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We need a better theoretical understanding of scheduling for today’s computer systems. Today’s
computer systems are complicated: they have many servers, operate under uncertainty, are subject to a
variety of overheads and constraints, and must optimize di�cult metrics like tail latency. Each of these
factors makes scheduling more di�cult, increasing the need for guidance from theory.

While traditional theoretical computer science studies scheduling in worst-case models, for today’s
large-scale systems, I believe stochastic tools, namely queueing theory, are more appropriate. Unfortunately,
queueing theory cannot yet handle today’s systems. Scheduling on multiple servers is nearly absent from
queueing theory, and theory for scheduling under uncertainty and with overheads is also lacking.

I aim to develop scheduling theory for today’s computer systems. My research spans four main
themes: multiserver systems (§1), uncertainty (§2), overheads and constraints (§3), and tail metrics (§4). As
respective examples, my research provides the �rst queueing theoretic analyses of multiserver SRPT, the
Gittins policy, scheduling under the constraints of network switch hardware, and a new scheduling policy
that strictly improves upon FCFS’s tail latency. Underlying these “�rsts” are new frontiers in queueing
theory (§5) that my collaborators and I have opened. In the future, I plan to study systems like machine
learning training clusters and extend my theoretical insights to domains like reinforcement learning (§6).

1 Multiserver Systems
While there is a large body of queueing theory studying scheduling in single-server1 systems, there is
almost none for multiserver systems. This is unfortunate, because multiserver systems are ubiquitous at all
scales, from the multiple cores in a mobile device to the thousands of machines in a datacenter. How should
we schedule in multiserver systems?

1.1 SRPT in Multiserver Systems For single-server systems, it is well known that the scheduling
policy that minimizes mean response time2 is Shortest Remaining Processing Time (SRPT). SRPT always
serves whichever job has the least remaining size,3 preempting the job in service if a smaller one arrives. It
is well known that SRPT minimizes mean response time in single-server systems. Unfortunately, it is known
that in the worst case, SRPT can perform poorly in multiserver systems: it has unbounded competitive ratio
for mean response time [10]. However, SRPT has never been analyzed in the more realistic stochastic case,
in which arrival times and job sizes are random variables drawn from distributions. Does SRPT perform well
in stochastic multiserver systems?

We derive the �rst response time bounds on multiserver SRPT [4]. To clarify, multiserver SRPT always
serves as many jobs as possible, prioritizing jobs from least to greatest remaining processing time. The
bound we prove is a stochastic dominance bound, so it implies bounds on the mean, variance, and higher
moments of response time. We use this bound to prove that multiserver SRPT has optimal mean response
time in heavy tra�c, meaning that as the system’s arrival rate increases, the ratio between SRPT’s mean
response time and the optimal policy’s approaches 1.

Our analysis uses a novel combination of stochastic ideas from queueing theory and worst-case ideas
from theoretical computer science. This work won the PERFORMANCE 2018 Best Student Paper Award.

1.2 Dispatching to SRPT �eues The above analysis of multiserver SRPT is in a central-queue setting,
in which all jobs reside in a single queue. However, many systems are better described as immediate-dispatch,
where each server has its own queue, and jobs must be assigned to one server’s queue upon arrival.

1The word “server” has a very general meaning in scheduling theory: it is any entity that completes work. Exactly what a sever
represents varies. It can be a single core, a single machine, or even a cluster of machines.

2A job’s response time, also known as its latency, delay, or sojourn time, is the amount of time between its arrival and completion.
3A job’s size is its processing time, and a job’s remaining size is its size minus the amount of time it has been served so far.
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We derive the �rst response time bounds on policies for dispatching to SRPT queues [5]. The key idea is
to make sure that each queue receives amount of work from small jobs, medium jobs, and large jobs. We
formalize this as a set of constraints we call “guardrails”, which are easily satis�ed by simple dispatching
policies. We prove a stochastic response time bound on any system that pairs a dispatching policy that
obeys guardrails with SRPT servers. Our bound implies that guardrails ensure optimal mean response time
in heavy tra�c. This work won the SIGMETRICS 2019 Best Student Paper Award and was featured as a
mini-plenary at STOC 2021 TheoryFest.

1.3 Beyond SRPT Our group has been at the forefront of analyzing scheduling in multiserver systems.
Our paper on multiserver SRPT uses the same technique to analyze other size-based scheduling policies [4].
In later work, we develop new techniques for analyzing multiserver policies for unknown job sizes [15–17].

2 Uncertainty
Scheduling using SRPT requires knowing each job’s exact remaining size, but determining exact job sizes is
often impossible or impractical. There are many di�erent types of job size uncertainty. The scheduler may
have no size information at all, it may have noisy job size estimates, or it may have other types of partial
job size information. How should we schedule in the face of job size uncertainty?

2.1 No Job Size Information Suppose we wish to minimize mean response time, which involves
prioritizing small jobs ahead of big jobs. How can we do this without knowing each job’s size? The key
idea is that even if we do not know any individual job’s size ahead of time, we can measure how big jobs
are as they complete. Aggregating this data over times gives us a good picture of the job size distribution.

The question of how to leverage the job size distribution to minimize mean response time has been well
studied. A policy called the Gittins policy [3] is optimal in many cases, but several open questions remain.

• All existing proofs of Gittins’s optimality make limiting assumptions on the job size distribution [20].
Is Gittins optimal even without these limiting assumptions?

• Even in cases where Gittins is known to be optimal, we do not know what mean response time it
actually achieves. What is Gittins’s mean response time?

• Gittins is only optimal in single-server systems. Does Gittins still perform well in multiserver systems?
• Gittins is a famously complex policy. Can we match Gittins’s performance with simpler heuristics?

My research answers the above questions for the �rst time.
• We give the �rst proof of Gittins’s optimality without limiting assumptions [20].
• We provide the �rst response time analysis of Gittins [23]. This work, which actually covers much

more than just Gittins (§5.1), was a �nalist of the 2019 INFORMS APS Best Student Paper Prize.
• We prove the �rst bounds on Gittins’s response time in multiserver systems [16]. Our bounds imply

that Gittins has optimal mean response time in heavy tra�c.
• We give the �rst analysis of simpler alternatives to Gittins [17, 21, 24]. We �nd that in general, very

simple policies like First-Come, First-Served (FCFS) can be much worse than Gittins, but more
advanced heuristics that are still simpler than Gittins perform nearly as well.

2.2 Estimated Job Sizes Many systems are able to give the scheduler a noisy estimate of each job’s size.
How should we schedule to minimize mean response time with noisy job size estimates? One candidate
policy is SRPT with Estimates (SRPT-E). SRPT-E is like SRPT, but it uses estimated size instead of true size
when computing a job’s priority. Unfortunately, SRPT-E has been observed to be non-robust, performing
poorly even under low noise [2]. How do we schedule in a way that is robust to noisy job size estimates?

We propose the �rst scheduling policy that is provably robust to noisy job size estimates [18]. Our policy,
called SRPT with Bounce (SRPT-B), has provably near-optimal mean response time under low noise, and its
performance degrades gracefully as noise increases.

In contrast to the stochastic setting, near-optimal performance under low noise is impossible in the
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worst-case setting [1]. This means that worst-case analysis alone would not identify SRPT-B as a good
contender, underscoring the importance of stochastic analysis.

2.3 Other Types of Uncertainty While our initial focus on the Gittins policy was in the case where
no job size information is available, most of our results extend to cases with various types of partial job size
information [16, 20]. One example is when jobs have multiple stages, where each stage’s size is unknown
but the number of stages remaining is known [22]. In other work, we explore system state uncertainty, in
which we have delayed or otherwise noisy information about the state of the system. This can occur when
scheduling over a network. We show how to adapt a wide class of scheduling policies, including Gittins
and SRPT-B, to be robust to system state uncertainty [19].

3 Overheads and Constraints
Most queueing theory works under idealistic assumptions that do not match the messy realities of systems.

• Scheduling policies often assume jobs may be freely preempted at any time. But in some systems, jobs
might sometimes be nonpreemptible. When preemption is possible, it typically incurs overhead [11].

• Scheduling policies often assign very granular priority levels. But some systems, such as network
switches, are limited by hardware or software to a limited number of priority levels [9, 13].

How should we schedule in light of overheads and constraints?

3.1 Preemption Overhead Preemption in general incurs some overhead. When a job is paused, it takes
some time to store the state of the job. When a job is later resumed, it takes some time to reload that state
and otherwise “warm up” (e.g. re�lling caches). There is very little queueing theory on analyzing even
very simple scheduling policies with preemption overhead, with none including both pause and resume
overheads. How do pause and resume overheads a�ect response time?

We take the �rst steps towards answering this question by giving the �rst stochastic analysis of scheduling
with pause and resume overheads [14]. My mentee Edwin Peng won the undergraduate division of the
SIGMETRICS 2021 Student Research Competition with his presentation of this work.

3.2 Limited Priority Levels Network switches, the Linux scheduler, and other systems all have only a
limited number of priority levels built into their hardware or software. Adding more levels is typically costly,
requiring more expensive hardware or increasing scheduling overhead. How should we adapt scheduling
policies to limited priority levels? How many levels do we need?

We provide the �rst analysis of scheduling with limited priority levels [21]. We give a heuristic for
adapting policies to the limited-priority-level setting, demonstrating that with only �ve or six priority
levels, one can generally achieve mean response time within 20% of the original policy.

3.3 Preemption Checkpoints Many systems only allow preempting jobs at speci�c checkpoints when
their state has been saved. More frequent checkpoints mean more opportunities for preemption, and
thus more e�cient scheduling. But preemption checkpoints typically incur overhead. What gap between
checkpoints balances the needs of smart scheduling with avoiding overhead?

We provide the �rst analysis of scheduling with preemption checkpoints [21]. We give a rule-of-thumb
formula that takes as input the checkpoint overhead and yields the optimal gap between checkpoints.

4 Tail Metrics
In practice, it is the tail of response time, not the mean, that is usually most important. The tail can be
described with probabilities P[) > C], the chance response time ) exceeds a threshold C , or percentiles
like C99, which is the value such that 1 − P[) > C99] = 0.99. How should we schedule to optimize tail metrics?

4.1 Improving All Response Time Tail Probabilities and Percentiles SRPT, in addition to minimiz-
ing mean response time, has low tail probability P[) > C] for small and medium thresholds C , but its tail
performance is less good for large thresholds C . On the other hand, the classic First-Come, First-Served
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(FCFS) policy always minimizes the maximum response time of any individual job, suggesting its P[) > C]
performance is good for large C . In fact, for a wide class of job size distributions, FCFS has been conjectured
to be asymptotically optimal for P[) > C] in the large C limit.

To summarize: SRPT has better P[) > C] for small and medium C , whereas FCFS is often better for
large C . Can we get the best of both worlds, achieving good tail probability for all thresholds C?

We combine aspects of SRPT and FCFS to obtain the �rst scheduling policy with strictly better response
time tail than FCFS [6]. Our policy, called Nudge, serves jobs FCFS by default, then adds just a hint of SRPT:
if a small job arrives and the last job in the queue is big, we “nudge” the big job behind the small job, but
only if the big job has not been nudged before. We prove that Nudge has smaller P[) > C] than FCFS for all
thresholds C , so it also has smaller C99 and other response time percentiles. In particular, Nudge’s P[) > C] is
multiplicatively smaller than FCFS’s in the large C limit, disproving FCFS’s conjectured asymptotic optimality.
This work won the SIGMETRICS 2021 Best Paper Award.

4.2 Optimizing Both Mean and Tail of Response Time Ideally, one would like to achieve both low
mean response time and low response time tail. We know that Gittins minimizes mean response time when
job sizes are unknown (§2.1), but its tail performance is unknown. Can we simultaneously achieve good
mean and tail of response time? Can we do so using Gittins?

We perform the �rst analysis of Gittins’s response time tail [25, 26]. We �nd that when the job size
distribution is heavy-tailed, Gittins has asymptotically optimal response time tail, making it a good choice
for both mean and tail of response time. The story for light-tailed job size distributions is messier: Gittins’s
tail can be anywhere from asymptotically optimal to asymptotically pessimal. To remedy this, we show how
to tweak Gittins to avoid pessimal tail behavior while maintaining near-optimal mean response time [25].

5 New Frontiers in �eueing Theory
My goal as a researcher is not just to solve individual problems, but rather to push frontiers of queueing
theory as a �eld so that wide classes of problems become much easier to solve. This philosophy has already
led me to two widely applicable queueing theoretic innovations, one each in single-server and multiserver
scheduling. I have been invited to give tutorials on these techniques at SIGMETRICS 2019 and 2021.

5.1 Unifying Theory of Single-Server Scheduling The state of the art in queueing theory is that each
scheduling policy requires its own speci�cally tailored analysis. Despite some common themes between
the analyses of di�erent policies, analyzing a single policy or small group of related policies is still a
paper-length task. As such, many more complex policies, such as Gittins (§2.1), have not yet been analyzed.

I have pioneered a new technique, called SOAP,4 which advances the state of the art by giving a universal
analysis of a wide class of scheduling policies [23]. SOAP simultaneously uni�es and generalizes previous
analyses. It provides the �rst analysis of many policies, including Gittins.

5.2 Simpler Approach to Multiserver Scheduling Analyzing multiserver queueing systems is noto-
riously di�cult, even under FCFS [7]. Introducing advanced scheduling only makes things more challenging.

I have pioneered a new technique, called Work-to-Time, that reduces response time analysis to a simpler
problem. The simpler problem is bounding quantities like the amount of work in the system, which is often
easier than directly bounding response time. While Work-to-Time was mainly motivated by multiserver
systems [15, 16], it has also proven useful for dealing with uncertainty in single-server systems [18, 20, 25].

6 Future Plans
There are many research directions I am excited to pursue. Here I highlight two broad directions. The
�rst direction (§§6.1–6.5) is more systems-motivated: I believe that new tools in queueing theory can be
developed to handle a variety of concerns that show up in modern system architectures, ranging from GPUs

4SOAP stands for “Schedule Ordered by Age-based Priority”, which describes the class of policies the technique can analyze.
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to datacenters. The second direction (§6.6) is more theory-motivated: I believe the tools I have developed for
studying Gittins in queues may be helpful in settings beyond queueing theory, ranging from reinforcement
learning to contact tracing.

6.1 Datacenters Modern datacenters can house hundreds of thousands of machines, and jobs in these
datacenters may run on many machines at once. A recent analysis of traces from Google’s Borg clusters
show jobs requesting anywhere from one to tens of thousands of machines [8]. How should we schedule
when a single job can occupy many servers?

6.2 Edge Computing Computing on the edge is a unique setting in many ways. One interesting aspect
is that while edge devices are relatively limited in terms of their processing and storage capacities, the
cloud, which has much greater capacity, is only a few network hops away. Of course, falling back on the
cloud uses bandwidth, which is itself a scarce resource. How should we schedule when we have limited local
resources but ample remote resources?

6.3 Databases Jobs are submitted to databases in the form of queries, which are written in some query
language (e.g. SQL). As such, jobs in databases can have a wide variety of structures, but the system has a lot
of information about the structure of the jobs it is serving. For example, di�erent phases of query execution
exhibit di�erent levels of parallelism, or a query’s processing time may be uncertain at the start but become
clearer after executing its �rst few phases. How should we schedule when we have detailed knowledge of each
job’s structure?

6.4 GPUs for Natural Language Processing GPUs and similar architectures perform the same opera-
tions on several threads simultaneously. The result is that GPUs run jobs in batches that complete once
their largest job has �nished. This batching behavior is well-suited to applications like graphics, which
produce with images of predictable sizes. But in applications like natural language processing, models
can output an a priori unpredictable amount of text. We might bene�t from stopping some batches early,
�nishing the batch’s small jobs more quickly but leaving its largest jobs incomplete, though this raises
questions about when to stop a batch and how to handle incomplete jobs. How should we schedule when
jobs of di�erent sizes must be served in batches?

6.5 Training Machine-Learning Models One can view training a machine-learning model as a job.
However, unlike jobs in traditional queueing theory, it is not always obvious when training is complete. For
example, gradient descent improves a model’s quality initially, but it eventually has diminishing returns.
But phenomena like epoch-wise double descent [27] make it hard to tell when this diminishing-returns
regime has been reached. When training a model, we might wonder whether we should do more iterations
of gradient descent or to try a new combination of hyperparameters. How should we schedule when job
completion is not binary, but serving a job has unpredictably diminishing returns?

6.6 Gi�ins for Reinforcement Learning and Exploration-Exploitation Tradeo�s So far I have
discussed the Gittins policy in the context of scheduling jobs in queues. But Gittins is actually a very general
optimization tool for balancing exploration-exploitation tradeo�s. Such tradeo�s are ubiquitous in problems
featuring optimization under uncertainty, including reinforcement learning, search problems, and resource
allocation. As a topical example, recent work applies Gittins to contact tracing in epidemics [12].

Compared to other algorithms for managing the exploration-exploitation tradeo� (e.g. UCB, Thompson
sampling, Exp3), Gittins requires a more precise stochastic model, but in return, Gittins yields optimal
performance relative to that stochastic model. I believe that in an age where data is readily available, learning
or otherwise constructing stochastic models from data and applying Gittins is a promising approach. Can
we leverage Gittins and big data to design better algorithms for reinforcement learning and other problems
with exploration-exploitation tradeo�s?
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