aware of these jobs yet and will not

serve them prior to their arrival. Boost thus does not require knowledge of future arrival times to implement.
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To reduce clutter, we let 𝐵 = 𝑏 (𝐿) be the boost of a random job, meaning we have a joint

distribution of boost-size pairs (𝐵, 𝑆). We write 𝐵𝜃 when using the 𝜃 -optimal boost function 𝑏𝜃 .

2.4 Lower bounding tool: “cheating” version of Boost
In order to prove that 𝛾-Boost is strongly tail-optimal, we need a lower bound on the possible tail

constant 𝐶𝜋 (Section 2.1) achievable by any policy 𝜋 . Our main tool for doing so is to define a

“cheating” version of Boost, which we call Cheat.
Like Boost, Cheat is defined by a boost function 𝑏, it assigns each job a boosted arrival time in

the same way, and it also prioritizes jobs in order from least to greatest boosted arrival time. The

difference is that we allow Cheat to serve arrivals from the future. Specifically, we allow Cheat to

serve any job that will arrive in the current busy period, where a busy period is a maximal interval

of time during which the server is busy [22].
8

We can view Cheat as being essentially the same policy as Boost for a modified “cheating” M/G/1,

which differs from the standard M/G/1. To describe the cheating M/G/1, we distinguish between a

job’s arrival time, which is the time it arrives in the standard system, and a job’s release time, which
is the earliest moment in time at which a job is allowed to be served by the scheduler.

• In the standard M/G/1, a job’s release time is its arrival time.

• In the cheating M/G/1, a job’s release time is the start of the busy period containing its arrival

time.

In the cheating M/G/1, we still define a job’s response time to be its departure time minus its arrival

time. The difference is that a job’s departure time may now be less than its arrival time plus its size,

so a job’s response time may be less than its size, or even negative.

To clarify, for a given arrival sequence, the standard and cheating M/G/1 systems have the same

busy periods. That is, one can imagine first deciding what the busy periods are using the standard

M/G/1, and then “retroactively” moving release times to construct the corresponding cheating

M/G/1. Note that this implies the cheating M/G/1 is ergodic, because it inherits the renewal cycles

of the standard M/G/1.

With the above distinction in mind, strictly speaking, Cheat is best thought of as the same policy

as Boost but for a modified system, namely the cheating M/G/1, as opposed to a different scheduling

policy for the standard system. But for the purposes of notation, we treat it like a different scheduling

policy. For instance, we denote the response time distribution of Cheat by 𝑇Cheat. As a reminder,

due to how the cheating system works, we can have 𝑇Cheat < 0 with positive probability.

We define 𝜃 -Cheat analogously to 𝜃 -Boost (Definition 2.3), namely as the version of Cheat using

the 𝜃 -optimal boost function 𝑏𝜃 . The significance of 𝜃 -Cheat is that, as we show in Theorem 4.3,

E[exp(𝜃𝑇𝜃 -Cheat)] ≤ E[exp(𝜃𝑇𝜋 )] for any policy 𝜋 for the standard M/G/1.

3 ANALYSIS OF BOOST’S TAIL CONSTANT
In this section, we analyze the tail constants of Boost and Cheat in terms of the boost function 𝑏

and the system model parameters, namely 𝜆 and (𝐿, 𝑆).
Our main result is the following characterization of 𝐶Boost and 𝐶Cheat. Interestingly, we find that

cheating has no effect on the tail constant. See Section 3.3 for the proof.

Theorem 3.1. Consider an M/G/1 with class I job size distribution, and consider the Boost policy
with a fixed boost function 𝑏. If (2.4) holds, then Boost and Cheat both have tail constant

𝐶Boost = 𝐶Cheat = 𝐶𝑊 E
[
exp(𝛾 (𝑆 − 𝑏 (𝐿)))

]
exp

(
𝜆E[𝑏 (𝐿) (exp(𝛾𝑆) − 1)]

)
.

In particular, 𝐶Boost < ∞, so Boost is weakly tail-optimal.
8
This definition is assuming a non-idling scheduling policy, where all such policies lead to the same notion of busy periods.
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3.1 Approach: tagged job analysis
To derive the tail constants of Boost and Cheat, we require bounds on 𝑇Boost and 𝑇Cheat. We obtain

these by considering a pair of M/G/1 systems, one standard and one cheating, experiencing the

same arrival process. The only difference is that the release times in the standard M/G/1 coincide

with arrival times, whereas in the cheating M/G/1, all jobs in a given busy period have release time

at the start of the busy period (Section 2.4). We assume both systems are stationary processes.

We use a tagged job analysis [22], which is a common technique in analyzing complex scheduling

policies [9, 11, 12, 17, 18, 21, 34, 36, 38, 43, 45]. A typical tagged job analysis uses the observation

that, due to the “PASTA” property of Poisson arrivals [47], to analyze a policy 𝜋 ’s response time

distribution 𝑇𝜋 , we can analyze the response time of a single “tagged” job which arrives at an

arbitrary time, such as time 0. We then interpret 𝑇𝜋 as the random response time the tagged job

experiences. There are three independent sources of randomness that contribute to 𝑇𝜋 :

• The tagged job’s label-size pair, which is drawn from (𝐿, 𝑆).
• Aspects of the M/G/1’s state, such as its work𝑊 , at time 0, which is drawn from the system’s

stationary distribution.

• Arrivals that occur after time 0.

In our approach, instead of assuming without loss of generality that the tagged job’s arrival

time is time 0, we assume the boosted arrival time is time 0. The tagged job’s response time is still

determined by the same three sources of randomness listed above. However, the interpretation of

the latter two sources changes, e.g., some of the arrivals after time 0 arrive before the tagged job.

The only subtlety to check is that the system state at time 0, and in particular the work𝑊 , still

has the stationary distribution. This is indeed the case. Consider the stationary work process𝑊𝑡

as a function of time 𝑡 ∈ R. The key observation is that the tagged job’s boost is independent

of its arrival time. So if the tagged job arrives at time 𝑎 and has boost 𝐵 = 𝑏 (𝐿), the work at the

boosted arrival time𝑊𝑎−𝐵 is distributed according to the stationary distribution, because {𝑊𝑡 }𝑡≤𝑎
is stationary and independent of 𝐵. As such, we can imagine 𝑎 − 𝐵 = 0 without loss of generality.

One can use the framework of Palm calculus [4] to formalize this argument.

To summarize our approach and notation:

• We analyze the response time of a tagged job with boosted arrival time 0.

– Abusing notation slightly, we write 𝐿, 𝑆 , 𝐵 = 𝑏 (𝐿), and 𝑇𝜋 for the tagged job’s label, size,

boost, and response time under policy 𝜋 .

– This means the tagged job’s arrival time is 𝐵.

• The amount of work in the (standard) M/G/1 at time 0, denoted𝑊 , is distributed according

to the standard stationary work distribution [22].

– We follow the convention that𝑊 does not include the tagged job’s size 𝑆 .

• After time 0, new Poisson arrivals occur at rate 𝜆 with iid label-size pairs.

– To avoid ambiguity, when we need to discuss the label, size, and boost of a generic future

arrival, we write 𝐿′, 𝑆 ′, and 𝐵′ instead of (the identically distributed) 𝐿, 𝑆 , and 𝐵.

– We call these arrivals “new” because their arrival times are after time 0, even if their arrival

times are before the tagged job’s arrival time 𝐵.

3.2 Bounding Boost’s response time using crossing work
A critical step in bounding both𝑇Cheat and𝑇Boost is quantifying how much arriving work will “boost

past” the tagged job, which we define formally below. We also define the complementary quantity

for the arriving work that doesn’t boost past the tagged job.

Definition 3.2.
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(a) The crossing work arriving in (0, 𝑢), denoted 𝑉 (𝑢), is the amount of work due to jobs that

have arrival time in (0, 𝑢) and boosted arrival time in (−∞, 0].
(b) The non-crossing work arriving in (0, 𝑢), denoted 𝑉 (𝑢), is the amount of work due to jobs

that have arrival time in (0, 𝑢) and boosted arrival time in (0,∞).

For example, 𝑉 (∞) is all the work that “boosts past” time 0, meaning arriving after 0 but having

boosted arrival time before 0. On the other extreme, 𝑉 (0) is simply 0.

Understanding the amount of crossing work that the tagged job experiences is key to under-

standing the response time of the tagged job under Boost. However, the exact crossing work is

difficult to compute, as it depends on the amount of work𝑊 at the tagged job’s boosted arrival

time, its size, as well as the sizes and labels of future arrivals. In particular, jobs with boosted arrival

time before time 0 may still depart after the tagged job, if their arrival times are late enough. Under

Cheat, since the release time of all jobs is the beginning of the busy period, the crossing work is

given by 𝑉 (𝑍 ), where 𝑍 is the random time denoting the end of the busy period. But 𝑍 in turn

depends on the same arrivals that 𝑉 (𝑍 ) is counting, making this a hard quantity to analyze.

Due to these difficulties, instead of computing crossing work exactly, we find bounds on 𝑇Boost
and 𝑇Cheat which are good enough for computing 𝐶Boost and 𝐶Cheat.

Lemma 3.3. The tagged job’s response times under Boost and Cheat are both lower-bounded by

𝑇Boost,𝑇Cheat ≥𝑊 − 𝐵 +𝑉 (𝑊 ) + 𝑆

and, for all 𝑢 ≥ 0, upper-bounded by

𝑇Boost,𝑇Cheat ≤ (𝑊 − min{𝐵,𝑢})+ +𝑉 (∞) + 𝑆 +𝑉 (𝑢) 1(𝑊 < min{𝐵,𝑢}) .

Proof. We first recall our conventions from Section 3.1. The tagged job’s boosted arrival time

is 0, true arrival time is 𝐵, and departure time is 𝑇𝜋 + 𝐵. There is𝑊 work in the system at time 0.

We first treat both bounds on𝑇Boost before handling both bounds on𝑇Cheat. For𝑇Boost, we analyze

the work done by the server between the tagged job’s boosted arrival time 0 and its departure

time 𝑇Boost + 𝐵. Both the lower and upper bounds use the fact that the server must complete the

following work between 0 and 𝑇Boost + 𝐵:
• 𝑊 from work present at time 0. This must be completed because all the work present at time 0

has priority over the tagged job. This is because their arrival times, and thereby boosted

arrival times, are earlier than 0.

• 𝑆 from the tagged job itself.

• Some additional work from new arrivals that occur after time 0.

The main task is thus to bound the work from new arrivals.

Lower bound on 𝑇Boost. By the first bullet above, work on𝑊 must complete before the tagged job

can enter service. Therefore, it cannot enter service before time𝑊 . In this time, there is at least

𝑉 (𝑊 ) work from new arrivals that will have priority over the tagged job. Adding the required

components, we have 𝑇Boost + 𝐵 ≥𝑊 +𝑉 (𝑊 ) + 𝑆 , as desired.

Upper bound on 𝑇Boost. First, observe that decreasing the tagged job’s boost from 𝐵 to �̂� =

min{𝐵,𝑢} can only increase its response time, so it suffices to analyze the case with this reduced

boost. In the remainder of this argument, �̂� plays the role of 𝐵.

We first consider the fully preemptive case, in which the tagged job has priority over all jobs

with boosted arrival time later than 0. In addition to the required completions of𝑊 and 𝑆 before

the tagged job’s departure, it will need to complete at most 𝑉 (∞) from new arrivals that occur

after time 0.
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However, we must also account for time the server spends idle. No idling occurs after the tagged

job arrives, but the server may be idle for some time during [0, �̂�]. This idle time is at most (�̂�−𝑊 )+,
so in the fully preemptive case,

𝑇Boost + �̂� ≤𝑊 +𝑉 (∞) + 𝑆 + (�̂� −𝑊 )+ . (3.1)

We now turn to the case where the server is not fully preemptive. The only change to the

argument is that the tagged job may also have to wait for the remaining work of a lower-priority

job, if one is in service when the tagged job arrives at time �̂�. If there is such a job, let 𝑅 be its

total size, and otherwise, let 𝑅 = 0. It is clear that the tagged job’s departure time is at most the

right-hand side of (3.1) plus 𝑅. We bound 𝑅 with two observations:

• If𝑊 ≥ �̂�, then at time �̂� when the tagged job arrives, the server is still working on jobs with

priority over the tagged job, either from𝑊 or from new arrivals. This means 𝑅 > 0 only if

𝑊 < �̂�.

• If 𝑅 > 0, then a job with boosted arrival time after 0 is in service at time �̂�. The job’s true

arrival time is therefore in (0, �̂�), so 𝑅 ≤ 𝑉 (�̂�) ≤ 𝑉 (𝑢) (Definition 3.2).

Combining these observations implies

𝑅 ≤ 𝑉 (𝑢) 1(𝑊 < �̂�).
Adding this to the fully preemptive bound in (3.1) yields

𝑇Boost + �̂� ≤𝑊 +𝑉 (∞) + 𝑆 + (�̂� −𝑊 )+ +𝑉 (𝑢) 1(𝑊 < �̂�),
which rearranges to the desired bound.

Lower bound on 𝑇Cheat. Recall throughout that𝑊 refers to the amount of work in the standard

M/G/1 at time 0, whose busy periods affect the release times in the cheating M/G/1 (Section 2.4). We

will show that the tagged job cannot begin service before at least time𝑊 +𝑉 (𝑊 ), which implies

the desired bound. To do this, we first analyze the busy period related to𝑊 , the work present at

time 0 in the system. This work belongs to a busy period, which we call BP, that started at time

−𝐴 < 0. Let𝑈 be the amount of work from jobs with arrival time in [−𝐴, 0). Then we have

𝑈 −𝐴 =𝑊 .

Therefore, the server will be busy during [−𝐴,−𝐴 +𝑈 ] = [−𝐴,𝑊 ]. As such, at least 𝑉 (𝑊 ) work
from new arrivals will arrive during [0,𝑊 ]. This means there is at least𝑈 +𝑉 (𝑊 ) total work in

the busy period with boosted arrival time at most 0.

There are now two cases to consider for the tagged job. First, suppose the system is busy for

all of [0, 𝐵]. Then the tagged job belongs to the same busy period BP as described above. In this

period we know that there is at least 𝑈 +𝑉 (𝑊 ) total work with priority over the tagged job, so it

cannot begin service prior to

−𝐴 +𝑈 +𝑉 (𝑊 ) =𝑊 +𝑉 (𝑊 ).
Second, suppose that the system becomes idle at some time in [0, 𝐵]. This means that the tagged

job belongs to a busy period after BP. Therefore the tagged job’s release time, which is the earliest

it can enter service, must be after the end of BP. But we know that BP ends at the earliest at

−𝐴 +𝑈 +𝑉 (𝑊 ) =𝑊 +𝑉 (𝑊 ), so the tagged job’s release time must be at least𝑊 +𝑉 (𝑊 ).

Upper bound on 𝑇Cheat. First, as in the 𝑇Boost upper bound, we reduce the tagged job’s boost to

�̂� = min{𝐵,𝑢}. We then imagine a variant of Cheat that treats the tagged job especially poorly,

forcing it to begin service at no earlier than its arrival time �̂�. This clearly only increases the tagged

job’s response time. From here, the reasoning from the fully preemptive 𝑇Boost upper bound also

applies to 𝑇Cheat. □
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Remark 3.4. The proof of Lemma 3.3 above works regardless of whether we are considering a

preemptive, nonpreemptive, or intermediate version of Boost. As such, our results apply regardless

of the precise preemption rule used.

Lemma 3.3 allows us to bound both 𝑇Boost and 𝑇Cheat with quantities that only depend on the

standard M/G/1. It then suffices to show that the lim inf and lim sup of the lower and upper bounds,

respectively, converge to the same number, namely the expression given in Theorem 3.1. To do so,

we require that the crossing work terms in our bounds have finite moment generating function.

This holds under our assumption (2.4), which says, roughly speaking, that the boost isn’t too large

for too many labels.

Lemma 3.5. If (2.4) holds, then for all 𝑢 ∈ R+ ∪ {∞},
E[exp(𝜃𝑉 (𝑢))] = exp

(
𝜆E

[
(exp(𝜃𝑆 ′) − 1) min{𝐵′, 𝑢}

] )
< ∞.

Proof. We can consider each new arrival to be a triple (𝑏′, 𝑠′, 𝑡) representing its boost 𝑏′, size 𝑠′,
and arrival time 𝑡 . Let 𝑋 be the random set of triples corresponding to arrivals after time 0. We can

write the crossing work 𝑉 (𝑢) as

𝑉 (𝑢) =
∑︁

(𝑏′,𝑠′,𝑡 ) ∈𝑋
𝑠′1(𝑡 ≤ min{𝑏′, 𝑢}) .

To compute E[exp(𝜃𝑉 (𝑢))], we use Campbell’s theorem [25, Section 3.2] for the Laplace functional

of a Poisson point process. In our case, the point process is 𝑋 , and its intensity measure is

𝜇 (B × S × d𝑡) = P[𝐵′ ∈ B, 𝑆 ′ ∈ S] 𝜆 d𝑡 .

Campbell’s theorem and a brief computation involving Tonnelli’s theorem then imply
9

E[exp(𝜃𝑉 (𝑢))] = exp

(∫ (
exp

(
𝜃𝑠′1(𝑡 ≤ min{𝑏′, 𝑢})

)
− 1

)
𝜇 (d(𝑏, 𝑠, 𝑡))

)
= exp

(∫
(exp(𝜃𝑠′) − 1) 1(𝑡 ≤ min{𝑏′, 𝑢}) 𝜇 (d(𝑏, 𝑠, 𝑡))

)
= exp

(
E
[∫ ∞

0

(exp(𝜃𝑆 ′) − 1) 1(𝑡 ≤ min{𝐵′, 𝑢}) 𝜆 d𝑡

] )
= exp

(
𝜆E

[
(exp(𝜃𝑆 ′) − 1) min{𝐵′, 𝑢}

] )
. □

3.3 Tail Constant of Boost
Proof of Theorem 3.1. Let 𝜋 be one of Boost or Cheat, and let the claimed tail constant be

𝐶 = 𝐶𝑊 E
[
exp(𝛾 (𝑆 − 𝐵))

]
exp

(
𝜆E[𝐵(exp(𝛾𝑆) − 1)]

)
= 𝐶𝑊 E

[
exp(𝛾 (𝑆 − 𝐵))

]
E[𝛾𝑉 (∞)],

where Lemma 3.5 implies the second equality. We will show 𝐶𝜋 = 𝐶 . By Lemma 3.3, for all 𝑢 ≥ 0,

E[exp(𝜃𝑇𝜋 )] ≥ E
[
exp

(
𝜃
(
𝑊 − 𝐵 +𝑉 (𝑊 ) + 𝑆

) ) ]
,

E[exp(𝜃𝑇𝜋 )] ≤ E
[
exp

(
𝜃
(
(𝑊 − min{𝐵,𝑢})+ +𝑉 (∞) + 𝑆 + 1(𝑊 < min{𝐵,𝑢})𝑉 (𝑢)

) ) ]
.

Equation (2.3) thus implies

𝛾𝐶𝜋 ≥ lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑊 − 𝐵 +𝑉 (𝑊 ) + 𝑆

) ) ]
,

𝛾𝐶𝜋 ≤ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
(𝑊 − min{𝐵,𝑢})+ +𝑉 (∞) + 𝑆 + 1(𝑊 < min{𝐵,𝑢})𝑉 (𝑢)

) ) ]
.

9
The precondition of Campbell’s theorem [25, Section 3.2] is satisfied when the right-hand-side expression is finite, as

exp(𝜃𝑠′1(𝑡 ≤ min𝑏′,𝑢 ) ) − 1 ≥ 𝜃𝑠′1(𝑡 ≤ min(𝑏′,𝑢 ) ) .
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It thus suffices to show that the lower bound is at least 𝛾𝐶 , and that the infimum over 𝑢 of the

upper bound is at most 𝛾𝐶 .

We first analyze the lower bound 𝛾𝐶𝜋 . For all𝑤 ≥ 0, we have

lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑊 − 𝐵 +𝑉 (𝑊 ) + 𝑆

) ) ]
≥ lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃 (𝑊 − 𝐵 +𝑉 (𝑊 ) + 𝑆))1(𝑊 > 𝑤)]

≥ lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃 (𝑊 − 𝐵 +𝑉 (𝑤) + 𝑆))1(𝑊 > 𝑤)]

= lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑊 )1(𝑊 > 𝑤)] E[exp(𝜃 (𝑆 − 𝐵))] E[exp𝜃𝑉 (𝑤)]

= 𝛾𝐶𝑊 E[exp(𝛾 (𝑆 − 𝐵))] E[exp𝛾𝑉 (𝑤)],

where the last step follows from (2.1). Since this holds for all𝑤 , it also holds in the𝑤 → ∞ limit.

The monotone convergence theorem implies the limit is 𝛾𝐶 , as desired.

We now turn to the upper bound on 𝛾𝐶𝜋 . We have

lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
(𝑊 − min{𝐵,𝑢})+ +𝑉 (∞) + 𝑆 +𝑉 (𝑢) 1(𝑊 < min{𝐵,𝑢})

) ) ]
= lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑊 − min{𝐵,𝑢} +𝑉 (∞) + 𝑆

) )
1(𝑊 ≥ min{𝐵,𝑢})

]
+ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑉 (∞) + 𝑆 +𝑉 (𝑢)

) )
1(𝑊 < min{𝐵,𝑢})

]
≤ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑊 − min{𝐵,𝑢} +𝑉 (∞) + 𝑆

) ) ]
(3.2)

+ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑉 (∞) + 𝑆 +𝑉 (𝑢)

) ) ]
. (3.3)

We now compute the limits in (3.2) and (3.3). We first show the limit in (3.3) vanishes, then we

show the limit in (3.2) has the desired value.

Let 𝐴(𝑢) = 𝑉 (𝑢) +𝑉 (𝑢) ≥ 𝑉 (𝑢) be the total amount of work that arrives during (0, 𝑢). The limit

in (3.3) is bounded by

lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E

[
exp

(
𝜃
(
𝑉 (∞) + 𝑆 +𝑉 (𝑢)

) ) ]
= lim sup

𝜃→𝛾
E[exp(𝜃𝑉 (∞))] E[exp(𝜃𝑆)] E[exp(𝜃𝑉 (𝑢))]

≤ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑉 (∞))] E[exp(𝜃𝑆)] E[exp(𝜃𝐴(𝑢))]

≤ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝛾𝑉 (∞))] E[exp(𝛾𝑆)] E[exp(𝛾𝐴(𝑢))]

= 0,

where the second line holds by independence of 𝑉 (·), 𝑉 (·), and 𝑆 ; and the second-to-last line is

possible because all three of the factors are finite.

• E[exp(𝛾𝑆)] is finite by the definition of 𝛾 .

• E[exp(𝛾𝑉 (∞))] is finite by (2.4) and Lemma 3.5.

• E[exp(𝛾𝐴(𝑢))] = exp(𝜆𝑢 (E[exp(𝛾𝑆)] − 1)) = exp(𝛾𝑢), by a standard M/G/1 result [22] and

the definition of 𝛾 .
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Because the limit in (3.3) vanishes, 𝛾𝐶𝜋 is at most the limit in (3.2), so

𝛾𝐶𝜋 ≤ lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃 (𝑊 − min{𝐵,𝑢} +𝑉 (∞) + 𝑆))]

= lim sup

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑊 )] E[exp(𝜃 (𝑆 − min{𝐵,𝑢}))] E[exp(𝜃𝑉 (∞))]

= 𝛾𝐶𝑊 E[exp(𝛾 (𝑆 − min{𝐵,𝑢}))] E[exp(𝛾𝑉 (∞))],
where the last step follows from (2.1). Because this holds for any 𝑢, it holds in the 𝑢 → ∞ limit.

The monotone convergence theorem implies the limit is 𝛾𝐶 , as desired. □

4 A BATCH SCHEDULING PROBLEM RELATED TO TAIL OPTIMALITY
In this section we show that 𝜃 -Cheat minimizes E[exp(𝜃𝑇𝜋 )] in the full-information case. The key

idea is that in this case, we can treat each busy period as a finite batch of jobs on which to minimize

a cost function which corresponds to E[exp(𝜃𝑇𝜋 )]. We start by defining what a batch is and what

the cost function is.

Definition 4.1. A batch instance I = {(𝑎1, 𝑠1), . . . , (𝑎𝑛, 𝑠𝑛)} is a finite batch of pairs of arrival

times and job sizes.

Definition 4.2. The 𝜃-cost of policy 𝜋 on batch instance I = {(𝑎1, 𝑠1), . . . , (𝑎𝑛, 𝑠𝑛)} is

𝐾𝜋 (𝜃,I) =
𝑛∑︁
𝑖=1

E[exp(𝜃𝑇𝜋,𝑖 )] =
𝑛∑︁
𝑖=1

E[exp(𝜃 (𝐷𝜋,𝑖 − 𝑎𝑖 ))],

where 𝐷𝜋,𝑖 is the departure time of job 𝑖 under policy 𝜋 . The expectation is over any randomness

in the policy.

We now show that 𝜃 -Cheat minimizes 𝜃 -cost across any finite batch of jobs, across all preemptive

policies, and that this in turn minimizes E[exp(𝜃𝑇𝜋 )].

Theorem 4.3. In the full-information setting, the 𝜃 -Cheat policy minimizes 𝜃-cost. Specifically, for
any batch instance I,

𝐾𝜃 -Cheat (𝜃,I) = min

𝜋
𝐾𝜋 (𝜃,I), (4.1)

and therefore
E[exp(𝜃𝑇𝜃 -Cheat)] ≤ inf

𝜋
E[exp(𝜃𝑇𝜋 )] . (4.2)

Proof. We first show (4.1), namely that 𝜃 -Cheat minimizes 𝜃 -cost for any batch instance I.
This can be seen by observing that 𝜃 -Cheat serves jobs in I in the same order as the Weighted

Discounted Shortest Processing Time policy (WDSPT), which is known to minimize 𝜃 -cost for any

batch instance I. This is because boosted arrival time 𝑎𝑖 − 𝑏𝜃 (𝑠𝑖 ) is a monotonic function, namely

1/𝜃 times the negative log, of WDSPT’s priority index:

𝑎𝑖 − 𝑏𝜃 (𝑠𝑖 ) = − 1

𝜃
log

(
exp(−𝜃𝑎𝑖 )

exp(𝜃𝑠𝑖 )
exp(𝜃𝑠𝑖 ) − 1

)
.

The proof is an interchange argument identical to that of Pinedo [33, Theorem 3.1.6], with the

signs for the discount rate and objective flipped. Specifically, with negative discounting, we define

discounted completion time as exp(𝜃𝐷𝑖 ) − 1 instead of 1 − exp(𝜃𝐷𝑖 ) to keep the sign positive.

Having shown (4.1), we now turn to (4.2). The key idea is to consider busy periods as batch

instances. Specifically, by renewal-reward theorem [8, Theorem 10.2.15],

E[exp(𝜃𝑇𝜋 )] =
E[𝐾𝜋 (𝜃,B)]

E[|B|] ,
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where B is a random batch instance corresponding to an M/G/1 busy period, and |B| is the number

of jobs in the instance. The intuition is that the average 𝜃 -cost per job is the expected total 𝜃 -cost

of all jobs in a busy period, namely E[𝐾𝜋 (𝜃,B)], divided by the expected number of jobs in a busy

period, namely E[|B|]. But E[|B|] = 1

1−𝜌 is the same under all scheduling policies, so

E[exp(𝜃𝑇𝜃 -Cheat)] =
E[𝐾𝜃 -Cheat (𝜃,B)]

E[|B|]

=
E[min𝜋 𝐾𝜋 (𝜃,B)]

E[|B|]

≤ inf

𝜋

E[𝐾𝜋 (𝜃,B)]
E[|B|]

= inf

𝜋
E[exp(𝜃𝑇𝜋 )] . □

Remark 4.4. While Theorem 4.3 treats only the full-information setting, an analogue of (4.1) holds

in the partial-information setting. The optimality is relative not to all policies, but nonpreemptive
policies that have access to only labels and arrival times. However, (4.1) no longer implies (4.2) in

the partial-information setting. See Appendix B for details.

5 PROOF OF BOOST’S STRONG TAIL OPTIMALITY
In this section, we prove strong tail optimality of 𝛾-Boost in the full-information setting. We do so

by computing an explicit lower bound on the optimal tail constant, namely 𝐶∗
from Theorem 5.1

below, and showing that𝐶𝛾 -Boost = 𝐶
∗
. The fact that𝐶∗

is a lower bound on the optimal tail constant

in the full-information case follows from Theorem 4.3.

Theorem 5.1. Consider an M/G/1 with class I job size distribution with a fixed label-size pair
distribution (𝐿, 𝑆), and let

𝐶∗ = lim inf

𝜃→𝛾

𝛾 − 𝜃
𝛾

E[exp(𝜃𝑇𝜃 -Cheat)] .

(a) The tail constant of 𝛾-Boost is

𝐶𝛾 -Boost = 𝐶
∗ = 𝐶𝑊 E[exp(𝛾𝑆) − 1] exp

(
𝜆E[𝑏𝛾 (𝐿) (exp(𝛾𝑆) − 1)]

)
. (5.1)

(b) In the full-information setting, namely when 𝐿 = 𝑆, 𝛾-Boost is strongly tail-optimal.

Remark 5.2. While the strong tail optimality result is only for the full-information setting, the

definition of 𝐶∗
and the fact that 𝐶𝛾 -Boost = 𝐶

∗
extend to the partial-information setting. Of course,

the details of what the labels are affects the value of 𝐶∗
, with the minimum occurring for the

full-information setting.

However, based on Remark 4.4, we conjecture that in the partial-information setting, 𝐶∗
is (a

lower bound on) the optimal tail constant achievable with nonpreemptive policies that have access
to only labels and arrival times. Theorem 5.1 would then imply that 𝛾-Boost achieves this optimal

tail constant. As evidence for this conjecture, we show in Appendix C that 𝛾-Boost outperforms all

other versions of Boost, and we show in Appendix D that 𝛾-Boost outperforms Nudge-M.

Before proving Theorem 5.1, we introduce some notation for working with the 𝜃 -optimal boost

function, analogous to the notation used in Section 3:

• Recall that 𝑏𝜃 is the boost function given in (1.2).

• We write 𝐵𝜃 = 𝑏𝜃 (𝐿) to mean the boost of the tagged job using boost function 𝑏𝜃 .

– Similarly 𝐵′
𝜃
= 𝑏𝜃 (𝐿′) is the boost of a generic future arrival.

• We write 𝑉𝜃 (𝑢) to refer to the crossing work using boost function 𝑏𝜃 .
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Recall that for the constant to be well-defined, we require the crossing work 𝑉 (∞) to have finite

moment generating function. By Lemma 3.5, this amounts to showing (2.4). We therefore first show

that (2.4) holds for the 𝛾-optimal boost function 𝑏𝛾 .

Lemma 5.3. For all 𝜃 > 0, for all labels 𝑙 ∈ L,

E[𝐵′
𝜃
(exp(𝜃𝑆 ′) − 1)] < 1

𝜃
.

In particular, taking 𝜃 = 𝛾 implies the 𝛾-optimal boost function satisfies (2.4).

Proof. Plugging in 𝐵′
𝜃
= 𝑏𝜃 (𝐿′) (Definition 2.3) and rearranging, it suffices to show that with

probability 1, (
E[exp(𝜃𝑆 ′) | 𝐿′] − 1

)
log

E[exp(𝜃𝑆 ′) | 𝐿′]
E[exp(𝜃𝑆 ′) | 𝐿′] − 1

< 1. (5.2)

Letting 𝑥 = E[exp(𝜃𝑆 ′) | 𝐿′] − 1, this holds because 𝑥 log(1 + 1/𝑥) ≤ 1 for all 𝑥 > 0. □

Given Lemma 5.3, we can now employ Theorem 3.1 and Lemma 3.3. The last ingredient we need

to prove Theorem 5.1 is to understand how the 𝜃 -optimal boost function compares to the 𝛾-optimal

boost function. We observe below that as a function of 𝜃 , the 𝜃 -optimal boost is actually monotonic,

with larger 𝜃 yielding smaller boosts.

Lemma 5.4. For all labels 𝑙 ∈ L, both 𝑏𝜃 (𝑙) and 𝜃𝑏𝜃 (𝑙) are decreasing as functions of 𝜃 > 0.

Proof. It suffices to prove that 𝜃𝑏𝜃 (𝑙) is decreasing, which follows from writing it as

𝜃𝑏𝜃 (𝑙) = − log

(
1 − 1

E[exp(𝜃𝑆) | 𝐿 = 𝑙]

)
. □

Proof of Theorem 5.1. We first note that the expression on the right-hand side of (5.1) follows

from Theorem 3.1 and plugging in Definition 2.3 with 𝜃 = 𝛾 . Specifically, the second factor from

Theorem 3.1 simplifies to

E[exp(𝛾 (𝑆 − 𝐵𝛾 ))] = E[E[exp(𝛾𝑆) | 𝐿] exp(−𝛾𝑏𝛾 (𝐿))]

= E
[
E[exp(𝛾𝑆) | 𝐿] · E[exp(𝛾𝑆) | 𝐿] − 1

E[exp(𝛾𝑆) | 𝐿]

]
= E[exp(𝛾𝑆)] − 1.

Also, note that in the full-information setting,𝐶∗ ≤ 𝐶𝜋 for all policies 𝜋 , so strong tail optimality is

implied by 𝐶𝛾 -Boost = 𝐶
∗
.

It thus remains only to compute 𝐶∗
to confirm that 𝐶𝛾 -Boost = 𝐶

∗
. To do so, we consider a system

using the 𝜃 -Cheat policy, bound E[exp(𝜃𝑇𝜃 -Cheat)], then compute the 𝜃 → 𝛾 limit. We use the

analysis from Section 3.1 with boost function 𝑏𝜃 (Definition 2.3).

From Lemma 3.3, we have𝑇𝜃 -Cheat ≥𝑊 −𝐵𝜃 +𝑉𝜃 (𝑊 ) + 𝑆 . We can lower bound this further using

Lemma 5.4: if we were to change other jobs’ boosts from 𝐵′
𝜃
to 𝐵′𝛾 , it would only improve the tagged

job’s response time. This means 𝑉𝜃 (𝑤) ≥ 𝑉𝛾 (𝑤) for all𝑤 ≥ 0, so

𝑇𝜃 -Cheat ≥𝑊 − 𝐵𝜃 +𝑉𝛾 (𝑊 ) + 𝑆.
Therefore, for all𝑤 ≥ 0,

E[exp(𝜃𝑇𝜃 -Cheat)] ≥ E
[
exp

(
𝜃
(
𝑊 − 𝐵𝜃 +𝑉𝛾 (𝑊 ) + 𝑆

) ) ]
≥ E

[
exp

(
𝜃 (𝑊 − 𝐵𝜃 +𝑉𝛾 (𝑊 ) + 𝑆)

)
1(𝑊 > 𝑤)

]
≥ E

[
exp

(
𝜃 (𝑊 − 𝐵𝜃 +𝑉𝛾 (𝑤) + 𝑆)

)
1(𝑊 > 𝑤)

]
= E[exp(𝜃𝑊 ) 1(𝑊 > 𝑤)] E[exp(𝜃 (𝑆 − 𝐵𝜃 ))] E[exp(𝜃𝑉𝛾 (𝑤))] .
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Taking the 𝜃 → 𝛾 limit and applying the monotone convergence theorem, which applies thanks to

the monotonicity of 𝜃𝐵𝜃 (Lemma 5.4), yields

lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑇𝜃 -Cheat)]

≥ lim inf

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑊 )1(𝑊 > 𝑤)] E[exp(𝜃 (𝑆 − 𝐵𝜃 ))] E[exp(𝜃𝑉𝛾 (𝑤))]

=

(
lim

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑊 )1(𝑊 > 𝑤)]

) (
lim

𝜃→𝛾
E[exp(𝜃 (𝑆 − 𝐵𝜃 ))]

) (
lim

𝜃→𝛾
E[exp(𝜃𝑉𝛾 (𝑤))]

)
= 𝛾𝐶𝑊 E[exp(𝛾 (𝑆 − 𝐵𝛾 ))]E[exp(𝛾𝑉𝛾 (𝑤))], (5.3)

where the second line follows from (2.1) and the fact that

lim

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑊 ) 1(𝑊 ≤ 𝑤)] ≤ lim

𝜃→𝛾
(𝛾 − 𝜃 ) exp(𝛾𝑤) = 0.

Finally, as in the proof of Theorem 3.1, we observe that because (5.3) holds for all𝑤 , it holds in the

𝑤 → ∞ limit, yielding

𝐶∗ ≥ 𝐶𝑊 E
[
exp

(
𝛾
(
𝑆 − 𝐵𝛾

) ) ]
E
[
exp

(
𝛾𝑉𝛾 (∞)

) ]
.

The right-hand side is exactly the tail constant 𝐶𝛾 -Boost from Theorem 3.1, so 𝐶∗ ≥ 𝐶𝛾 -Boost.
It remains only to show 𝐶∗ ≤ 𝐶𝛾 -Boost. In the full-information setting, this is immediate from

Theorem 4.3, which implies𝐶∗ ≤ 𝐶𝜋 for all policies 𝜋 . In the partial-information setting, Theorem 4.3

does not apply, but by following essentially the same steps as the upper bound in Theorem 3.1, we

obtain

𝛾𝐶∗ ≤
(

lim

𝜃→𝛾
(𝛾 − 𝜃 )E[exp(𝜃𝑊 )]

) (
lim

𝜃→𝛾
E[exp(𝜃 (𝑆 − min{𝐵𝜃 , 𝑢}))]

) (
lim

𝜃→𝛾
E[exp(𝜃𝑉𝜃 (∞))]

)
= 𝛾𝐶𝑊 E[exp(𝛾 (𝑆 − min{𝐵𝛾 , 𝑢}))] E[exp(𝛾𝑉𝛾 (∞))] .

This becomes 𝛾𝐶𝛾 -Boost in the 𝑢 → ∞ limit, as desired. The main difference from Theorem 3.1 is

that the second and third limits above involve a boost function that varies with 𝜃 . We compute the

second limit with Lemma 5.4 and the monotone convergence theorem, and we compute the third

limit with Lemma 3.5 and the bounded convergence theorem, which applies thanks to (5.2). □

6 SIMULATIONS
We have shown that 𝛾-Boost achieves strong tail optimality, which is an asymptotic property.

However, there remain unanswered questions about 𝛾-Boost that are important to practitioners.

In this section, we explore the questions below via simulations. We focus by default on the full-

information setting, but we address some partial-information settings in the last two questions.

• (Section 6.1) How well does 𝛾-Boost perform in practical regimes? Does it do as well as one

would predict from its tail constant 𝐶𝛾 -Boost?

• (Section 6.2) How does 𝛾-Boost compare to Nudge and SRPT?

• (Section 6.3) In what settings does 𝛾-Boost offer the largest benefit? What role does the

variance of the job size distribution play?

• (Section 6.4) Is 𝛾-Boost robust to misspecification, such as being given the wrong value of 𝛾

or noisily estimated job sizes?

• (Section 6.5) How well does 𝛾-Boost perform in the partial-information setting, where we

have much coarser information about jobs’ sizes?
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Fig. 6.1. Empirical TIR of 𝛾-Boost over FCFS for several job size distributions 𝑆 , each with mean E[𝑆] = 1, at
loads 𝜌 = 0.5, 0.95. See Fig. 1.2(a) for 𝜌 = 0.8. We use the same distributions as Grosof et al. [21, Fig. 2], which
are: Uniform(0,2), Exponential, Hyperexponential with branches drawn from Exp(2) and Exp(1/3) and first
branch probability 0.8, and BoundedLomax with shape parameter 𝛼 = 2 and upper bound 4. The asymptotic
TIR is computed with Theorem 3.1 and plotted as a same color dotted line for each distribution. Simulations
run with 50 million arrivals.

6.1 Boost in the full-information setting
In Fig. 6.1, we evaluate the performance of the optimal boost policy on common distributions by

looking at the empirical Tail Improvement Ratio (TIR) with respect to FCFS, that is, by looking

at TIR(𝑡) = 1 − P[𝑇𝛾 -Boost > 𝑡]/P[𝑇FCFS > 𝑡]. Boost’s performance improves upon FCFS’s across a

variety of job size distributions and loads. In all tested distributions, 𝛾-Boost achieves asymptotic

performance equivalent to the TIR that our theory suggests. Moreover, these improvements can

be significant: 𝛾-Boost improves the tail constant in the Exponential case by roughly 30%, and

improvements exceed 50% for the Hyperexponential distribution case. Another observation of note

is that across all loads and distributions, not only does 𝛾-Boost achieve the asymptotic performance

suggested by theory, it also improves stochastically over FCFS, meaning TIR(𝑡) > 0 for all 𝑡 > 0,

not just the 𝑡 → ∞ limit. Moreover, in many cases the “pre-asymptotic” improvement actually

exceeds the asymptotic TIR.

6.2 Boost compared to other policies
We evaluate the performance of boost policies against other policies, namely against Nudge, which

is known to have better stochastic performance than FCFS, and SRPT, which is tail-pessimal for

Class I distributions. In Figs. 1.2(b) and 6.2, we compare the TIR for all three policies. Following

best practices from Grosof et al. [21, Fig. 2, Section 9], we set the small-large threshold for Nudge

to be at E[𝑆], with no medium or extra-large split, and examine performance under a variety of

common job size distributions. We find that 𝛾-Boost has larger asymptotic TIR than Nudge and

SRPT across all tested job size distributions. Moreover, 𝛾-Boost is stochastically better than Nudge

across the distributions tested.

6.3 Variation matters: how CoV affects asymptotic performance
What is important when scheduling for the tail in distributions? If job size distributions are highly

variable, tail-pessimal policies for class I distributions that are optimal for heavy-tailed distributions

may still perform well for all but the highest tail percentiles. In particular, SRPT demonstrates strong

performance for all but the highest tail percentiles. Therefore, while 𝛾-Boost is asymptotically
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Fig. 6.2. Comparison of empirical TIR of 𝛾-Boost against FCFS and Nudge, for two job size distributions, each
with mean 1, and with the same settings as in Grosof et al. [21, Fig. 2]. The left is Hyperexponential with
branches drawn from Exp(2) and Exp(1/3), with first branch probability 0.8 and the right is Uniform(0,2). See
Fig. 1.2(b) for exponential. In each plot, the dotted horizontal line represents 𝛾-Boost’s asymptotic TIR for
the respective distribution. For Hyperexponential, we set 𝐾 to the optimal value of 8 for Nudge-K/M, with
type-1 and type-2 jobs set to jobs coming from the Exp(2) and Exp(1/3) branches respectively. (Nudge-K does
perform slightly better than Nudge in this case, though this is barely visible on the plot.) For Uniform, we use
the same small-large split as Nudge, where type-1 jobs are small (smaller than the mean of the distribution)
and type-2 jobs are large, and set 𝐾 to the optimal value of 3 for Nudge-K/M. Simulations run with 50 million
arrivals.
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Fig. 6.3. A comparison of 𝛾-Boost and SRPT at high CoV. In both plots, the distributions considered are
Hyperexponential, mean 1 distributions. For CoV

2 = 8.5, we choose parameters Exp(4), Exp(1/6), and a
first-branch probability of 𝑝 = 20/23. For CoV

2 = 20.25 we choose parameters Exp(8), Exp(1/12), and a
first-branch probability of 𝑝 = 88/95. Load is 𝜌 = 0.8. Dashed vertical lines mark the 𝑡0.99 response times
of the two policies, and dash-dotted vertical lines mark the 𝑡0.999 response time. The dotted horizontal line
represents the theoretical asymptotic TIR for 𝛾-Boost. Observe how SRPT has lower 𝑡0.99 response time but
higher 𝑡0.999 response time than 𝛾-Boost. Simulations run with 50 million arrivals.

optimal, a practitioner’s choice of policy depends on how sensitive they are to tail response times

and the properties of the job size distribution they face. In particular, one may care about tail

percentiles that are “pre-asymptotic”. In Fig. 6.3, we show how this “pre-asymptotic” performance

can depend on the variability of the job size distribution. The main takeaway is that for job size
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(a) Sensitivity to misspecified 𝛾 .
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(b) Sensitivity to noisy size estimates.

Fig. 6.4. Performance of 𝛾-Boost with different types of noise. Job size distribution is Exponential with
mean 1, with 𝜌 = 0.8. (a) We plot the performance with misspecified 𝛾 . The theoretical asymptotic TIR is
shown as a dotted horizontal line. We consider a range of [𝛾/2, 2𝛾], where the optimal 𝛾 = 0.2. Observe that
underestimating 𝛾 leads to significantly worse TIR compared to overestimating 𝛾 . (b) We plot the performance
with noisy job size estimates. The noise is multiplicative and drawn i.i.d. for each job from a LogNormal
distribution with mean 0 and some standard deviation. We consider noise levels (i.e. standard deviations)
ranging from 0 to 0.5. While performance is degraded from the theoretically optimal TIR as more noise is
added, at 0.5, the TIR is still above 20%. In both (a) and (b), simulations run with 50 million arrivals.

distributions with high variability, SRPT has great performance unless one cares about extremely

high threshold (e.g. 𝑡0.999) response times.

6.4 Robustness of Boost
𝛾-Boost sets a job’s boost using its arrival time, size, and the decay rate parameter 𝛾 for the job size

distribution. In practice, one might only have access to noisy estimates of the job size distribution

and of the job sizes.

If one does not know the exact job size distribution, then the parameter 𝛾 may be misspecified.

In this case, our takeaways suggest that one can conservatively set the decay rate parameter 𝛾

higher than estimated to maintain good performance. For clarity, we denote the optimal policy as

𝛾-Boost, and assume that we set the parameter 𝛾 based on our noisy information. We can see in

Fig. 6.4(a) that using a conservative overestimate of the parameter, namely setting 𝛾 > 𝛾 , has good

performance. While 𝛾 < 𝛾 can still have good performance near 𝛾 , setting too low of a parameter

leads to a faster decay in performance than setting too high of a parameter.

If one only has noisy estimates of the job sizes, using these estimates directly provides still good

performance. In Fig. 6.4(b) we examine the sensitivity of 𝛾-Boost to noise in the labels. Using the

noisy size as input to the boost policy maintains good performance, with TIR above 20%.

6.5 Boost in the partial-information setting
In this section, we consider the case when job sizes are unknown, and one may only have coarse

information, such as the class, of incoming jobs or rough thresholds on job sizes. We find that, as

with the full-information setting, 𝛾-Boost demonstrates good practical performance, attaining the

asymptotic TIR suggested by theory.

In Fig. 6.5 we evaluate the performance of the optimal boost policy in one such limited-information

setting. We consider the case where jobs can be type-1 or type-2, where each type has a different
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Fig. 6.5. Comparison of 𝛾-Boost’s performance to Nudge-K’s and Nudge-M’s performance in the two-class
partial-information setting. The mean of the job size distribution is 1, and, following the settings in Van Houdt
[45, Fig. 1], we set the load to be 𝜌 = 0.75 and consider the case where both type-1 and type-2 jobs come
from Exponential distributions and the probability of drawing from either branch is 1/2. On the left, we
consider the case where the ratio of the means type-2/type-1 is 2; on the right it is 5. The more separable the
means are, the better the performance of 𝛾-Boost becomes. In both cases, the asymptotic TIR of the optimal
boost, represented by the dotted line, is better than that of both Nudge-K and Nudge-M. In both cases we
set the optimal value of 𝐾 for the Nudge policies (𝐾 = 3 in the first setting and 𝐾 = 5 in the second setting).
Simulations run with 50 million arrivals.

distribution, and consider Nudge-K and Nudge-M for 𝐾 in the setup from Van Houdt [45, Fig. 1].

We also extend this to the case where the distributions of the two job types are further separated.

We find that performance increases the more distinguishable the distributions of the two job types

are. We also find that under these settings, 𝛾-Boost has better performance than both Nudge-K and

Nudge-M.

7 CONCLUSION
In this work, we introduce the Boost family of scheduling policies, which provide a simple new

approach to balancing the tradeoff between prioritizing short jobs and prioritizing jobs that have

been waiting a long time. We prove that a policy in this new family, called 𝛾-Boost, is a strongly
tail-optimal scheduling policy for the M/G/1 with light-tailed job size distributions, resolving a

long-standing open problem in queueing theory. Our simulations show that in addition to achieving

a theoretical milestone, 𝛾-Boost has excellent practical performance.

Our results on Boost reveal many promising future directions, some of which we outline below.

7.1 Settings beyond the full-information M/G/1
The most direct question prompted by our results is: what policy is strongly tail-optimal in the

partial-information setting? We believe that 𝛾-Boost is the desired policy if one further restricts

attention to nonpreemptive policies. But if one allows preemption, it is less clear what to do. For

minimizing mean response time in the M/G/1, it is known that the Gittins policy [16] is optimal

for a wide variety of preemptive partial-information settings [35, 37]. Moreover, versions of the

Gittins policy exist for the batch relaxation [33] with discounting. Perhaps a version of Boost based

on the Gittins policy is needed for the preemptive partial-information setting.

Boost is also a natural candidate for systems beyond the M/G/1. One important direction would

be multiserver systems. Recent results have shown that simple priority policies for optimizing
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mean response time in the M/G/1 generalize well to a wide variety of multiserver systems [17–

20, 24, 34, 35]. Can we leverage similar techniques to analyze Boost in the M/G/𝑘 or dispatching

settings? Similarly, one could ask about non-Poisson arrival processes. We suspect that 𝛾-Boost is

also strongly-tail optimal in models like the G/G/1 with light-tailed job sizes, as long as we still

have P[𝑇FCFS > 𝑡] ∼ 𝐶FCFS exp(−𝛾𝑡).

7.2 Metrics beyond the tail constant
One could reexamine the metric or metrics being optimized. We now know how to minimize mean

response time, namely using SRPT, and the tail constant, namely using 𝛾-Boost. Can we characterize

the Pareto frontier of achievable means and tail constants, and can we design policies to achieve

the entire frontier? Because the tail constant is a purely asymptotic notion, we conjecture that, at

least theoretically, it is possible to design a policy with mean response time arbitrarily close to

SRPT’s and tail constant arbitrarily close to 𝛾-Boost’s. But whether such a policy would have good

tail performance in practice remains to be seen.

Other important metrics arise in systemswithmultiple priority classes, where wewant to promise

better performance to better priority classes. Can we design policies to optimize a weighted tail

constant, meaning a convex combination of each class’s tail constant? It seems likely that reducing

to a weighted batch problem would yield a version of 𝛾-Boost that accounts for the weights.

But what if we also want to balance a tradeoff between the decay rates of the different classes’
response times? This seems like a more challenging problem, but we expect it to be important for

settings where the top priority classes must have very low response times. The results of Stolyar and

Ramanan [44] show how to balance decay rates optimally using what is essentially an accumulating

priority policy [11, 12, 43], albeit in a slightly weaker sense than our Definition 2.2. Combining

Boost with accumulating priority thus seems like a promising direction for further exploration.

7.3 Boost in practice
We are excited about the potential of deploying Boost in real-world computer systems, due to

its promising simulation performance and simplicity of implementation. The simplicity angle is

especially important in high-performance environments such as network switches. Boost fits into

the recently proposed Priority-In, First-Out (PIFO) scheduling abstraction [42]. One question is

whether Boost is amenable to being approximated using methods like SP-PIFO [3], which would

allow it to be deployed more easily on common network hardware.

Another question is how to determine 𝛾 in practice, given that the job size distribution may

be unknown, or may change over time. We suspect that the best way to obtain 𝛾 in practice is to

directly measure the empirical decay rate of the work distribution. This seems feasible to do in

many computer systems, and it seems simpler than trying to estimate the full job size distribution.

Our simulations show that Boost is robust to some misspecification of 𝛾 , so such an empirical

estimate would likely suffice.

Of course, computer systems are just one of many domains where one might consider deploying

Boost. Different domains have different prioritization needs, which could be met by different boost

functions. It is worth highlighting that Boost is weakly tail-optimal for any boost function satisfying

the relatively mild condition of (2.4). Even jobs that receive zero boost experience weakly optimal

response time tail. This means that for systems with light-tailed job sizes, Boost offers a flexible

framework for priority scheduling without sacrificing tail performance.
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A STRONG TAIL OPTIMALITY FOR HEAVY-TAILED JOB SIZE DISTRIBUTIONS
In this appendix, we show that many scheduling policies that are known to be weakly tail-optimal

in an M/G/1 with heavy-tailed job size distribution are, in fact, strongly tail-optimal. This confirms

conjectures by Boxma and Zwart [7] and Wierman and Zwart [46].

The specific class of heavy-tailed distributions we consider are regularly varying distributions

[5]. These are the distributions 𝑆 such that there exists a constant −𝛼 such that for all 𝑘 > 0,

lim

𝑡→∞
P[𝑆 > 𝑘𝑡]
P[𝑆 > 𝑡] = 𝑘−𝛼 . (A.1)

The constant −𝛼 is called the index of regular variation of 𝑆 . For the rest of this appendix, we

consider an M/G/1 with regularly varying job size distribution 𝑆 with index −𝛼 .
There are a number of results showing that under various scheduling policies 𝜋 ,

lim

𝑡→∞
P[𝑇𝜋 > 𝑡]

P[𝑆 > (1 − 𝜌)𝑡] = 1, (A.2)

where 𝜌 = 𝜆E[𝑆] is the system load. Policies 𝜋 which satisfy (A.2) include classic policies like

Processor Sharing, Shortest Remaining Processing Time, and Least Attained Service [7, 30, 31, 48];

as well as more complex policies like Shortest Expected Remaining Processing Time, Randomized

Multi-Level Feedback, and the Gittins policy [39, 40].

Motivated by (A.1) and (A.2), let

𝐶𝜋 = lim

𝑡→∞
P[𝑇𝜋 > 𝑡]

P[𝑆 > (1 − 𝜌)𝑡] .

Because a job’s response time is at least its size, by (A.1), we have𝐶𝜋 ≥ (1−𝜌)𝛼 for all policies. Any

policy 𝜋 satisfying (A.2) has 𝐶𝜋 = 1 and is thus weakly tail-optimal. The question is whether any

policy can achieve𝐶𝜋 < 1. Below, we use a result of Wierman and Zwart [46] to answer negatively.

Theorem A.1. Consider an M/G/1 whose job size distribution has regularly varying tail. Any
scheduling policy whose response time distribution satisfies (A.2) is strongly tail-optimal, and thus
inf𝜋 𝐶𝜋 = 1.

Proof. Fix a scheduling policy 𝜋 . The key is a result of Wierman and Zwart [46] which gives a

necessary condition to have 𝐶𝜋 < ∞. We show that the condition also implies 𝐶𝜋 ≥ 1, as desired.

We first state a version of the necessary condition. Consider a tagged job arriving at time 0, and

let 𝑅𝜋 (𝑡) be the total time during [0, 𝑡] for which 𝜋 serves jobs that arrive after the tagged job. If

𝐶𝜋 < ∞, then for all 𝛿 > 0 [46, Proposition 1],

lim

𝑡→∞
P
[
𝑅𝜋 (𝑡) > (𝜌 − 𝛿)𝑡

�� 𝑆 > (1 − 𝜌 + 𝛿)𝑡
]
= 1. (A.3)

Notice that 𝑅𝜋 (𝑡) > (𝜌 − 𝛿) and 𝑆 > (1− 𝜌 + 𝛿)𝑡 together imply 𝑅𝜋 (𝑡) + 𝑆 > 𝑡 . When this occurs,

the tagged job does not receive enough service to complete by time 𝑡 , so its response time satisfies
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𝑇𝜋 > 𝑡 . Therefore, for any 𝛿 > 0,

1 = lim

𝑡→∞
P
[
𝑅𝜋 (𝑡) > (𝜌 − 𝛿)𝑡

�� 𝑆 > (1 − 𝜌 + 𝛿)𝑡
]

≤ lim

𝑡→∞
P
[
𝑇𝜋 > 𝑡

�� 𝑆 > (1 − 𝜌 + 𝛿)𝑡
]

≤ lim

𝑡→∞
P[𝑇𝜋 > 𝑡]

P[𝑆 > (1 − 𝜌 + 𝛿)𝑡]

=

(
1 − 𝜌 + 𝛿

1 − 𝜌

)𝛼
lim

𝑡→∞
P[𝑇𝜋 > 𝑡]

P[𝑆 > (1 − 𝜌)𝑡] ,

where the last line follows from (A.1). Taking the 𝛿 → 0 limit then implies all policies have

𝐶𝜋 ≥ 1. The fact that inf𝜋 𝐶𝜋 = 1 follows from the fact that multiple policies 𝜋 achieve 𝐶𝜋 = 1

[7, 30, 31, 39, 40, 48] □

We further conjecture that the regularly varying requirement on 𝑆 can be relaxed to requiring 𝑆

be intermediate regularly varying, namely

lim sup

𝛿→0

lim sup

𝑡→∞

P[𝑆 > 𝑡]
P[𝑆 > (1 − 𝛿)𝑡] = 1.

This property suffices for the computation in our proof above, and it suffices for many of the prior

works showing 𝐶𝜋 = 1 for various policies 𝜋 [30, 39, 40]. The only step of the proof that requires

(non-intermediate) regular variation is (A.3), the result of Wierman and Zwart [46, Proposition 1].

If their result could be generalized to give the same necessary condition for 𝐶𝜋 < ∞ even when 𝑆

is intermediate regularly varying, it would imply inf𝜋 𝐶𝜋 = 1 in that setting, too.

B REDUCTION TO THE BATCH SCHEDULING PROBLEM FOR UNKNOWN SIZES
In this section, we extend the batch reduction to the case of unknown sizes with only size-label

information for jobs. Specifically, we expand the definitions from Section 4 and show how the

unknown-size case differs from the known size case.

Definition B.1. A batch instance I =
(
(𝑎1, 𝑙1), . . . , (𝑎𝑛, 𝑙𝑛)

)
is a finite batch of arrival times and

labels.

Unlike the batch instance in Section 4, which consists of fully deterministic arrival time, job size

pairs, we additionally need to define a job size model, which describes the distribution of job sizes

given instance information.

Definition B.2. A job sizemodel S is a function thatmaps batch instancesI =
(
(𝑎1, 𝑙1), . . . , (𝑎𝑛, 𝑙𝑛)

)
to a joint distribution (𝑆1, . . . , 𝑆𝑛) on job sizes.

We consider two job size models. The first model is Sind, which is the model where the joint dis-

tribution of job sizes for an instance I is simply the product of the conditional distributions (𝑆 | 𝑙𝑖 ).
That is, (

Sind (I)
)
𝑖
∼ (𝑆 | 𝑙𝑖 ),

(
Sind (I)

)
𝑖
independent of

(
Sind (I)

)
𝑗
if 𝑖 ≠ 𝑗 .

The second job size model is the busy period model Sbusy. Sbusy maps from batches to joint

distributions of job sizes in the following way. Let BP denote the busy period distribution, where

the triples (𝐴𝑖 , 𝐿𝑖 , 𝑆𝑖 ) ∼ BP . Then Sbusy is a mapping such that if B is a random variable (𝐴𝑖 , 𝐿𝑖 ),
then (B,Sbusy (B)) ∼ BP . That is, the joint distribution of sizes conditional on the batch instance

coming from a busy period is also distributed such that it makes the triple distributed with the busy

period distribution.

We can now define the cost function given a batch and job size model.
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Definition B.3. The 𝜃 -cost of a policy 𝜋 for an instance I under a given job size model S is given

by

𝐾𝜋 (𝜃,I,S) =
𝑛∑︁
𝑖=1

E[exp(𝜃 (𝐷𝜋,𝑖 − 𝑎𝑖 ))],

where the expectation is over the joint job size distribution S(I) and any randomness in the policy.

Under the job size model Sind, we have the following optimality result:

Theorem B.4. For any batch instance I =
(
(𝑎𝑖 , 𝑙𝑖 )

)𝑛
𝑖=1

, the 𝜃 -Cheat policy minimizes 𝐾𝜋 (𝜃,I,Sind)
in the nonpreemptive batch scheduling problem. Specifically, for any nonpreemptive policy 𝜋 under
this job size model,

𝐾𝜃 -Cheat (𝜃,I,Sind) ≤ min

𝜋
𝐾𝜋 (𝜃,I,Sind).

Proof. We observe that 𝜃 -Cheat serves jobs in I in the same order as the Weighted Discounted

Shortest Expected Processing Time (WDSEPT) rule, with the weights equal to exp(−𝜃𝑎𝑖 ) and
negative discount rate −𝜃 for each job 𝑖 . This is because boosted arrival time 𝑎𝑖 − 𝑏𝜃 (𝑙𝑖 ) is a
monotonic function, namely the negative log, of WDSEPT’s priority index:

𝑎𝑖 − 𝑏𝜃 (𝑙𝑖 ) = − 1

𝜃
log

(
exp(−𝜃𝑎𝑖 )

E[exp(𝜃𝑆) | 𝐿 = 𝑙𝑖 ]
E[exp(𝜃𝑆) | 𝐿 = 𝑙𝑖 ] − 1

)
.

The proof is an interchange argument identical to that of Pinedo [33, Theorem 10.1.3], with the

signs for the discount rate and objective flipped. Specifically, with negative discounting, we define

discounted completion time as exp(𝜃𝐷𝑖 ) − 1 instead of 1 − exp(𝜃𝐷𝑖 ) to keep the sign positive. □

In Theorem 4.3, we concluded that 𝜃 -Cheat’s optimality for all batch instances could be translated

to a bound in the M/G/1. Why does this not work in Theorem B.4? The issue is that our optimality

argument in the M/G/1 relies on sampling instances from busy periods. In particular, letting B
be the random batch instance resulting from a busy period, by reasoning to that in the proof

Theorem 4.3, we have

E[exp(𝜃𝑇𝜋 )] =
E[𝐾𝜋 (𝜃,B,Sbusy)]

|B| ,

where the expectations on the right-hand side are over the distribution of B. The key difference is

that the job size model is Sbusy, not Sind, so Theorem B.4 does not apply.

Why is there not a similar issue in the full-information case? Because when a job’s size is its

label, the instance I already contains all the job size information. In particular, Sind (I) = Sbusy (I)
for all instances I, with both models simply yielding a deterministic vector of sizes extracted from

the labels in the instance I.

C OPTIMIZING THE BOOST FUNCTION IN THE PARTIAL-INFORMATION SETTING
In this appendix, we show that in the partial-information setting, 𝛾-Boost has a lower tail constant

than Boost with any other boost function:

𝐶𝛾 -Boost ≤ 𝐶Boost .

To keep the argument simple, we assume a finite set of labels L = {1, . . . , 𝑛}. The result can be

generalized to arbitrary sets of labels using a calculus of variations argument.

For brevity, we adopt the notation

𝑝𝑖 = P[𝐿 = 𝑖], 𝑏𝑖 = 𝑏 (𝑖), 𝑠𝑖 = E[exp(𝛾𝑆) | 𝐿 = 𝑖] .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 2, Article 27. Publication date: June 2024.



Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1 27:31

Choosing a boost function amounts to choosing a vector of boosts (𝑏1, . . . , 𝑏𝑛). To make the

dependence of 𝐶Boost on the 𝑏𝑖 explicit, we let

𝐶 (𝑏1, . . . , 𝑏𝑛) = 𝐶Boost.

By Definition 2.3, we can write 𝐶𝛾 -Boost = 𝐶 (𝑏∗1, . . . , 𝑏∗𝑛), where

𝑏∗𝑖 =
1

𝛾
log

𝑠𝑖

𝑠𝑖 − 1

.

Optimality of 𝛾-Boost among Boost policies amounts to showing that (𝑏∗
1
, . . . , 𝑏∗𝑛) is a minimizer

of 𝐶 (·). To show this, it suffices to show the following two claims:

• 𝐶 (·) is convex.
• ∇𝐶 (𝑏∗

1
, . . . , 𝑏∗𝑛) = 0.

We start with convexity of 𝐶 (·). Writing 𝑝𝑖 = P[𝐿 = 𝑖], we can rewrite the tail constant from

Theorem 3.1 as

𝐶 (𝑏1, . . . , 𝑏𝑛) = 𝐶𝑊
( 𝑛∑︁
𝑖=1

𝑝𝑖𝑠𝑖 exp(−𝛾𝑏𝑖 )
)

exp

( 𝑛∑︁
𝑖=1

𝜆𝑝𝑖𝑏𝑖 (𝑠𝑖 − 1)
)

= 𝐶𝑊

𝑛∑︁
𝑖=1

𝑝𝑖𝑠𝑖 exp

(
−𝛾𝑏𝑖 +

𝑛∑︁
𝑗=1

𝜆𝑝 𝑗𝑏 𝑗 (𝑠 𝑗 − 1)
)
.

We observe that 𝐶 (·) a sum of compositions of linear functions with exp, so it is convex. In fact,

𝐶 (·) is log-convex, because it is a product of a mixture of log-convex functions, which is log-convex

[26, proof of Lemma A.3], and another log-convex function.

To show the gradient at (𝑏∗
1
, . . . , 𝑏∗𝑛) is zero, we take the derivative of 𝐶 (𝑏1, . . . , 𝑏𝑛) with respect

to 𝑏𝑘 , obtaining

𝜕

𝜕𝑏𝑘
𝐶 (𝑏1, . . . , 𝑏𝑛) = 𝐶𝑊

𝑛∑︁
𝑖=1

𝑝𝑖𝑠𝑖
(
𝜆𝑝𝑘 (𝑠𝑘 − 1) − 𝛾1(𝑖 = 𝑘)

)
exp

(
−𝛾𝑏𝑖 +

𝑛∑︁
𝑗=1

𝜆𝑝 𝑗𝑏 𝑗 (𝑠 𝑗 − 1)
)
.

This derivative is zero if and only if

𝜆𝑝𝑘 (𝑠𝑘 − 1)
𝑛∑︁
𝑖=1

𝑝𝑖𝑠𝑖 exp(−𝛾𝑏𝑖 ) = 𝛾𝑝𝑘𝑠𝑘 exp(−𝛾𝑏𝑘 ).

Plugging in 𝑏𝑖 = 𝑏
∗
𝑖 and noticing 𝑠𝑖 exp(−𝛾𝑏∗𝑖 ) = 𝑠𝑖 − 1, it suffices to show

𝜆

𝑛∑︁
𝑖=1

𝑝𝑖 (𝑠𝑖 − 1) = 𝛾 .

But the right-hand is 𝜆(E[exp(𝛾𝑆)] − 1), so this is simply the definition of 𝛾 from (2.2).

D COMPARISON OF NUDGE-M AND BOOST TAIL CONSTANTS
In this appendix, we show that the 𝛾-Boost policy for unknown job sizes with two labels is state-

of-the-art among policies for this setting. Specifically, we compare to the known state-of-the-art,

Nudge-M [9], and show that for any choice for the parameter 𝐾 , there is a Boost policy which

achieves a better tail constant. In particular, this means that the optimal Boost policy in this setting,

namely 𝛾-Boost (see Appendix C), has better tail constant than the optimal Nudge-M policy.

Recall that Nudge-M partitions the jobs into type-1 and type-2 jobs, allowing any type-1 job to

pass any type-2 job that has arrived as one of the last M jobs. This can be thought of as the setting

where each job is given label 1 or label 2, and a scheduling decision is made based on this label.
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From here onward we will refer to type-1 jobs as jobs with label 1 and type-2 jobs as jobs with

label 2.

For brevity, we adopt the notation

𝑝1 = P[𝐿 = 1], 𝑝2 = P[𝐿 = 2],
𝑠1 = E[𝑒𝛾𝑆 | 𝐿 = 1], 𝑠2 = E[𝑒𝛾𝑆 | 𝐿 = 2], 𝑠 = E[𝑒𝛾𝑆 ],
𝑏1 = 𝑏 (1), 𝑏2 = 𝑏 (2).

Note that with just two labels, 𝑝2 = 1 − 𝑝1. We assume both 𝑝1 and 𝑝2 are nonzero.

The tail constant of Nudge-M for any choice of parameter 𝐾 is given by rewriting the expression

in Charlet and Van Houdt [9, Theorem 1] as

𝐶Nudge-M

𝐶FCFS

=
𝑝1𝑠1

𝑠

(𝑝1𝑠1 + 𝑝2)𝐾
𝑠𝐾

+ 𝑝2𝑠2

𝑠
(𝑝1𝑠1 + 𝑝2)𝐾 . (D.1)

Recall that the tail constant of Boost is given by

𝐶Boost

𝐶FCFS

=
1

𝑠
E[𝑒𝛾 (𝑆−𝐵) ]E[𝑒𝛾𝑉 ] .

Under the two-label case above, the term E[𝑒𝛾 (𝑆−𝐵) ] can be written as

E[𝑒𝛾 (𝑆−𝐵) ] = 𝑝1E[𝑒𝛾𝑆 | 𝐿 = 1]𝑒−𝛾𝑏1 + 𝑝2E[𝑒𝛾𝑆 | 𝐿 = 2]𝑒−𝛾𝑏2

= 𝑝1𝑠1𝑒
−𝛾𝑏1 + 𝑝2𝑠2𝑒

−𝛾𝑏2 ,

where 𝑏1 and 𝑏2 are, respectively, the boosts given to jobs of label 1 and label 2. The crossing work

can be similarly written, using Lemma 3.5, as the sum of an arrival stream of label-1 jobs and of

label-2 jobs, i.e., as

E[𝑒𝛾𝑉 ] = exp

(
𝜆𝑝1𝑏1E[𝑒𝛾𝑆 − 1 | 𝐿 = 1] + 𝜆𝑝2𝑏2E[𝑒𝛾𝑆 − 1 | 𝐿 = 2]

)
= exp

(
𝜆𝑝1 (𝑏1 − 𝑏2) (𝑠1 − 1) + 𝜆𝑏2E[𝑒𝛾𝑆 − 1]

)
= exp

(
𝜆𝑝1 (𝑏1 − 𝑏2) (𝑠1 − 1) + 𝛾𝑏2

)
.

The tail constant for Boost can thus be written as

𝐶Boost

𝐶FCFS

=
1

𝑠

(
𝑝1𝑠1𝑒

−𝛾𝑏1 + 𝑝2𝑠2𝑒
−𝛾𝑏2

)
exp

(
𝜆𝑝1 (𝑏1 − 𝑏2) (𝑠1 − 1) + 𝛾𝑏2

)
=

(𝑝1𝑠1

𝑠
𝑒−𝛾 (𝑏1−𝑏2 ) + 𝑝2𝑠2

𝑠

)
exp

(
𝜆𝑝1 (𝑏1 − 𝑏2) (𝑠1 − 1)

)
.

Consider an arbitrary 𝐾 for Nudge-M. For such an 𝐾 , consider 𝑏1 − 𝑏2 such that

𝑏1 − 𝑏2 =
𝐾 log(𝑠)

𝛾
. (D.2)

There are many boost functions that satisfy this, e.g. 𝑏1 =
𝐾 log(𝑠 )

𝛾
and 𝑏2 = 0.

For a boost function satisfying (D.2), we observe that 𝑠𝐾 = 𝑒𝛾 (𝑏1−𝑏2 )
. Using this observation, we

can rewrite the expression in (D.1) as

𝐶Nudge-M

𝐶FCFS

=
𝑝1𝑠1

𝑠

(𝑝1𝑠1 + 𝑝2)𝐾

𝑒𝛾 (𝑏1−𝑏2 )
+ 𝑝2𝑠2

𝑠
(𝑝1𝑠1 + 𝑝2)𝐾

=

(𝑝1𝑠1

𝑠
𝑒−𝛾 (𝑏1−𝑏2 ) + 𝑝2𝑠2

𝑠

)
(𝑝1𝑠1 + 𝑝2)𝐾

=

(𝑝1𝑠1

𝑠
𝑒−𝛾 (𝑏1−𝑏2 ) + 𝑝2𝑠2

𝑠

)
(1 + 𝑝1 (𝑠1 − 1))𝐾 .
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Fig. D.1. Empirical TIR of 𝛾-Boost’s performance compared to the Nudge-M policy in the two-label setting.
Parameters are set to match those of Charlet and Van Houdt [9, Fig. 5]: label-1 and label-2 jobs are both
exponential, with E[𝑋2]/E[𝑋1] = 4, the probability of a label-1 job 𝑝1 = 2/3, arrival rate 𝜆 = 0.7. For Nudge-M,
we use the optimal parameter 𝐾 = 5. Observe that both 𝛾-Boost, denoted as LabelBoost, and Boost with

𝑏1 − 𝑏2 =
𝐾 log(𝑠 )

𝛾 , denoted as SuboptBoost, outperform Nudge-M.

Therefore, to compare the tail constant of Boost and that of Nudge-M, it suffices to compare the

expressions exp

(
𝜆𝑝1 (𝑏1 − 𝑏2) (𝑠1 − 1)

)
and (1 + 𝑝1 (𝑠1 − 1))𝐾 . We rewrite the first expression as

exp

(
𝜆𝑝1 (𝑏1 − 𝑏2) (𝑠1 − 1)

)
= exp

(
𝛾 (𝑏1 − 𝑏2)𝑝1 (𝑠1 − 1)

𝑠 − 1

)
= exp(𝛾 (𝑏1 − 𝑏2))

𝑝
1
(𝑠

1
−1)

𝑠−1 ,

and rewrite the second expression as

(1 + 𝑝1 (𝑠1 − 1))𝐾 = (1 + 𝑝1 (𝑠1 − 1))
log(𝑒𝛾 (𝑏

1
−𝑏

2
) )

log(𝑠 )

= exp

(
log(1 + 𝑝1 (𝑠1 − 1)) log(𝑒𝛾 (𝑏1−𝑏2 ) )

log 𝑠

)
= exp(𝛾 (𝑏1 − 𝑏2))

log(1+𝑝
1
(𝑠

1
−1) )

log(1+(𝑠−1) ) .

Finally, we observe that

exp(𝛾 (𝑏1 − 𝑏2))
𝑝

1
(𝑠

1
−1)

𝑠−1 < exp(𝛾 (𝑏1 − 𝑏2))
log(1+𝑝

1
(𝑠

1
−1) )

log(1+(𝑠−1) ) ,

since 𝑠 − 1 ≥ 𝑝1 (𝑠 − 1) and log(1+𝑥 )
𝑥

is monotonically decreasing in 𝑥 . This shows that for any 𝐾 ,

Boost with 𝑏1 −𝑏2 =
𝐾 log(𝑠 )

𝛾
performs better than Nudge-M, implying that the optimal Boost policy,

namely 𝛾-Boost (Appendix C), performs better than the optimal Nudge-M policy.
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