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ABSTRACT
We study the problem of scheduling jobs in a queueing system,
specifically an M/G/1 with light-tailed job sizes, to asymptotically
optimize the response time tail. This means scheduling to make
P[𝑇 > 𝑡], the chance a job’s response time exceeds 𝑡 , decay as
quickly as possible in the 𝑡 → ∞ limit. For some time, the best
known policy was First-Come First-Served (FCFS), which has an
asymptotically exponential tail: P[𝑇 > 𝑡] ∼ 𝐶𝑒−𝛾𝑡 . FCFS achieves
the optimal decay rate 𝛾 , but its tail constant 𝐶 is suboptimal.

We derive a closed-form expression for the optimal tail constant,
and we introduce 𝛾-Boost, a new policy that achieves this optimal
tail constant.We also show via simulation that𝛾-Boost has excellent
practical performance. This abstract summarizes our full paper [14].
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1 PROBLEM: MINIMIZING TAIL LATENCY
Service Level Objectives (SLOs) for practical queueing systems
often relate to the tail of the system’s response time distribution 𝑇 .
The tail is the function mapping 𝑡 to P[𝑇 > 𝑡], the probability that
a job’s response time𝑇 exceeds 𝑡 , where a job’s response time is the
amount of time between its arrival and departure.

Motivated by the need to meet SLOs, we consider scheduling
jobs to minimize P[𝑇 > 𝑡] in the M/G/1 queue. We actually aim to
asymptotically minimize the tail, optimizing the decay of P[𝑇 > 𝑡]
in the 𝑡 → ∞ limit. In this abstract, we focus on the setting where
job sizes (a.k.a. service times) are known to the scheduler, but we
consider settings with less information in our full paper [14].

Let 𝑇𝜋 denote the response time distribution under policy 𝜋 . We
say 𝜋 is weakly tail-optimal [3] if there exists 𝑐 ≥ 1 such that

sup
𝜋 ′

lim sup
𝑡→∞

P[𝑇𝜋 > 𝑡]
P[𝑇𝜋 ′ > 𝑡] = 𝑐.

If additionally 𝑐 = 1, we say 𝜋 is strongly tail-optimal.
Whether a policy is weakly tail-optimal depends critically on

whether the job size distribution is heavy-tailed or light-tailed.
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(a) Boost serves X after Y if their
arrival times are close together.
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(b) Boost serves X before Y if
their arrival times are far apart.

Figure 2.1: Boost combines a job’s arrival time with a size-
dependent boost to determine its priority. Notation: job 𝑖’s
arrival time is 𝑎𝑖 , its size is 𝑠𝑖 , and its boost is 𝑏 (𝑠𝑖 ).

In the heavy-tailed setting, specifically for regularly varying size
distributions, several preemptive policies, such as Shortest Remain-
ing Processing Time (SRPT), are known to be weakly tail-optimal
[7, 9, 10]. We observe in our full paper [14, Appendix A] that
many of these policies are, in fact, strongly tail-optimal. Strong
tail-optimality is thus settled in the heavy-tailed case.

However, strong tail optimality remains an open problem in
the light-tailed case, specifically for class I size distributions [1, 2].
Even for weak tail optimality, for some time, the only common
policy known to beweakly tail-optimal was First-Come First-Served
(FCFS). It is known that [3]

P[𝑇FCFS > 𝑡] ∼ 𝐶FCFS exp(−𝛾𝑡),

where 𝛾 > 0 is a constant called the decay rate, and 𝐶FCFS > 0 is a
constant we call FCFS’s tail constant. Both 𝛾 and 𝐶FCFS depend on
the size distribution and arrival rate.

It is known that no policy can achieve asymptotic decay rate
greater than 𝛾 [3, 11], so we can measure the performance of a
weakly tail-optimal policy 𝜋 by its tail constant

𝐶𝜋 = lim
𝑡→∞

exp(𝛾𝑡) P[𝑇 > 𝑡] . (1.1)

The question of finding a strongly tail-optimal policy thus amounts
to minimizing 𝐶𝜋 over all policies 𝜋 . It was previously conjectured
that FCFS may be strongly tail-optimal [3, 13], but recent progress
has improved upon FCFS’s tail constant [4, 5, 12]. We thus ask:

What is the smallest possible tail constant 𝐶𝜋 , and what
policy 𝜋 achieves it?

2 OUR ANSWER: BOOST
We introduce Boost, a new family of scheduling policies, and𝛾-Boost,
an instance of Boost that achieves strong tail optimality.
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(a) Several size distributions.
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(b) Several policies.

Figure 2.2: Empirical tail improvement (higher is better) of
𝛾-Boost (a) on several job size distributions, and (b) compared
to Nudge variants [4, 5, 12] and SRPT. Plots show tail im-
provement ratio 1 − P[𝑇𝜋 > 𝑡]/P[𝑇FCFS > 𝑡] as a function of 𝑡 .
Dotted lines indicate asymptotic improvement 1 −𝐶𝜋/𝐶FCFS.
Load is 𝜌 = 0.8, and mean job size is E[𝑆] = 1. See our full
paper [14] for additional details and more simulations.

An instance of Boost is specified by a boost function 𝑏 : R+ → R,
where 𝑏 (𝑠) is called the boost of a job of size 𝑠 . The rough idea is
that Boost acts like FCFS, except it pretends that a job of size 𝑠
arrives 𝑏 (𝑠) time earlier than it actually does. Specifically, if a job
of size 𝑠 arrives at time 𝑎, we define its boosted arrival time to be

boosted arrival time = arrival time − boost = 𝑎 − 𝑏 (𝑠) .
Boost then follows one scheduling rule: prioritize jobs from least to
greatest boosted arrival time. See Figure 2.1 for an illustration.

We prove two main theoretical results about Boost. First, we find
an explicit formula for its tail constant 𝐶Boost in terms of the boost
function 𝑏. Second, we study a particular version of Boost, which
we call 𝛾-Boost, which has boost function

𝑏𝛾 (𝑠) =
1
𝛾
log 1

1 − exp(−𝛾𝑠) . (2.1)

We show that 𝐶𝛾 -Boost ≤ 𝐶𝜋 for every other scheduling policy 𝜋 ,
so 𝛾-Boost is strongly tail-optimal. These results together resolve
the question at the end of Section 1. We complement our theoret-
ical results with simulations showing that 𝛾-Boost has excellent
practical performance, with Figure 2.2 showing one example.

We have focused above on the case of full job size information,
but Boost and 𝛾-Boost can also be defined in settings with partial
job size information, and described in our full paper [14].

2.1 Why 𝛾-Boost achieves strong tail optimality
Where does the boost function in (2.1) come from, and why is the
resulting 𝛾-Boost policy is strongly-tail optimal? Our key idea is
to relate the problem of minimizing the tail constant 𝐶𝜋 to a more
traditional scheduling problem involving a type of weighted cost.

We begin by considering the following alternative characteriza-
tion of𝐶𝜋 , which follows from final value theorem [5, Theorem 4.3]:

𝐶𝜋 = lim
𝜃→𝛾

𝛾 − 𝜃
𝛾

E[exp(𝜃𝑇𝜋 )] .

There is thus a vague sense in which minimizing 𝐶𝜋 is equivalent
to minimizing E[exp(𝛾𝑇𝜋 )]. This is only an informal statement
because, as one can deduce from (1.1), we have E[exp(𝛾𝑇𝜋 )] = ∞
for all policies 𝜋 , even those that are weakly tail-optimal.

While minimizing the always-infinite quantity E[exp(𝛾𝑇𝜋 )] is
not a well-posed problem in the M/G/1, it is analogous to a well-
posed problem in deterministic single-machine scheduling [6, 8].
Consider an arbitrary finite batch of jobsI = {(𝑎1, 𝑠1), . . . , (𝑎𝑛, 𝑠𝑛)}.
Here 𝑎𝑖 is the arrival time of job 𝑖 , and 𝑠𝑖 is its size. Let 𝑑𝜋,𝑖 be the
departure time of job 𝑖 under policy 𝜋 , and let the 𝜃-cost of policy 𝜋
be 𝐾𝜋 (𝜃,I) =

∑𝑛
𝑖=1 exp(𝜃 (𝑑𝜋,𝑖 − 𝑎𝑖 )). Minimizing E[exp(𝛾𝑇𝜋 )] is

analogous to minimizing 𝛾-cost 𝐾𝜋 (𝛾,I) in the batch setting.
For 𝜃 < 0, minimizing 𝜃 -cost is actually a variation of a classic

single-machine scheduling problem: minimizing total weighted
discounted completion time [6, 8], where job 𝑖’s weight is exp(−𝜃𝑎𝑖 ).
This problem is hard, but only because of arrival times. In the batch
relaxation, in which we allow job 𝑖 to be served even before time 𝑎𝑖 ,
the optimal policy is an index policy called Weighted Discounted
Shortest Processing Time (WDSPT) [8, Theorem 3.1.6]. To clarify,
the arrival times 𝑎𝑖 still matter in the batch relaxation, because they
determine the weights exp(−𝜃𝑎𝑖 ).

Because 𝛾 > 0, one can view minimizing 𝛾-cost as an instance
of minimizing total weighted discounted completion time, but with
a negative discount rate. Fortunately, essentially the same proof
as in the standard positive-discount case shows that a version of
WDSPT is optimal in the negative-discount case. The𝛾-Boost policy
arises from finding a function 𝑏𝛾 such that WDSPT is equivalent to
serving jobs in order of increasing boosted arrival time 𝑎𝑖 − 𝑏𝛾 (𝑠𝑖 ).
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