
Optimal Scheduling in the Multiserver-job Model under Heavy
Traffic

Isaac Grosof
igrosof@cs.cmu.edu

Carnegie Mellon University
Computer Science Department

Pittsburgh, PA, USA

Ziv Scully
zivscully@cornell.edu
Cornell University

School of Operations Research and Information
Engineering

Ithaca, NY, USA

Mor Harchol-Balter
harchol@cs.cmu.edu

Carnegie Mellon University
Computer Science Department

Pittsburgh, PA, USA

Alan Scheller-Wolf
awolf@andrew.cmu.edu

Carnegie Mellon University
Tepper School of Business

Pittsburgh, PA, USA

ABSTRACT
Multiserver-job systems, where jobs require concurrent service
at many servers, occur widely in practice. Essentially all of the
theoretical work on multiserver-job systems focuses on maximizing
utilization, with almost nothing known about mean response time.
Our goal in this paper is to minimize mean response time in a
multiserver-job setting. Minimizing mean response time requires
prioritizing small jobs while simultaneously maximizing utilization.
Our question is how to achieve these joint objectives.

We devise the ServerFilling-SRPT scheduling policy, which is the
first policy to minimize mean response time in the multiserver-job
model in the heavy traffic limit. In addition to proving this heavy-
traffic result, we present empirical evidence that ServerFilling-SRPT
outperforms all existing scheduling policies for all loads, with orders
of magnitude improvements at high load.

Because ServerFilling-SRPT requires knowing job sizes, we also
define the ServerFilling-Gittins policy, which is optimal when sizes
are unknown or partially known.

For more detail, see the full paper, [8].

CCS CONCEPTS
• General and reference → Performance; • Mathematics of
computing → Queueing theory; • Theory of computation →
Scheduling algorithms.

KEYWORDS
scheduling; SRPT; Gittins; multiserver-job; response time; latency;
sojurn time; heavy traffic; asymptotic optimality

ACM Reference Format:
Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2023.
Optimal Scheduling in the Multiserver-job Model under Heavy Traffic. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’23 Abstracts, June 19–23, 2023, Orlando, FL, USA.
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0074-3/23/06.
https://doi.org/10.1145/3578338.3593560

Abstract Proceedings of the 2023 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS ’23
Abstracts), June 19–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3578338.3593560

1 THE MULTISERVER-JOB MODEL
Traditional multiserver queueing theory focuses on models, such
as the M/G/𝑘 , where every job occupies exactly one server. For
decades, these models remained popular because they captured the
behavior of computing systems, while being amenable to theoretical
analysis. However, such one-server-per-job models are no longer
representative of many modern computing systems.

Consider today’s large-scale computing centers, such as the those
of Google, Amazon and Microsoft. While the servers in these data
centers still resemble the servers in traditional models such as the
M/G/𝑘 , the jobs have changed: Each job now requires many servers,
which it holds simultaneously [9, 10]. The distribution of the num-
ber of CPUs requested by jobs in Google’s recently published trace
of its “Borg” computation cluster [5, 17] is highly variable, with
jobs requesting anywhere from 1 to 100,000 normalized CPUs. We
focus on this “multiserver-job model” (MSJ), by which we refer to
the common situation in modern systems where each job concur-
rently occupies a fixed number of servers (typically more than one),
throughout its time in service.

The multiserver-job model is fundamentally different from the
one-server-per-job model. In the one-server-per-job model, any
work-conserving scheduling policy such as First-Come First-Served
(FCFS) can achieve full server utilization. By contrast, in themultiserver-
job model, a naïve scheduling policy such as FCFS will waste more
servers than necessary. As a result, server utilization and system
stability are dependent on the scheduling policy in the multiserver-
job model. While finding throughput-optimal scheduling policies is
a challenge, several such policies are known, including MaxWeight
[11], Randomized Timers [3, 12], and ServerFilling [5]. Among
these, mean response time is only understood for ServerFilling [5],
and minimizing the mean response time has never been a goal of
this line of work.

https://orcid.org/0000-0001-6205-8652
https://orcid.org/0000-0002-8547-1068
https://orcid.org/0000-0003-1721-6759
https://orcid.org/0000-0001-6871-2360
https://doi.org/10.1145/3578338.3593560
https://doi.org/10.1145/3578338.3593560


SIGMETRICS ’23 Abstracts, June 19–23, 2023, Orlando, FL, USA. Isaac Grosof et al.

2 CHALLENGES OF MINIMIZING MSJ MEAN
RESPONSE TIME

In the M/G/𝑘 setting, where each job requires a single server, it was
recently proven that the SRPT-𝑘 (Shortest Remaining Processing
Time-𝑘) scheduling policy minimizes mean response time in the
heavy-traffic limit [6]. SRPT-𝑘 is a very simple policy: serve the 𝑘
jobs of least remaining duration (service time).

Unfortunately, trying to simply adapt the SRPT-𝑘 policy does
not result in an optimal policy for two reasons:

• Prioritizing by remaining job duration is not the right ap-
proach. Instead, we must focus on 𝑠𝑖𝑧𝑒 , the product of dura-
tion and the number of servers required.

• Greedily prioritizing the job of least remaining size, as in
SRPT-k, is not throughput optimal. Our policymust be through-
put-optimal, while also prioritizing small jobs.

We therefore ask:

What scheduling policy for the multiserver-job model
should we use to minimize mean response time in the
heavy-traffic limit?

By “heavy-traffic” we mean as load 𝜌 → 1, while the number of
servers, 𝑘 , stays fixed.

3 SERVERFILLING-SRPT AND
GENERALIZATIONS

We introduce the ServerFilling-SRPT scheduling policy, the first
scheduling policy tominimizemean response time in themultiserver-
job model in the heavy traffic limit.

ServerFilling-SRPT is defined in the setting where 𝑘 is a power
of 2, and all server needs are powers of 2. This setting is commonly
seen in practice in supercomputing and other highly-parallel com-
puting settings [1, 2].

To define ServerFilling-SRPT, imagine all jobs are ordered by
their remaining size. Select the smallest initial subset 𝑀 of this
sequence such that the jobs in 𝑀 collectively require at least 𝑘
servers. Finally, place jobs from𝑀 into service in order of largest
server need. This procedure is performed preemptively, whenever
a job arrives or completes. Using the fact that all servers needs
are powers of 2, and 𝑘 is a power of 2, we prove that whenever
jobs with total server need at least 𝑘 are present in the system, this
procedure will fill all 𝑘 servers. We use this property to prove that
ServerFilling-SRPT minimizes mean response time in the heavy-
traffic limit.

ServerFilling-SRPT requires the scheduler to know job durations,
and hence sizes, in advance. Sometimes the scheduler does not
have duration information. In the M/G/1 setting, when job sizes are
unknown, the Gittins policy [4] is known to achieve optimal mean
response time. We therefore introduce the ServerFilling-Gittins
policy, and prove similar heavy-traffic optimality results for it.

While ServerFilling-SRPT requires that the server needs are
powers of 2, we have developed a more general scheduling policy
which requires only that the server needs all divide 𝑘 . We call this
generalization DivisorFilling-SRPT. We then show that all of our
results about ServerFilling-SRPT and ServerFilling-Gittins hold for
DivisorFilling-SRPT and DivisorFilling-Gittins.

4 A NOVEL PROOF TECHNIQUE: MIAOW
In recent years, there have been a plethora of proof techniques
developed to handle the analysis of multiserver systems. These
include:

• Multiserver tagged job analysis [6, 7, 16],
• Worst-case work gap [6, 7, 16],
• WINE (Work Integral Number Equality) [14, Chapter 4] [13,
15],

• Work Decomposition law [15].
While many of these techniques are used in this paper, they do not
suffice to handle the analysis of ServerFilling-SRPT. The analysis
of ServerFilling-SRPT hinges on bounding the waste relative to a
resource-pooled single-server SRPT system, where waste is the
expected product of work and unused system capacity. In order
to analyze waste, we introduce a new technique called MIAOW,
Multiplicative Interval Analysis of Waste. MIAOW buckets jobs
into multiplicative intervals based on their remaining sizes, and
bounds the waste in each interval.

REFERENCES
[1] Walfredo Cirne and Francine Berman. 2001. A model for moldable supercom-

puter jobs. In Proceedings 15th International Parallel and Distributed Processing
Symposium. IPDPS 2001. 8 pp.

[2] Allen B. Downey. 1997. Using queue time predictions for processor allocation. In
workshop on Job Scheduling Strategies for Parallel Processing. Springer, 35–57.

[3] Javad Ghaderi. 2016. Randomized algorithms for scheduling VMs in the cloud. In
IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications. 1–9.

[4] John Gittins, Kevin Glazebrook, and Richard Weber. 2011. Multi-armed bandit
allocation indices. John Wiley & Sons.

[5] Isaac Grosof, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. WCFS: A new
framework for analyzing multiserver systems. Queueing Systems (2022).

[6] Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2018. SRPT for multiserver
systems. Performance Evaluation 127-128 (2018), 154–175.

[7] Isaac Grosof, Ziv Scully, andMor Harchol-Balter. 2019. Load Balancing Guardrails:
Keeping Your Heavy Traffic on the Road to Low Response Times. Proc. ACM
Meas. Anal. Comput. Syst. 3, 2, Article 42 (jun 2019), 31 pages.

[8] Isaac Grosof, Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2022. Opti-
mal Scheduling in the Multiserver-job Model under Heavy Traffic. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 6, 3 (2022), 1–32.

[9] Mor Harchol-Balter. 2021. Open problems in queueing theory inspired by dat-
acenter computing. Queueing Systems: Theory and Applications 97, 1 (2021),
3–37.

[10] Mor Harchol-Balter. 2022. The multiserver job queueing model. Queueing Systems
100, 3 (2022), 201–203.

[11] Siva Theja Maguluri, Rayadurgam Srikant, and Lei Ying. 2012. Stochastic models
of load balancing and scheduling in cloud computing clusters. In 2012 Proceedings
IEEE Infocom. IEEE, 702–710.

[12] Konstantinos Psychas and Javad Ghaderi. 2018. Randomized Algorithms for
Scheduling Multi-Resource Jobs in the Cloud. IEEE/ACM Transactions on Net-
working 26, 5 (2018), 2202–2215.

[13] Ziv Scully. 2021. WINE: A New Queueing Identity for Analyzing Scheduling
Policies in Multiserver Systems. https://ziv.codes/pdf/wine-talk.pdf INFORMS
Annual Meeting.

[14] Ziv Scully. 2022. A New Toolbox for Scheduling Theory. Ph. D. Dissertation.
Carnegie Mellon University.

[15] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The Gittins Policy is
Nearly Optimal in the M/G/k under Extremely General Conditions. Proc. ACM
Meas. Anal. Comput. Syst. 4, 3, Article 43 (Nov. 2020), 29 pages.

[16] Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2021. Optimal multiserver
scheduling with unknown job sizes in heavy traffic. Performance Evaluation 145
(2021), 102150.

[17] Muhammad Tirmazi, Adam Barker, Nan Deng, Md E. Haque, Zhijing Gene Qin,
Steven Hand, Mor Harchol-Balter, and John Wilkes. 2020. Borg: The next Gener-
ation. In Proceedings of the Fifteenth European Conference on Computer Systems
(Heraklion, Greece) (EuroSys ’20). Association for Computing Machinery, New
York, NY, USA, Article 30, 14 pages.

https://ziv.codes/pdf/wine-talk.pdf

	Abstract
	1 The multiserver-job model
	2 Challenges of minimizing MSJ Mean Response Time
	3 ServerFilling-SRPT and Generalizations
	4 A Novel Proof Technique: MIAOW
	References

