Heavy-Traffic Optimal Size- and State-Aware Dispatching

Runhan Xie
runhan_xie@berkeley.edu
University of California, Berkeley
Department of Industrial Engineering

and Operations Research
Berkeley, CA, USA

Isaac Grosof
igrosof@cs.cmu.edu
Carnegie Mellon University
Computer Science Department
Pittsburgh, PA, USA
Georgia Institute of Technology

Ziv Scully
zivscully@cornell.edu
Cornell University
School of Operations Research and
Information Engineering
Ithaca, NY, USA

School of Industrial and Systems
Engineering
Atlanta, GA, USA

ABSTRACT

We study the problem of dispatching jobs to multiple FCFS (First-
Come, First-Served) queues. We consider the case where the dis-
patcher is size-aware, meaning it learns the size (i.e. service time) of
each job as it arrives; and state-aware, meaning it always knows the
amount of work (i.e. total remaining service time) at each queue.
While size- and state-aware dispatching to FCFS queues has been
extensively studied, little is known about optimal dispatching for
the objective of minimizing mean delay. In this work, we propose
the first size- and state-aware dispatching policy, called CARD (Con-
trolled Asymmetry Reduces Delay), that provably minimizes mean
delay in heavy traffic. This abstract summarizes our full paper [13].

ACM Reference Format:

Runhan Xie, Isaac Grosof, and Ziv Scully. 2024. Heavy-Traffic Optimal Size-
and State-Aware Dispatching. In Abstracts of the 2024 ACM SIGMETRICS/IFIP
PERFORMANCE jJoint International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS/PERFORMANCE Abstracts "24), June 10~
14, 2024, Venice, Italy. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3652963.3655059

1 PROBLEM: DISPATCHING TO FCFS QUEUES

Dispatching, or load balancing, is at the heart of many computer
systems, service systems, transportation systems, and systems in
other domains. In such systems, jobs arrive over time, and each job
must be irrevocably sent to one of multiple queues as soon as it
arrives. It is common for each queue to be served in First-Come
First-Served (FCFS) order. Motivated by this, we ask: How should
one dispatch to FCFS queues to minimize jobs’ mean response time?!

We specifically consider size- and state-aware dispatching. This
means that the dispatcher learns a job’s size, or service time, when
the job arrives; and the dispatcher always knows how much work,
or total remaining service time, there is at each queue. We work
with M/G arrivals, a typical stochastic arrival model.

1A job’s response time (ak.a. sojourn time, latency, delay) is the amount of time between
its arrival and its completion.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGMETRICS/PERFORMANCE Abstracts °24, June 10-14, 2024, Venice, Italy

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0624-0/24/06

https://doi.org/10.1145/3652963.3655059

Despite the extensive literature on dispatching in queueing the-
ory [1-3, 6, 8, 11, 12, 14, 15], optimal size- and state-aware dispatch-
ing is an open problem, as highlighted by Hyytia et al. [7]. The
problem is a Markov decision process (MDP), so it can in principle
be approximately solved numerically [10]. But the numerical ap-
proach has two drawbacks. First, the curse of dimensionality makes
computation impractical for large numbers of queues. Second, the
solution is specific to a particular instance (meaning a given number
of queues, job size distribution, and load) and one has to solve the
MDP again for a different instance.

In this work, we take the first steps towards developing a theo-
retical understanding of optimal size- and state-aware dispatching.

e We give the first lower bound on the minimum mean re-
sponse time achievable under any dispatching policy.

e We propose a new dispatching policy, called CARD (Con-
trolled Asymmetry Reduces Delay), and prove an asymptoti-
cally tight upper bound on its mean response time.

Our bounds match in the heavy-traffic limit as load p approaches 1,
the maximum load capacity. Specifically, we find a constant K such
that the dominant term of both bounds is % Characterizing K

(see (2.1)) is another contribution of our work.

2 OPTIMAL DISPATCHING VIA ASYMMETRY

Below, we describe the intuition behind two-server CARD, illus-
trated in Figure 2.1. See our paper [13] for the n-server version.

To minimize mean response time, one generally wants to avoid
situations where small jobs need to wait behind large jobs. One way
to do this is to dedicate one server to small jobs and the other server
to large jobs, where the size cutoff between “small” and “large” is
defined such that half the load is due to each size class. This is the
approach taken by the SITA (Size Interval Task Assignment) policy
[4, 5]. Under SITA, due to Poisson splitting, the dispatching system
reduces to two independent M/G/1 systems. SITA can sometimes
perform very well, but it can sometimes be much worse than simple
LWL (Least Work Left) dispatching [5].

CARD uses SITA’s design as a starting point, but makes one
significant improvement. Where in SITA’s design is there an op-
portunity for improvement? Our key observation is that the main
reason SITA performs poorly is that its “short server”, namely the
queue to which it sends small jobs, can accumulate lots of work.
CARD avoids this issue by actively regulating the amount of work
at the short server. To do so, CARD creates a third class of “medium”
jobs, which are on the border between small and large, and sets

https://doi.org/10.1145/3652963.3655059
https://doi.org/10.1145/3652963.3655059
https://doi.org/10.1145/3652963.3655059

SIGMETRICS/PERFORMANCE Abstracts "24, June 10-14, 2024, Venice, Italy

short queue

work Wy
When Wy > c:
medium — long
S
When Wy < c:
medium — short long queue
work W
Load division:
| small — short | medium | large — long |
T T T 1
size 0 size m— size my size oo

Figure 2.1: Sketch of the CARD policy for two servers. Small
and large jobs are always dispatched to the short or long
server, respectively. Medium jobs are dispatched based on
whether Wy, the amount of work at the short server, exceeds a
threshold c. The size cutoffs m_ and m, are chosen to be close
to m from (2.1) so that small and large jobs each constitute
slightly less than half the load.

a threshold which serves as a target amount of work at the short
server. Whenever a medium job arrives, CARD dispatches it to the
short server if and only if the short server has less work than the
threshold. This prevents too much work accumulating in the short
server, and it also prevents the short server from unduly idling.

We also study CARD in simulation across a wide range of loads,
with Figure 2.2 showing one example. We find empirically that
CARD has good performance outside of heavy traffic, but slightly
modifying CARD can significantly improves performance. Both
versions of CARD improve upon LWL and SITA, sometimes by an
order of magnitude. The modified version is competitive with the
Dice policy of Hyytid and Righter [9], the best known heuristic for
the size- and state-aware setting.

Our paper [13] presents three main theoretical results:

e A lower bound on the mean response time of any policy.

e An upper bound on CARD’s mean response time which

implies its heavy-traffic optimality.

e Stability of the system under CARD.
We summarize the first two results below. We consider a system
with M/G arrivals with arrival rate A, job size distribution S, and n
servers. We use the convention that each server completes work at
speed 1/n, so the load p = AE[S] is the utilization.

Our lower and upper bounds imply that in the heavy-traffic limit,
namely as p T 1, the mean response time E[T] of both the optimal
policy and CARD scale as E[T] ~ %, for the same constant K,
and thus CARD is heavy-traffic optimal for mean response time.
The constant K is determined by solving the following for m:

E[$?] E[$?]
=—— — =nP[S > .
2B [ssm ~"ESZ M oEn
One can view m as the value such that jobs of size m and larger

contribute a 1/n fraction of the load. As explained in our paper [13],
the jobs CARD treats as “medium” are those of size close to m.

. (2.1)

ACKNOWLEDGMENTS

Isaac Grosof was supported by NSF grant no. CMMI-2307008 and a
Tennenbaum Postdoctoral Fellowship at Georgia Tech. Ziv Scully

Runhan Xie, Isaac Grosof, and Ziv Scully

—e— LWL
2501 —a— SITA-E
—— Rigid CARD
2001 —=— Flexible CARD
Dice

100

Mean Response Time
=
w
o

w
o

0.65 0.70 0.75 0.80 0.85 0.90 0.95
Total System Load

Figure 2.2: Mean response time as a function of load for
several policies, including two versions of CARD. Rigid CARD
is the version we theoretically analyze, while Flexible CARD
is modified slightly to improve empirical performance. The
job size distribution has coefficient of variation cv = 10. See
Section 7 of our paper [13] for details.

was supported by NSF grant nos. CMMI-2307008, DMS-2023528,
and DMS-2022448. He conducted this research in part while visiting
the Simons Institute at UC Berkeley, and in part while an NSF FODSI
postdoc at Harvard and MIT.

REFERENCES

[1] Douglas G Down and Rong Wu. 2006. Multi-layered round robin routing for
parallel servers. Queueing Systems 53 (2006), 177-188.

[2] Hanhua Feng, Vishal Misra, and Dan Rubenstein. 2005. Optimal state-free, size-
aware dispatching for heterogeneous M/G/-type systems. Performance evaluation
62, 1-4 (2005), 475-492.

[3] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load balancing guardrails:
keeping your heavy traffic on the road to low response times. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 3, 2 (2019), 1-31.

[4] Mor Harchol-Balter, Mark E Crovella, and Cristina D Murta. 1999. On choosing
a task assignment policy for a distributed server system. J. Parallel and Distrib.
Comput. 59, 2 (1999), 204-228.

[5] Mor Harchol-Balter, Alan Scheller-Wolf, and Andrew R Young. 2009. Surprising

results on task assignment in server farms with high-variability workloads. In

Proceedings of the eleventh international joint conference on Measurement and

modeling of computer systems. 287-298.

Daniela Hurtado-Lange and Siva Theja Maguluri. 2022. A load balancing system

in the many-server heavy-traffic asymptotics. Queueing Systems 101, 3-4 (2022),

353-391.

Esa Hyyti4, Peter Jacko, and Rhonda Righter. 2022. Routing with too much

information? Queueing Systems 100, 3-4 (2022), 441-443.

Esa Hyytid, Aleksi Penttinen, and Samuli Aalto. 2012. Size-and state-aware dis-

patching problem with queue-specific job sizes. European Journal of Operational

Research 217, 2 (2012), 357-370.

[9] Esa Hyytia and Rhonda Righter. 2022. On Sequential Dispatching Policies. In
2022 32nd International Telecommunication Networks and Applications Conference
(ITNAC). IEEE, 1-6.

[10] Esa Hyytia and Rhonda Righter. 2023. On Dynamic Size-Aware Dispatching and
Computation of the Optimal Actions. SSRN 4395052 (2023).

[11] Xin Liu, Kang Gong, and Lei Ying. 2022. Steady-state analysis of load balancing
with Coxian-2 distributed service times. Naval Research Logistics (NRL) 69, 1
(2022), 57-75.

[12] Yinghui Wang and Douglas Down. 2014. On resource pooling in SITA-like parallel
server systems. In 2014 26th International Teletraffic Congress (ITC). IEEE, 1-9.

[13] Runhan Xie, Isaac Grosof, and Ziv Scully. 2024. Heavy-Traffic Optimal Size-and
State-Aware Dispatching. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 8, 1 (2024), 1-36.

[14] Runhan Xie and Ziv Scully. 2023. Reducing heavy-traffic response time with
asymmetric dispatching. ACM SIGMETRICS Performance Evaluation Review 51, 2
(2023), 36-38.

[15] Xingyu Zhou, Fei Wu, Jian Tan, Yin Sun, and Ness Shroff. 2017. Designing
low-complexity heavy-traffic delay-optimal load balancing schemes: Theory to
algorithms. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 1, 2 (2017), 1-30.

6

7

8

	Abstract
	1 Problem: dispatching to FCFS queues
	2 Optimal dispatching via asymmetry
	Acknowledgments
	References

