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ABSTRACT
Queueing delays are ubiquitous in many domains, including
computer systems, service systems, communication networks,
supply chains, and transportation. Queueing and scheduling
theory provide a rigorous basis for understanding how to
reduce delays with scheduling, including evaluating policy
performance and guiding policy design. Unfortunately, state-
of-the-art theory fails to address many practical concerns. For
example, scheduling theory seldom treats nontrivial preemp-
tion limitations, and there is very little theory for scheduling
in multiserver queues.
My thesis presents two new, broadly applicable tools that

greatly expand the reach of scheduling theory, using each to
solve multiple open problems. The first tool, called “SOAP”,
is a new unifying theory of scheduling in single-server queues,
specifically the M/G/1 model. SOAP characterizes the delay
distribution of a broad space of policies, most of which have
never been analyzed before. Such policies include the Gittins
index policy, which minimizes mean delay in low-information
settings, and many policies with preemption limitations. The
second tool, called “WINE”, is a new queueing identity that
complements Little’s law. WINE enables a new method of
analyzing complex queueing systems by relating them to
simpler systems. This results in the first delay bounds for
Shortest Remaining Processing Time (SRPT) and the Gittins
policy in multiserver queues, specifically the M/G/k model.
This abstract gives a brief overview of my thesis, describing

what the SOAP and WINE tools do, the key ideas underlying
them, and the open problems they help solve.

1. INTRODUCTION
How can system designers reduce the queueing delay jobs
experience? My thesis [14] focuses on one of the main tools for
doing so: scheduling, namely altering the strategy by which
we allocate resources to clients. Scheduling is appealing in
that it is virtually free, and it can be done with the resources
and know-how one already has.
Given the potential benefits of smart scheduling, it should

come as no surprise that queueing theorists have studied
scheduling for more than half a century. Why, then, do we
need more scheduling theory? The issue is—and has always
been, and will always be—that today’s scheduling theory does
not adequately match scheduling practice. Some examples
of areas where scheduling theory is lacking are:

• Scheduling under uncertainty, particularly regarding
how much service a job needs.

• Scheduling with multiple servers.
• Scheduling with practical preemption constraints, mean-
ing restrictions on the server’s ability to switch from
serving one job to serving another.

Copyright is held by author/owner(s).

We would like to develop scheduling theory for these and
other practical concerns. However, each of these concerns
makes theoretically analyzing and optimizing scheduling poli-
cies, an already difficult endeavor, even more complicated.
My thesis [14] develops two new queueing-theoretic tools

that enable the study of concerns like uncertainty, multiple
servers, and preemption constrains. The two tools are called
SOAP (§2) and WINE (§3). My thesis applies SOAP and
WINE to prove several previously intractable results.

2. SOAP: UNIFYING THEORY OF SINGLE-
SERVER SCHEDULING

One of the main aims of scheduling theory is to guide system
design by analyzing the performance impact of using a given
scheduling policy. For example, consider the Shortest Remain-
ing Processing Time (SRPT) policy. In single-server queueing
systems, SRPT, which always serves whichever job has the
least remaining work, is known to minimize mean response
time, namely the mean time jobs spend in the system [12].

While the above result implies SRPT is good for reducing
mean response time, there are other questions we might want
to answer before deploying SRPT in practice.

• How much better is SRPT’s mean response time than
simpler alternatives, such as First-Come, First-Served
(FCFS)? Is the benefit worth the extra complexity?

• How well does SRPT perform on response time metrics
beyond the mean? Does improving mean performance
come at the price of degrading tail performance?

• How are SRPT’s response time benefits distributed
across different jobs? Is SRPT unfair to long jobs?

Fortunately, we can answer these and other questions about
SRPT using its queueing theoretic analysis. This analysis,
due to Schrage and Miller [13], exactly characterizes SRPT’s
response time distribution in the M/G/1 queueing model.
Queueing theorists use Schrage and Miller’s analysis as a
foundation for answering many questions about SRPT, in-
cluding those above. See my thesis [14, Chs. 2 and 3] for
further discussion.

2.1 Problem: Can Analyze Only a Limited Set
of Scheduling Policies

Since the 1960s, queueing theorists have analyzed many
scheduling policies in the M/G/1. See Figure 2.1(a) and
my thesis [14, Ch. 2] for an inexhaustive list. But for the
most part, these analyses proceed one-by-one, with a paper
analyzing a single policy or handful of related policies. Each
new policy seems to require a new analysis.
Two notable exceptions to this state of affairs are analy-

ses of two classes of policies, Multi-Level Processor Sharing
(MLPS) [7] and SMAll Response Times (SMART) [15]. In
both cases, a single analysis applies to all policies of a partic-
ular form. However, both MLPS and SMART are relatively
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(a) Scheduling policies analyzed in the M/G/1 without SOAP.
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(b) Scheduling policies analyzed in the M/G/1, including those
analyzed with SOAP, which are highlighted in bold. This includes
two policies, Chk-SRPT and RS, for which mean response time,
but not distribution of response time, was previously known.

Figure 2.1. SOAP expands the set of policies we know how to
analyze in the M/G/1, a single-server queueing model. (a) Prior
to SOAP, most policies were analyzed one-by-one, with a few
relatively small classes of policies analyzed. (b) SOAP unifies and
generalizes the state of the art with a single universal analysis
for a broad class of policies, subsuming much of what was already
known while also analyzing many policies for the first time.

limited in terms of the policies they cover.
Why is it a problem that the set of scheduling policies we

can analyze is limited? Because many important scheduling
concerns lie outside of what we can currently analyze. As
just one example, consider scheduling under uncertainty
about jobs’ service times. We cannot use SRPT, because
we cannot determine each job’s remaining work. Instead, we
might prioritize jobs using expected remaining work, yielding
a policy called SERPT (E for “expected”).
Does SERPT have good mean response time? SERPT

is intuitively appealing, but it turns out there is another
more complicated policy, called the Gittins policy [1, 2],
that minimizes mean response time when service times are
uncertain. So SERPT certainly has worse mean response
time than Gittins. But neither SERPT nor Gittins has been
analyzed, so we do not know how big the performance gap
between them is. Is Gittins necessary for good mean response
time under uncertainty, or does the simpler SERPT suffice?

2.2 Key Idea: Unifying Language for Policies
Enables a Universal Analysis

Despite the fact that most prior work analyzes policies one
by one, there are common ideas that appear across multiple
analyses. For example, part of Harchol-Balter [5], an intro-
ductory queueing text, is devoted to analyzing ten different
scheduling policies in the M/G/1. But nine out of ten of the
analyses follow a similar overall strategy, albeit with different
details. Can we unify the analyses of these nine policies? If
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(a) Rank function of Least Attained Service (LAS). The function
is monotonic, so LAS was tractable to analyze prior to SOAP [11].
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(b) Rank function of SERPT for an example service time distribu-
tion S. The function is nonmonotonic, so SERPT was intractable
to analyze prior to SOAP.

Figure 2.2. Two examples of rank functions, each describing a
SOAP policy. A rank function determines a job’s priority (lower
number is better) as a function of its age (a.k.a. attained service).
For example, the LAS policy, shown in (a), always serves the job
that has been served the least so far.

so, can that help us analyze even more policies?
SOAP, which stands for Schedule Ordered by Age-based

Priority, answers both questions affirmatively. SOAP has
two parts:

• SOAP policies: a broad class of scheduling policies de-
scribed in a single unifying language. The class includes
many policies which have never been analyzed before.

• SOAP analysis: a single analysis that applies to all
SOAP policies. The analysis characterizes response
time in the M/G/1, yielding exact formulas for the
mean and Laplace-Stieltjes transform of response time.

SOAP thus unifies and generalizes prior analyses, as shown
in Figure 2.1(b).
The key idea behind SOAP is the unifying language it

uses to represent scheduling policies: rank functions. A rank
function gives each job a rank, i.e. priority, as a function of
its age, i.e. how much service it has received so far. Figure 2.2
illustrates two examples. The SOAP class contains all policies
that can be represented by a rank function.
The flexibility of rank functions makes the class of SOAP

policies very broad. SOAP includes both classic policies that
were analyzed decades ago, such as FCFS and Least Attained
Service (LAS) (Fig. 2.2(a)), and policies that have never been
analyzed before, such as SERPT (Fig. 2.2(b)) and Gittins.
Part of the breadth of SOAP comes from the fact that rank
functions can also take as input certain “static” job charac-
teristics, such as service time. For instance, we can represent
SRPT by the rank function rankSRPT(s, a) = s− a: a job’s
priority is its remaining work, which is its service time s mi-



nus its age a. My thesis [14, Chs. 3 and 6] contains numerous
examples of SOAP policies and their rank functions.
Having defined SOAP policies, the question of analyzing

SOAP policies in the M/G/1 remains. This boils down to an-
alyzing a policy’s response time in terms of its rank function.
The primary challenge turns out to be handling nonmono-
tonic rank functions. In fact, with just one exception [3],
all previously analyzed SOAP policies have monotonic rank
functions. But SERPT, Gittins, and many other policies have
nonmonotonic rank functions (Fig. 2.2(b)). My thesis [14,
Chs. 3 and 7] describes the obstacles nonmonotonicity poses
and how the SOAP analysis overcomes them.

2.3 Impact: Broad Class of Policies Analyzed
for the First Time in the M/G/1

The end result of the SOAP analysis is an exact characteri-
zation of the response time distribution of any SOAP policy
in the M/G/1. This yields the first analysis of SERPT and
Gittins, both of which can have nonmonotonic rank functions,
as well as many other policies.
The SOAP analysis alone, with no additional theory, is

already valuable for guiding scheduling design. My thesis
numerically applies the SOAP analysis to compare SERPT
and Gittins [14, Ch. 10]. One finding is that Gittins’s mean
response time can often be nearly matched by SERPT or
another simple alternative. My thesis also applies SOAP to
gain insight into scheduling under two types of preemption
limitations [14, Ch. 9].
In addition to being useful numerically, the SOAP analysis

is also useful as a foundation for further theory. For example,
motivated by the numerical observation that SERPT nearly
matches Gittins’s mean response time in many examples, we
might wonder whether we can prove that SERPT is always in
some sense near-optimal for mean response time. My thesis
proves such a guarantee for a slight modification of SERPT
[14, Ch. 11]. Going beyond means, my thesis also theoretically
characterizes the asymptotic tail behavior of SERPT’s and
Gittins’s response time distributions [14, Ch. 13].

3. WINE: NEW QUEUEING IDENTITY TO
AID MULTISERVER ANALYSIS

Multiserver queueing systems are ubiquitous in practice. Vir-
tually all computer systems today have multiple processing
units, from smartphones with multiple cores to datacenters
with thousands of machines. Unfortunately, while queueing
theorists have studied scheduling in single-server systems
for decades, there is currently very little queueing theory
that can help us analyze or optimize scheduling policies in
multiserver systems.
For concreteness, consider the problem of minimizing mean

response time in a system with known service times. In the
M/G/1, it has long been known that SRPT is optimal [12].
But the general idea of serving jobs that will complete soon
seems wise even we have multiple servers. While it turns out
perfect optimality is intractable with multiple servers [8], we
might still ask whether SRPT is in some sense near-optimal
in multiserver systems. We focus on the M/G/k, an analogue
of the M/G/1 in which k ≥ 2 servers are connected to a
single central queue.
(Hereafter, we append a “-1” or “-k” to a policy’s name

when discussing its M/G/1 or M/G/k version, respectively.
For instance, SRPT-1 always serves the single job of least

remaining work, while SRPT-k always serves the k jobs with
the k least amounts of remaining work, or all jobs if there
are fewer than k.)

3.1 Problem: M/G/1 Analysis Techniques Fail
in the M/G/k

Analyzing response time of the M/G/k is famously intractable,
even under the seemingly simple FCFS-k, and even if we are
willing to settle for bounds or approximations. See Gupta
et al. [4], Kingman [6], Li and Goldberg [9], and my thesis
[14, Ch. 2] for further discussion.
Given the difficulty of analyzing FCFS-k, analyzing SRPT-k

seems out of reach. Gittins-k seems harder still, seeing as
Gittins-1 was only analyzed for the first time using SOAP.
But this prompts a question: can we generalize SOAP from
the M/G/1 to cover the M/G/k as well?
Unfortunately, the M/G/1 analysis technique underlying

SOAP seems unlikely to work in general in the M/G/k. One
of the key properties of the M/G/1 that makes it tractable
to analyze is that the single server acts as a “choke point”
through which all jobs must pass. This makes it easy to
determine how long one job A spends waiting behind another
job B, which is a key step of the SOAP analysis.
The story is more complicated in the M/G/k. With multi-

ple servers, there is no longer a single “choke point” through
which all jobs pass. This makes it much harder to determine
how long one job A spends waiting behind another job B.
Even if job A has worse rank than job B, it might happen
that both A and B get to enter service at the same time. This
is just one of several complications that make a SOAP-style
analysis of the M/G/k difficult.

3.2 Key Idea: Relate Response Time to Work,
a Much Simpler Quantity

Given that existing M/G/1 techniques do not work well in the
M/G/k, we need a new approach. One source of inspiration
comes from Little’s law [10], a queueing identity which relates
a system’s mean response time E[T ] to the mean number
of jobs E[N ]. While there are few problems that Little’s
law solves by itself, it is a ubiquitous tool, in large part
because it applies to essentially any queueing system. Are
there other similarly general identities that could help us
analyze scheduling in the M/G/k?
WINE, which stands for Work Integral Number Equality,

answers this question affirmatively. WINE is a new queue-
ing identity that relates a system’s number of jobs N to
a quantity called r-work, denoted W (r). Like Little’s law,
WINE applies to essentially any queueing system, including
M/G/k. By combining WINE with Little’s law and one more
ingredient, we obtain mean response time bounds on SRPT-k
and Gittins-k (Fig. 3.1).
Before explaining how WINE helps us analyze scheduling

in the M/G/k, let us pin down exactly what WINE and
r-work are. We focus on SRPT for simplicity, but the same
story works for Gittins, albeit with more complicated details.
For any rank r ≥ 0, r-work W (r) is, roughly speaking,

“work with rank better than r”. Under SRPT, this becomes

“SRPT-flavored” r-work: W (r) =

N∑
j=1

Xj 1(Xj < r),

where Xj is the remaining work of job j. That is, we sum
up the remaining work Xj of all jobs j whose rank—which,
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Figure 3.1. Using WINE to analyze the mean response time
of SRPT-k and Gittins-k. Both analyses use the same approach:
combine WINE and Little’s Law to both the M/G/k and M/G/1
to relate response time T to r-work W (r), then use work decom-
position to relate r-work in the M/G/k to r-work in the M/G/1.

under SRPT, is also Xj—is better than r.
How is the number of jobs N related to r-work W (r)? For

any single rank r, there is no relationship that holds between
N and W (r). But it turns out that if we take an integral of
W (r) over all ranks r ≥ 0, we obtain the number of jobs.
One can verify that for any values of X1, . . . , XN , we have

“SRPT-flavored” WINE: N =

∫ ∞

0

W (r)

r2
dr.

My thesis [14, Chs. 3 and 15] geometrically interprets this
equation and generalizes it to “Gittins-flavored” WINE.
Why is WINE helpful? As outlined in Figure 3.1, combining

WINE with Little’s law reduces the problem of analyzing
mean response time to that of analyzing mean r-work. But is
analyzing mean r-work any easier? While an exact analysis
is intractable, remarkably, it is possible to prove a bound.
The key idea is to bound the r-work in an M/G/k in terms
of the r-work in an M/G/1, scaling server speeds to give
both systems the same total service capacity. For instance, in
Figure 3.1, we compare an M/G/k with servers of speed 1/k
to an M/G/1 with server speed 1, giving both systems total
service capacity 1. This results in a bound on SRPT-k’s mean
response time in terms of that of SRPT-1.
A question remains: how is it possible to compare M/G/k

r-work to M/G/1 r-work, and why is that easier than directly
comparing response times? The basic idea is that we can
reason about r-work as a continuous quantity, showing that
r-work “drains” at similar rates in the M/G/k and M/G/1 [14,
Chs. 8 and 17]. Directly comparing response times involves
reasoning discretely about jobs, which seems more difficult.

3.3 Impact: First Response Time Bounds for
SRPT-k, Gittins-k, and More

The main motivation for WINE was analyzing SRPT-k and
Gittins-k. Following the outline in Figure 3.1, my thesis
proves a mean response time bound for SRPT-k and Gittins-k
[14, Ch. 17]. The bound is tight enough to imply heavy traffic
optimality. That is, as the job arrival rate increases, the ratio
between SRPT-k’s mean response time and the minimum

achievable mean response time approaches 1, and similarly
for Gittins-k under uncertain service times.
In addition to the multiserver results, it turns out WINE is

also useful for proving theorems about single-server schedul-
ing. For example, my thesis uses a cocktail of SOAP and
WINE to prove that in the M/G/1, variations of SRPT that
have access to only noisy service time estimates can still
achieve mean response time close to true SRPT [14, Ch. 12].
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