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ABSTRACT
Multiserver-job systems, where jobs require concurrent service
at many servers, occur widely in practice. Essentially all of the
theoretical work on multiserver-job systems focuses on maximizing
utilization, with almost nothing known about mean response time.
Our goal in this paper is to minimize mean response time in a
multiserver-job setting. Minimizing mean response time requires
prioritizing small jobs while simultaneously maximizing utilization.
Our question is how to achieve these joint objectives.

We devise the ServerFilling-SRPT scheduling policy, which is the
first policy to minimize mean response time in the multiserver-job
model in the heavy traffic limit. In addition to proving this heavy-
traffic result, we present empirical evidence that ServerFilling-SRPT
outperforms all existing scheduling policies for all loads, with orders
of magnitude improvements at high load.

Because ServerFilling-SRPT requires knowing job sizes, we also
define the ServerFilling-Gittins policy, which is optimal when sizes
are unknown or partially known.

For more detail, see the full paper, [8].
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1 THE MULTISERVER-JOB MODEL
Traditional multiserver queueing theory focuses on models, such
as the M/G/𝑘 , where every job occupies exactly one server. For
decades, these models remained popular because they captured the
behavior of computing systems, while being amenable to theoretical
analysis. However, such one-server-per-job models are no longer
representative of many modern computing systems.

Consider today’s large-scale computing centers, such as the those
of Google, Amazon and Microsoft. While the servers in these data
centers still resemble the servers in traditional models such as the
M/G/𝑘 , the jobs have changed: Each job now requires many servers,
which it holds simultaneously [9, 10]. The distribution of the num-
ber of CPUs requested by jobs in Google’s recently published trace
of its “Borg” computation cluster [5, 17] is highly variable, with
jobs requesting anywhere from 1 to 100,000 normalized CPUs. We
focus on this “multiserver-job model” (MSJ), by which we refer to
the common situation in modern systems where each job concur-
rently occupies a fixed number of servers (typically more than one),
throughout its time in service.

The multiserver-job model is fundamentally different from the
one-server-per-job model. In the one-server-per-job model, any
work-conserving scheduling policy such as First-Come First-Served
(FCFS) can achieve full server utilization. By contrast, in themultiserver-
job model, a naïve scheduling policy such as FCFS will waste more
servers than necessary. As a result, server utilization and system
stability are dependent on the scheduling policy in the multiserver-
job model. While finding throughput-optimal scheduling policies is
a challenge, several such policies are known, including MaxWeight
[11], Randomized Timers [3, 12], and ServerFilling [5]. Among
these, mean response time is only understood for ServerFilling [5],
and minimizing the mean response time has never been a goal of
this line of work.
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2 CHALLENGES OF MINIMIZING MSJ MEAN
RESPONSE TIME

In the M/G/𝑘 setting, where each job requires a single server, it was
recently proven that the SRPT-𝑘 (Shortest Remaining Processing
Time-𝑘) scheduling policy minimizes mean response time in the
heavy-traffic limit [6]. SRPT-𝑘 is a very simple policy: serve the 𝑘
jobs of least remaining duration (service time).

Unfortunately, trying to simply adapt the SRPT-𝑘 policy does
not result in an optimal policy for two reasons:

• Prioritizing by remaining job duration is not the right ap-
proach. Instead, we must focus on 𝑠𝑖𝑧𝑒 , the product of dura-
tion and the number of servers required.

• Greedily prioritizing the job of least remaining size, as in
SRPT-k, is not throughput optimal. Our policymust be through-
put-optimal, while also prioritizing small jobs.

We therefore ask:

What scheduling policy for the multiserver-job model
should we use to minimize mean response time in the
heavy-traffic limit?

By “heavy-traffic” we mean as load 𝜌 → 1, while the number of
servers, 𝑘 , stays fixed.

3 SERVERFILLING-SRPT AND
GENERALIZATIONS

We introduce the ServerFilling-SRPT scheduling policy, the first
scheduling policy tominimizemean response time in themultiserver-
job model in the heavy traffic limit.

ServerFilling-SRPT is defined in the setting where 𝑘 is a power
of 2, and all server needs are powers of 2. This setting is commonly
seen in practice in supercomputing and other highly-parallel com-
puting settings [1, 2].

To define ServerFilling-SRPT, imagine all jobs are ordered by
their remaining size. Select the smallest initial subset 𝑀 of this
sequence such that the jobs in 𝑀 collectively require at least 𝑘
servers. Finally, place jobs from𝑀 into service in order of largest
server need. This procedure is performed preemptively, whenever
a job arrives or completes. Using the fact that all servers needs
are powers of 2, and 𝑘 is a power of 2, we prove that whenever
jobs with total server need at least 𝑘 are present in the system, this
procedure will fill all 𝑘 servers. We use this property to prove that
ServerFilling-SRPT minimizes mean response time in the heavy-
traffic limit.

ServerFilling-SRPT requires the scheduler to know job durations,
and hence sizes, in advance. Sometimes the scheduler does not
have duration information. In the M/G/1 setting, when job sizes are
unknown, the Gittins policy [4] is known to achieve optimal mean
response time. We therefore introduce the ServerFilling-Gittins
policy, and prove similar heavy-traffic optimality results for it.

While ServerFilling-SRPT requires that the server needs are
powers of 2, we have developed a more general scheduling policy
which requires only that the server needs all divide 𝑘 . We call this
generalization DivisorFilling-SRPT. We then show that all of our
results about ServerFilling-SRPT and ServerFilling-Gittins hold for
DivisorFilling-SRPT and DivisorFilling-Gittins.

4 A NOVEL PROOF TECHNIQUE: MIAOW
In recent years, there have been a plethora of proof techniques
developed to handle the analysis of multiserver systems. These
include:

• Multiserver tagged job analysis [6, 7, 16],
• Worst-case work gap [6, 7, 16],
• WINE (Work Integral Number Equality) [14, Chapter 4] [13,
15],

• Work Decomposition law [15].
While many of these techniques are used in this paper, they do not
suffice to handle the analysis of ServerFilling-SRPT. The analysis
of ServerFilling-SRPT hinges on bounding the waste relative to a
resource-pooled single-server SRPT system, where waste is the
expected product of work and unused system capacity. In order
to analyze waste, we introduce a new technique called MIAOW,
Multiplicative Interval Analysis of Waste. MIAOW buckets jobs
into multiplicative intervals based on their remaining sizes, and
bounds the waste in each interval.
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