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ABSTRACT

The First-Come First-Served (FCFS) scheduling policy is the most
popular scheduling algorithm used in practice. Furthermore, its
usage is theoretically validated: for light-tailed job size distributions,
FCFS has weakly optimal asymptotic tail of response time. But what
if we don’t just care about the asymptotic tail? What if we also care
about the 99th percentile of response time, or the fraction of jobs
that complete in under one second? Is FCFS still best? Outside of
the asymptotic regime, only loose bounds on the tail of FCFS are
known, and optimality is completely open.

In this paper, we introduce a new policy, Nudge, which is the first
policy to provably stochastically improve upon FCFS. We prove that
Nudge simultaneously improves upon FCFS at every point along
the tail, for light-tailed job size distributions. As a result, Nudge out-
performs FCFS for every moment and every percentile of response
time. Moreover, Nudge provides a multiplicative improvement over
FCFS in the asymptotic tail. This resolves a long-standing open
problem by showing that, counter to previous conjecture, FCFS is
not strongly asymptotically optimal.

This paper represents an abridged version of [2].
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1 INTRODUCTION

While advanced scheduling algorithms are a popular topic in theory
papers, it is unequivocal that the most popular scheduling policy
used in practice is still First-Come First-Served (FCFS). There are
many reasons for the popularity of FCFS. For instance, FCES is easy
to implement, and has a feeling of being fair.
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However, there are also theoretical arguments for why one
should use FCFS. For one thing, FCFS minimizes the maximum
response time for any finite arrival sequence of jobs. By response
time we mean the time from a job’s arrival to its completion.

For another thing, in an M/G/1 with a light-tailed job size distri-
bution, FCFS is known to have a weakly optimal asymptotic tail of re-
sponse time [1]. Specifically, using T to denote response time, the as-
ymptotic tail under FCFS is of the form P{TFCFS > t} ~ Crerse 7',
where 0" is known to be optimal, while the optimality of Cgcps is an
open problem [1]. The asymptotic tail growth under FCFS has been
compared with more sophisticated policies [1]. It has been shown
that, for light-tailed job size distributions, the tail of response time
under Processor-Sharing, Preemptive Last-Come-First-Served, and
Shortest-Remaining-Processing-Time (SRPT) each take the asymp-
totic form of P{T > t} ~ C’e~??, where 0’ is the worst possible
exponential decay rate over all work-conserving scheduling poli-
cies. Roughly, FCFS’s tail exponent 0 arises from the tail of the
workload distribution, while the other policies’ tail exponent 6’
arises from the tail of the busy period distribution, which is much
larger under light-tailed job size distributions.

In this paper, we choose to focus on the case of light-tailed job
size distributions. Light-tailed job size distributions show up natu-
rally in workloads where all the transactions are of the same type
(say shopping). Also, many natural distributions, like the Normal
distribution, Exponential distribution, and all Phase-type distribu-
tions, are light-tailed. Finally, while heavy-tailed job size distribu-
tions are certainly prevalent in empirical workloads, in practice,
these heavy-tailed workloads are often truncated, which immedi-
ately makes them light-tailed.

Within the world of light-tailed job size distributions, FCFS is
viewed as the best policy. However, while FCFS has a weakly opti-
mal asymptotic tail, it is not best at minimizing P{T > ¢} for all t.
In practice, one cares less about the asymptotic case than about par-
ticular ¢. For example, one might want to minimize the fraction of
response times that exceed ¢t = 0.5 seconds, because such response
times are noticeable by users. One might also want to meet several
additional Service Level Objectives (SLOs) where one is charged
for exceeding particular response time values, such as ¢t = 1 minute,
or t = 1 hour. SLOs are very common in the computing literature,
in service industries, and in healthcare. Unfortunately, different
applications have different SLOs. This leads us to ask:
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Figure 1: The Nudge algorithm.
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Figure 2: Empirical tail improvement of Nudge over FCFS in an
M/G/1. Tail improvement ratio = 1 — P{TNUdge > t} /P{TFC'ES > t}.
Job size distributions,: Uniform(0,2); Exp(1); Hyperexponential(y; =
2,p1 = 0.8, = 1/3,p, = 0.2); BoundedLomax(A = 2, max = 4,
a = 2). Distributions in legend ordered by asymptotic improvement.
Simulations of 10 billion arrivals. Load p = 0.8. Nudge parameters:
x1=1,xp =1,x3 = co.

When considering P{T > t}, is it possible to strictly
improve upon FCFS for all values of t?

We are motivated by the fact that, for lower values of ¢, SRPT is
better than FCFS, although FCFS clearly beats SRPT for higher
values of ¢, as FCES is weakly asymptotically optimal while SRPT is
asymptotically pessimal. SRPT also minimizes mean response time,
which is closely related to lower values of t. This motivates us to
consider whether prioritizing small jobs might have some benefit,
even in the world of light-tailed job size distributions.
We ask more specifically:

Can partial prioritization of small jobs lead to a strict
improvement over FCFS? Specifically, is there a sched-
uling policy which strictly improves upon FCFS with re-
spect toP{T > t}, forevery possiblet including larget?

This paper answers the above question in the affirmative. We
will define a policy, which we call Nudge, whose response time tail
is provably better than that of FCFS for every value of ¢, assuming a
light-tailed job size distribution!. We say that Nudge’s response time
stochastically improves upon that of FCFS, in the sense of stochastic
dominance. Moreover, we prove that the asymptotic tail of response
time of Nudge is of the form p{TNudge > 1} ~ CNudgee_e*t, with
optimal decay rate §* and a superior leading constant Cnydge <
Crcrs- Thus, we demonstrate that FCFS is not strongly optimal,
answering an open problem posed by Boxma and Zwart [1]. In
particular, this disproves a conjecture of Wierman and Zwart [4].

The intuition behind the Nudge algorithm is that we’d like to
basically stick to FCFS, which we know is great for handling the
extreme tail (high t), while at the same time incorporating a little
bit of prioritization of small jobs, which we know can be helpful

Technically, a Class I job size distribution. See [2].

for the mean and lower ¢. We need to be careful, however, not to
make too much use of size, because Nudge still needs to beat FCFS
for high ¢; hence we want just a little “nudge” towards prioritizing
smalls.

We now describe the Nudge algorithm. Imagine that the job
size distribution is divided into size regions, as shown in Fig. 1,
consisting of small, medium, large, and extra large jobs. Most of the
time, Nudge defaults to FCFS. However, when a “small” job arrives
and finds a “large” job immediately ahead of it in the queue, then
we swap the positions of the small and large job in the queue. The
one caveat is that a job which has already swapped is ineligible for
further swaps. The size cutoffs defining small and large jobs will
be defined later in this paper.

The degree of the tail improvement of Nudge over FCES is non-
trivial. In Fig. 2, we see that for many common light-tailed job size
distributions, Nudge results in a multiplicative improvement of
4-7% throughout the tail. In this paper, we show that with low load
and a high-variability job size distribution, Nudge’s improvement
can be as much as 10-15% throughout the tail. Furthermore, the fact
that Nudge stochastically improves upon FCFS means that it beats
FCEFS for all moments of response time, all percentiles of response
time, and all combinations thereof.

We conclude this paper by presenting an exact analysis of the per-
formance of Nudge. Nudge does not fit into any existing framework
for M/G/1 transform analysis, including the recently developed
SOAP framework [3]. Nonetheless, we give a tagged-job analysis
of Nudge, deriving the Laplace-Stieltjes transform of response time
of Nudge.

Our paper makes the following contributions (see [2]):

e We introduce the Nudge policy.

e We prove that with appropriately chosen parameters, Nudge
stochastically improves upon FCFS for light-tailed! job size
distributions; we also give a simple expression for such pa-
rameters. Moreover, we prove that Nudge achieves a multi-
plicative asymptotic improvement over FCFS.

e We derive the Laplace-Stieltjes transform of response time
under Nudge.

e We empirically demonstrate the magnitude of Nudge’s sto-
chastic improvement over FCFS. We also discuss how to tune
Nudge’s parameters for best performance.
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