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ABSTRACT

We study the problem of dispatching jobs to multiple FCFS (First-
Come, First-Served) queues. We consider the case where the dis-
patcher is size-aware, meaning it learns the size (i.e. service time) of
each job as it arrives; and state-aware, meaning it always knows the
amount of work (i.e. total remaining service time) at each queue.
While size- and state-aware dispatching to FCFS queues has been
extensively studied, little is known about optimal dispatching for
the objective of minimizing mean delay. In this work, we propose
the first size- and state-aware dispatching policy, called CARD (Con-
trolled Asymmetry Reduces Delay), that provably minimizes mean
delay in heavy traffic. This abstract summarizes our full paper [13].
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1 PROBLEM: DISPATCHING TO FCFS QUEUES

Dispatching, or load balancing, is at the heart of many computer
systems, service systems, transportation systems, and systems in
other domains. In such systems, jobs arrive over time, and each job
must be irrevocably sent to one of multiple queues as soon as it
arrives. It is common for each queue to be served in First-Come
First-Served (FCFS) order. Motivated by this, we ask: How should
one dispatch to FCFS queues to minimize jobs’ mean response time?!

We specifically consider size- and state-aware dispatching. This
means that the dispatcher learns a job’s size, or service time, when
the job arrives; and the dispatcher always knows how much work,
or total remaining service time, there is at each queue. We work
with M/G arrivals, a typical stochastic arrival model.

1A job’s response time (ak.a. sojourn time, latency, delay) is the amount of time between
its arrival and its completion.
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Despite the extensive literature on dispatching in queueing the-
ory [1-3, 6, 8, 11, 12, 14, 15], optimal size- and state-aware dispatch-
ing is an open problem, as highlighted by Hyytia et al. [7]. The
problem is a Markov decision process (MDP), so it can in principle
be approximately solved numerically [10]. But the numerical ap-
proach has two drawbacks. First, the curse of dimensionality makes
computation impractical for large numbers of queues. Second, the
solution is specific to a particular instance (meaning a given number
of queues, job size distribution, and load) and one has to solve the
MDP again for a different instance.

In this work, we take the first steps towards developing a theo-
retical understanding of optimal size- and state-aware dispatching.

e We give the first lower bound on the minimum mean re-
sponse time achievable under any dispatching policy.

e We propose a new dispatching policy, called CARD (Con-
trolled Asymmetry Reduces Delay), and prove an asymptoti-
cally tight upper bound on its mean response time.

Our bounds match in the heavy-traffic limit as load p approaches 1,
the maximum load capacity. Specifically, we find a constant K such
that the dominant term of both bounds is % Characterizing K

(see (2.1)) is another contribution of our work.

2 OPTIMAL DISPATCHING VIA ASYMMETRY

Below, we describe the intuition behind two-server CARD, illus-
trated in Figure 2.1. See our paper [13] for the n-server version.

To minimize mean response time, one generally wants to avoid
situations where small jobs need to wait behind large jobs. One way
to do this is to dedicate one server to small jobs and the other server
to large jobs, where the size cutoff between “small” and “large” is
defined such that half the load is due to each size class. This is the
approach taken by the SITA (Size Interval Task Assignment) policy
[4, 5]. Under SITA, due to Poisson splitting, the dispatching system
reduces to two independent M/G/1 systems. SITA can sometimes
perform very well, but it can sometimes be much worse than simple
LWL (Least Work Left) dispatching [5].

CARD uses SITA’s design as a starting point, but makes one
significant improvement. Where in SITA’s design is there an op-
portunity for improvement? Our key observation is that the main
reason SITA performs poorly is that its “short server”, namely the
queue to which it sends small jobs, can accumulate lots of work.
CARD avoids this issue by actively regulating the amount of work
at the short server. To do so, CARD creates a third class of “medium”
jobs, which are on the border between small and large, and sets
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Figure 2.1: Sketch of the CARD policy for two servers. Small
and large jobs are always dispatched to the short or long
server, respectively. Medium jobs are dispatched based on
whether Wy, the amount of work at the short server, exceeds a
threshold c. The size cutoffs m_ and m, are chosen to be close
to m from (2.1) so that small and large jobs each constitute
slightly less than half the load.

a threshold which serves as a target amount of work at the short
server. Whenever a medium job arrives, CARD dispatches it to the
short server if and only if the short server has less work than the
threshold. This prevents too much work accumulating in the short
server, and it also prevents the short server from unduly idling.

We also study CARD in simulation across a wide range of loads,
with Figure 2.2 showing one example. We find empirically that
CARD has good performance outside of heavy traffic, but slightly
modifying CARD can significantly improves performance. Both
versions of CARD improve upon LWL and SITA, sometimes by an
order of magnitude. The modified version is competitive with the
Dice policy of Hyytid and Righter [9], the best known heuristic for
the size- and state-aware setting.

Our paper [13] presents three main theoretical results:

e A lower bound on the mean response time of any policy.

e An upper bound on CARD’s mean response time which

implies its heavy-traffic optimality.

e Stability of the system under CARD.
We summarize the first two results below. We consider a system
with M/G arrivals with arrival rate A, job size distribution S, and n
servers. We use the convention that each server completes work at
speed 1/n, so the load p = AE[S] is the utilization.

Our lower and upper bounds imply that in the heavy-traffic limit,
namely as p T 1, the mean response time E[T] of both the optimal
policy and CARD scale as E[T] ~ %, for the same constant K,
and thus CARD is heavy-traffic optimal for mean response time.
The constant K is determined by solving the following for m:

E[$?] E[$?]
=—— — =nP[S > .
2B [ssm ~"ESZ M oEn
One can view m as the value such that jobs of size m and larger

contribute a 1/n fraction of the load. As explained in our paper [13],
the jobs CARD treats as “medium” are those of size close to m.

. (2.1)
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