
Heavy-Traffic Optimal Size- and State-Aware Dispatching

RUNHAN XIE, University of California, Berkeley, USA

ISAAC GROSOF, Carnegie Mellon University, USA and Georgia Institute of Technology, USA

ZIV SCULLY, Cornell University, USA

Dispatching systems, where arriving jobs are immediately assigned to one of multiple queues, are ubiquitous

in computer systems and service systems. A natural and practically relevant model is one in which each queue

serves jobs in FCFS (First-Come First-Served) order. We consider the case where the dispatcher is size-aware,
meaning it learns the size (i.e. service time) of each job as it arrives; and state-aware, meaning it always knows

the amount of work (i.e. total remaining service time) at each queue. While size- and state-aware dispatching

to FCFS queues has been extensively studied, little is known about optimal dispatching for the objective of
minimizing mean delay. A major obstacle is that no nontrivial lower bound on mean delay is known, even in

heavy traffic (i.e. the limit as load approaches capacity). This makes it difficult to prove that any given policy

is optimal, or even heavy-traffic optimal.

In this work, we propose the first size- and state-aware dispatching policy that provably minimizes mean

delay in heavy traffic. Our policy, called CARD (Controlled Asymmetry Reduces Delay), keeps all but one of the
queues short, then routes as few jobs as possible to the one long queue. We prove an upper bound on CARD’s

mean delay, and we prove the first nontrivial lower bound on the mean delay of any size- and state-aware

dispatching policy. Both results apply to any number of servers. Our bounds match in heavy traffic, implying

CARD’s heavy-traffic optimality. In particular, CARD’s heavy-traffic performance improves upon that of

LWL (Least Work Left), SITA (Size Interval Task Assignment), and other policies from the literature whose

heavy-traffic performance is known.

CCS Concepts: • General and reference → Performance; • Mathematics of computing → Markov
processes; • Theory of computation → Routing and network design problems; • Networks → Network
performance modeling; Network performance analysis.

Additional Key Words and Phrases: dispatching, FCFS, response time, latency, sojourn time, heavy traffic,

asymptotic optimality

ACM Reference Format:
Runhan Xie, Isaac Grosof, and Ziv Scully. 2024. Heavy-Traffic Optimal Size- and State-Aware Dispatching.

Proc. ACM Meas. Anal. Comput. Syst. 8, 1, Article 9 (March 2024), 36 pages. https://doi.org/10.1145/3639035

1 INTRODUCTION
Dispatching, or load balancing, is at the heart of many computer systems, service systems, trans-

portation systems, and systems in other domains. In such systems, jobs arrive over time, and each

job must be irrevocably sent to one of multiple queues as soon as it arrives. It is common for each

queue to be served in First-Come First-Served (FCFS) order.

Motivated by the ubiquity of dispatching, we study a classical problem in dispatching theory:

Authors’ addresses: Runhan Xie, runhan_xie@berkeley.edu, University of California, Berkeley, Department of Industrial

Engineering and Operations Research, Berkeley, CA, USA; Isaac Grosof, igrosof@cs.cmu.edu, Carnegie Mellon University,

Computer Science Department, Pittsburgh, PA, USA and Georgia Institute of Technology, School of Industrial and Systems

Engineering, Atlanta, GA, USA; Ziv Scully, zivscully@cornell.edu, Cornell University, School of Operations Research and

Information Engineering, Ithaca, NY, USA.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2476-1249/2024/3-ART9

https://doi.org/10.1145/3639035

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

https://doi.org/10.1145/3639035
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639035

9:2 Runhan Xie, Isaac Grosof, and Ziv Scully

How should one dispatch to FCFS queues to minimize jobs’ mean response time?
1

We specifically consider size- and state-aware dispatching. This means that the dispatcher learns a

job’s size, or service time, when the job arrives; and the dispatcher always knows how much work,
or total remaining service time, there is at each queue. We make typical stochastic assumptions

about the job arrival process, working with M/G arrivals (see Section 2).

Despite the extensive literature on dispatching in queueing theory (see Section 1.2), optimal size-

and state-aware dispatching is an open problem, as highlighted by Hyytiä et al. [23]. The problem

is a Markov decision process (MDP), so it can in principle be approximately solved numerically

[27]. But the numerical approach has two drawbacks. First, the curse of dimensionality makes

computation impractical for large numbers of queues. Second, the solution is specific to a particular

instance (meaning a given number of queues, job size distribution, and load) and one has to solve

the MDP again for a different instance.

1.1 Our contributions
In this work, we take the first steps towards developing a theoretical understanding of optimal size-

and state-aware dispatching, making two main contributions.

• We give the first lower bound on the minimum mean response time achievable under any

dispatching policy (Theorem 3.1).

• We propose a new dispatching policy, called CARD (Controlled Asymmetry Reduces Delay),
and prove an asymptotically tight upper bound on its mean response time (Theorem 3.3). We

illustrate CARD in Figure 1.1.

Our upper and lower bounds match in the heavy-traffic limit as load 𝜌 approaches 1, the maximum

load capacity. Specifically, we find an explicit constant 𝐾 such that the dominant term of both

bounds is
𝐾
1−𝜌 . This makes CARD the first policy to be proven heavy-traffic optimal, aside from the

implicitly specified optimal policy. Characterizing the optimal constant 𝐾 , which was previously

unknown, is another contribution of our work.

How CARD outperforms previous policies. Below, we describe the intuition behind CARD’s design

in a two-server system. See Figure 1.1 for an illustration.

To minimize mean response time, one generally wants to avoid situations where small jobs

need to wait behind large jobs. One way to do this is to dedicate one server to small jobs and

the other server to large jobs, where the size cutoff between “small” and “large” is defined such

that half the load is due to each size class. This is the approach taken by the SITA (Size Interval

Task Assignment) policy [17, 18]. Under SITA, due to Poisson splitting, the dispatching system

reduces to two independent M/G/1 systems. As shown by Harchol-Balter et al. [18], SITA can

sometimes perform very well, but it can sometimes be much worse than simple LWL (Least Work

Left) dispatching, under which the system behaves like a central-queue M/G/2.

As each of LWL and SITA can sometimes be worse than the other in heavy traffic, one might

expect that they can be strictly improved upon. Indeed, in Appendix B.1, we show that in the

two-server case, both LWL and SITA are strictly suboptimal in heavy traffic. But the question

remains: where in LWL or SITA’s design is there a specific opportunity for improvement?

Our key observation is that the main reason SITA performs poorly is that its “short server”,

namely the queue to which it sends small jobs, can accumulate lots of work. CARD avoids this issue

by actively regulating the amount of work at the short server. To do so, CARD creates a third class

of “medium” jobs, which are on the border between small and large, and sets a threshold which

serves as a target amount of work at the short server. Whenever a medium job arrives, CARD

1
A job’s response time (a.k.a. sojourn time, latency, delay) is the amount of time between its arrival and its completion.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:3

long queue

work𝑊𝑙

short queue

work𝑊𝑠

𝑐

When𝑊𝑠 ⩽ 𝑐 :
medium→ short

When𝑊𝑠 > 𝑐 :
medium→ long

Load division:

size 0

small → short

size𝑚−

medium

size𝑚+

large→ long

size∞
0.65 0.70 0.75 0.80 0.85 0.90 0.95

Total System Load
0

50

100

150

200

250

M
ea

n
Re

sp
on

se
 T

im
e

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice

Fig. 1.1. Sketch of the CARD policy for two servers.
Small and large jobs are always dispatched to the
short or long server, respectively. Medium jobs are
dispatched based onwhether𝑊𝑠 , the amount of work
at the short server, exceeds a threshold 𝑐 . The size
cutoffs𝑚− and𝑚+ are chosen so that small and large
jobs each constitute slightly less than half the load.

Fig. 1.2. Mean response time as a function of load
for several policies, including two versions of CARD.
Rigid CARD is the version we theoretically analyze,
while Flexible CARD is modified slightly to improve
empirical performance. The job size distribution has
coefficient of variation cv = 10. See Section 7 and
Figure 7.1(b) for further details.

dispatches it to the short server if and only if the short server has less work than the threshold.

This prevents too much work accumulating in the short server, and it also prevents the short server

from unduly idling.

CARD’s performance beyond heavy traffic. Of course, practical systems rarely operate at loads very

near capacity, but our theoretical bounds on CARD’s performance are admittedly not tight outside

the heavy-traffic regime. As such, we also study CARD in simulation across a wider range of loads.

We find empirically that CARD has good performance outside of heavy traffic, but slightly modifying

CARD can significantly improves performance. Both the original and modified versions of CARD

improve upon traditional heuristics like LWL and SITA, sometimes by an order of magnitude. The

modified version is competitive with the Dice policy of Hyytiä and Righter [26], the best known

heuristic for the size- and state-aware setting. See Figure 1.2 for an example where at high load,

CARD achieves reductions of over 75% relative to LWL and over 50% compared to SITA.

Outline. The remainder of the paper is organized as follows.

• Section 1.2 reviews related work.

• Section 2 presents our model and defines the CARD policy.

• Section 3 states our main results and gives some intuition for why they hold.

• Sections 4–6 prove our results: a lower bound on the performance, namely mean response

time, of any policy (Section 4); stability of CARD (Section 5); and an upper bound on CARD’s

performance, which implies its heavy-traffic optimality (𝑛 = 2 servers in Section 6, general

case in Appendix B.4).

• Section 7 studies CARD outside of heavy traffic via simulation.

We note that a preliminary version of this work appeared as a three-page workshop abstract

[57], but it was extremely limited compared to the current version: it treated only the case of two

servers and two job sizes, it did not provide any lower bound, and it omitted all proofs.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:4 Runhan Xie, Isaac Grosof, and Ziv Scully

1.2 Related Work
FCFS dispatching with incomplete information. Whether a dispatching policy is optimal depends

critically on the information available to the dispatcher. When the size of the arriving job is

unknown, but server states (e.g. number of jobs at each server, work at each server, etc.) are

known (state-aware), depending on the server-state information, Round-Robin (RR) [7, 34, 35],

Join-Shortest-Queue (JSQ) [51, 55], and LWL [1, 5, 11, 31] are shown to be optimal. The common

key idea of these policies is to join the queue with least (or least expected) amount of work.

When only the sizes and the distribution of the arriving jobs are known, SITA is known to be

optimal [9]. But this result assumes that the dispatching policy must be entirely static. Recently, it

was shown that combining SITA with RR can improve performance [2, 25], which combines SITA

with just a little bit of memory, namely which servers most recently received a job.

Perhaps the closest the SITA line of work gets to size- and state-aware dispatching is the SITA-JSQ

policy proposed in Wang and Down [50], in which the dispatcher uses the size of the arriving job

and number of jobs at each server to make dispatching decisions. CARD is in some ways similar

to SITA-JSQ, particularly the “multi-band” variant of CARD introduced in our simulation study

(Section 7). But SITA-JSQ does not actively control the amount of work in each queue, and in

particular does not maintain a large imbalance between queues. Our lower bound (Section 4) shows

this imbalance is necessary for heavy-traffic optimality.

FCFS size- and state-aware dispatching. For size- and state-aware FCFS dispatching, various heuris-

tics have been proposed and studied in simulations. Many of them are based on approximate

dynamic programming e.g. [22, 24, 27]. Another class of policies, called sequential dispatching

policies, are introduced in [23]. Among the sequential dispatching policies, Dice [23] shows supe-

rior performance in simulations and is among the best heuristics that has been developed. In our

simulations (Section 7), Dice often slightly outperforms CARD. However, there is no theoretical

analysis so far on the performance of Dice, even in heavy traffic.

Heavy-traffic Optimality Results. The aforementioned optimality results are strong in the sense

that they either show stochastic ordering optimality on sample paths, or show optimality for any

load of jobs. For more complicated policies and systems, characterizing the mean response time

for an arbitrary load is a difficult task. Therefore, a large number of works focus on analyzing

the heavy-traffic regime and establish optimality therein. One approach is to prove optimality via

process limits e.g. [30, 48]. Such approach focuses on the transient regime and interchange of limits

are usually not established for analysis in steady state. Another approach is to work directly in

the stationary regime and establish heavy-traffic optimality results on mean response times in

steady state e.g. [8, 59, 61]. However, these optimality results focus on settings where job sizes are

unknown, so they do not address our goal of optimal size-aware dispatching.

Tools and Methodology. Recently, Eryilmaz and Srikant [8] introduced and popularized a Lyapunov

drift-based approach that is applied to study the steady-state performance of queueing systems in

heavy traffic. The approach has been adopted in studying various switches (e.g. [21, 28, 29, 32, 36,

37, 49]), load-balancing algorithms (e.g. [20, 33, 52, 58, 59, 61]), and other stochastic models (e.g.

wireless scheduling, Stein’s method, mean-field models). In some sense, our paper applies drift

method to continuous-time continuous state Markov processes. Our use of the Rate Conservation

Law [42] parallels the use of “zero drift” condition in drift analysis. An important step in drift

analysis is establishing state-space collapse. We prove a result of this type in Lemma 5.2.

Other Relevant Work. When scheduling is allowed at the servers, optimal dispatching policies can be

very different. When there are multiple parallel SRPT servers, Down and Wu [6] study a multi-layer

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:5

dispatching policy and show optimality using a diffusion limit argument. Grosof et al. [14] develop

a dispatching policy, called Guardrails, that achieves optimal mean response time in heavy traffic.
2

Both of these prior dispatching policies involve, roughly speaking, balancing work evenly across

the multiple SRPT servers. This is in contrast to CARD, which maintains a large imbalance between

the multiple FCFS servers. One interpretation is that while SRPT prioritizes jobs at each individual

server, CARD prioritizes jobs at the dispatching stage, namely by sending shorter jobs to servers

with less work.

In recent years, learning-based dispatching policies have also been studied in literature [12, 44].

CARD involves tuning some parameters that depend on the job size distribution, and we thus

assume knowledge of the job size distribution. An interesting question for future work is whether

CARD’s parameters could be learned online in settings where the job size distribution is unknown.

In the context of scheduling jobs on a single server, when SRPT (Shortest Remaining Processing

Time) is shown to be optimal [45], Chen and Dong [4] show that having two priority classes is

sufficient for a good performance in heavy traffic. The heavy-traffic performance of CARD ends up

roughly equivalent to the performance of a single-server system with two priority classes. However,

we cannot match the performance demonstrated by Chen and Dong [4]: they decrease the fraction

of load in the lower-priority class to zero in heavy traffic, whereas CARD’s “lower-priority jobs”,

namely those sent to the long server, must constitute a roughly
1

𝑛
fraction of the load.

2 SYSTEMMODEL AND THE CARD POLICY
2.1 Model Description
We consider a system of 𝑛 ⩾ 2 identical FCFS (First-Come, First-Served) servers, each of which

has its own queue. The system has one central dispatcher, which immediately dispatches jobs to a

server when they arrive. We consider M/G job arrivals with (Poisson) arrival rate _ and job size

distribution 𝑆 . We assume E[𝑆2] < ∞. The system load, namely the average rate at which work

arrives, is 𝜌 = _E[𝑆]. We assume a server never idles unless there are no jobs present in its queue.

We use the convention that each server completes work at rate
1

𝑛
, so a job of size 𝑠 requires 𝑛𝑠

time in service. This convention means the largest possible stability region is 𝜌 ∈ [0, 1), regardless
of the number of servers 𝑛. The convention is also convenient when comparing our system’s

performance to that of a “resource-pooled” M/G/1 with the same arrival process and server speed 1.

We write E[𝑊M/G/1] for the mean amount of work in such a resource-pooled M/G/1.

We consider size- and state-aware dispatching policies. That is, when a job arrives, the dispatcher

may use both the job’s size and the system state to decide where to dispatch it to. For our purposes,

the most important aspect of the system state is the amount of work remaining at each server.

We write𝑊𝑖 for the amount of work at server 𝑖 (but see also Section 2.2), W = (𝑊1, . . . ,𝑊𝑛) for
the vector of work amounts, and𝑊all =

∑𝑛
𝑖=1𝑊𝑖 for the total work. We write𝑊𝑖 (𝑡) or W(𝑡) when

discussing work at a specific time 𝑡 .

The main metric we consider is mean response time. A job’s response time is the amount of

time between its arrival and completion. Due to our
1

𝑛
service rate convention, if a job of size 𝑠 is

dispatched to a server with 𝑤 work, the job’s response time is 𝑛(𝑤 + 𝑠). We write E[𝑇𝜋] for the
mean response time over all jobs (in the usual limiting long-run average sense) under policy 𝜋 .

2
Guardrails is optimal in the sense that the mean response time under Guardrails matches that of a resource-pooled SRPT

in heavy-traffic. As Theorem 3.1 suggests, dispatching to FCFS servers cannot in general match the performance of a

resource-pooled SRPT in heavy-traffic. Therefore, in heavy-traffic, an optimal dispatching policy to SRPT servers generally

outperforms an optimal policy to FCFS servers in terms of mean response time.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:6 Runhan Xie, Isaac Grosof, and Ziv Scully

Purely for simplicity of notation, we assume the job size distribution 𝑆 has no atoms. This is to

ensure that expressions like E[𝑆I(𝑆 < 𝑚)] are continuous functions of𝑚. One can generalize all

of our definitions and results to distributions with atoms using a lexicographic ordering trick.
3

2.2 Defining the CARD Policy
We now introduce our policy, CARD, which stands for Controlled Asymmetry Reduces Delay. We

first present it in the context of 𝑛 = 2 servers, then generalize to 𝑛 ⩾ 2 servers.

CARD for two servers. In the 𝑛 = 2 case, CARD designates server 1 as the short server and server 2

as the long server. To emphasize this, when discussing CARD, we write𝑊𝑠 =𝑊1 and𝑊ℓ =𝑊2 for

the work at the short and long servers, respectively.

CARD has three threshold parameters to set:

• The two size thresholds𝑚− and𝑚+, 0 ⩽ 𝑚− ⩽ 𝑚+, divide jobs into small, medium, and large

(see below).

• The work threshold 𝑐 , 𝑐 ⩾ 𝑚+ is, roughly speaking, a target work level for the short server.

Based on these parameters, CARD dispatches jobs as follows (see also Figure 1.1):

• A small job, namely one with size in [0,𝑚−), is always dispatched to the short server.

• A medium job, namely one with size in [𝑚−,𝑚+), is dispatched depending on𝑊𝑠 at time of

arrival. If𝑊𝑠 ⩽ 𝑐 , it is sent to the short server, and if𝑊𝑠 > 𝑐 , it is sent to the long server.

• A large job, namely one with size in [𝑚+,∞), is always dispatched to the long server.

Setting CARD’s parameters. There are a range of ways to set𝑚− ,𝑚+, and 𝑐 that yield stability and

heavy-traffic optimality. We specify these formally in the statements of Theorems 3.2 and 3.3, but

we highlight the key points here (see also Section 2.3).

The size thresholds𝑚− and𝑚+ should be chosen such that small jobs and large jobs are each

less than half the load. Formally, we require

E[𝑆I(𝑆 < 𝑚−)] < 1

2
E[𝑆] < E[𝑆I(𝑆 < 𝑚+)] .

In particular, we have𝑚− < 𝑚 < 𝑚+, where𝑚 is the solution to E[𝑆I(𝑆 < 𝑚)] = 1

2
E[𝑆]. As we

show in our lower bound (Theorem 3.1), this value𝑚 is in some sense the ideal cutoff between

small and large jobs. As such, it is important that in heavy traffic, either𝑚− →𝑚 or𝑚+ →𝑚 (or

both). We do the former in our upper bound (Theorem 3.3).

The work threshold 𝑐 must balance a tradeoff between two concerns. On one hand, we want there

to be little work at the short server so that small jobs have low response times. On the other hand,

we do not want the short server to run out of work, as excessive idling could increase response

times or even cause instability. Roughly speaking, this means setting 𝑐 = Θ
((

1

1−𝜌
)𝑝)

for a suitable

choice of 𝑝 ∈ (0, 1).
It is convenient in our proofs to ensure 𝑐 ⩾ 𝑚+, so we assume this throughout. It also makes

intuitive sense that a single medium job should not bring the short server from empty to above

the work threshold. However, this assumption can be easily relaxed at the cost of a little more

computation in the proofs.

Generalizing CARD to any number of servers. We now generalize the above policy to 𝑛 ⩾ 2 servers.

Here we focus on an extension that prioritizes simplicity of analysis while still achieving optimal

heavy-traffic performance. In our simulation study (Section 7), we consider a more complex variant

which has better performance at practical loads.

3
Have the system assign each job an i.i.d. uniform𝑈 ∈ [0, 1] independent of its size 𝑆 , and replace comparisons 𝑆 <𝑚

with comparisons (𝑆,𝑈) ≺ (𝑚, 𝑣) for some 𝑣 ∈ [0, 1], where ≺ is the lexicographic order. If E[𝑆I((𝑆,𝑈) ≺ (𝑚, 𝑣))] has
a jump discontinuity at𝑚, varying 𝑣 interpolates continuously between the left and right limits.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:7

The basic idea of 𝑛-server CARD is to reduce to the two-server case. We use the same three

parameters𝑚− ,𝑚+, and 𝑐 , and we define small, medium, and large jobs in the same way. The only

difference is that instead of one short and one long server, we use 𝑛 − 1 short servers 1, . . . , 𝑛 − 1

and a single long server 𝑛. We thus write𝑊𝑠𝑖 =𝑊𝑖 and𝑊ℓ =𝑊𝑛 when discussing 𝑛-server CARD.

Abusing notation slightly, we write simply𝑊𝑠 when discussing a generic short server whose index

is not important. Jobs are dispatched as follows:

• A small job is always dispatched to a uniformly random short server.

• Amedium job is dispatched as follows. The dispatcher selects a uniformly random short server

𝑁 ∈ {1, . . . , 𝑛 − 1} and inspects its amount of work𝑊𝑠𝑁 . If𝑊𝑠𝑁 ⩽ 𝑐 , the job is dispatched to

the chosen short server 𝑁 , and if𝑊𝑠𝑁 > 𝑐 , it is dispatched to the long server.

• A large job is always dispatched to the long server.

Another way to view 𝑛-server CARD is in the following distributed manner. Suppose that instead

of one dispatcher, we have 𝑛 − 1 independent “subdispatchers”, each associated with a short server,

and suppose that all jobs arrive at a uniformly random dispatcher. Then 𝑛-server CARD is the result

of each of the subdispatchers using two-server CARD, except they all share the same long server.

The way we set the parameters of 𝑛-server CARD is essentially the same as how we set the

parameters of two-server CARD. The only difference is that instead of wanting small and large

jobs to both have less than half the load, we want small jobs to be less than a 1 − 1

𝑛
fraction of the

load, and we want large jobs to be less than a
1

𝑛
fraction of the load. We therefore set

E[𝑆I(𝑆 < 𝑚−)] <
(
1 − 1

𝑛

)
E[𝑆] < E[𝑆I(𝑆 < 𝑚+)] .

This means𝑚− < 𝑚 < 𝑚+, where now𝑚 is the solution to E[𝑆I(𝑆 < 𝑚)] =
(
1 − 1

𝑛

)
E[𝑆].

2.3 Key Definitions for Main Results and Analysis
We state our main results and perform our analysis in terms of the following quantities.

Drift-related quantities. The following quantities are related to characterizing drifts, which are the

average rates at which work increases or decreases in various situations.

• Let Y = 1 − 𝜌 . If both servers are busy, then𝑊all has drift −Y.
• Let 𝜌𝑠 , 𝜌𝑚 , and 𝜌ℓ be the loads due to small, medium, and large jobs, respectively:

𝜌𝑠 = _E[𝑆I(𝑆 < 𝑚−)], 𝜌𝑚 = _E[𝑆I(𝑚− ⩽ 𝑆 < 𝑚+)], 𝜌ℓ = _E[𝑆I(𝑆 ⩾ 𝑚+)] .

• Let 𝛼 and 𝛽 be the following quantities related to the drift of𝑊𝑠 :

𝛼 =
1

𝑛
− 1

𝑛 − 1

𝜌𝑠 , 𝛽 =
1

𝑛 − 1

(𝜌𝑠 + 𝜌𝑚) −
1

𝑛
.

If𝑊𝑠 > 𝑐 , then𝑊𝑠 has drift −𝛼 , and if 0 <𝑊𝑠 ⩽ 𝑐 , then𝑊𝑠 has drift +𝛽 .
• Let 𝛿 ∈ (0, Y] be a bound on the probability the short server is idle, i.e. P[𝑊𝑠 = 0] ⩽ 𝛿 . We

show how to set CARD’s parameters to achieve this bound in Theorem 3.2(a).

To specify CARD’s𝑚− and𝑚+ parameters, it suffices to specify 𝛼 and 𝛽 : these determine 𝜌𝑠
and 𝜌𝑚 , which in turn determine𝑚− and𝑚+. Moreover, for any given 𝛽 , we show in Theorem 3.2

how to set CARD’s 𝑐 parameter to achieve P[𝑊𝑠 = 0] ⩽ 𝛿 . As such:
Instead of specifying𝑚− ,𝑚+, and 𝑐 directly, we specify 𝛼 , 𝛽 , and 𝛿 .

In particular, Theorem 3.3 specifies how 𝛼 , 𝛽 , and 𝛿 should scale as functions of Y.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:8 Runhan Xie, Isaac Grosof, and Ziv Scully

Heavy traffic. Our main results consider the Y ↓ 0 limit, which we call the heavy-traffic regime. This

is equivalent to _ ↑ 1/E[𝑆]. In particular, we leave the number of servers fixed.

Underlying our results are explicit bounds that hold even outside the limiting regime (see e.g.

Theorem 6.11). Because of our focus on heavy traffic, we assume for convenience that Y < 1

𝑛
. In

particular, this ensures we can set 𝛽 > 0, which ensures that𝑊𝑠 always drifts towards 𝑐 . The case

where Y > 1

𝑛
and 𝛽 < 0 is less interesting, as then both𝑊𝑠 and𝑊ℓ always drift towards 0.

Performance-related quantities. The following quantities are used in our response time bounds

(Theorems 3.1 and 3.3). Define 𝐾CARD and𝑚 such that

𝐾CARD =
E[𝑆]

E[𝑆 | 𝑆 ⩾ 𝑚] = 𝑛P[𝑆 ⩾ 𝑚] . (2.1)

This characterization of𝑚 is equivalent to the aforementioned E[𝑆I(𝑆 < 𝑚)] =
(
1 − 1

𝑛

)
E[𝑆]. In

Theorem 3.3, we show that, roughly speaking, E[𝑇CARD] ≈ 𝐾CARDE[𝑊M/G/1], where

E[𝑊M/G/1] =
_E[𝑆2]
2Y

is the mean work in a resource-pooled M/G/1 (Section 2.1).

3 MAIN RESULTS AND KEY IDEAS
We now present our main results, followed by some intuition for why they hold. See Sections 4–6

for the proofs, with some details deferred to Appendix B.

Our first result is a lower bound on the mean response time for any dispatching policy.

Theorem 3.1. Under any dispatching policy 𝜋 and for any Y ∈ (0, 1),

E[𝑇𝜋] ⩾ 𝐾CARDE[𝑊M/G/1] −
(𝑛 − 1)E[𝑆2]

2𝑚
+ 𝑛E[𝑆] .

Proof. See Section 4.

The rest of our results are about CARD: stability for all Y > 0, and heavy-traffic optimality as

Y ↓ 0. Both results are stated as sufficient conditions on CARD’s parameters under which it achieves

the corresponding property. See Sections 2.2 and 2.3 for descriptions of and notation for CARD’s

parameters.

Theorem 3.2. Let 𝛿 > 0, and consider CARD with threshold

𝑐 =
𝑛(𝑛 − 1)𝑚+

𝛽
log

𝑛 + 1

𝑛𝛽𝛿
.

Then,

(a) Each short server satisfies P[𝑊𝑠 = 0] ⩽ 𝛿 .
(b) If 𝛿 < 𝑛

𝑛−1Y, then the system is stable. Specifically, the set {(0, . . . , 0)} is positive recurrent for
the process W(𝑡) = (𝑊1 (𝑡), . . . ,𝑊𝑛 (𝑡)).

Proof. See Section 5 and Appendix B.2.

Theorem 3.3. For any fixed number of servers 𝑛 ⩾ 2, if CARD’s parameters are set such that

𝛼 = Θ(1), 𝛽 = Θ

(
Y1/3

(
log

1

Y

)
2/3)

, and 𝑐 =
𝑛(𝑛 − 1)𝑚+

𝛽
log

𝑛 + 1

𝑛𝛽𝛿
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:9

in the Y ↓ 0 limit, then CARD achieves mean response time bounded by

E[𝑇CARD] ⩽ 𝐾CARDE[𝑊M/G/1] +𝑂
((
1

Y
log

1

Y

)
1/3)

.

In particular, CARD is heavy-traffic optimal: lim supY↓0
E[𝑇CARD]
E[𝑇𝜋] ⩽ 1 for any dispatching policy 𝜋 .

Proof. See Section 6 for the case of 𝑛 = 2 servers and Appendix B.4 for the general case.

3.1 Intuition for Lower Bound on All Policies
We now give some intuition for Theorem 3.1. We focus on the heavy-traffic regime, where our aim

is to show that the best possible mean response time is roughly E[𝑇] ≈ 𝐾CARDE[𝑊M/G/1].
To begin, recall E[𝑇] = 1

_
E[𝑁], where E[𝑁] is the mean number of jobs in the system. The key

idea is to relate E[𝑁] to the mean amount of work E[𝑊all]. This is helpful because one can easily

show E[𝑊all] ⩾ E[𝑊M/G/1] (see e.g. Theorem 6.1).

How can we relate E[𝑁] to E[𝑊all]? In heavy traffic, most jobs in the system are waiting in

a queue and have yet to enter service. We thus approximate E[𝑁] ≈ E[𝑊all]/E[𝑆queue], where
E[𝑆queue] is the mean size of jobs waiting in a queue. This means minimizing E[𝑇] amounts to

maximizing the mean size of jobs waiting in the queue. This makes sense in light of the fact that

when studying scheduling policies beyond FCFS, serving small jobs ahead of large jobs reduces

mean response time [45].

What is the largest that E[𝑆queue] can be? Because we are restricted to FCFS service, the only

mechanism by which we can affect the sizes of jobs in the system is dispatching. In particular, we

can dispatch jobs of different sizes to different servers. Suppose, for example, that servers 1, . . . , 𝑛−1

have a negligible amount of work, meaning nearly all of the work is at server 𝑛. Then E[𝑆queue]
would be the average size of jobs dispatched to server 𝑛, which could be much greater than E[𝑆].
The best we could hope to do is E[𝑆queue] = E[𝑆 | 𝑆 ⩾ 𝑚] for as high a threshold𝑚 as possible. But

in heavy traffic, we need server 𝑛 to handle a 1

𝑛
fraction of the load, so the largest value of𝑚 possible

solves E[𝑆I(𝑆 ⩾ 𝑚)] = 1

𝑛
E[𝑆]. This is equivalent to the characterization of𝑚 from (2.1), so it leads

to E[𝑇]/E[𝑊all] ≈ E[𝑆]/E[𝑆 | 𝑆 ⩾ 𝑚] = 𝐾CARD. Observing E[𝑊all] ⩾ E[𝑊M/G/1] completes the

bound.

To make this reasoning rigorous, it turns out that reasoning directly in terms of E[𝑆queue] is
difficult. We instead prove Theorem 3.1 using a potential-function approach. However, the potential

function and manipulations we perform on it were directly inspired by the intuition:

The best-case scenario is to dedicate one server to the jobs of size at least𝑚, and to

ensure that all other servers have a negligible amount of work.

3.2 Intuition for Upper Bound on CARD
We now give some intuition for Theorem 3.3. By the lower bound intuition above, CARD is already

well on its way to achieving the best-case scenario: it attempts to keep the amount of work at the

𝑛 − 1 short servers near 𝑐 , and the long server only serves medium and large jobs. To show CARD

matches the lower bound in heavy traffic, it would suffice to show the following.

• CARD does not have much more work than a resource-pooled M/G/1: E[𝑊all] ≈ E[𝑊M/G/1].
– Roughly speaking, this amounts to showing that we avoid situations where one server is

idle while another server has lots of work (see Theorem 6.1).

• CARD’s short servers do not exceed 𝑐 work by too much: E[𝑊𝑠] ≈ 𝑐 .
– We also need to set 𝑐 such that it is negligible in heavy traffic.

• CARD rarely dispatches medium jobs to the long server: P[𝑊𝑠 ⩽ 𝑐] ≈ 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:10 Runhan Xie, Isaac Grosof, and Ziv Scully

Our main tool for showing these and related properties is examining what we call below-above
cycles. Consider a particular short server. It alternates between below periods, during which𝑊𝑠 ⩽ 𝑐 ,
and above periods, during which𝑊𝑠 > 𝑐 . It turns out that much of our analysis rests on below-above

cycles not being too long. One reason for this is that when enough short servers are in above periods,

the long server is temporarily overloaded. Long periods of transient overload could cause E[𝑊all]
to be significantly greater than E[𝑊M/G/1]. Short below-above cycles prevent this possibility. See
Section 6.1 for more details about how we use below-above cycles.

4 UNIVERSAL LOWER BOUND
Theorem 3.1. Under any dispatching policy 𝜋 and for any Y ∈ (0, 1),

E[𝑇𝜋] ⩾ 𝐾CARDE[𝑊M/G/1] −
(𝑛 − 1)E[𝑆2]

2𝑚
+ 𝑛E[𝑆] .

Before diving into the proof, we give the high-level idea for 𝑛 = 2 servers.

Suppose an arrival occurs while𝑊1 <𝑊2. For that individual arrival, its response time if it were

sent to queue 𝑖 would be 2𝑊𝑖 because each server processes work at rate 1/2, so the “benefit” of
sending it to queue 1 instead of queue 2 is 2(𝑊2 −𝑊1). Reasoning symmetrically if𝑊1 <𝑊2, we

conclude that the benefit of dispatching jobs to the shorter queue is proportional to |𝑊2 −𝑊1 |.
The main challenge is therefore to show that no dispatching policy can both frequently dispatch

to the shorter queue, and also maintain large difference |𝑊2 −𝑊1 | between the queues. The key

observation is that if we dispatch the job to the shorter queue, then |𝑊2 −𝑊1 | decreases, so the next
arrival would see less benefit. That is, we can view |𝑊2 −𝑊1 | as a type of resource: dispatching
jobs to the shorter queue depletes it, while dispatching jobs to the longer queue replenishes it. It

is thus best to dispatch shorter jobs to the shorter queue, which slowly depletes |𝑊2 −𝑊1 |, and
dispatch longer jobs to the longer queue, which quickly replenishes |𝑊2 −𝑊1 |. To formalize the

idea of viewing |𝑊2 −𝑊1 | as a resource, we use the potential function 1

2
(𝑊2 −𝑊1)2.

The proof below handles any number of servers 𝑛. The idea is essentially the same as the 𝑛 = 2

case, except we look at the work differences |𝑊𝑖 −𝑊𝑗 | for every pair of servers 𝑖 ≠ 𝑗 .

Proof of Theorem 3.1. Consider an arbitrary stationary dispatching policy 𝜋 . We first introduce

notation for 𝜋 ’s dispatching decisions. Suppose a job of random size 𝑆 arrives and observes work

vector W = (𝑊1, . . . ,𝑊𝑛). We denote by𝑊choice the work at the queue the arrival is dispatched to.

Note that while 𝑆 is independent of W, it is not independent of𝑊choice. We also write𝑊all =
∑𝑛
𝑖=1𝑊𝑖

for the total work at all queues. Because each server does work at rate 1/𝑛, we can write E[𝑇𝜋] as

E[𝑇𝜋] = 𝑛E[𝑊choice + 𝑆] = E[𝑊all] + E[𝑛𝑊choice −𝑊all] + 𝑛E[𝑆] . (4.1)

The main task is to give a lower bound on E[𝑛𝑊choice −𝑊all]. To do so, we apply the rate

conservation law of Miyazawa [42] to 𝑉 (W), where

𝑉 (w) = 1

2

𝑛∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

(𝑤𝑖 −𝑤 𝑗)2.

The value of 𝑉 (W) can change in two ways.

• Work is done continuously at each nonempty queue. We denote this average continuous

change by E[𝐷𝑡𝑉 (W)].
• Arrivals add work to whichever queue the dispatcher chooses. By PASTA (Poisson Arrivals

See Time Averages) [56], this yields average change _E[𝑉 (W + 𝑆echoice) − 𝑉 (W)], where
echoice is the standard basis vector with a 1 indicating the queue the job is dispatched to.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:11

The rate conservation law [42] states that the average rate of change of 𝑉 (W) is zero, so
E[𝐷𝑡𝑉 (W)] + _E[𝑉 (W + 𝑆echoice) −𝑉 (W)] = 0. (4.2)

We now investigate each of the two terms in (4.2). We first observe that E[𝐷𝑡𝑉 (W)] ⩽ 0, because

in the absence of arrivals, for any two queues 𝑖 and 𝑗 , the absolute difference |𝑊𝑖 −𝑊𝑗 | either
decreases (if exactly one server is idle) or stays constant (otherwise). Therefore,

E[𝑉 (W + 𝑆echoice) −𝑉 (W)] ⩾ 0.

Expanding the definition of 𝑉 (w) and writing

∑
𝑖≠choice for sums over all queues other than the

one the job is dispatched to, we obtain

0 ⩽
1

2

E

[∑︁
𝑖≠choice

(
(𝑊choice + 𝑆 −𝑊𝑖)2 − (𝑊choice −𝑊𝑖)2

)]
=
𝑛 − 1

2

E[𝑆2] + E
[∑︁
𝑖≠choice

𝑆 (𝑊choice −𝑊𝑖)
]

=
𝑛 − 1

2

E[𝑆2] + E[𝑆 (𝑛𝑊choice −𝑊all)] .

Subtracting both sides from𝑚E[𝑛𝑊choice −𝑊all] and using the fact that

−𝑊all ⩽ 𝑛𝑊choice −𝑊all ⩽ (𝑛 − 1)𝑊all,

we obtain

𝑚E[𝑛𝑊choice −𝑊all] ⩾ E[(𝑚 − 𝑆) (𝑛𝑊choice −𝑊all)] −
𝑛 − 1

2

E[𝑆2]

⩾ −E
[
(𝑆 −𝑚)+ (𝑛 − 1)𝑊all − (𝑚 − 𝑆)+𝑊all

]
− 𝑛 − 1

2

E[𝑆2]
(a)

= −
(
E
[
(𝑛 − 1) (𝑆 −𝑚)+ + (𝑚 − 𝑆)+

]
E[𝑊all] +

𝑛 − 1

2

E[𝑆2]
)

= −
(
(𝑚 − E[𝑆] + 𝑛E[(𝑆 −𝑚)+])E[𝑊all] +

𝑛 − 1

2

E[𝑆2]
)
, (4.3)

where (a) follows from the fact that an arriving job’s size 𝑆 is independent of the work vector W it

observes upon arrival.

We now substitute the bound from (4.3) into (4.1), obtaining

E[𝑇𝜋] =
E[𝑆] − 𝑛E[(𝑆 −𝑚)+]

𝑚
E[𝑊all] −

(𝑛 − 1)E[𝑆2]
2𝑚

+ 𝑛E[𝑆] .

The bound follows from E[𝑊all] ⩾ E[𝑊M/G/1] (see e.g. Theorem 6.1) and (2.1), which implies

E[𝑆] − 𝑛E[(𝑆 −𝑚)+] = E[𝑆] − 𝑛E[𝑆I(𝑆 > 𝑚)] +𝑚𝑛P[𝑆 > 𝑚] =𝑚𝑛P[𝑆 > 𝑚] =𝑚𝐾CARD . □

5 CARD STABILITY ANALYSIS
Proving CARD’s stability is more than a straightforward application of the Foster-Lyapunov

theorem, which is widely used to establish stability of queueing systems. The main obstacle here is

that the long server alternates between being underloaded and overloaded. It is thus difficult to

find a Lyapunov function that is negative outside a compact set.

To overcome this obstacle, we use a result of Foss et al. [10, Theorem 1]. Notice that, under

CARD,𝑊𝑠 is itself a Markov process because the decision of where to dispatch a job depends only

on the work at the shorter server. Roughly, [10, Theorem 1] says that since𝑊𝑠 is a Markov process

of its own, if it is ergodic, then it suffices to do a drift analysis of𝑊ℓ , averaged over the stationary

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:12 Runhan Xie, Isaac Grosof, and Ziv Scully

distribution of𝑊𝑠 . Of course, we first need to show that𝑊𝑠 is ergodic. Our proof for CARD’s

stability therefore proceeds in three steps.

• We show that the short server’s work𝑊𝑠 (𝑡), as a Markov process of its own, is Harris ergodic

(Lemma 5.1).

• With the stability of𝑊𝑠 (𝑡) in hand, we bound the idleness probability of the short server in

steady state (Lemmas 5.2 and 5.3).

• We apply the result of Foss et al. [10, Theorem 1] (Theorem 3.2) to show stability whenever the

long server is on average not overloaded. Our bound on the short server’s idleness probability

from the previous step thus gives a sufficient condition for stability.

Armed with these key ideas, the proofs themselves are relatively straightforward, with the bulk of

the work being computation. As such, we defer most of these computation details to Appendix B.2.

Lemma 5.1. 𝑊𝑠 is Harris ergodic for any Y > 0.

Proof sketch. The proof uses a Foster-Lyapunov theorem for continuous-time Markov pro-

cesses [41, Theorem 4.2]. The key step is to verify that the Lyapunov function 𝑉 (𝑤𝑠) = 𝑤𝑠 has
bounded drift when𝑤𝑠 ⩽ 𝑐 and negative drift when𝑤𝑠 > 𝑐 . This is true because when𝑤𝑠 > 𝑐 , we

only send small jobs to the short server. We defer the details to Appendix B.2.

We establish our short server idleness bound by first proving a general bound on the probability

that𝑊𝑠 is lower than 𝑐 by a general amount 𝑥 . The idleness bound follows by plugging in 𝑥 = 𝑐 .

Lemma 5.2. Suppose \ > 0 satisfies �(𝑆𝑠,𝑚)𝑒 (\) > 1

𝑛 (𝑛−1)𝛽+𝑛−1 , where �(𝑆𝑠,𝑚)𝑒 (·) is the Laplace
transform of the equilibium distribution of the size of small and medium jobs, 𝑆𝑠,𝑚 = (𝑆 | 𝑆 < 𝑚+).
Then for all 𝑥 ∈ [0, 𝑐],

P[𝑊𝑠 < 𝑐 − 𝑥] ⩽
(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\)

(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\) − 1

𝑒−\𝑥 .

Proof sketch. This result is a Chernoff-type bound on (𝑐 − 𝑊𝑠)+, so the main task is to

bound E[exp(\ (𝑐−𝑊𝑠)+)]. We do this by applying the rate conservation law [42] to exp(\ (𝑐−𝑊𝑠)+).
We defer the details to Appendix B.2.

Lemma 5.3. We have the following bound on the idleness of the short server,

P[𝑊𝑠 = 0] ⩽ 𝑛 + 1

𝑛𝛽
exp

(
− 𝛽𝑐

𝑛(𝑛 − 1)𝑚+

)
.

Proof. Let \ =
𝛽

𝑛 (𝑛−1)
1

𝑚+
. Since 𝛽 < 1

𝑛 (𝑛−1) and all small and medium jobs have length at

most𝑚+, we have�(𝑆𝑠,𝑚)𝑒 (\) ⩾ 1 − \E[(𝑆𝑠,𝑚)𝑒] ⩾ 1 − 𝛽

𝑛 (𝑛−1) . We can therefore apply Lemma 5.2,

from which the bound follows by the computation below and setting 𝑥 = 𝑐:

P[𝑊𝑠 < 𝑐 − 𝑥] ⩽
(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1)

(
1 − 𝛽

𝑛 (𝑛−1)

)
(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1)

(
1 − 𝛽

𝑛 (𝑛−1)

)
− 1

exp

(
− 𝛽𝑥

𝑛(𝑛 − 1)𝑚+

)
⩽
𝑛 + 1

𝑛𝛽
exp

(
− 𝛽𝑥

𝑛(𝑛 − 1)𝑚+

)
. □

We defer the proof of Theorem 3.2 to Appendix B.2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:13

6 CARD MEAN RESPONSE TIME ANALYSIS
With the lower bound from Theorem 3.1 in mind, our next step is to establish an upper bound on

the mean response time under CARD. We focus here on the two-server case. The general case uses

the same ideas but has more complicated computations, so we defer its proof to Appendix B.4.

Let E[𝑇CARD,𝑠], E[𝑇CARD,𝑚], and E[𝑇CARD,ℓ] be the mean response times of small, medium, and

large jobs under CARD, respectively. We have

E[𝑇CARD] = 𝑝𝑠E[𝑇CARD,𝑠] + 𝑝𝑚E[𝑇CARD,𝑚] + 𝑝ℓE[𝑇CARD,ℓ]
⩽ 2E[𝑆] + 2𝑝𝑠E[𝑊𝑠] + 2𝑝𝑚𝑐P[𝑊𝑠 ⩽ 𝑐] + 2𝑝𝑚E[𝑊ℓI(𝑊𝑠 > 𝑐)] + 2𝑝ℓE[𝑊ℓ] . (6.1)

where the inequality follows from how CARD dispatches jobs, the PASTA property [56], and the fact

that the servers complete work at rate 1/2. The main difficulty of analyzing (6.1) lies in bounding

E[𝑊ℓ] and E[𝑊ℓI(𝑊𝑠 > 𝑐)]. We now give a high-level overview of the obstacles and our approach.

6.1 Key Ingredients: Work Decomposition, Below-Above Cycles, and Palm Inversion
To bound E[𝑊ℓ], it suffices to bound E[𝑊all]. The following theorem, called the work decomposition
law [46, 47], provides a way to bound E[𝑊all]. We state it below in a way that is specialized to our

system.

Theorem 6.1. Denote by 𝐼 the fraction of servers that are idle in steady state, namely

𝐼 =
1

𝑛

𝑛∑︁
𝑖=1

I(𝑊𝑖 = 0).

The steady-state mean total work E[𝑊all] satisfies

E[𝑊all] = E[𝑊M/G/1] +
E[𝐼𝑊all]

Y
=

_
2
E[𝑆2] + E[𝐼𝑊all]

Y
,

where E[𝑊M/G/1] is the work in an M/G/1 with arrival rate _ and job size distribution 𝑆 .

The key component we need to bound from Theorem 6.1 is E[𝐼𝑊all]. We would like to study

𝐼𝑊all = (𝑊𝑠 +𝑊ℓ)
(
1

2
I(𝑊𝑠 = 0) + 1

2
I(𝑊ℓ = 0)

)
= 1

2
𝑊ℓI(𝑊𝑠 = 0) + 1

2
𝑊𝑠I(𝑊ℓ = 0)

The main difficulty here is to bound E[𝑊ℓI(𝑊𝑠 = 0)]. Since CARD dispatches differently to the

long server based on the state of the short server,𝑊ℓ depends on the state of𝑊𝑠 . Such a dependency

also poses challenges in analyzing E[𝑊ℓ |𝑊𝑠 > 𝑐], when even knowing E[𝑊ℓ] is not sufficient.

Under CARD,𝑊𝑠 alternates between being above and below the threshold 𝑐 . Such a behavior

naturally leads to renewal intervals consists of the “above” periods and “below” periods.

Definition 6.2. We partition time into alternating intervals, called below periods and above periods,
as follows:

• A time 𝑡 is in a below period if𝑊𝑠 (𝑡) ⩽ 𝑐 .
• A time 𝑡 is in an above period if𝑊𝑠 (𝑡) > 𝑐 .

A below-above cycle is then a complete below period followed by a complete above period. Below-

above cycles start at times 𝑡 for which𝑊𝑠 (𝑡) = 𝑐 . We can partition time into below-above cycles.

We introduce the following notation for working with below periods, above periods, and below-

above cycles:

• We write E0𝑐 [·] for the Palm expectation [3] taken at the start of a below-above cycle. Roughly

speaking, E0𝑐 [·] = “E[· | a below period starts at time 0]”, but the formal definition avoids

conditioning on a measure-zero event.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:14 Runhan Xie, Isaac Grosof, and Ziv Scully

• In the context of a below-above cycle starting at time 0, meaning𝑊𝑠 (0) = 𝑐 , we denote the
lengths of the below and above period by 𝐵 and 𝐴, respectively:

𝐵 = inf{𝑡 > 0 :𝑊𝑠 (𝑡) > 𝑐},
𝐴 = inf{𝑡 > 𝐵 :𝑊𝑠 (𝑡) = 𝑐}.

Abusing notation slightly, we also use 𝐵 and 𝐴 to denote the lengths of the below and above

period in a generic below-above cycle, not necessarily one that starts at time 0.

Why are above and below periods helpful for analyzing CARD? Within an above or below

period, CARD does not change how it dispatches jobs, making it easier to analyze𝑊ℓ within one
below-above cycle. The Palm inversion formula [3], which is a generalization of the celebrated

renewal-reward theorem, allows us to connect the average behavior of𝑊ℓ within one below and

above cycle to a steady-state average. For example, it implies

E[𝑊ℓ] =
1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

0

𝑊ℓ (𝑡) d𝑡
]
, E[𝑊ℓI(𝑊𝑠 > 𝑐)] =

1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

𝐵

𝑊ℓ (𝑡) d𝑡
]
.

Our high-level idea is to relate both of these quantities to E0𝑐 [𝑊ℓ (0)], the mean work at the long

server at the start of a below-above cycle. We show in Lemmas 6.6 and 6.7 that, roughly speaking,

E[𝑊ℓ] ≈ E0𝑐 [𝑊ℓ (0)], E[𝑊ℓI(𝑊𝑠 > 𝑐)] ≈ E0𝑐 [𝑊ℓ (0)] P[𝑊𝑠 > 𝑐] . (6.2)

The rest of this section is organized as follows.

• Section 6.2 analyzes the behavior of the short server. In particular, we show that above and

below cycles are not too long.

• Section 6.3 analyzes the behavior of the long server. Using the fact that above and below

cycles are not too long, we show (6.2). As part of this, we bound E[𝑊all].
• Section 6.4 assembles the pieces to prove Theorem 3.3.

6.2 Analyzing the Short Server and Below-Above Cycles
In this section, we bound various quantities relating to work at the short server and the below-above

cycles. Of particular importance are the mean excesses of the above and below periods E[𝐴𝑒] and
E[𝐵𝑒], as they are used to better understand the relations between E[𝑊ℓ] and E0𝑐 [𝑊ℓ (0)].

The techniques we use to obtain bounds on E[𝐴𝑒] and E[𝐵𝑒] also immediately yield bounds on

E[𝐴] and E[𝐵]. Despite not using these bounds, given that they help complete the picture of how

the system behaves, we state them, too.

As a reminder, the excess or equilibrium distribution of a random variable 𝑉 is the distribution

𝑉𝑒 whose probability density function is 𝑓 (𝑡) = P[𝑉 > 𝑡]/E[𝑉]. The excess arises naturally in

renewal theory [3, 16, 43]. Most important for our purposes is the fact that

E[𝑉𝑒] =
E[𝑉 2]
2E[𝑉] . (6.3)

Lemma 6.3.

E[𝐵] ⩽ 𝑚+
𝛽
, E[𝐵𝑒] ⩽

𝑐 +𝑚+
𝛽

⩽
2𝑐

𝛽
, and E[(𝐵𝑒)𝑒] ⩽

𝑐 +𝑚+
𝛽

⩽
2𝑐

𝛽
.

Proof. Suppose that at time 0, the short server has𝑊𝑠 (0) = 𝑣 ⩽ 𝑐 work, so time 0 is in a below

period. Let 𝜏 (𝑣) be the time until the end of the below period. We will show

E[𝜏 (𝑣)] ⩽ 𝑐 +𝑚+ − 𝑣
𝛽

⩽
𝑐 +𝑚+
𝛽

⩽
2𝑐

𝛽
, (6.4)

where the last step follows because 𝑐 ⩾ 𝑚+ (Section 2.2). This implies all three of the bounds.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:15

• A below period starts with 𝑐 work at the short server, so E[𝐵] = E[𝜏 (𝑐)] ⩽ 𝑚+
𝛽
.

• The excesses 𝐵𝑒 and (𝐵𝑒)𝑒 can both be interpreted as the distribution of the amount of time

until the below period ends, starting from some random amount of work at the short server,

so their means can each be written as E[𝜏 (𝑉)] for an appropriate variable 𝑉 .

It remains only to show (6.4), which we do using a supermartingale argument. Suppose𝑊𝑠 (0) = 𝑣
as above, and define 𝑋 (𝑡) = 𝑐 −𝑊𝑠 (𝑡) + 𝛽𝑡 . We now show that 𝑋 (𝑡) is a supermartingale with

respect to the Markov process𝑊𝑠 (𝑡). Let
• Δ𝑠 (𝑢, 𝑡) be the amount of work completed by the short server during (𝑢, 𝑡] and
• Σ𝑠 (𝑢, 𝑡) be the amount of work that arrives to the short server during (𝑢, 𝑡].

For any 0 ⩽ 𝑢 ⩽ 𝑡 , we have

E[𝑋 (𝑡) |𝑊𝑠 (𝑢)] − 𝑋 (𝑢) = E[𝑊𝑠 (𝑢) −𝑊𝑠 (𝑡) |𝑊𝑠 (𝑢)] + 𝛽 (𝑡 − 𝑢)
= E[Δ𝑠 (𝑢, 𝑡) − Σ𝑠 (𝑢, 𝑡) |𝑊𝑠 (𝑢)] + 𝛽 (𝑡 − 𝑢)
⩽ E

[
1

2
(𝑡 − 𝑢) − Σ𝑠 (𝑢, 𝑡) |𝑊𝑠 (𝑢)

]
+ 𝛽 (𝑡 − 𝑢)

= (𝑡 − 𝑢)
(
1

2
− 𝜌𝑠 − 𝜌ℓ + 𝛽

)
= 0,

so 𝑋 (𝑡) is indeed a supermartingale. Applying the optional stopping theorem to 𝑋 (𝑡) and 𝜏 (𝑣),
which we justify below, yields

𝑐 − 𝑣 = E[𝑋 (0)] ⩾ E[𝑋 (𝜏 (𝑣))] = 𝑐 −𝑊𝑠 (𝜏 (𝑣)) + 𝛽𝜏 (𝑣)
(a)

⩾ −𝑚+ + 𝛽𝜏 (𝑣),
from which (6.4) follows. Above, (a) uses the fact that all medium jobs have size at most𝑚+, so at

the moment the below period ends, the short server’s work can jump to at most 𝑐 +𝑚+.
All that remains is to verify that we can indeed apply the optional stopping theorem.

• We have E[𝜏 (𝑣)] < ∞ by positive recurrence of𝑊𝑠 (𝑡).
• We have uniform integrability, namely lim𝑡→∞ E[𝑋 (𝑡) I(𝜏 (𝑣) > 𝑡)] = 0, thanks to the

following two observations. First, E[𝑊𝑠 (𝑡) I(𝜏 (𝑣) > 𝑡)] → 0 because 𝑐 −𝑊𝑠 (𝑡) ∈ [0, 𝑐] when
𝑡 is in a below period. Second, E[𝛽𝑡 I(𝜏 (𝑣) > 𝑡)] ⩽ E[𝛽𝜏 (𝑣) I(𝜏 (𝑣) > 𝑡)] → 0 because

E[𝜏 (𝑣)] < ∞. □

Lemma 6.4.

E[𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐] ⩽
𝑚+
4𝛼

and E[(𝑊𝑠 − 𝑐)2 |𝑊𝑠 > 𝑐] ⩽
𝑚2

+
8𝛼2

Proof sketch. Each above period starts with𝑊𝑠 − 𝑐 ∈ [0,𝑚+]. Until the end of the above

period,𝑊𝑠 − 𝑐 evolves like the amount of work in an M/G/1 queue with server speed 1/2, job
size distribution 𝑆𝑠 , and work arrival rate 𝜌𝑠 < 1/2. This means (𝑊𝑠 − 𝑐 | 𝑊𝑠 > 𝑐) has the same

distribution as an M/G/1 with vacations, where the vacation length distribution is that of𝑊𝑠 − 𝑐 at
the start of an above period. The desired bounds follow from the work decomposition formula for

the M/G/1 with vacations [13] and the observation that both job sizes and vacation lengths are

bounded by𝑚+. We defer the details to Appendix B.3. □

Lemma 6.5.

E[𝐴] ⩽ 𝑚+
𝛼

and E[𝐴𝑒] ⩽
𝑚+
4𝛼2

.

Proof. As in the proof sketch of Lemma 6.4, we view the short server during an above period as

an M/G/1 with server speed 1/2 and work arrival rate 𝜌𝑠 , so the mean drift of𝑊𝑠 is −(1/2−𝜌𝑠) = −𝛼 .
By standard results for M/G/1 busy periods [16], starting from𝑊𝑠 − 𝑐 = 𝑣 , it takes 𝑣/𝛼 time in

expectation for the above period to end.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:16 Runhan Xie, Isaac Grosof, and Ziv Scully

• The E[𝐴] bound follows from the fact that at the start of an above period,𝑊𝑠 − 𝑐 ⩽ 𝑚+,
implying E[𝐴] ⩽ 𝑚+/𝛼 .

• The E[𝐴𝑒] bound follows from the fact that the residual time of an above period is distributed

as 𝐴𝑒 . But the residual time of an above period is the same as the amount of time until an

above period ends starting from the stationary distribution of𝑊𝑠 − 𝑐 conditional on being

in an above period. This means E[𝐴𝑒] = E[𝑊𝑠 − 𝑐 | 𝑊𝑠 > 𝑐]/𝛼 , so the result follows from

Lemma 6.4. □

6.3 Analyzing the Long Server
In this section, we bound differences between E0𝑐 [𝑊ℓ (0)] and E[𝑊ℓ], E[𝑊ℓI(𝑊𝑠 > 𝑐)], and
E[𝑊ℓI(𝑊𝑠 = 𝑐)], separately. These bounds will help us upper bound E[𝑊all], thereby obtain-

ing a bound on E[𝑊ℓ].
Let 𝑞𝐴 and 𝑞𝐵 be the probabilities of being in an above or below period, respectively. That is,

𝑞𝐴 = P[𝑊𝑠 > 𝑐] =
E[𝐴]
E[𝐴 + 𝐵] and 𝑞𝐵 = P[𝑊𝑠 ⩽ 𝑐] =

E[𝐵]
E[𝐴 + 𝐵] , (6.5)

where the expressions in terms of expectations of 𝐴 and 𝐵 follow from renewal-reward theorem.

Lemma 6.6. ��E[𝑊ℓ] − E0𝑐 [𝑊ℓ (0)]
�� ⩽ (√︁

𝑞𝐴E[𝐴𝑒] +
√︁
𝑞𝐵E[𝐵𝑒]

)
2

⩽
𝑞𝐴𝑚+
2𝛼2

+ 4𝑞𝐵𝑐

𝛽
.

Proof. The long server workload process can be described as

𝑊ℓ (𝑡) =
(
𝑊ℓ (0) − Δℓ (0, 𝑡) + Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡)

)+
, (6.6)

where

• Δ𝑙 (0, 𝑡) is the total work processed by the long server in (0, 𝑡],
• Σ𝑚ℓ (0, 𝑡) is the total work added to the long server from medium job arrivals in (0, 𝑡], and
• Σℓℓ (0, 𝑡) is the total work added to the long server due to large job arrivals in (0, 𝑡].

Applying the Palm inversion formula [3] to𝑊ℓ gives

E[𝑊ℓ] =
1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

0

(
𝑊ℓ (0) − Δℓ (0, 𝑡) + Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡)

)+
d𝑡

]
(a)

= E0𝑐 [𝑊ℓ (0)] +
1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

0

max

{
−Δℓ (0, 𝑡) + Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡),−𝑊ℓ (0)

}
d𝑡

]
,

where (a) holds since𝑊ℓ (0), the amount of long server work at time 0, is independent of 𝐴 + 𝐵, the
length of the below-above cycle starting at time 0.

We now bound E[𝑊ℓ] − E0𝑐 [𝑊ℓ (0)] separately from above and below. To obtain a lower bound,

we bound the integrand below by −Δ(𝑡), obtaining

E[𝑊ℓ]−E0𝑐 [𝑊ℓ (0)] ⩾ − 1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

0

Δℓ (0, 𝑡) d𝑡
]
(b)

⩾ − 1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

0

𝑡

2

d𝑡

]
= −E[(𝐴 + 𝐵)2]

4E[𝐴 + 𝐵] ,

where (b) holds because the server completes work at rate
1

2
while it is busy. To obtain an upper

bound, we bound the integrand above by Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡). We first bound its conditional expecta-

tion given 𝐴 and 𝐵. Notice that Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡) consists of arrivals of large jobs during (0, 𝑡] and
medium jobs during (𝐵, 𝑡]. Neither of these types of arrivals impacts the lengths of the above and

below periods, so

E0𝑐 [Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡) | 𝐴, 𝐵] = 𝜌𝑚 (𝑡 − 𝐵)+ + 𝜌ℓ𝑡 ⩽ 𝑡 . (6.7)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:17

From (6.7) and a computation similar to the lower bound, we obtain

E[𝑊ℓ] − E0𝑐 [𝑊ℓ (0)] ⩽
E[(𝐴 + 𝐵)2]
2E[𝐴 + 𝐵] .

Combining this with the lower bound, the result follows from (6.3), (6.5), and Cauchy-Schwarz:

E[(𝐴 + 𝐵)2]
2E[𝐴 + 𝐵] ⩽

E[𝐴2] +
√︁
E[𝐴2]E[𝐵2] + E[𝐵2]
2E[𝐴 + 𝐵] = 𝑞𝐴E[𝐴𝑒] + 2

√︁
𝑞𝐴E[𝐴𝑒] 𝑞𝐵E[𝐵𝑒] + 𝑞𝐵E[𝐵𝑒] .

To complete the proof, we use the AM-GM inequality (arithmetic mean ⩾ geometric mean) on√︁
𝑞𝐴E[𝐴𝑒] 𝑞𝐵E[𝐵𝑒], then apply our bounds on E[𝐴𝑒] and E[𝐵𝑒] from Lemmas 6.3 and 6.5. □

Lemma 6.7.��E[𝑊ℓI(𝑊𝑠 > 𝑐)] − 𝑞𝐴E0𝑐 [𝑊ℓ (0)]
�� ⩽ 𝑞𝐴E[𝐴𝑒] + 2

√︁
𝑞𝐴E[𝐴𝑒] 𝑞𝐵E[𝐵𝑒] ⩽

𝑞𝐴𝑚+
4𝛼2

+
√
2𝑞𝐴𝑞𝐵𝑚+𝑐

𝛼
√︁
𝛽

.

Proof. Similar to that of Lemma 6.6. See Appendix B.3.

Lemma 6.8.

E[𝑊ℓI(𝑊𝑠 = 0)] ⩽ 𝛿E0𝑐 [𝑊ℓ (0)] +
√︃
𝛿E[𝐵2𝑒] ⩽ 𝛿E0𝑐 [𝑊ℓ (0)] +

2𝑐
√
2𝛿

𝛽
.

Proof. Applying Palm inversion formula [3] to𝑊ℓI(𝑊𝑠 = 0) yields

E[𝑊ℓI(𝑊𝑠 = 0)] = 1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐵

0

𝑊ℓ (𝑡) I(𝑊𝑠 (𝑡) = 0) d𝑡
]
,

where we can end the integral at 𝐵 because we only have𝑊𝑠 (𝑡) = 0 during below periods, which

corresponds to 𝑡 ∈ [0, 𝐵). We further expand the right-hand side using (6.6). No medium jobs are

dispatched to the short server during below periods, so

E[𝑊ℓI(𝑊𝑠 = 0)] ⩽ 1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐵

0

(𝑊ℓ (0) + Σℓℓ (0, 𝑡)) I(𝑊𝑠 (𝑡) = 0) d𝑡
]

(a)

=
E0𝑐 [𝑊ℓ (0)]
E[𝐴 + 𝐵] E

0

𝑐

[∫ 𝐵

0

I(𝑊𝑠 (𝑡) = 0) d𝑡
]
+ 1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐵

0

Σℓℓ (0, 𝑡) I(𝑊𝑠 (𝑡) = 0) d𝑡
]
.

where (a) follows from the independence of𝑊ℓ (0) and
∫ 𝐵

0
I(𝑊𝑠 (𝑡) = 0) d𝑡 . To analyze the first

term, we observe that by the Palm inversion formula [3] and Theorem 3.2,

1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐵

0

I(𝑊𝑠 (𝑡) = 0) d𝑡
]
= E[I(𝑊𝑠 = 0)] = P[𝑊𝑠 = 0] ⩽ 𝛿.

To analyze the second term, we apply (6.7), yielding

E0𝑐

[∫ 𝐵

0

Σℓℓ (0, 𝑡) I(𝑊𝑠 (𝑡) = 0) d𝑡
]
⩽ E0𝑐

[∫ 𝐵

0

𝑡I(𝑊𝑠 (𝑡) = 0) d𝑡
]
.

The right-hand side is difficult to compute directly due to the dependency of 𝐵 and𝑊𝑠 . To resolve

this, we apply the Palm inversion formula [3] to 𝐵𝑎I(𝑊𝑠 = 0), where 𝐵𝑎 (𝑡) is the age process of
the below-above cycle, namely the amount of time since the current cycle began. This yields

1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐵

0

𝑡I(𝑊𝑠 (𝑡) = 0) d𝑡
]
= E[𝐵𝑎I(𝑊𝑠 = 0)]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:18 Runhan Xie, Isaac Grosof, and Ziv Scully

Thus, to bound T3, it suffices to bound E[𝐵𝑎I(𝑊𝑠 = 0)]. By Cauchy-Schwarz,

E[𝐵𝑎I(𝑊𝑠 = 0)] ⩽
√︃
E[𝐵2𝑎]P[𝑊𝑠 = 0] (b)=

√︃
E[𝐵2𝑒]P[𝑊𝑠 = 0]

(c)

⩽
√︃
𝛿E[𝐵2𝑒],

where (b) follows because 𝐵𝑎 has distribution 𝐵𝑒 , and (c) follows from Theorem 3.2. The result then

follows from bounding E[𝐵2𝑒] using (6.3) and Lemma 6.3. □

Lemma 6.9.

E[𝑊ℓ] ⩽ E[𝑊all] ⩽
(
1 + 𝛿

Y

)
E[𝑊M/G/1] + 2𝑐 +

𝑚+
√
𝑞𝐴

2𝛼
√
Y

+ 4𝑐
√
𝛿

𝛼2𝛽Y
.

Proof. We use Theorem 6.1 to bound E[𝑊all], which amounts to analyzing E[𝐼𝑊all]. We have

𝐼𝑊all = (𝑊𝑠 +𝑊ℓ)
(
1

2
I(𝑊𝑠 = 0) + 1

2
I(𝑊ℓ = 0)

)
= 1

2
𝑊ℓI(𝑊𝑠 = 0) + 1

2
𝑊𝑠I(𝑊ℓ = 0).

Combining Lemmas 6.6 and 6.8 and noting E[𝑊ℓ] ⩽ E[𝑊all] yields a bound on E[𝑊ℓI(𝑊𝑠 = 0)]:

E[𝑊ℓI(𝑊𝑠 = 0)] ⩽ 𝛿
(
E[𝑊all] +

𝑞𝐴𝑚+
4𝛼2

+ 4𝑞𝐵𝑐

𝛽

)
+ 2𝑐

√
2𝛿

𝛽
.

To bound E[𝑊𝑠I(𝑊ℓ = 0)], we compute

E[𝑊𝑠I(𝑊ℓ = 0)]
(a)

⩽ E[(𝑐 + (𝑊𝑠 − 𝑐)+) I(𝑊ℓ = 0)]
(b)

⩽ 𝑐P[𝑊ℓ = 0] +
√︁
E[((𝑊𝑠 − 𝑐)+)2] P[𝑊ℓ = 0]

= 𝑐P[𝑊ℓ = 0] +
√︁
𝑞𝐴E[(𝑊𝑠 − 𝑐)2 |𝑊𝑠 > 𝑐] P[𝑊ℓ = 0]

(c)

⩽ 2Y𝑐 +
𝑚+

√
𝑞𝐴Y

2𝛼
,

where (a) follows from𝑊𝑠 ⩽ 𝑐 + (𝑊𝑠 − 𝑐)+, (b) follows from Cauchy-Schwarz, and (c) follows from

Lemma 6.4 and the fact that Y = 1

2
P[𝑊𝑠 = 0] + 1

2
P[𝑊ℓ = 0] ⩾ 1

2
P[𝑊ℓ = 0]. Combining the bounds

on E[𝑊ℓI(𝑊𝑠 = 0)] and E[𝑊𝑠I(𝑊ℓ = 0)] with Theorem 6.1, we obtain

E[𝑊all] = E[𝑊M/G/1] +
1

Y

(
1

2
E[𝑊ℓI(𝑊𝑠 = 0)] + 1

2
E[𝑊𝑠I(𝑊ℓ = 0)]

)
⩽ E[𝑊M/G/1] + 𝑐 +

𝑚+
√
𝑞𝐴

4𝛼
√
Y

+ 𝛿

2Y
E[𝑊all] +

𝑞𝐴𝑚+𝛿

8𝛼2Y
+ 2𝑞𝐵𝑐𝛿

𝛽Y
+ 𝑐

√
2𝛿

𝛽Y
.

The result follows after rearranging and simplifying. We use the fact that we have defined the

parameters such that 𝑐 ⩾ 𝑚+ and 𝛿 ⩽ Y (Sections 2.2 and 2.3), which means 1/
(
1 − 𝛿

2Y

)
⩽ 1 + 𝛿

Y
⩽ 2.

And, using the fact that 𝛼, 𝛽 ⩽ 1

2
, we loosely bound the terms with a

√
𝛿 factor by

𝑞𝐴𝑚+𝛿

8𝛼2Y
+ 2𝑞𝐵𝑐𝛿

𝛽Y
+ 𝑐

√
2𝛿

𝛽Y
⩽ (𝑞𝐴 + 𝑞𝐵)

𝑐𝛿

2𝛼2𝛽Y
+ 𝑐

√
2𝛿

𝛽Y
⩽

2𝑐
√
𝛿

𝛼2𝛽Y
. □

6.4 Bounding Mean Response Time
We now prove Theorem 3.3, our main upper bound result. It follows as a corollary of a more explicit

bound, which we state in Theorem 6.11. To simplify the computations, we assume that 𝛽 ⩾ 2𝛿 , but

we could remove this assumption at the cost of slightly complicating the expressions.

Lemma 6.10. If 𝛽 ⩾ 2𝛿 , then 𝑞𝐴 ⩽
2𝛽

𝛼+𝛽 and 𝑞𝐵 ⩽ 𝛼
𝛼+𝛽 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:19

Proof. The short server is stable, so the load of jobs arriving to it equals the average rate it

completes work. This means 𝜌𝑠 + 𝜌𝑚P[𝑊𝑠 ⩽ 𝑐] = 1

2
P[𝑊𝑠 > 0]. Theorem 3.2 implies P[𝑊𝑠 > 0] ∈

[1 − 𝛿, 1], so the bound follows from the definitions of 𝛼 and 𝛽 and the 𝛽 ⩾ 2𝛿 assumption. □

Theorem 6.11. In a system with 𝑛 = 2 servers, if 𝛿 ⩽ Y < 1

2
and 𝛽 ⩾ 2𝛿 , then by setting 𝑐 according

to Theorem 3.2, CARD achieves mean response time bounded by

E[𝑇CARD] ⩽
(
𝐾CARD + 4𝛽

𝛼 + 𝛽

) (
1 + 𝛿

Y

)
E[𝑊M/G/1] + 2E[𝑆]

+ 44𝑚+ max

{
𝛽

𝛼2 (𝛼 + 𝛽) ,

√︄
𝛽

𝛼2Y (𝛼 + 𝛽) ,
log

3

2𝛽𝛿

𝛽 (𝛼 + 𝛽) ,

√︄
log

3

2𝛽𝛿

𝛽
,

√
𝛿 log 3

2𝛽𝛿

𝛼2𝛽2Y

}
.

Proof sketch. It suffices to bound the work quantities on the right-hand side of (6.1).

• Lemma 6.4 implies E[𝑊𝑠] ⩽ 𝑐 + 𝑞𝐴E[𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐] ⩽ 𝑐 + 𝑞𝐴𝑚+
𝛼

.

• Lemmas 6.6 and 6.7 imply, after some simplification,

E[𝑊ℓI(𝑊𝑠 > 𝑐)] ⩽ 𝑞𝐴E[𝑊ℓ] +
𝑞𝐴𝑚+
𝛼2

+ 4𝑞𝐴𝑞𝐵𝑐

𝛽
+
√
2𝑞𝐴𝑞𝐵𝑚+𝑐

𝛼
√︁
𝛽

.

We use these with Lemmas 6.9 and 6.10 to express the right-hand side in terms of 𝛼 , 𝛽 , 𝛿 , and𝑚+,
then simplify. We defer the details to Appendix B.3. □

Proof of Theorem 3.3 for 𝑛 = 2 servers. The bound follows directly from plugging the pa-

rameter choices into Theorem 6.11, and comparing with the lower bound in Theorem 3.1 implies

heavy-traffic optimality. But the main question is why these are the right ways to set the parameters.

If we set 𝛿 = Θ(Y𝑑) for fixed 𝑑 , the only expression in Theorem 6.11 that is increasing as a

function of 𝑑 is log
3

2𝛽𝛿
= 𝑑Θ

(
log

1

Y

)
. We thus ignore factors of

√
𝛿 when determining 𝛼 and 𝛽 . One

can check at the end that 𝑑 ⩾ 3 suffices.

Observe that we want 𝛽/𝛼 ↓ 0 to ensure the multiplier of E[𝑊M/G/1] approaches 𝐾CARD. If we

substitute 𝛽 = ^𝛼 into Theorem 6.11, then for any fixed ^, the resulting expression is a decreasing

function of 𝛼 , so we set 𝛼 = Θ(1). With this choice, the largest terms from the maximum in

Theorem 6.11 are Θ
(√︁
𝛽/Y

)
and Θ

(
1

𝛽
log

1

Y

)
, which are balanced by 𝛽 = Θ

(
Y1/3

(
log

1

Y

)
2/3)

. □

7 SIMULATIONS
We have established the optimality of CARD as load approaches capacity. In this section, we

investigate the performance of CARD in moderate traffic via simulations. We aim to provide

insights into the following questions with our simulations.

• How good is CARD’s performance compared with other dispatching policies in the literature?

• Are there simple modifications of CARD that exhibit better performance in practice?

• CARD has three tunable parameters: 𝑐 , 𝛼 , and 𝛽 . The recipe provided in Theorem 3.3 is

optimal in heavy traffic, but are there rules of thumb that work well beyond heavy traffic?

How sensitive is CARD’s performance to these parameters?

In all of our simulations, we consider three benchmark policies: LWL, SITA-E
4
[17], and Dice [26].

Roughly, Dice lets the server with least work pick small jobs from the arrival stream, leaving the

4
SITA-E is the version of SITA that splits the load equaly among all the servers. One can improve its performance very

slightly by using an unbalanced load split, a policy known as SITA-O. But computing the optimal split is generally challenging

[19], and in our initial experiments, SITA-O did not significantly improve upon SITA-E.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:20 Runhan Xie, Isaac Grosof, and Ziv Scully

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.00

0.25

0.50

0.75

1.00

1.25

1.50

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice

(a) 2 servers, cv = 1

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice

(b) 2 servers, cv = 10

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice

(c) 2 servers, cv = 100

Fig. 7.1. Normalized (relative to E[𝑊
M/G/1]) mean response times for 𝑛 = 2 servers.

large jobs for servers with more work. We refer interested readers to Appendix A for details.
5

Of course, there are many more dispatching policies. We pick LWL and SITA-E because they

are extensively studied, and we pick Dice because among all heuristics for size- and state-aware

dispatching, it has the best empirical performance at high load [26].

Our simulations include job size distributions with exponential and heavier tails. Heavy-tail

distributions are common in computer systems and networks (e.g. [38]) and the high mean response

times they incur make a good dispatching policy essential. Throughout this section, we consider

three Weibull distributions with mean 1 and coefficients of variation (cv) 1, 10, and 100. We simulate

40 trials for each data point, with 10
7
arrivals per trial for cv = 1 and cv = 10, and 3 × 10

7
arrivals

per trial for cv = 100. We show 95% confidence intervals when wider than the marker size.

7.1 Performance of CARD with Two Servers
Although CARD as introduced in Section 2.2 is heavy-traffic optimal, we can improve its perfor-

mance under moderate traffic with one small modification: instead of statically deciding which

server is short and which is long, dynamically treat whichever server has less work as the short

server. We call this variant Flexible CARD, and call the original version Rigid CARD to disambiguate.

Figure 7.1 shows us that both CARDversions significantly outperform LWL and SITA-E, especially

at high loads and with large coefficients of variation. For instance, with cv = 100 and 𝜌 = 0.98,

CARD gives a 93% reduction compared to LWL, and a 61% reduction compared to SITA-E. Flexible

CARD is also almost tied with Dice at all loads simulated.

7.2 Calibrating the Parameters of Two-Server CARD
We now discuss how to calibrate parameters 𝑐 , 𝛼 , and 𝛽 . In practice, 𝛼 and 𝛽 as prescribed in

Theorem 3.3 are difficult to calibrate, because the ranges of 𝛼 and 𝛽 change as 𝜌 increases. Therefore,

we consider instead the parameters 𝛼 ′ = 1

2
− 𝜌𝑠

𝜌
and 𝛽 ′ = 1

2
− 𝜌ℓ

𝜌
. Adjusting 𝛼 ′ can therefore be

understood as adjusting the fraction of small jobs and adjusting 𝛽 ′ can be understood as adjusting

the fraction of large jobs.

After trying a few strategies for scaling 𝑐 as a function of 𝜌 , we found that thresholds of the form

𝑐 = 𝛾 1√
Y
log

(
1

Y

)
, where 𝛾 depends on the distribution, yield decent performance.

5
The version of Dice we simulate differs slightly from the original version in [26], where Dice have thresholds that do not

vary with load. We notice that constant thresholds lead to suboptimal performance for either low or high loads. Therefore,

we incorporate load-dependent thresholds for Dice that lead to good performance across all loads simulated. With two

servers, we use a threshold of the form [Y−1/3 for Dice, picking [= 1.8, 5.2, 20 for cv = 1, 10, 100, respectively. With ten

servers, we use thresholds 2𝑚𝑖Y
−1/3

.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:21

0.0 0.1 0.2 0.3 0.4 0.5
α0

9

12

15

18

21

24

27

M
ea

n
Re

sp
on

se
 T

im
e

(a) Varying 𝛼 ′ (𝛽′ = 0.15, 𝛾 = 0.6)

0.0 0.1 0.2 0.3 0.4 0.5
β 0

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

M
ea

n
Re

sp
on

se
 T

im
e

(b) Varying 𝛽′ (𝛼 ′ = 0.15, 𝛾 = 0.6)

0.5 1.0 1.5 2.0
γ

9.0

9.5

10.0

10.5

11.0

11.5

12.0

M
ea

n
Re

sp
on

se
 T

im
e

(c) Varying 𝛾 (𝛼 ′ = 0.15, 𝛽′ = 0.15)

Fig. 7.2. For each of the three plots, we fix two parameters and vary one parameter across a range of values.
Size distribution simulated has cv = 10, and load is fixed at 𝜌 = 0.8.

In general, for the three job size distributions we consider, mean response time under flexible

CARD is not very sensitive to these parameters near the optima (see Figure 7.2). Any choice of

parameters not too far from the optima yields decent performance. We found that 𝛼 ′ = 𝛽 ′ = 0.15

for all three distributions and 𝛾 = 0.3, 0.6, 2.5 for cv = 1, 10, and 100, respectively, lead to decent

performance. These are also the parameters we used in Figure 7.1.

7.3 Improving CARD’s Performance for More than Two Servers
As the number of servers increases, flexible CARD with three parameters (𝛾 , 𝛼 ′, and 𝛽 ′) no longer

performs well for distributions with large coefficients of variation Figure C.1. Therefore, we propose

another variant of CARD for 𝑛 servers called multi-band CARD. We first present the general

dispatching rules, then explain how multi-band rigid and flexible CARDs are defined.

• We divide the job size into 𝑛 + 1 small intervals such that each interval amounts to
1

𝑛
of the

total load except for the first and last interval, each of which amounts to
1

2𝑛
of the total load.

Denote the endpoints of these intervals as 0,𝑚1, . . .𝑚𝑛,∞.

• Server 𝑖 except the last one has a threshold 𝑐𝑖 , which can be different for different servers.

When a job of size 𝑠 arrives, it is dispatched according to the following general rules:

– If 𝑠 < 𝑚1, it is dispatched to server 1.

– If 𝑠 > 𝑚𝑛 , it is dispatched to server 𝑛.

– If 𝑠 ∈ [𝑚𝑖 ,𝑚𝑖+1) for 𝑖 = 1, . . . , 𝑛 − 1, it is dispatched to server 𝑖 if𝑊𝑖 ⩽ 𝑐𝑖 . Otherwise, it is
dispatched to server 𝑖 + 1.

Multi-band rigid CARD numbers the servers 1 to 𝑛 and dispatches according to the rules outlined

above. Server numbers do not change under rigid CARD. On the other hand, Multi-band flexible

CARD sorts the servers in increasing work order when a job arrives so that𝑊1 ⩽𝑊2 ⩽ · · · ⩽𝑊𝑛 ,

then dispatch according to the general rules.

Since all the𝑚𝑖 ’s are fixed for each distribution, the tunable parameters are the 𝑐𝑖 ’s. Our experi-

ments show that we achieve good performance by setting 𝑐𝑖 =𝑚𝑖/
√
Y.

As we can see in Figure 7.3, multi-band CARDs significantly outperforms LWL and SITA-E

at high loads and for job size with large coefficients of variation. When the job size distribution

has cv=10, at 𝜌 = 0.98, mean response time under flexible CARD is ∼22% and ∼19% of the mean

response times under LWL and SITA-E, respectively. When the job size distribution has cv=100, at

𝜌 = 0.98, mean response time under flexible CARD is ∼4% and ∼21% of the mean response times

under LWL and SITA-E, respectively. Moreover, multi-band flexible CARD almost ties with Dice in

all loads simulated.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:22 Runhan Xie, Isaac Grosof, and Ziv Scully

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0

1

2

3

4

5

6

7

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e

LWL
SITA-E
Multi-band Rigid CARD
Multi-band Flexible CARD
Dice

(a) 10 servers, cv = 1

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e

LWL
SITA-E
Multi-band Rigid CARD
Multi-band Flexible CARD
Dice

(b) 10 servers, cv = 10

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e LWL
SITA-E
Multi-band Rigid CARD
Multi-band Flexible CARD
Dice

(c) 10 servers, cv = 100

Fig. 7.3. Normalized (relative to E[𝑊
M/G/1]) mean response times for 𝑛 = 10 servers.

7.4 Tail Simulations
Although our paper focuses exclusively on mean response time analysis, metrics based on the

tail of response time are often of interest in practice. As such, in this section, we conduct some

simulations comparing the response time tails of CARD against the benchmark policies and provide

some insights into the results.

We focus on a two-server system. The parameters of rigid CARD, flexible CARD, and Dice are the

same as those in Section 7.2. The results are presented in Figure 7.4. We can see that for light-tail

job size distribution, the tails of LWL and M/G/1/FCFS are better than those of rigid and flexible

CARDs and Dice. On the other hand, for heavy-tail job size distribution, the tails of rigid and

flexible CARDs and Dice are far better than those of LWL and M/G/1/FCFS up to 99-percentile of

flexible CARD response time.

This result is not surprising. CARD and Dice both starve large jobs by making them wait in a long

queue. For light-tail job size distributions, although giving a little priority to small jobs improves tail

performance [15], starving large jobs in general only worsens tail performance [54]. For heavy-tail

job size distributions, however, starving large jobs improves tail performance tremendously [54].

As is shown in Figure 7.4, CARD and Dice significantly outperform LWL and M/G/1/FCFS up to

99-percentile of flexible CARD response time for heavy-tail job size distributions.

7.5 Comparing CARD to Dice
Given the excellent performance of Dice, we feel Dice warrants a more in-depth discussion. We

refer interested readers to Appendix A, where we discuss the following questions:

• How complicated is Dice compared with CARD?

• Why does Dice perform so well in simulations?

• Is Dice heavy-traffic optimal?

• Why is it hard to analyze Dice?

The main takeaway is that Dice may not be heavy-traffic optimal, but it may be possible to modify

Dice to make it heavy-traffic optimal. Dice remains a compelling option in practice that certainly

deserves further study.

8 CONCLUSION
In this paper, we prove the first mean response time lower bound for FCFS servers. We design a

new dispatching policy, called CARD (Controlled Asymmetry Reduces Delay), and show that it is

heavy-traffic optimal, thus making CARD the first proven heavy-traffic optimal size- and state-

aware dispatching policy. CARD can thus serve as a new benchmark policy for future work in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:23

0 5 10 15 20 25
t (tmax = 26)

0.0

0.2

0.4

0.6

0.8

1.0

ℙ
(T

π
>
t)

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice
M/G/1/FCFS

(a) 2 servers, cv = 1, 𝜌 = 0.7

0 10 20 30 40 50
t (tmax = 48)

0.0

0.2

0.4

0.6

0.8

1.0

ℙ
(T

π
>
t)

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice
M/G/1/FCFS

(b) 2 servers, cv = 1, 𝜌 = 0.85

0 20 40 60 80 100 120
t (tmax = 125)

0.0

0.2

0.4

0.6

0.8

1.0

ℙ
(T

π
>
t)

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice
M/G/1/FCFS

(c) 2 servers, cv = 1, 𝜌 = 0.95

0 25 50 75 100 125 150 175
t (tmax = 170)

0.0

0.2

0.4

0.6

0.8

1.0

ℙ
(T

π
>
t)

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice
M/G/1/FCFS

(d) 2 servers, cv = 100, 𝜌 = 0.7

0 50 100 150 200
t (tmax = 208)

0.0

0.2

0.4

0.6

0.8

1.0

ℙ
(T

π
>
t)

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice
M/G/1/FCFS

(e) 2 servers, cv = 100, 𝜌 = 0.85

0 50 100 150 200 250
t (tmax = 275)

0.0

0.2

0.4

0.6

0.8

1.0

ℙ
(T

π
>
t)

LWL
SITA-E
Rigid CARD
Flexible CARD
Dice
M/G/1/FCFS

(f) 2 servers, cv = 100, 𝜌 = 0.95

Fig. 7.4. Response time tails for 𝑛 = 2 servers shown above. The tails are plotted in [0, 𝑡max], where 𝑡max is
chosen so that P[𝑇Flexible CARD ⩽ 𝑡max] ≈ 0.99.

dispatching or load-balancing for FCFS servers. Methodologically, our method of analyzing CARD

using below-above cycles could be of independent interest, as it can be adapted to study other

threshold-based policies.

Underlying our results is the insight that in the size-aware dispatching setting, it is helpful to
have a significant imbalance between the amounts of work at each server. This insight has been

made multiple times throughout the size-aware dispatching literature (e.g. Harchol-Balter et al.

[17], Hyytiä et al. [24]). It is in contrast to the natural idea of always balancing the queues, which

is helpful in size-oblivious dispatching [60].

In addition to minimizing mean response time, researchers today are also interested in tail

performance. We conjecture that for job sizes with exponential tails and mean 1/`, work under

CARD asymptotically decays exponentially with rate
`−_
𝑛

in an 𝑛-server system, which is worse

(i.e. smaller) than the ` − _ decay rate of an M/M/1 under FCFS. An interesting follow-up question

is how to balance the tradeoff between mean response time and response time decay rate, perhaps

starting with the heavy-traffic regime. We leave this to future work.

ACKNOWLEDGMENTS
We thank Rhonda Righter and Esa Hyytiä for helpful discussions about optimal dispatching and

the Dice policy. We also thank Onno Boxma and Ivo Adan for helpful pointers on the G/M/1, which

featured in a previous version of our below-period analysis.

Isaac Grosof was supported by NSF grant no. CMMI-2307008, and a Tennenbaum Postdoctoral

Fellowship at the Georgia Institute of Technology School of Industrial and Systems Engineering.

Ziv Scully conducted this research in part while visiting the Simons Institute for the Theory of

Computing, and in part while a FODSI postdoc at Harvard and MIT. He was supported by National

Science Foundation grant nos. CMMI-2307008, DMS-2023528, and DMS-2022448.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:24 Runhan Xie, Isaac Grosof, and Ziv Scully

REFERENCES
[1] Osman T Akgun, Rhonda Righter, and Ronald Wolff. 2013. Partial flexibility in routeing and scheduling. Advances in

Applied Probability 45, 3 (2013), 673–691.

[2] Jonatha Anselmi. 2019. Combining size-based load balancing with round-robin for scalable low latency. IEEE
Transactions on Parallel and Distributed Systems 31, 4 (2019), 886–896.

[3] Francois Baccelli and Pierre Brémaud. 2002. Elements of queueing theory: Palm Martingale calculus and stochastic
recurrences. Vol. 26. Springer Science & Business Media.

[4] Yan Chen and Jing Dong. 2021. Scheduling with service-time information: The power of two priority classes. arXiv
preprint arXiv:2105.10499 (2021).

[5] DJ Daley. 1987. Certain optimality properties of the first-come first-served discipline for G/G/s queues. Stochastic
Processes and their Applications 25 (1987), 301–308.

[6] Douglas G Down and Rong Wu. 2006. Multi-layered round robin routing for parallel servers. Queueing Systems 53
(2006), 177–188.

[7] Anthony Ephremides, Pravin Varaiya, and Jean Walrand. 1980. A simple dynamic routing problem. IEEE transactions
on Automatic Control 25, 4 (1980), 690–693.

[8] Atilla Eryilmaz and Rayadurgam Srikant. 2012. Asymptotically tight steady-state queue length bounds implied by drift

conditions. Queueing Systems 72 (2012), 311–359.
[9] Hanhua Feng, Vishal Misra, and Dan Rubenstein. 2005. Optimal state-free, size-aware dispatching for heterogeneous

M/G/-type systems. Performance evaluation 62, 1-4 (2005), 475–492.

[10] Sergey Foss, Seva Shneer, and Andrey Tyurlikov. 2012. Stability of a Markov-modulated Markov chain, with application

to a wireless network governed by two protocols. Stochastic Systems 2, 1 (2012), 208–231.
[11] Sergei Georgievich Foss. 1980. Approximation of multichannel queueing systems. Siberian Mathematical Journal 21, 6

(1980), 851–857.

[12] Xinzhe Fu and Eytan Modiano. 2022. Joint Learning and Control in Stochastic Queueing Networks with Unknown

Utilities. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 3 (2022), 1–32.
[13] Steve W Fuhrmann and Robert B Cooper. 1985. Stochastic decompositions in the M/G/1 queue with generalized

vacations. Operations research 33, 5 (1985), 1117–1129.

[14] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load balancing guardrails: keeping your heavy traffic on the

road to low response times. Proceedings of the ACM on Measurement and Analysis of Computing Systems 3, 2 (2019),
1–31.

[15] Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter. 2021. Nudge: Stochastically improving upon FCFS.

Proceedings of the ACM on Measurement and Analysis of Computing Systems 5, 2 (2021), 1–29.
[16] Mor Harchol-Balter. 2013. Performance modeling and design of computer systems: queueing theory in action. Cambridge

University Press.

[17] Mor Harchol-Balter, Mark E Crovella, and Cristina D Murta. 1999. On choosing a task assignment policy for a

distributed server system. J. Parallel and Distrib. Comput. 59, 2 (1999), 204–228.
[18] Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew R Young. 2009. Surprising results on task assignment in server

farms with high-variability workloads. In Proceedings of the eleventh international joint conference on Measurement and
modeling of computer systems. 287–298.

[19] Mor Harchol-Balter and Rein Vesilo. 2010. To balance or unbalance load in size-interval task allocation. Probability in
the Engineering and Informational Sciences 24, 2 (2010), 219–244.

[20] Daniela Hurtado-Lange and Siva Theja Maguluri. 2022. A load balancing system in the many-server heavy-traffic

asymptotics. Queueing Systems 101, 3-4 (2022), 353–391.
[21] Daniela Hurtado-Lange, Sushil Mahavir Varma, and Siva Theja Maguluri. 2022. Logarithmic heavy traffic error bounds

in generalized switch and load balancing systems. Journal of Applied Probability 59, 3 (2022), 652–669.

[22] Esa Hyytiä. 2013. Lookahead actions in dispatching to parallel queues. Performance Evaluation 70, 10 (2013), 859–872.

[23] Esa Hyytiä, Peter Jacko, and Rhonda Righter. 2022. Routing with too much information? Queueing Systems 100, 3-4
(2022), 441–443.

[24] Esa Hyytiä, Aleksi Penttinen, and Samuli Aalto. 2012. Size-and state-aware dispatching problem with queue-specific

job sizes. European Journal of Operational Research 217, 2 (2012), 357–370.

[25] Esa Hyytiä and Rhonda Righter. 2020. STAR and RATS: Multi-level dispatching policies. In 2020 32nd International
Teletraffic Congress (ITC 32). IEEE, 81–89.

[26] Esa Hyytiä and Rhonda Righter. 2022. On Sequential Dispatching Policies. In 2022 32nd International Telecommunication
Networks and Applications Conference (ITNAC). IEEE, 1–6.

[27] Esa Hyytiä and Rhonda Righter. 2023. On Dynamic Size-Aware Dispatching and Computation of the Optimal Actions.

SSRN 4395052 (2023).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:25

[28] Prakirt Raj Jhunjhunwala and Siva Theja Maguluri. 2021. Low-complexity switch scheduling algorithms: delay

optimality in heavy traffic. IEEE/ACM Transactions on Networking 30, 1 (2021), 464–473.

[29] Prakirt Raj Jhunjhunwala and Siva Theja Maguluri. 2023. Heavy Traffic Queue Length Distribution without Resource

Pooling in an Input-Queued Switch. ACM SIGMETRICS Performance Evaluation Review 50, 4 (2023), 26–28.

[30] Frank P Kelly and CN Laws. 1993. Dynamic routing in open queueing networks: Brownian models, cut constraints

and resource pooling. Queueing systems 13 (1993), 47–86.
[31] Gerhardus Martinus Koole. 1992. On the optimality of FCFS for networks of multi-server queues. Centre for Mathematics

and Computer Science.

[32] Daniela Hurtado Lange and Siva Theja Maguluri. 2019. Heavy-traffic analysis of the generalized switch under

multidimensional state space collapse. ACM SIGMETRICS Performance Evaluation Review 47, 2 (2019), 36–38.

[33] Xin Liu, Kang Gong, and Lei Ying. 2022. Steady-state analysis of load balancing with Coxian-2 distributed service

times. Naval Research Logistics (NRL) 69, 1 (2022), 57–75.
[34] Zhen Liu and Rhonda Righter. 1998. Optimal load balancing on distributed homogeneous unreliable processors.

Operations Research 46, 4 (1998), 563–573.

[35] Zhen Liu and Don Towsley. 1994. Optimality of the round-robin routing policy. Journal of applied probability 31, 2

(1994), 466–475.

[36] Siva Theja Maguluri, Sai Kiran Burle, and Rayadurgam Srikant. 2018. Optimal heavy-traffic queue length scaling in an

incompletely saturated switch. Queueing Systems 88 (2018), 279–309.
[37] Siva Theja Maguluri and R Srikant. 2016. Heavy traffic queue length behavior in a switch under the MaxWeight

algorithm. Stochastic Systems 6, 1 (2016), 211–250.
[38] Aniket Mahanti, Niklas Carlsson, Anirban Mahanti, Martin Arlitt, and Carey Williamson. 2013. A tale of the tails:

Power-laws in internet measurements. IEEE Network 27, 1 (2013), 59–64.

[39] Sean P Meyn and Douglas Down. 1994. Stability of generalized Jackson networks. The Annals of Applied Probability
(1994), 124–148.

[40] Sean P Meyn and Richard L Tweedie. 1993. Stability of Markovian processes II: Continuous-time processes and sampled

chains. Advances in Applied Probability 25, 3 (1993), 487–517.

[41] Sean P Meyn and Richard L Tweedie. 1993. Stability of Markovian processes III: Foster–Lyapunov criteria for

continuous-time processes. Advances in Applied Probability 25, 3 (1993), 518–548.

[42] Masakiyo Miyazawa. 1994. Rate conservation laws: a survey. Queueing Systems 15 (1994), 1–58.
[43] Sheldon M Ross. 1995. Stochastic processes. John Wiley & Sons.

[44] Sigurður Gauti Samúelsson and Esa Hyytiä. 2018. Applying reinforcement learning to basic routing problem. In

Queueing Theory and Network Applications: 13th International Conference, QTNA 2018, Tsukuba, Japan, July 25-27, 2018,
Proceedings 13. Springer, 238–249.

[45] Linus Schrage. 1968. A proof of the optimality of the shortest remaining processing time discipline. Operations Research
16, 3 (1968), 687–690.

[46] Ziv Scully. 2022. A New Toolbox for Scheduling Theory. Ph. D. Dissertation. Carnegie Mellon University, Pittsburgh, PA.

https://ziv.codes/pdf/scully-thesis.pdf

[47] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The Gittins policy is nearly optimal in the M/G/k under

extremely general conditions. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 3 (2020),
1–29.

[48] Yih-Choung Teh and Amy R Ward. 2002. Critical thresholds for dynamic routing in queueing networks. Queueing
Systems 42 (2002), 297–316.

[49] Chang-Heng Wang, Siva Theja Maguluri, and Tara Javidi. 2017. Heavy traffic queue length behavior in switches with

reconfiguration delay. In IEEE INFOCOM 2017-IEEE Conference on Computer Communications. IEEE, 1–9.
[50] Yinghui Wang and Douglas Down. 2014. On resource pooling in SITA-like parallel server systems. In 2014 26th

International Teletraffic Congress (ITC). IEEE, 1–9.
[51] Richard R Weber. 1978. On the optimal assignment of customers to parallel servers. Journal of Applied Probability 15, 2

(1978), 406–413.

[52] Wentao Weng, Xingyu Zhou, and R Srikant. 2020. Optimal load balancing with locality constraints. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 4, 3 (2020), 1–37.

[53] Ward Whitt. 1993. Approximations for the GI/G/m queue. Production and Operations Management 2, 2 (1993), 114–161.
[54] Adam Wierman and Bert Zwart. 2012. Is tail-optimal scheduling possible? Operations research 60, 5 (2012), 1249–1257.

[55] Wayne Winston. 1977. Optimality of the shortest line discipline. Journal of applied probability 14, 1 (1977), 181–189.

[56] Ronald W Wolff. 1982. Poisson arrivals see time averages. Operations research 30, 2 (1982), 223–231.

[57] Runhan Xie and Ziv Scully. 2023. Reducing heavy-traffic response time with asymmetric dispatching. ACM SIGMETRICS
Performance Evaluation Review 51, 2 (2023), 36–38.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

https://ziv.codes/pdf/scully-thesis.pdf

9:26 Runhan Xie, Isaac Grosof, and Ziv Scully

[58] Xingyu Zhou, Jian Tan, and Ness Shroff. 2018. Flexible load balancing with multi-dimensional state-space collapse:

Throughput and heavy-traffic delay optimality. Performance Evaluation 127-128 (2018), 176–193.

[59] Xingyu Zhou, Jian Tan, and Ness Shroff. 2018. Heavy-traffic delay optimality in pull-based load balancing systems:

Necessary and sufficient conditions. Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 3
(2018), 1–33.

[60] Xingyu Zhou, Fei Wu, Jian Tan, Kannan Srinivasan, and Ness Shroff. 2018. Degree of queue imbalance: Overcoming

the limitation of heavy-traffic delay optimality in load balancing systems. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 2, 1 (2018), 1–41.

[61] Xingyu Zhou, Fei Wu, Jian Tan, Yin Sun, and Ness Shroff. 2017. Designing low-complexity heavy-traffic delay-optimal

load balancing schemes: Theory to algorithms. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 1, 2 (2017), 1–30.

A DICE
In this section, we give a brief introduction of Dice based on Hyytiä and Righter [26] and answer

some questions readers may be curious about.

What is Dice? Let W = (𝑊1, . . . ,𝑊𝑛) be the workload vector. Dice has 𝑛 − 1 threshold parameters

𝜏1, . . . , 𝜏𝑛−1 to set. When a job of size 𝑠 arrives, Dice dispatches the job as follows:

• Sort the workload vector in increasing order. We assume that 𝜏𝑖 is the threshold on𝑊𝑖 .

• The dispatcher goes through W in increasing order and dispatches the job to the first server

𝑖 that satisfies 𝜏𝑖 −𝑊𝑖 > 𝑠 . If none of the first 𝑛 − 1 servers satisfy this condition, the job is

dispatched to the last server.

How complicated is Dice compared with CARD? Dice is easier to implement than CARD. To imple-

ment Dice, one only needs to find decent threshold parameters 𝜏1, . . . , 𝜏𝑛−1. Successful implemen-

tation of CARD, however, requires tuning thresholds on job sizes (i.e.𝑚− and𝑚+ for two-server
CARD and𝑚𝑖 ’s for multi-band CARD) in addition to the threshold parameters.

Why does Dice perform so well in simulations? Dice has the same spirit as CARD: it keeps one long

queue populated mostly with large jobs and maintains short queues for small jobs to get through

quickly, thereby increasing E[𝑆queue].

Is Dice heavy-traffic optimal? This is an open problem. We conjecture that Dice may not be heavy-
traffic optimal. Consider a two-server system. Under Dice, only jobs that fit into the gap between

current work at the shorter server and the threshold get dispatched to the shorter server. However,

this will not guarantee that as Y ↓ 0, all jobs with size less than𝑚 gets dispatched to the shorter

server, as there is always some probability that the gap is too small for a job with size less than𝑚.

Why is it hard to analyze Dice? Even with the tools we developed in this paper, Dice is more

difficult to analyze than CARD. The main reason is that the dispatching policy under Dice changes

continuously with the state of the shorter queue, which makes it challenging to directly apply our

below-above cycle analysis. We expect that a refinement of our approach could work for Dice, but

substantial extra work is needed.

B DEFERRED PROOFS
B.1 Suboptimality of LWL and SITA in heavy-traffic
In this section, we show that in a two-server system, neither LWL nor SITA is heavy-traffic optimal.

Let

𝐾𝜋 = lim

Y↓0

E[𝑇𝜋]
E[𝑊M/G/1]

,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:27

be the heavy-traffic constant of policy 𝜋 . In Theorem B.1 below, we show that 𝐾LWL and 𝐾SITA-E are

strictly greater than 𝐾CARD as defined in (2.1).

However, this does not finish the story for SITA, because while SITA-E is the version of SITA

that splits the load equally, it is possible to improve SITA’s performance by using an unequal load

split. The version of SITA that uses the optimal load split is known as SITA-O. Surprisingly, SITA-O

can have a significantly better heavy-traffic constant than SITA-E, even though there is very little

flexibility in the amount of load each server can receive. In Theorem B.2, we sketch a computation

of 𝐾SITA-O, showing that it, too, is strictly greater than 𝐾CARD.

For simplicity of computations, we focus on 𝑛 = 2 servers, but the results should generalize to

more servers. Similarly, while we continue to assume continuous job size distribution 𝑆 (Section 2.1)

for simplicity of defining SITA, the results should hold for any job size distribution for which𝑚 is

well-defined.
6

Theorem B.1. In a system with 𝑛 = 2 servers and and a continuous job size distribution 𝑆 , we have
𝐾LWL > 𝐾CARD and 𝐾SITA-E ⩾ 2𝐾CARD.

Proof. It is known that 𝐾LWL = 1 (see e.g. [53]). To compute 𝐾SITA-E, we first note that under

SITA-E, the system decouples to two independent M/G/1 queues. For any Y ∈ (0, 1), we have

E[𝑇SITA-E] = 2

(
_P[𝑆 < 𝑚]E[𝑆2 | 𝑆 < 𝑚]

Y
P[𝑆 < 𝑚] + _P[𝑆 ⩾ 𝑚]E[𝑆2 | 𝑆 ⩾ 𝑚]

Y
P[𝑆 ⩾ 𝑚]

)
(B.1)

+ 2E[𝑆]

= 2

(
_E[𝑆2I(𝑆 < 𝑚)]

Y
P[𝑆 < 𝑚] + _E[𝑆

2I(𝑆 ⩾ 𝑚)]
Y

P[𝑆 ⩾ 𝑚] + E[𝑆]
)

(a)

⩾
2_E[𝑆2]

Y
P[𝑆 ⩾ 𝑚] + 2E[𝑆]

= 4P[𝑆 ⩾ 𝑚]E[𝑊M/G/1] + 2E[𝑆],

where (a) follows from the fact that P[𝑆 < 𝑚] ⩾ P[𝑆 ⩾ 𝑚]. Looking at the Y ↓ 0 limit, we have

𝐾SITA-E ⩾ 2𝐾CARD. □

Theorem B.2. In a system with 𝑛 = 2 servers and a continuous job size distribution 𝑆 , we have
𝐾SITA-O > 𝐾CARD.

Proof sketch. SITA-O works like SITA-E, except instead of using size threshold𝑚 to split jobs

between the servers, it uses a different size threshold𝑚′
. The key insight is that in the Y ↓ 0 limit,

we must have𝑚′ −𝑚 ⩽ 𝑂 (Y), beause otherwise we would overload one of the servers. This means,

roughly speaking, that SITA-O can affect the denominators in (B.1), but it cannot significantly

affect the numerators. Specifically, there exists 𝑥 ∈ (−1, 1) such that

E[𝑇SITA-O] = 2

(
_P[𝑆 < 𝑚]E[𝑆2 | 𝑆 < 𝑚]

Y (1 − 𝑥) P[𝑆 < 𝑚] + _P[𝑆 ⩾ 𝑚]E[𝑆2 | 𝑆 ⩾ 𝑚]
Y (1 + 𝑥) P[𝑆 ⩾ 𝑚] ±𝑂 (1)

)
=
2_

Y

(
E[𝑆2I(𝑆 < 𝑚)]P[𝑆 < 𝑚]

1 − 𝑥 + E[𝑆
2I(𝑆 ⩾ 𝑚)]P[𝑆 ⩾ 𝑚]

1 + 𝑥

)
±𝑂 (1).

6
When the distribution has an atom at𝑚, there are corner cases where 𝐾SITA-O = 𝐾CARD. One example is when 𝑆 ∈ {𝑎,𝑏}
with probability 1 such that 𝑎P[𝑆 = 𝑎] = 𝑏P[𝑆 = 𝑏] [57].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:28 Runhan Xie, Isaac Grosof, and Ziv Scully

Optimizing over the value of 𝑥 yields

𝐾SITA-O =
2

E[𝑆2]

(√︁
E[𝑆2I(𝑆 < 𝑚)]P[𝑆 < 𝑚] +

√︁
E[𝑆2I(𝑆 ⩾ 𝑚)]P[𝑆 ⩾ 𝑚]

)
2

(a)

⩾
2P[𝑆 ⩾ 𝑚]
E[𝑆2]

(√︁
E[𝑆2I(𝑆 < 𝑚)] +

√︁
E[𝑆2I(𝑆 ⩾ 𝑚)]

)
2

= 𝐾CARD

(
1 +

2

√︁
E[𝑆2I(𝑆 < 𝑚)]E[𝑆2I(𝑆 ⩾ 𝑚)]

E[𝑆2]

)
,

where (a) follows from the fact that P[𝑆 < 𝑚] ⩾ P[𝑆 ⩾ 𝑚]. □

B.2 Stability
As outlined in Section 5, we begin by showing that the short server is stable for any threshold 𝑐 ⩾ 0.

Our main tool is a continuous-time Foster-Lyapunov theorem developed in Meyn and Tweedie

[41]. A key component of the theorem is the infinitesimal generators for Markov processes. Let

𝑋 (𝑡) be a Markov process, its infinitesimal generator, 𝒜, is the operator defined by

𝒜𝑉 (𝑥) = lim

𝑡↓0

E[𝑉 (𝑋 (𝑡)) | 𝑋 (0) = 𝑥] −𝑉 (𝑥)
𝑡

.

The domain of𝒜 is all functions𝑉 for which the limit on the right exists for all 𝑥 in the state space.

Since work at the short server,𝑊𝑠 (𝑡), is a Markov process, for a function 𝑉 with left derivative, we

may explicitly derive the infinitesimal generator of𝑊𝑠 (𝑡) under CARD:
𝒜𝑉 (𝑤𝑠) = − 1

2
𝑉 ′ (𝑤𝑠) I(𝑤𝑠 > 0) + _𝑝𝑠E𝑆𝑠 [𝑉 (𝑤𝑠 + 𝑆𝑠) −𝑉 (𝑤𝑠)]

+ I(𝑤𝑠 ⩽ 𝑐)_𝑝𝑚E𝑆𝑚 [𝑉 (𝑤𝑠 + 𝑆𝑚) −𝑉 (𝑤𝑠)],
where 𝑝𝑠 = P[𝑆 ⩽ 𝑚], 𝑝𝑚 = P[𝑚− < 𝑆 < 𝑚+], E𝑆𝑠 [·] is the expectation over the distribution of

small jobs (i.e. 𝑆 | 𝑆 ⩽ 𝑚−) and E𝑆𝑚 [·] is the expectation over the distribution of medium jobs (i.e.

𝑆 | 𝑚− < 𝑆 < 𝑚+), I(·) is the indicator function, and 𝑉 ′
is the left derivative.

We now present the continuous-time Foster-Lyapunov theorem [41, Theorem 4.4] below for

easy reference.

Theorem B.3. Suppose that a Markov process Φ is a non-explosive right process. If there exists
constants 𝑐, 𝑑 > 0, a function 𝑓 ⩾ 1, a closed petite set 𝐶 , and a function 𝑉 ⩾ 0 that is bounded on 𝐶
such that for all 𝑥 ∈ 𝑂𝑚 and𝑚 ∈ Z,

𝒜𝑚𝑉 (𝑥) ⩽ −[𝑓 (𝑥) + 𝑑I𝐶 (𝑥),
then Φ is positive Harris recurrent.

Here, 𝑂𝑚 is a family of precompact sets that increases to the entire state space as𝑚 → ∞ and

𝒜𝑚 is the generator for the truncated process restricted to 𝑂𝑚 . This restriction is in place mainly

to handle possibly explosive processes. Our process W(𝑡) is not explosive. More importantly, the

Lyapunov function 𝑉 we consider in Lemma 5.1 is increasing and differentiable. It follows that

𝒜𝑚𝑉 (𝑥) ⩽ 𝒜𝑉 (𝑥) for all 𝑥 . It therefore suffices for us to apply theorem Theorem B.3 with 𝒜𝑉 (𝑥)
instead.

Lemma 5.1. 𝑊𝑠 is Harris ergodic for any Y > 0.

Proof. We first check the preconditions of Theorem B.3 hold for𝑊𝑠 under CARD for any Y > 0.

𝑊𝑠 is obviously non-explosive. Let 𝑉 (𝑊𝑠) =𝑊𝑠 , 𝐶 = {𝑊𝑠 :𝑊𝑠 ⩽ 𝑐}, and 𝑓 (𝑤𝑠) ≡ 1. Then we have

𝒜𝑉 (𝑊𝑠) = 𝛽I(𝑊𝑠 ⩽ 𝑐) − 𝛼I(𝑊𝑠 > 𝑐)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:29

Since 𝛼 > 0 for any Y > 0, positive Harris recurrence of𝑊𝑠 (𝑡) follows from Theorem B.3 if 𝐶 is a

closed petite set. We now check this.

It follows from Meyn and Tweedie [41, Theorem 3.1] that𝑊𝑠 (𝑡) is non-evanescent. By Meyn

and Tweedie [40, Theorem 4.2], the 𝐾𝑎-chain of𝑊𝑠 (𝑡) is an irreducible 𝑇 -process with everywhere

nontrivial continuous component. By Meyn and Tweedie [40, Theorem 4.1(i)], 𝐶 is a petite set.

Given positive recurrence of𝑊𝑠 (𝑡) and Meyn and Tweedie [40, Theorem 4.2], we conclude from

Meyn and Down [39, Theorem 3.2] that𝑊𝑠 (𝑡) is also ergodic. □

Lemma 5.2. Suppose \ > 0 satisfies �(𝑆𝑠,𝑚)𝑒 (\) > 1

𝑛 (𝑛−1)𝛽+𝑛−1 , where �(𝑆𝑠,𝑚)𝑒 (·) is the Laplace
transform of the equilibium distribution of the size of small and medium jobs, 𝑆𝑠,𝑚 = (𝑆 | 𝑆 < 𝑚+).
Then for all 𝑥 ∈ [0, 𝑐],

P[𝑊𝑠 < 𝑐 − 𝑥] ⩽
(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\)

(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\) − 1

𝑒−\𝑥 .

Proof. Define 𝑉 (𝑤𝑠) = (𝑐 −𝑤𝑠)+ and fix some \ > 0. Since𝑊𝑠 has a stationary distribution, we

can apply the rate conservation law [42] to 𝑒\𝑉 (𝑊𝑠)
, which yields

\

𝑛
E𝜋 [𝑒\𝑉 (𝑊𝑠)I(𝑉 (𝑊𝑠) < 𝑐)] + _𝑠.𝑚E𝜋,𝑆𝑠,𝑚 [𝑒\𝑉 (𝑊𝑠+) − 𝑒\𝑉 (𝑊𝑠)] = 0.

Here, 𝜋 is the stationary distribution of𝑊𝑠 and _𝑠,𝑚 is the arrival rate into a short server from small

and medium jobs, and 𝑉 (𝑊𝑠+) is the value of 𝑉 (𝑊𝑠) immediately after a job arrival of size 𝑆𝑠,𝑚 .

Rearranging yields

\

𝑛
E𝜋 [𝑒\𝑉 (𝑊𝑠)] + _𝑠,𝑚E𝜋,𝑆𝑠,𝑚 [𝑒\𝑉 (𝑊𝑠+) − 𝑒\𝑉 (𝑊𝑠)] = \

𝑛
E𝜋 [𝑒\𝑉 (𝑊𝑠)I(𝑉 (𝑊𝑠) = 𝑐)] .

We drop the RHS and work with

\

𝑛
E𝜋 [𝑒\𝑉 (𝑊𝑠)] + _𝑠,𝑚E𝜋,𝑆𝑠,𝑚 [𝑒\𝑉 (𝑊𝑠+) − 𝑒\𝑉 (𝑊𝑠)] ⩾ 0. (B.2)

We first analyze the second term on the LHS. Conditioning on a given state𝑊𝑠 , we have

E𝑆𝑠,𝑚

[
𝑒\𝑉 (𝑊𝑠+) − 𝑒\𝑉 (𝑊𝑠)

���𝑊𝑠

]
(a)

= E𝑆𝑠,𝑚

[
𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)+ − 𝑒\𝑉 (𝑊𝑠)

���𝑊𝑠

]
= E𝑆𝑠,𝑚

[
𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)+ − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚) + 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚) − 𝑒\𝑉 (𝑊𝑠)

���𝑊𝑠

]
(b)

= E𝑆𝑠,𝑚

[
𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)+ − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)

���𝑊𝑠

]
+ 𝑒\𝑉 (𝑊𝑠)E𝑆𝑠,𝑚

[
(𝑒−\𝑆𝑠,𝑚 − 1)

]
(c)

= E𝑆𝑠,𝑚

[
(1 − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)) I(𝑉 (𝑊𝑠) < 𝑆𝑠,𝑚)

���𝑊𝑠

]
+ 𝑒\𝑉 (𝑊𝑠) (𝑆𝑠,𝑚 (\) − 1), (B.3)

where

(a) follows from 𝑉 (𝑊𝑠+) = (𝑐 −𝑊𝑠 − 𝑆𝑠,𝑚)+ = (𝑉 (𝑊𝑠) − 𝑆𝑠,𝑚)+,
(b) follows from the independence of the arriving job size and 𝑉 (𝑊𝑠) for any given𝑊𝑠 ⩽ 𝑐 , and
(c) follows from the definition of LST and the fact that

𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)+ − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚) =

{
0, if 𝑉 (𝑊𝑠) ⩾ 𝑆𝑠,𝑚
1 − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚) , if 𝑉 (𝑊𝑠) < 𝑆𝑠,𝑚 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:30 Runhan Xie, Isaac Grosof, and Ziv Scully

Taking expectation over 𝜋 on both sides of (B.3) and substituting into (B.2) gives

\

𝑛
E𝜋 [𝑒\𝑉 (𝑊𝑠)] ⩾ _𝑠,𝑚E𝜋

[
𝑒\𝑉 (𝑊𝑠)

]
(1 − 𝑆𝑠,𝑚 (\)) − _𝑠,𝑚E𝜋,𝑆𝑠,𝑚

[
(1 − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)) I(𝑉 (𝑊𝑠) < 𝑆𝑠,𝑚)

]
(d)

= \

(
𝑛 − 1

𝑛
+ (𝑛 − 1)𝛽

)
E𝜋

[
𝑒\𝑉 (𝑊𝑠)

] �(𝑆𝑠,𝑚)𝑒 (\)
− \

(
𝑛 − 1

𝑛
+ (𝑛 − 1)𝛽

)
E𝜋,𝑆𝑠,𝑚

[
1 − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)

\E[𝑆𝑠,𝑚]
I(𝑉 (𝑊𝑠) < 𝑆𝑠,𝑚)

]
, (B.4)

where (d) follows from
𝑛−1
𝑛

+ (𝑛 − 1)𝛽 = _𝑠,𝑚E[𝑆𝑠,𝑚], which is the load of the short and medium

jobs, and the fact that �(𝑆𝑠,𝑚)𝑒 (\) = 1 − 𝑆𝑠,𝑚 (\)
\E[𝑆𝑠,𝑚]

,

which holds for a general job size distribution (with or without a density function). See e.g. Ross

[43].

Since (
1 − 𝑒−\ (𝑆𝑠,𝑚−𝑉 (𝑊𝑠))

)
I(𝑉 (𝑊𝑠) < 𝑆𝑠,𝑚) ⩽ 1 − 𝑒−\𝑆𝑠,𝑚 ,

we have

E𝜋,𝑆𝑠,𝑚

[
1 − 𝑒\ (𝑉 (𝑊𝑠)−𝑆𝑠,𝑚)

\E[𝑆𝑠,𝑚]
I(𝑉 (𝑊𝑠) < 𝑆𝑠,𝑚)

]
⩽ �(𝑆𝑠,𝑚)𝑒 (\).

Since \ ⩾ 0 is chosen so that
�(𝑆𝑠,𝑚)𝑒 (\) > 1

𝑛 (𝑛−1)𝛽+𝑛−1 , we have
(
𝑛−1
𝑛

+ (𝑛 − 1)𝛽
) �(𝑆𝑠,𝑚)𝑒 (\) − 1

𝑛
> 0.

Thus, we rearrange (B.4) to obtain

E𝜋 [𝑒\𝑉 (𝑊𝑠)] ⩽ (𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\)
(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\) − 1

.

Markov’s inequality then gives

P[𝑉 (𝑊𝑠) < 𝑥] ⩽
(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\)

(𝑛(𝑛 − 1)𝛽 + 𝑛 − 1) �(𝑆𝑠,𝑚)𝑒 (\) − 1

𝑒−\𝑥 ,

and the lemma follows. □

Theorem 3.2. Let 𝛿 > 0, and consider CARD with threshold

𝑐 =
𝑛(𝑛 − 1)𝑚+

𝛽
log

𝑛 + 1

𝑛𝛽𝛿
.

Then,
(a) Each short server satisfies P[𝑊𝑠 = 0] ⩽ 𝛿 .
(b) If 𝛿 < 𝑛

𝑛−1Y, then the system is stable. Specifically, the set {(0, . . . , 0)} is positive recurrent for
the process W(𝑡) = (𝑊1 (𝑡), . . . ,𝑊𝑛 (𝑡)).

Proof. Part (a) is a corollary of Lemma 5.3. For part (b), we first establish the result for 𝑛 = 2

servers, then show how it generalizes to 𝑛 > 2 servers. For 𝑛 = 2, we denote the state as W(𝑡) =
(𝑊𝑠 (𝑡),𝑊ℓ (𝑡)).
To establish (b), we first apply Foss et al. [10, Theorem 1] to the pre-jump chain {W(𝑇𝑛−)}, where

𝑇𝑛 is the arrival time of the 𝑛th job. Conditions A1-A3 in Theorem 1 are fulfilled by Lemma 5.1.

Define

𝐿2 (𝑤ℓ) = _𝑤ℓ , 𝑓 (𝑤𝑠) = − 1

2
+ 𝜌ℓ + 𝜌𝑚I(𝑤𝑠 > 𝑐), ℎ(𝑥) = 1

2
𝑒−𝑥 .

We now verify conditions B1 and B2 are met with above choices of 𝐿2, 𝑓 , and ℎ.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:31

Condition B1:

sup

𝑤𝑠 ,𝑤ℓ

E[|𝐿2 (𝑊ℓ (𝑇1−)) − 𝐿2 (𝑤ℓ) | |𝑊ℓ (0−) = 𝑤ℓ ,𝑊𝑠 (0−) = 𝑤𝑠 ,Arrival at time 0] ⩽ 1.

Condition B2: Let 𝜋𝑠 be the stationary distribution of𝑊𝑠 (𝑡). By PASTA, 𝜋𝑠 is also the stationary

distribution of {𝑊𝑠 (𝑇𝑛−)}. We have

E𝜋𝑠 [𝑓 (𝑊𝑠)] = − 1

2
+ 𝜌ℓ + 𝜌𝑚P[𝑊𝑠 > 𝑐]

(𝑎)
⩽ − 1

2
+ 𝜌ℓ + 𝜌𝑚

(𝜌𝑚 + 𝜌𝑠) − 1

2
+ 𝛿

2

𝜌𝑚

= −1 + 𝜌 + 𝛿
2

= −Y + 𝛿
2

< 0,

where (a) comes from Lemma 6.10 and PASTA. We then compute
7

E[𝐿2 (𝑊ℓ (𝑇1−)) − 𝐿2 (𝑤ℓ)) |𝑊ℓ (0−) = 𝑤ℓ ,𝑊𝑠 (0−) = 𝑤𝑠 ,Arrival at time 0]

= _E

[∫ 𝑇1−

0

− 1

2
I(𝑊ℓ (𝑡) > 0) d𝑡

����𝑊ℓ (0−) = 𝑤ℓ ,𝑊𝑠 (0−) = 𝑤𝑠 ,Arrival at time 0

]
+ 𝜌ℓ + 𝜌𝑚I(𝑤𝑠 > 𝑐)

= 𝑓 (𝑤𝑠) +
_

2

E
[
(𝑇1 − (𝑤ℓ + 𝑆))+

��𝑊ℓ (0−) = 𝑤ℓ ,𝑊𝑠 (0−) = 𝑤𝑠 ,Arrival at time 0

]
⩽ 𝑓 (𝑤𝑠) +

_

2

E
[
(𝑇1 −𝑤ℓ)+

]
= 𝑓 (𝑤𝑠) +

_

2

1

_
𝑒−_𝑤ℓ = 𝑓 (𝑤𝑠) + ℎ(𝐿2 (𝑤ℓ)) .

It now follows from Foss et al. [10, Theorem 1] that the embedded pre-jump chain {W(𝑇𝑛−)} is
positive Harris recurrent.

Since {W(𝑇𝑛−)} is positive Harris recurrent and easily seen to be {(0, 0)}-irreducible, the ex-
pected number of steps until returning to (0, 0) is finite from any starting state. The time between

steps is exponentially distributed with mean 1/_, so we conclude from Wald’s equation that the

expected return time of the original process W(𝑡) to state (0, 0) is also finite. Positive Harris recur-

rence of W(𝑡) immediately follows. We now generalize the above proof to 𝑛 > 2 servers. To begin

with, we define a vector-valued process Wshort servers (𝑡) = (𝑊𝑠1 (𝑡), . . . ,𝑊𝑠𝑛−1 (𝑡)). Under multiserver

CARD,𝑊short servers (𝑡) has the following properties:
• Wshort servers (𝑡) is a Markov process of its own and is Harris ergodic.

• Since stationary distribution of the short servers are i.i.d., the stationary distribution of

Wshort servers is the product of stationary distributions of the short servers in isolation.

With these two properties in hand, the argument for 𝑛 = 2 servers as presented above works for

𝑛 > 2 servers with the same functions ℎ, 𝐿2, and the following 𝑓 :

𝑓 (wshort servers) = − 1

𝑛
+ 𝜌ℓ +

𝜌𝑚

𝑛 − 1

𝑛−1∑︁
𝑖=1

I(𝑤𝑠𝑖 > 𝑐). □

B.3 Response Time Analysis
Lemma 6.4.

E[𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐] ⩽
𝑚+
4𝛼

and E[(𝑊𝑠 − 𝑐)2 |𝑊𝑠 > 𝑐] ⩽
𝑚2

+
8𝛼2

7
The conditional probabilities below are a slight abuse of notation. They should be understood as referring to the probability

measure induced by the pre-jump Markov chain starting from state (𝑤𝑠 , 𝑤ℓ) .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:32 Runhan Xie, Isaac Grosof, and Ziv Scully

Proof. As stated in the proof sketch, (𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐) has the same distribution as an M/G/1

with vacations.

• The job size distribution is 𝑆𝑠 = (𝑆 | 𝑆 < 𝑚−). In particular, using the fact that 𝑆𝑠 is

stochastically dominated by𝑚+, one can show that (𝑆𝑠)𝑒 is stochastically dominated by a

uniform distribution on [0,𝑚+].8
• The load is 1 − 2𝛼 , and so the slackness is 2𝛼 .

– The reason we use 2𝛼 instead of 𝛼 is because the server operates at speed
1

2
. By “doubling

the clock speed”, the server speed becomes 1, and the distribution of (𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐) is
unaffected. This makes it easy to apply standard results about the M/G/1 with vacations.

• Let𝑈 denote the vacation length distribution. It is hard to characterize exactly, but because

𝑊𝑠 − 𝑐 ⩽ 𝑚+ at the start of an above period, 𝑈𝑒 is stochastically dominated by a uniform

distribution on [0,𝑚+].
The desired bounds follow from the work decomposition formula for the M/G/1 with vacations

[13]. Specifically, for an M/G/1 with vacations, we can write its steady-state work𝑊M/G/1/vac as an
independent sum of random variables with distributions𝑊M/G/1 and𝑈𝑒 . This means

E[𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐] = E[𝑊M/G/1/vac] = E[𝑊M/G/1] + E[𝑈𝑒],
E[(𝑊𝑠 − 𝑐)2 |𝑊𝑠 > 𝑐] = E[𝑊 2

M/G/1/vac] = E[𝑊
2

M/G/1] + 2E[𝑊M/G/1]E[𝑈𝑒] + E[𝑈 2

𝑒] .

Applying the PK formula with the relevant parameters, we obtain

E[𝑊M/G/1] =
(1 − 2𝛼)E[(𝑆𝑠)𝑒]

2𝛼
⩽

(1 − 2𝛼)𝑚+
4𝛼

,

E[𝑊 2

M/G/1] ⩽
(3 − 4𝛼 (2 − 𝛼))𝑚2

+
24𝛼2

.

The result then follows from E[𝑈𝑒] ⩽ 𝑚+
2

and E[𝑈 2

𝑒] ⩽
𝑚3

+
3
. □

Lemma 6.7.��E[𝑊ℓI(𝑊𝑠 > 𝑐)] − 𝑞𝐴E0𝑐 [𝑊ℓ (0)]
�� ⩽ 𝑞𝐴E[𝐴𝑒] + 2

√︁
𝑞𝐴E[𝐴𝑒] 𝑞𝐵E[𝐵𝑒] ⩽

𝑞𝐴𝑚+
4𝛼2

+
√
2𝑞𝐴𝑞𝐵𝑚+𝑐

𝛼
√︁
𝛽

.

Proof. The proof is very similar to that of Lemma 6.6, so we give only the key steps. Applying

the Palm inversion formula [3] to𝑊ℓI(𝑊𝑠 > 𝑐) gives

E[𝑊ℓI(𝑊𝑠 > 𝑐)] =
1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

𝐵

𝑊ℓ (𝑡) d𝑡
]
,

where we can start the integral at 𝐵 and remove the indicator because𝑊𝑠 (𝑡) > 𝑐 exactly during

above periods, which corresponds to 𝑡 ∈ [𝐵,𝐴 + 𝐵). Expanding this using (6.6) and noting the

independence of𝑊ℓ (0) from the below-above cycle, we obtain

E[𝑊ℓI(𝑊𝑠 > 𝑐)] −
E[𝐴]
E[𝐴 + 𝐵]E

0

𝑐 [𝑊ℓ (0)]

=
1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

𝐵

max

{
−Δℓ (0, 𝑡) + Σ𝑚ℓ (0, 𝑡) + Σℓℓ (0, 𝑡),−𝑊ℓ (0)

}
d𝑡

]
.

8
It is not in general true that 𝑆 being dominated by 𝑅 implies 𝑆𝑒 is dominated by 𝑅𝑒 . This is specific to the case that 𝑅 is a

deterministic constant.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:33

Applying (6.5) to the left-hand side, we see it suffices to give bounds on the right-hand side. The

same reasoning as the proof Lemma 6.6 yields��E[𝑊ℓI(𝑊𝑠 > 𝑐)] − 𝑞𝐴E0𝑐 [𝑊ℓ (0)]
�� ⩽ 1

E[𝐴 + 𝐵]E
0

𝑐

[∫ 𝐴+𝐵

𝐵

𝑡 d𝑡

]
=
E[(𝐴 + 𝐵)2 − 𝐵2]

2E[𝐴 + 𝐵] .

The result then follows from a computation similar to the end of the proof of Lemma 6.6. □

Theorem 6.11. In a system with 𝑛 = 2 servers, if 𝛿 ⩽ Y < 1

2
and 𝛽 ⩾ 2𝛿 , then by setting 𝑐 according

to Theorem 3.2, CARD achieves mean response time bounded by

E[𝑇CARD] ⩽
(
𝐾CARD + 4𝛽

𝛼 + 𝛽

) (
1 + 𝛿

Y

)
E[𝑊M/G/1] + 2E[𝑆]

+ 44𝑚+ max

{
𝛽

𝛼2 (𝛼 + 𝛽) ,

√︄
𝛽

𝛼2Y (𝛼 + 𝛽) ,
log

3

2𝛽𝛿

𝛽 (𝛼 + 𝛽) ,

√︄
log

3

2𝛽𝛿

𝛽
,

√
𝛿 log 3

2𝛽𝛿

𝛼2𝛽2Y

}
.

Proof. Consider a tagged job arriving to the system. Recall from (6.1) that

E[𝑇CARD] − 2E[𝑆] ⩽ 2(𝑝𝑠 + 𝑝𝑚)E[𝑊𝑠] + 2𝑝𝑚E[𝑊ℓI(𝑊𝑠 > 𝑐)] + 2𝑝ℓE[𝑊ℓ] .

We now bound the work expectations and probabilities in the last line.

• Lemma 6.4 implies E[𝑊𝑠] ⩽ 𝑐 + 𝑞𝐴E[𝑊𝑠 − 𝑐 |𝑊𝑠 > 𝑐] ⩽ 𝑐 + 𝑞𝐴𝑚+
𝛼

.

• Lemmas 6.6 and 6.7 imply, after some simplification,

E[𝑊ℓI(𝑊𝑠 > 𝑐)] ⩽ 𝑞𝐴E[𝑊ℓ] +
𝑞𝐴𝑚+
𝛼2

+ 4𝑞𝐴𝑞𝐵𝑐

𝛽
+
√
2𝑞𝐴𝑞𝐵𝑚+𝑐

𝛼
√︁
𝛽

.

• Lemma 6.9 bounds E[𝑊ℓ].
From these bounds and some simplification, using facts like 𝑝𝑠 + 𝑝𝑚 + 𝑝ℓ = 1 and 𝛼 ⩽ 1, we obtain

E[𝑇CARD] − 2E[𝑆] ⩽ 2(𝑝ℓ + 𝑞𝐴)
(
1 + 𝛿

Y

)
E[𝑊M/G/1] +

4𝑞𝐴𝑚+
𝛼2

+
𝑚+

√
𝑞𝐴

𝛼
√
Y

+ 6𝑐 + 8𝑞𝐴𝑞𝐵𝑐

𝛽
+ 2

√
2𝑞𝐴𝑞𝐵𝑚+𝑐

𝛼
√︁
𝛽

+ 8𝑐
√
𝛿

𝛼2𝛽Y
.

We now use Lemma 6.10 to express as much as possible on the right-hand side in terms of 𝛼 , 𝛽 , 𝛿 ,

and Y. After some simplification, including using the preconditions of the theorem, we obtain

E[𝑇CARD] − 2E[𝑆] ⩽ 2

(
𝑝ℓ +

2𝛽

𝛼 + 𝛽

) (
1 + 𝛿

Y

)
E[𝑊M/G/1] +

8𝑚+𝛽

𝛼2 (𝛼 + 𝛽) +
𝑚+

√︁
2𝛽

𝛼
√︁
Y (𝛼 + 𝛽)

+
(
12𝑚+
𝛽

+ 32𝑚+𝛼

𝛽 (𝛼 + 𝛽)2

)
log

3

2𝛽𝛿
+ 4𝑚+
𝛼 + 𝛽

√︄
2

𝛼𝛽
log

3

2𝛽𝛿
+ 16𝑚+

√
𝛿

𝛼2𝛽2Y
log

3

2𝛽𝛿
.

Finally, we observe that 𝑝ℓ = P[𝑆 > 𝑚+] ⩽ P[𝑆 > 𝑚] and simplify further. □

B.4 Extension to Any Number of Servers
Theorem 3.3. For any fixed number of servers 𝑛 ⩾ 2, if CARD’s parameters are set such that

𝛼 = Θ(1), 𝛽 = Θ

(
Y1/3

(
log

1

Y

)
2/3)

, and 𝑐 =
𝑛(𝑛 − 1)𝑚+

𝛽
log

𝑛 + 1

𝑛𝛽𝛿
,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:34 Runhan Xie, Isaac Grosof, and Ziv Scully

in the Y ↓ 0 limit, then CARD achieves mean response time bounded by

E[𝑇CARD] ⩽ 𝐾CARDE[𝑊M/G/1] +𝑂
((
1

Y
log

1

Y

)
1/3)

.

In particular, CARD is heavy-traffic optimal: lim supY↓0
E[𝑇CARD]
E[𝑇𝜋] ⩽ 1 for any dispatching policy 𝜋 .

Proof for 𝑛 ⩾ 2 servers. Fix a short server 𝑠𝑖 . Notice that under multi-server CARD,𝑊𝑠𝑖 are

i.i.d. Thus, the analysis applies to any short server. Let 𝐴 and 𝐵 be the above and below periods of

𝑊𝑠𝑖 . Using a similar proof as that of Lemma 6.6, we obtain��E[𝑊ℓ] − E0𝑐 [𝑊ℓ (0)]
�� ⩽ (√︁

𝑞𝐴E[𝐴𝑒] +
√︁
𝑞𝐵E[𝐵𝑒]

)
2

⩽
𝑞𝐴𝑚+
2𝛼2

+ 4𝑞𝐵𝑐

𝛽
.

For any short server 𝑖 , we have

𝑞𝐴 = P[𝑊𝑠𝑖 > 𝑐] ⩽
𝛽 + 1

𝑛
𝛿

𝛼 + 𝛽 ⩽
2𝛽

𝛼 + 𝛽 and 𝑞𝐵 = P[𝑊𝑠𝑖 ⩽ 𝑐] ⩽
𝛼

𝛼 + 𝛽 .

The proof is similar to that of Lemma 6.10. Note that 𝑞𝐴 and 𝑞𝐵 are the same for all short servers

because𝑊𝑠𝑖 are i.i.d. in steady state. Lemmas 6.3 and 6.5 follow from the same arguments as

the two-server case. We would like to obtain a counterpart of Lemma 6.9. To this end, we use a

multi-server version of Theorem 6.1. Note that we have

𝐼𝑊all =
1

𝑛

𝑛−1∑︁
𝑖=1

I(𝑊𝑠𝑖 = 0)𝑊ℓ +
1

𝑛

𝑛−1∑︁
𝑖=1

I(𝑊ℓ = 0)𝑊𝑠𝑖 +
1

𝑛

∑︁
𝑘≠𝑗

I(𝑊𝑠𝑘 = 0)𝑊𝑠 𝑗

We bound these three terms separately.

1

𝑛

𝑛−1∑︁
𝑖=1

E[I(𝑊𝑠𝑖 = 0)𝑊ℓ]
(a)

=
𝑛 − 1

𝑛
E[𝑊ℓI(𝑊𝑠1 = 0)]

⩽
𝑛 − 1

𝑛

[
𝛿

(
E[𝑊all] +

𝑞𝐴𝑚+
4𝛼2

+ 4𝑞𝐵𝑐

𝛽

)
+ 2𝑐

√
2𝛿

𝛽

]
,

1

𝑛

𝑛−1∑︁
𝑖=1

E[I(𝑊ℓ = 0)𝑊𝑠𝑖]
(b)

=
𝑛 − 1

𝑛
E[I(𝑊ℓ = 0)𝑊𝑠1] ⩽

𝑛 − 1

𝑛

(
𝑛Y𝑐 +

𝑚+
√
𝑞𝐴𝑛Y

2

√
2𝛼

)
,

1

𝑛

∑︁
𝑘≠𝑗

E[I(𝑊𝑠𝑘 = 0)𝑊𝑠 𝑗]
(c)

⩽
(𝑛 − 1) (𝑛 − 2)

𝑛
P[𝑊𝑠𝑘 = 0]E[𝑊𝑗] ⩽ (𝑛 − 1)

(
𝑐 + 𝑚+𝑞𝐴

𝛼

)
𝛿,

where (a), (b), and (c) all follow from the fact that𝑊𝑠1 , . . . ,𝑊𝑠𝑛−1 are i.i.d. in steady state. Proof of

the other bounds are similar to their counterparts in Lemmas 6.8 and 6.9. Theorem 6.1 gives

E[𝑊ℓ] ⩽ E[𝑊all] ⩽
(
1 + (𝑛 − 1)𝛿

Y

)
E[𝑊M/G/1]

+ 𝑛(𝑛 − 1)𝑐 +
√
𝑛(𝑛 − 1)

𝑚+
√
𝑞𝐴

2

√
2𝛼

√
Y
+ 8

𝑛

𝑐
√
𝛿

𝛼2𝛽Y
+ 𝑛(𝑛 − 1)

Y

(
𝑐 + 𝑚+𝑞𝐴

𝛼

)
𝛿.

from Lemma 6.10. Since𝑊𝑠1 , . . . ,𝑊𝑠𝑛−1 are i.i.d. in steady state, we have, by PASTA,

P[A medium job joins a short server queue] = P[𝑊𝑠1 ⩽ 𝑐] = 𝑞𝐵

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

Heavy-Traffic Optimal Size- and State-Aware Dispatching 9:35

Therefore, using an argument similar to that for Theorem 6.11, we have

E[𝑇CARD] − 𝑛E[𝑆] ⩽ 𝑛(𝑝ℓ + 𝑞𝐴)
(
1 + (𝑛 − 1)𝛿

Y

)
E[𝑊M/G/1] +

2𝑛𝑞𝐴𝑚+
𝛼2

+ 𝑛(𝑛 − 1)
√
𝑛
𝑚+

√
𝑞𝐴

2

√
2𝛼

√
Y
+

(
𝑛2 (𝑛 − 1) + 𝑛

)
𝑐 + 4𝑛𝑞𝐴𝑞𝐵𝑐

𝛽
+ 𝑛

√
2𝑞𝐴𝑞𝐵𝑚+𝑐

𝛼
√︁
𝛽

+ 8𝑐
√
𝛿

𝛼2𝛽Y
+ 𝑛2 (𝑛 − 1)

(
𝑐 + 𝑚+𝑞𝐴

𝛼

) 𝛿
Y
.

This can be further expanded using the bounds for 𝑞𝐴 and 𝑞𝐵 , as well as the expression of 𝑐 .

E[𝑇CARD] − 𝑛E[𝑆] ⩽ 𝑛
(
𝑝ℓ +

2𝛽

𝛽 + 𝛼

) (
1 + (𝑛 − 1) 𝛿

Y

)
E[𝑊M/G/1] +

4𝑛𝛽𝑚+
𝛼2 (𝛼 + 𝛽) + 𝑛(𝑛 − 1)

𝑚+
√︁
𝑛𝛽

2𝛼
√︁
Y (𝛼 + 𝛽)

+
(
𝑛(𝑛 − 1) (𝑛2 (𝑛 − 1) + 𝑛)𝑚+

𝛽
+ 8𝑛2 (𝑛 − 1)𝑚+𝛼

𝛽 (𝛼 + 𝛽)2

)
log

𝑛 + 1

𝑛𝛽𝛿

+
2𝑛

√︁
𝑛(𝑛 − 1)𝑚+
𝛼 + 𝛽

√︄
1

𝛼𝛽
log

𝑛 + 1

𝑛𝛽𝛿
+ 8𝑛(𝑛 − 1)𝑚+

√
𝛿

𝛼2𝛽2Y
log

𝑛 + 1

𝑛𝛽𝛿

+ 𝑛2 (𝑛 − 1)
(
𝑛(𝑛 − 1)𝑚+

𝛽
log

𝑛 + 1

𝑛𝛽𝛿
+ 2𝑚+𝛽

𝛼 (𝛼 + 𝛽)

)
𝛿

Y︸ ︷︷ ︸
T

At this point, we note that the upper bound for E[𝑇CARD] − 𝑛E[𝑆] is, after letting 𝑛 = 2, the same

as that in Theorem 6.11, except for T . Thus, setting

𝛼 = Θ(1), 𝛽 = Θ

(
Y1/3

(
log

1

Y

)
2/3)

, and 𝑐 =
𝑛(𝑛 − 1)𝑚+

𝛽
log

𝑛 + 1

𝑛𝛽𝛿
,

and noting that T → 0 as Y ↓ 0, we conclude that the bound yields the same heavy-traffic scaling

as that in Theorem 6.11. Finally, we note that 𝐾CARD emerges because

lim

Y↓0
𝑛𝑝ℓ = 𝑛P[𝑆 > 𝑚] = 𝐾CARD . □

C ADDITIONAL SIMULATIONS
Our additional simulations applies flexible CARD with three parameters to 𝑛 = 10 servers. We

simulate 40 trials for each data point, with 10
7
arrivals per trial for cv = 1 and cv = 10 and 3 × 10

7

job arrivals per trial for cv = 100. We show 95% confidence intervals when wider than the marker

size.

Figure C.1 show that, for 𝑛 = 10 servers, flexible CARD has decent performance when the

coefficient of variation is small. However, for large coefficients of variation, flexible CARD does

not perform well, even if we use LWL to dispatch small and medium jobs among the short servers.

Specifically, when cv=10, flexible CARD deviates from Dice, although still better than LWL and

SITA-E. When cv=100, flexible CARD performs worse than SITA-E at high loads. The unsatisfactory

performance of flexible CARD for 𝑛 = 10 servers motivates us to design multi-band CARD.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

9:36 Runhan Xie, Isaac Grosof, and Ziv Scully

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0

50

100

150

200

250

M
ea

n
Re

sp
on

se
 T

im
e

LWL
SITA-E
Flexible CARD
Dice

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0

1

2

3

4

5

6

7

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e

LWL
SITA-E
Flexible CARD
Dice

(a) 10 servers, cv = 1

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0

50

100

150

200

250

300

M
ea

n
Re

sp
on

se
 T

im
e

LWL
SITA-E
Flexible CARD
Dice

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
No

rm
al

ize
d

M
ea

n
Re

sp
on

se
 T

im
e

LWL
SITA-E
Flexible CARD
Dice

(b) 10 servers, cv = 10

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0

500

1000

1500

2000

M
ea

n
Re

sp
on

se
 T

im
e

LWL
SITA-E
Flexible CARD
Dice

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d
M

ea
n

Re
sp

on
se

 T
im

e LWL
SITA-E
Flexible CARD
Dice

(c) 10 servers, cv = 100

Fig. C.1. Plots for the mean response times under the aforementioned policies for 𝑛 = 10 servers. On the top
row are plots of mean response times of the policies. On the bottom row are plots for mean response times
normalized by the mean response time of a resource-pooled M/G/1 queue. We use LWL, instead of random,
dispatching to short servers when a small or medium job arrives.

Received October 2023; revised January 2024; accepted January 2024

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 9. Publication date: March 2024.

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related Work

	2 System Model and the CARD Policy
	2.1 Model Description
	2.2 Defining the CARD Policy
	2.3 Key Definitions for Main Results and Analysis

	3 Main Results and Key Ideas
	3.1 Intuition for Lower Bound on All Policies
	3.2 Intuition for Upper Bound on CARD

	4 Universal Lower Bound
	5 CARD Stability Analysis
	6 CARD Mean Response Time Analysis
	6.1 Key Ingredients: Work Decomposition, Below-Above Cycles, and Palm Inversion
	6.2 Analyzing the Short Server and Below-Above Cycles
	6.3 Analyzing the Long Server
	6.4 Bounding Mean Response Time

	7 Simulations
	7.1 Performance of CARD with Two Servers
	7.2 Calibrating the Parameters of Two-Server CARD
	7.3 Improving CARD's Performance for More than Two Servers
	7.4 Tail Simulations
	7.5 Comparing CARD to Dice

	8 Conclusion
	Acknowledgments
	References
	A Dice
	B Deferred Proofs
	B.1 Suboptimality of LWL and SITA in heavy-traffic
	B.2 Stability
	B.3 Response Time Analysis
	B.4 Extension to Any Number of Servers

	C Additional Simulations

