
SOAP: One Clean Analysis of All Age-Based Scheduling Policies
Ziv Scully

Carnegie Mellon University

Computer Science Department

Pittsburgh, PA, USA

zscully@cs.cmu.edu

Mor Harchol-Balter

Carnegie Mellon University

Computer Science Department

Pittsburgh, PA, USA

harchol@cs.cmu.edu

Alan Scheller-Wolf

Carnegie Mellon University

Tepper School of Business

Pittsburgh, PA, USA

awolf@andrew.cmu.edu

ABSTRACT
We consider an extremely broad class of M/G/1 scheduling poli-

cies called SOAP: Schedule Ordered by Age-based Priority. The

SOAP policies include almost all scheduling policies in the liter-

ature as well as an infinite number of variants which have never

been analyzed, or maybe not even conceived. SOAP policies range

from classic policies, like first-come, first-serve (FCFS), foreground-

background (FB), class-based priority, and shortest remaining pro-

cessing time (SRPT); to much more complicated scheduling rules,

such as the famously complex Gittins index policy and other policies

in which a job’s priority changes arbitrarily with its age. While the

response time of policies in the former category is well understood,

policies in the latter category have resisted response time analysis.

We present a universal analysis of all SOAP policies, deriving the

mean and Laplace-Stieltjes transform of response time.

The full version of this work appears in POMACS [6].

CCS CONCEPTS
• General and reference → Performance; • Mathematics of
computing→ Queueing theory; • Software and its engineer-
ing → Scheduling; • Computing methodologies → Model de-
velopment and analysis; • Theory of computation→ Scheduling

algorithms;

KEYWORDS
M/G/1; exact response time analysis; Gittins index; shortest ex-

pected remaining processing time (SERPT)

ACM Reference Format:
Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2018. SOAP: One

Clean Analysis of All Age-Based Scheduling Policies. In SIGMETRICS ’18
Abstracts: ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems Abstracts, June 18–22, 2018, Irvine, CA, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3219617.3219632

1 INTRODUCTION
Analyzing the response time of scheduling policies in the M/G/1 set-

ting has been the focus of countless papers over the past half century.

Although there has beenmuch success in analyzing specific schedul-

ing policies, such analyses are limited to relatively simple scheduling
policies, such as first-come, first-served (FCFS), shortest remaining

SIGMETRICS ’18 Abstracts, June 18–22, 2018, Irvine, CA, USA
© 2018 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in SIGMETRICS ’18
Abstracts: ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems Abstracts, June 18–22, 2018, Irvine, CA, USA, https://doi.org/10.1145/
3219617.3219632.

processing time (SRPT), and foreground-background (FB). Analyz-

ing variants of these policies, let alone fundamentally different

policies, is an open problem. For instance, none of the following

scenarios have been analyzed before.

• Wemay have jobs that are neither fully preemptible nor fully

nonpreemptible, but instead are preemptible only at specific

“checkpoint” ages. We run a preemptive policy, say SRPT or

FB, but only preempt jobs when they reach checkpoints.

• The shortest expected remaining time policy (SERPT) is a nat-

ural alternative to SRPT in scenarios when job sizes are not

known. Aside from specific cases where SERPT is equivalent

to a simpler policy, SERPT has not been analyzed before.

• The Gittins index policy [1, 3] has long known to be optimal

for minimizing mean response time in the M/G/1 queue. In

general, the Gittins index policy can have a complex priority

scheme [2] which, while known to perform optimally, has

only been analyzed in certain special cases [4, 5].

Approaching the above examples with state-of-the-art tech-

niques, if possible at all, would require an ad-hoc analysis for each

scenario. We seek general principles and techniques for response
time analysis that apply to not just the above examples but to as

many scheduling policies as possible, even those not yet imagined.

1.1 Contributions
We introduce SOAP, a universal framework for defining and analyz-

ing M/G/1 scheduling policies. The SOAP framework can analyze

any SOAP scheduling policy, which includes nearly any policy where
a job’s priority depends on its own characteristics: class, size, age,

and so on. Specifically, we make the following contributions.

• We define the class of SOAP policies, a broad class of policies

that includes the unsolved examples above as well as many

other policies, from classic policies to those not yet imagined.

• We give a universal response time analysis that works for
any SOAP policy, obtaining closed forms for the mean and

Laplace-Stieltjes transform. We apply our results to analyze

previously intractable policies like the Gittins index policy.

In defining and analyzing SOAP policies, there are two major

technical challenges. The first challenge is to express all such policies
within a single framework. The SOAP framework encodes a sched-

uling policy as a rank function, which maps each job to a priority

level, or rank. All SOAP policies are based on a single rule.

Always serve the job ofminimum rank.

We break ties with a first-come, first-served (FCFS) tiebreaking rule.

For example, in a preemptive class-based priority system, a job’s

rank is its class, whereas in SRPT, a job’s rank is its remaining

https://doi.org/10.1145/3219617.3219632
https://doi.org/10.1145/3219617.3219632
https://doi.org/10.1145/3219617.3219632


SIGMETRICS ’18 Abstracts, June 18–22, 2018, Irvine, CA, USA Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf

2 14

6

8

12

0 a
0

r (a)

The rank function for SERPT when all jobs have size either 2 or 14, each

with probability 1/2. The rank is the expected remaining size of a job given

it has reached its age a. A job’s initial expected size is 8, but if it does not

finish at age 2, it must be size 14, so its expected remaining size jumps to 12.

Figure 1.1: Rank Function for SERPT (Example 2.5)

service time. Rank functions can express a huge variety of poli-

cies, from virtually all classic policies to complex policies which

have never been analyzed before. A notable exception is processor

sharing (PS), which does not fit into the SOAP framework.

The second major challenge is to analyze policies with arbitrary
rank functions. Nearly all previously analyzed scheduling policies,

when expressed as SOAP policies, have rank functions that are

monotonic in age. For example, under SRPT, a job’s rank decreases

with age, making it less and less likely to be preempted by another

job, while under FB, a job’s rank increases with age, making it more

and more likely to be preempted by another job. Unfortunately, the

techniques used in the past to analyze policies with monotonic rank

functions break down for arbitrary nonmonotonic rank functions. For
instance, SERPT can have a nonmonotonic rank function even

for very simple job size distributions, as shown in Figure 1.1. We

develop new analytical tools that work for arbitrary rank functions.

2 EXAMPLES OF SOAP POLICIES
2.1 Previously Analyzed SOAP Policies

Example 2.1. The foreground-background (FB) policy is a SOAP

policy. FB always serves the job of least age, so it has rank function

r (a) = a. It is likely that many jobs are tied for minimum rank

under FB, but whichever job is served immediately loses minimum

status, resulting in a processor-sharing effect.

There are always many rank functions that encode the same

SOAP policy. For instance, any rank function monotonically in-

creasing in age, such as r (a) = a2, also describes FB.

Example 2.2. The first-come, first-served (FCFS) policy is a SOAP

policy. FCFS is nonpreemptive, which is equivalent to always serv-

ing the job of maximal age, so it has rank function r (a) = −a.
Crucially, FCFS tiebreaking breaks ties between jobs of age 0.

The next example illustrates a job’s rank depending on attributes
other than age, such as class or original size. These attributes can be

anything as long as they are distributed i.i.d. for each arriving job.

Example 2.3. The shortest remaining processing time (SRPT) pol-
icy is a SOAP policy. A job of original size x has rank r (x ,a) = x −a.

So far, a job’s rank has been a single number. We can also assign

jobs multipart ranks r = ⟨r1, r2⟩, where r1 is the primary rank and

r2 is the secondary rank. We sort ranks lexicographically.

Example 2.4. Consider a system with classes {1, . . . ,n} where
jobs within each class are served in FCFS order but class 1 has high-

est priority, class 2 is next-highest, and so on. The nonpreemptive
priority and preemptive priority policies are SOAP policies.

• Nonpreemptive: a job of class k has rank r (k,a) = ⟨−a,k⟩.
The primary rank prevents preemption, and the secondary

rank prioritizes the classes when starting a new job.

• Preemptive: a job of class k has rank r (k,a) = ⟨k,−a⟩. Be-
cause k is the primary rank, jobs from high-priority classes

preempt those in low priority classes.

2.2 Newly Analyzed SOAP Policies
Example 2.5. The shortest expected remaining processing time

(SERPT) policy is a SOAP policy. Its rank function is

r (a) = E[X − a | X > a],

where X is the job size distribution. For example, consider a sys-

tem where all jobs have size either 2 or 14, each with probability

1/2. The resulting rank function for SERPT, shown in Figure 1.1, is

nonmonotonic. In contrast, every rank function in Section 2.1 is mono-

tonic. This nonmonotonicity has prevented previous techniques

from analyzing SERPT in full generality.

Example 2.6. The Gittins index of a job with age a is [1, 3]

G(a) = sup

∆>0

P{Xd − a ≤ ∆ | Xd > a}

E[min{Xd − a,∆} | Xd > a]
,

where X is the job size distribution. The Gittins index policy is the

scheduling policy that always serves the job of maximal Gittins

index, meaning it has rank function r (a) = 1/G(a). Although the

Gittins index policy has long been known to minimize mean re-

sponse time in the M/G/1 queue [3], only a few special cases have

been analyzed in the past [4, 5]. Like SERPT, the Gittins index policy

often has a nonmonotonic rank function, making it impossible to

analyze in general using previous techniques.

Example 2.7. Consider a system in which jobs, rather than be-

ing completely nonpreemptible or preemptible, are preemptible at
specific checkpoints, say every 1 time unit. The discretized FB pol-

icy is a variant of FB for jobs with checkpoints: when possible, it

serves the job of minimal age, but it does not preempt jobs between

checkpoints. Discretized FB has rank function

r (a) = ⟨⌊a⌋ − a,a⟩.

Roughly speaking, the primary rank encodes the “discretized” as-

pect, preempting a job only at integer ages a when ⌊a⌋ −a = 0, and

the secondary rank encodes the “FB” aspect.

We can “discretize” any other SOAP policy by using primary

rank ⌊a⌋ − a. For instance, discretized SRPT has rank function

r (x ,a) = ⟨⌊a⌋ − a,x − a⟩.

We have seen a variety of features that SOAP policies can model:

• jobs that are nonpreemptible, preemptible, or preemptible at

checkpoints;

• jobs with known or unknown exact size;

• class-based priority in multiclass systems; and

• priority that changes nonmonotonically as a job ages.

As the following example shows, SOAP policies go even further:

they can combine many such features as part of a single policy.



SOAP: One Clean Analysis of All Age-Based Scheduling Policies SIGMETRICS ’18 Abstracts, June 18–22, 2018, Irvine, CA, USA

Example 2.8. Consider a system with two customer classes.

• Humans, unpredictable and easily offended, have unknown

size, are nonpreemptible, and are served by FCFS relative to

other humans.

• Robots, precise and ruthlessly efficient, have known size, are

preemptible, and are served by SRPT relative to other robots.

A policy might have humans outrank most robots but let short

robots, those with remaining size less than a threshold xH , outrank

humans that have not yet started service. This gives rank function

r (H ,a) = ⟨−a,xH ⟩ r (Rx ,a) = ⟨0,x − a⟩,

where H and Rx denote humans and robots of size x , respectively.

3 MAIN RESULT
In this section we state the formula for the mean response time

under any SOAP policy. Its proof and extension to Laplace-Stieltjes

transforms are in the full version of this work [6].

The mean response time formula conditions on a job’s descriptor,
which captures all attributes the scheduler knows about the job

upon arrival, and its size, which may or may not be known to the

scheduler. We write λ for the overall job arrival rate and write Xd
for the size distribution of jobs with descriptor d .

Definition 3.1. The worst future rank of a job with descriptor d ,
size x , and age a is

1

rworstd,x (a) = sup

a≤b<x
r (d,b).

Definition 3.2. Let r be a rank. The new r-work is a random

variable, written Xnew[r ], representing how long a job that just

arrived to the system is served until it completes or reaches rank

at least r . Specifically, we define Xnew[r ] = Xnew

D [r ], where D is

the random descriptor assigned to a new job and, for any specific

descriptor d ,

cd [r ] = inf{a ≥ 0 | r (d,a) ⪰ r }

Xnew

d [r ] = min{Xd , cd [r ]}.

That is, cd [r ] is when a job of descriptor d reaches rank at least r .

Definition 3.3. Let r be a rank and d be a descriptor. The i-old r-
interval for descriptord is the ith interval of ages during which a job
of descriptor d has rank at most r . See Figure 3.1 for an illustration.

Specifically, the interval is [bi,d [r ], ci,d [r ]], where

b
0,d [r ] = 0

c
0,d [r ] = inf{a ≥ 0 | r (d,a) ≻ r }

bi,d [r ] = inf{a > ci−1,d [r ] | r (d,a) ⪯ r }

ci,d [r ] = inf{a > bi,d [r ] | r (d,a) ≻ r }.

The i-old r-work is a random variable, written X old

i [r ], representing
how long a job will be served while its age is in its i-old r -interval.

Specifically, we define X old

i [r ] = X old

i,D [r ], where D is the random

descriptor assigned to a new job and, for any specific descriptor d ,

X old

i,d [r ] =


0 if Xd < bi,d [r ]

Xd − bi,d [r ] if bi,d [r ] ≤ Xd < ci,d [r ]

ci,d [r ] − bi,d [r ] if ci,d [r ] ≤ Xd .

1
See the full version of this work [6] for discussion of corner cases.

0-old 1-old 2-old

c
0,d [r ] b

1,d [r ] c
1,d [r ] b

2,d [r ] c
2,d [r ]

r

0 a
0

r (d,a)

We show the rank of a job with descriptor d in cyan. The i-old r -intervals,
highlighted in green, are the intervals of ages during which the job’s rank

is at most r . The i-old r -work X old

i,d [r ] is the amount of service the job

requires while its age is in its i-old r -interval.

Figure 3.1: Illustration of Old Work (Definition 3.3)

If bi,d [r ] = ci,d [r ] = ∞, we define X old

i,d [r ] = 0.

Theorem 3.4 (SOAP Mean Response Time). In an M/G/1 using
any SOAP policy, the mean response time of jobs with descriptor d
and size x is

E[Td,x ] =
λ
∑∞
i=0 E[(X

old

i [w])2]

2(1 − ρold
0

[w])(1 − ρnew[w])
+

∫ x

0

1

1 − ρnew[w(a)]
da,

where λ is the overall arrival rate and

w(a) = rworstd,x (a) ρnew[r ] = λE[Xnew[r ]]

w = rworstd,x (0) ρoldi [r ] = λE[X old

i [r ]].

Proof. See the full version of this work [6, Theorem 5.5].

ACKNOWLEDGMENTS
We thank Peter van de Ven and the anonymous referees for their

helpful comments. Ziv Scully was supported by an ARCS Foun-

dation scholarship and the National Science Foundation Gradu-

ate Research Fellowship Program under Grant No. DGE-1745016.

Mor Harchol-Balter was supported by NSF-CMMI-1538204. Mor

Harchol-Balter and Ziv Scully were supported by NSF-XPS-1629444.

REFERENCES
[1] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2009. On the Gittins index in the

M/G/1 queue. Queueing Systems 63, 1 (2009), 437–458.
[2] Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2011. Properties of the Gittins

index with application to optimal scheduling. Probability in the Engineering and
Informational Sciences 25, 03 (2011), 269–288.

[3] John Gittins, Kevin Glazebrook, and Richard Weber. 2011. Multi-armed Bandit
Allocation Indices. John Wiley & Sons.

[4] Esa Hyytiä, Samuli Aalto, and Aleksi Penttinen. 2012. Minimizing slowdown in

heterogeneous size-aware dispatching systems. In ACM SIGMETRICS Performance
Evaluation Review, Vol. 40. ACM, 29–40.

[5] Natalia Osipova, Urtzi Ayesta, and Konstantin Avrachenkov. 2009. Optimal policy

for multi-class scheduling in a single server queue. In Teletraffic Congress, 2009.
ITC 21 2009. 21st International. IEEE, 1–8.

[6] Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2018. SOAP: One Clean

Analysis of All Age-Based Scheduling Policies. Proc. ACM Meas. Anal. Comput.
Syst. 2, 1, Article 16 (April 2018), 30 pages. https://doi.org/10.1145/3179419

https://doi.org/10.1145/3179419

	Abstract
	1 Introduction
	1.1 Contributions

	2 Examples of SOAP Policies
	2.1 Previously Analyzed SOAP Policies
	2.2 Newly Analyzed SOAP Policies

	3 Main Result
	Acknowledgments
	References

