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5Chapter 1

Analyzing work via Palm calculus

The work in a queueing system is the total remaining time needed to serve all jobs currently
in the system. We model the work in a system as a stationary process𝑊 = (𝑡 ↦→𝑊 (𝑡)). In
the case of a single-server queue,𝑊 has relatively simple behavior [§ 1.2].

• When the server is busy, namely when𝑊 (𝑡) > 0, the work𝑊 (𝑡) has slope −1.
• When the server is idle, namely when𝑊 (𝑡) = 0, the work𝑊 (𝑡) has slope 0.
• At certain times, specifically arrival times of jobs, the work jumps up according to
the size of the arriving job, i.e. a job that arrives at time 𝑡 has size𝑊 (𝑡+) −𝑊 (𝑡−).

See Figure 1.1 for an illustration of𝑊 in a single-server queue.
The purpose of this chapter is to develop tools for answering the following question.

Question 1.1. What factors affect the stationary amount of work in a queueing system?

The main tool we introduce for studying this question isMiyazawa’s Rate Conservation
Law (RCL) from Palm calculus [§ 1.3]. The RCL gives us relationships between different
“forces”, like service and arrivals, that act on the work in a queueing system. One obstacle
is that some forces, like service, act continuously; while others, like arrivals, act via
discontinuous jumps. Palm calculus gives us a language for working with jumps.

Using the RCL and Palm calculus, we’ll be able to answer Question 1.1 for several
types of queueing systems. For a few simple models, namely the single-serverM/G/1 queue
[§ 1.2] and variants thereof [Exrs. 1.13, 1.14], we obtain exact formulas. For more complex
models, such as the single-server G/G/1 queue [§ 1.4.3] and the multiserver M/G/𝑘 queue
[Exr. 1.15], we obtain incomplete formulas that still provide useful bounds, approximations,
or other insights.

1.1 Foundations: stationarity and point processes

This section defines stationary processes and introduces the notation and terminology
conventions we use when working with them.

1.1.1 General conventions
Notation 1.2.

(a) The notation 𝑡 ↦→ expr[𝑡] denotes the function (or stochastic process) that maps
𝑡 to expr[𝑡], which is some expression involving 𝑡 . This is useful for describing
one-off functions or processes without giving them a name. For instance, we can
write 𝑡 ↦→ 𝑡2 instead of “𝑓 , where 𝑓 (𝑡) = 𝑡2”. We emphasize that the variable used
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is arbitrary, e.g. (𝑡 ↦→ 𝑡2) = (𝑢 ↦→ 𝑢2), but we’ll do our best to reduce confusion by
choosing variables that don’t conflict with others.

(b) When it can be done without introducing ambiguity, we combine functions with
arithmetic operations, e.g. (𝑋 + 𝑌 ) (𝑡) = 𝑋 (𝑡) + 𝑌 (𝑡), (𝑋 2) (𝑡) = 𝑋 (𝑡)2, etc.

Notation 1.3. We (shamelessly!) commit several probability sins.
(a) The words “almost surely” will be omitted almost everywhere.
(b) Independence is understood to be mutual independence unless otherwise specified.
(c) “Process” is understood to mean “stochastic process”, i.e. random functions, typically

with domain ℝ or ℤ. Ordinary deterministic functions are, of course, a special case.
The only exception is the term point process [Def. 1.10], which is a random set rather
than a random function.

(d) Rather than explicitly defining measures, we define their expectation operators,
which we denote by E[·] with various subscripts and superscripts [Def. 1.20], and we
never work directly with the elements of any underlying sample space. We write the
corresponding probability measure as P[·] with the same subscripts and superscripts.

(e) When introducing a random variable, we use the term fresh or freshly to indicate it
is independent of all previously defined random variables.

(f) Throughout, we work with one “main” probability space with expectation E[·].
Abusing notation somewhat, we also use E[·] for “one-off” expectations. However,
all other probabilities and expectations use a subscript and/or superscript.

(g) A notation 𝑋 may stand for either a distribution or a fresh random variable with that
distribution, i.e. “𝑋 ∼ 𝑋 ”. Such a random variable is either defined on its own “one-
off” probability space, or, if it’s defined on the main probability space, is independent
of everything else in the expression.

(h) For the most part, distributions of random variables are understood to be under
the main probability measure P[·]. When discussing distributions under a different
measure P′[·], we say so explicitly.

(i) Measurability serves essentially two purposes in probability theory: preventing
pathological examples (e.g. the Vitali set is not Borel-measurable) and discussing
information (e.g. 𝑌 is 𝑋 -measurable if you can figure out the value of 𝑌 if you know
the value of 𝑋 ). We implicitly assume the former type of measurability throughout,
reserving explicit discussion of measurability for the latter.

Assumption 1.4. Unless otherwise specified, all stochastic processes 𝑡 ↦→ 𝑋 (𝑡) on domain
ℝ are piecewise differentiable with finite derivatives, possibly with jump discontinuities
[Def. 1.11] at which both the left limit 𝑋 (𝑡−) and right limit 𝑋 (𝑡+) exist. We assume the
mean number of jump discontinuities occurring in any compact interval is finite.
Definition 1.5.
(a) The uniform distribution Unif (𝑅) refers the uniform distribution with respect to

either the counting measure (if 𝑅 is finite) or the Lebesgue measure (if 𝑅 ⊂ ℝ𝑛 is
uncountable and compact). For example, P[Unif [0, 1) < 𝑡] = 𝑡 for 𝑡 ∈ [0, 1].
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(b) The exponential distribution Exp(𝜆) with parameter 𝜆 > 0 is defined by, for 𝑡 ≥ 0,

P[Exp(𝜆) > 𝑡] = 𝑒−𝜆𝑡 .

(c) The geometric distributions Geo0(𝑝) and Geo1(𝑝) with parameter 𝑝 ∈ [0, 1] are
defined by, for integer 𝑖 ≥ 0,

P[Geo0(𝑝) ≥ 𝑖] = P[Geo1(𝑝) > 𝑖] = (1 − 𝑞)𝑖 .

The subscript 0 or 1 indicates whether the minimum possible value is 0 or 1.

Notation 1.6. We sometimes drop parentheses around function arguments that already have
their own delimiters. For instance, we write Unif [0, 1) B Unif ( [0, 1)) in Definition 1.5(a).

1.1.2 Stationary processes
Definition 1.7.
(a) The shifting of a process 𝑋 by 𝑡 ∈ ℝ is the process 𝑋shift(𝑡) defined by

(𝑋shift(𝑡)) (𝑢) B 𝑋 (𝑡 + 𝑢).

Intuitively, 𝑋shift(𝑡) is what 𝑋 would be if we renamed “time 𝑡” to “time 0”.
(b) A process 𝑋 is stationary if the distribution of 𝑋shift(𝑡) (as a random function) is

the same for all 𝑡 . This is equivalent to saying that for all 𝑢1, . . . , 𝑢𝑛 ∈ ℝ, the joint
distribution of

𝑋 (𝑡 + 𝑢1), . . . , 𝑋 (𝑡 + 𝑢𝑛)
is the same for all 𝑡 .

(c) More generally, processes 𝑋1, . . . , 𝑋𝑛 are jointly stationary if the distribution of
((𝑋1)shift(𝑡), . . . , (𝑋𝑛)shift(𝑡)) (as a tuple of random functions) is the same for all 𝑡 .
This is equivalent to saying that for all 𝑢1, . . . , 𝑢𝑛 ∈ ℝ, the joint distribution of

𝑋1(𝑡 + 𝑢1), 𝑋1(𝑡 + 𝑢2), . . . , 𝑋𝑛 (𝑡 + 𝑢𝑚−1), 𝑋𝑛 (𝑡 + 𝑢𝑚)

is the same for all 𝑡 . This means that if 𝑋 is stationary, then any𝑚 of its shiftings
𝑋shift(𝑢1), . . . , 𝑋shift(𝑢𝑚) are jointly stationary.

Notation 1.8.
(a) We typically call the input of a process “time”, or sometimes “index” when the domain

is ℤ. We usually use 𝑡 and nearby letters as the input variable when the domain is
ℝ, and we typically use 𝑖 and nearby letters when the domain is ℤ.

(b) When discussing a stationary process 𝑋 at a generic time 𝑡 whose value is not
important, we often pick 𝑡 = 0 for concreteness, and to reduce clutter, we often write

𝑋 B 𝑋 (0),

though we sometimes write out𝑋 (0) for clarity. In particular, we ensure that it’s clear
from context whether 𝑋 refers to the process 𝑡 ↦→ 𝑋 (𝑡) or the random variable 𝑋 (0).
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(c) Similarly to (b), to discuss left and right limits at time 𝑡 = 0with less clutter, we write

𝑋(−) B 𝑋 (0−),
𝑋(+) B 𝑋 (0+) .

(d) In informal discussion, e.g. in Remark 1.19, we discuss time as measured in “seconds”
as opposed to the less committal but less poetic “time units”. This choice is, of course,
arbitrary and without loss of generality.

Remark 1.9. The most important intuition to have about a stationary process 𝑋 is the
following. Imagine sampling a specific path 𝑋 , then freshly sampling a random time 𝑇
from any distribution. Because 𝑋 is stationary and independent of 𝑇 , the distribution of
𝑋 (𝑇 ) is the same as the distribution of 𝑋 (𝑡) for any fixed 𝑡 . The takeaway is that whenever
we look at a stationary process’s value, we can imagine we’re viewing it at a random time.

1.1.3 Point processes and jumps
We model the work in a queueing system as a stationary process𝑊 [§ 1.2]. Our main
goal in this chapter is to understand its stationary distribution. To do so, it helps to have
notation and terminology for discussing the times at which𝑊 jumps, namely arrival times.

Definition 1.10. A point process 𝐴 ⊂ ℝ is a random countable set of points.
(a) 𝑁𝐴 (𝑅) B #(𝐴 ∩ 𝑅) is the number of points from 𝐴 in 𝑅.
(b) 𝜆𝐴 B E[𝑁𝐴 (0, 1]] is the rate of the point process.
(c) 𝐴𝑖 (𝑡) is the 𝑖th element of 𝐴, where elements are sorted, indexed by 𝑖 ∈ ℤ, and

. . . < 𝐴−1(𝑡) < 𝐴0(𝑡) ≤ 𝑡 < 𝐴1(𝑡) < . . . .

For example, 𝐴1(𝑡) B min(𝐴 ∩ (𝑡,∞)) is the first point of 𝐴 (strictly) after time 𝑡 ,
and 𝐴0(𝑡) = 𝑡 if and only if 𝑡 ∈ 𝐴.

(d) The shifting of 𝐴 is the set-valued process

𝐴shift(𝑡) B {𝑎 − 𝑡 : 𝑎 ∈ 𝐴} = {𝐴𝑖 (𝑡) − 𝑡 : 𝑖 ∈ ℤ}.

Intuitively, 𝐴shift(𝑡) is what 𝐴 would be if we renamed “time 𝑡” to “time 0”.
We call a point process 𝐴 stationary if its shifting 𝐴shift is stationary, and similarly for 𝐴
being jointly stationary with any set of other processes.

Definition 1.11. Let 𝑋 be a process (satisfying Assumption 1.4). We define the following
processes to discuss the continuous and discontinuous motion of 𝑋 .
(a) The (right) derivative of 𝑋 is the process

D𝑋 (𝑡) B lim
𝛿→0+

𝑋 (𝑡 + 𝛿) − 𝑋 (𝑡+)
𝛿

.
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(b) The jump magnitudes, or simply jump, of 𝑋 is the process

Δ𝑋 (𝑡) B 𝑋 (𝑡+) − 𝑋 (𝑡−).

(c) The jump times of 𝑋 is the point process

J𝑋 B {𝑡 ∈ ℝ : Δ𝑋 (𝑡) ≠ 0}.

One can check that if 𝑋 is stationary, then 𝑋 , D𝑋 , Δ𝑋 , and J𝑋 are jointly stationary.

Notation 1.12. We introduce analogues of D, Δ, and J that operate on expressions. Specifi-
cally, if 𝑡 is a variable and expr[𝑡] is an expression involving 𝑡 , then

D𝑡 expr[𝑡] B
(
D(𝑢 ↦→ expr[𝑢])

)
(𝑡),

Δ𝑡 expr[𝑡] B
(
Δ(𝑢 ↦→ expr[𝑢])

)
(𝑡),

J𝑡 expr[𝑡] B J(𝑢 ↦→ expr[𝑢]) .

For instance, D𝑡 is the same as the usual d
d𝑡 derivative notation, except we specify that we

refer to the right derivative.

Given the work process𝑊 of a queue, its jump times J𝑊 represent times when work is
added to the queue, usually due to arriving jobs.

1.2 The M/G/1 queue

For the types of queues we study, there are three main questions we need to answer to
define a queueing model.

• When do jobs arrive to the system?
• What does each job look like? In particular, what is each job’s size, i.e. how much
time does each job take to serve?

• How are jobs served once they are in the system?
We’ll start by considering single-server queues, specifically focusing on analyzing the
amount of work in the queue, which is the total amount of time it would take to finish all
jobs currently in the queue. We focus on work for now because simplifies the story for the
last question: we don’t need to worry about exactly which job is in service, because serving
any job will decrease the system’s total work at the same rate. As long as the server stays
busy whenever there is work to be done, the work process obeys the dynamics described
in Definition 1.13 below.

Definition 1.13. A nonnegative process𝑊 ≥ 0 is a standard work process if for all 𝑡 :
(a) D𝑊 (𝑡) = −1 + 𝟙(𝑊 (𝑡) = 0), i.e. it decreases at rate 1 whenever it is nonzero.
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𝐴−2(𝑢) 𝐴−1(𝑢) 𝐴0(𝑢) 𝑢 𝐴1(𝑢) 𝐴2(𝑢)

time 𝑡

work𝑊 (𝑡)

Figure 1.1.Work𝑊 (𝑡) in a single-server queueing system as a function of time 𝑡 . Work is measured
in time it takes to complete, so the slope is −1 whenever the system is nonempty, i.e. whenever
𝑊 (𝑡) > 0. Arrivals correspond to upwards jumps, where the arriving job’s size is the height of the
jump. Discontinuities are drawn as vertical lines for clarity. The arrival times are 𝐴𝑖 (𝑢), where the
index 𝑖 ∈ ℤ indicates position relative to an arbitrarily chosen fixed time 𝑢.

(b) 𝜆J𝑊 > 0 and Δ𝑊 (𝑡) ≥ 0, i.e. it has positive jumps.1

(c) 𝑊 (𝑡) =𝑊 (𝑡−), i.e. it is left-continuous. We use this convention because we often
want to discuss the state of the system as observed by a job “just before” it arrives,
but our use for “just after” is less common. With that said, for jump times 𝑡 ∈ J𝑊 ,
we often write𝑊 (𝑡−) to emphasize the jump.

More generally,𝑊 is a work process under the same conditions, but with (b) relaxed to
D𝑊 (𝑡) ∈ [−1, 0].

See Figure 1.1 for an illustration of a standard work process𝑊 with arrival times
𝐴 = J𝑊 . For now, we focus on queueing models with standard work processes. As you’ll
encounter in Exercise 1.15, non-standard work processes are much harder to analyze.

To fully define a standard work process𝑊 , we need to define how work arrives, which
amounts to defining Δ𝑊 . Here we introduce M/G arrivals [Def. 1.15], which strikes a
balance between theoretical tractability and modeling flexibility.

Definition 1.14. A stationary point process 𝐴 is a (homogeneous) Poisson process if any of
the following equivalent conditions hold.
(a) In E[·], the following sequence is i.i.d. with distribution Exp(𝜆𝐴):

. . . , (𝐴−1 −𝐴−2), (𝐴0 −𝐴−1), (0 −𝐴0), (𝐴1 − 0), (𝐴2 −𝐴1), (𝐴3 −𝐴2), . . . ∼ Exp(𝜆𝐴).

(b) In E𝐴 [·], meaning 𝐴0 = 0, the following sequence is i.i.d. with distribution Exp(𝜆𝐴):

. . . , (𝐴−1 −𝐴−2), (𝐴0 −𝐴−1), (𝐴1 −𝐴0), (𝐴2 −𝐴1), . . . ∼ Exp(𝜆𝐴).
1There is no special reason to require 𝜆J𝑊 > 0, but the 𝜆J𝑊 = 0 edge case is trivial, so we allow ourselves

the liberty of dividing by 𝜆J𝑊 .
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(c) In either E[·] or E𝐴 [·], the process 𝐴 has independent increments, meaning that
for any set of disjoint sets 𝑅1, . . . , 𝑅𝑛 , the random variables 𝑁𝐴 (𝑅1), . . . , 𝑁𝐴 (𝑅𝑛) are
mutually independent.

Definition 1.15. A (𝜆, 𝑆)-M/G arrival process (or simply M/G arrivals) with arrival rate
𝜆 > 0 and size distribution 𝑆 > 0 is a process of the form given below.
(a) Let the arrival times 𝐴 be a fresh Poisson process of rate 𝜆𝐴 = 𝜆.
(b) Let the job sizes be a fresh sequence . . . , 𝑆−1, 𝑆0, 𝑆1, . . . ∼ 𝑆 .
(c) Let the load be 𝜌 B 𝜆 E[𝑆].

Then the process

𝑆 (𝑡) B
{
𝑆𝑖 if 𝑡 = 𝐴𝑖

0 otherwise

is an M/G arrival process. That is, 𝑆 (𝑡) ∼ 𝑆 freshly if 𝑡 ∈ 𝐴, and 𝑆 (𝑡) = 0 otherwise.

Definition 1.16.
(a) We say a work process𝑊 has M/G arrivals if its jump Δ𝑊 is an M/G arrival process.

A (standard) (𝜆, 𝑆)-M/G/1 work process is a standard work process that has M/G
arrivals.

We have not yet defined the “M/G/1 queue” itself. For now, because of our focus on
work [Q. 1.1], we consider “M/G/1” as synonymous with “M/G/1 work process”, but we
will later study aspects beyond work.

Notation 1.17.

(a) When discussing M/G arrivals or an M/G/1, we use the notation in Definition 1.15
by default.

(b) As we have done already, we omit the “(𝜆, 𝑆)-” in front of “M/G” unless we need to
disambiguate or otherwise emphasize the parameters 𝜆 and 𝑆 . We do similarly for
other definitions with prefixes throughout [Def. 1.31].

(c) We overload the letter 𝑆 in Definition 1.15 because for the most part, we rarely need
the 𝑆-based notation aside from “𝑆” by itself, standing for the size distribution or the
size of one arriving job. In particular, if an arrival happens at time 𝑡 = 0, then the
size 𝑆0 = 𝑆 (0) of the arrival is a fresh sample from 𝑆 , which we usually denote by
simply 𝑆 [Ntn. 1.3(g)].

(d) While (c) covers most cases, we do occasionally discuss the 𝑖th size 𝑆𝑖 . To be able to
do, we need 𝑆𝑖 to arise as the value at time 0 of a stationary process, so we let

𝑆𝑖 (𝑡) B 𝑆 (𝐴𝑖 (𝑡)),

which, consistent with Notation 1.8(b), satisfies 𝑆𝑖 = 𝑆𝑖 (0).
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(e) When discussing multiple systems with M/G arrivals, such as when comparing
variants of the M/G/1 to the standard M/G/1 [Exrs. 1.13–1.15], by default, all the M/G
arrival processes being discussed have the same arrival rate and size distribution.

(f) When defining processes involving i.i.d. samples in the future, we give brief descrip-
tions like “𝑆 (𝑡) ∼ 𝑆 freshly if 𝑡 ∈ 𝐴” without explicitly defining the sequence of
samples from 𝑆 . See Definition 1.31 for an example.

Assumption 1.18. Unless otherwise stated, we consider only M/G arrivals with 𝜌 < 1.

Remark 1.19. Our requirement that the load satisfy 𝜌 < 1 is to ensure stability of the
system, namely the existence of a stationary M/G/1 work process. We will discuss stability
more formally later on, but here is the rough idea.

One can view 𝜌 B 𝜆 E[𝑆] as the average seconds of work added to the queue per
second: roughly speaking, 𝜆 jobs per second bring an average of E[𝑆] seconds of work
each. If 𝜌 > 1, then on average, more work arrives per second than the server can complete
in one second. This means work tends to increase over time on average, which means the
work process can’t possibly be stationary. Less obviously, instability also occurs when
𝜌 = 1, in analogy with null recurrent Markov chains.

If 𝜌 < 1, as we usually assume, then it also has another interpretation: it is the fraction
of time an M/G/1 is busy [Exr. 1.5].

1.3 Palm calculus and three of its key formulas
To analyze a stationary work process𝑊 , we need to be able to write statements related
to how𝑊 changes over time. Working with the derivative D𝑊 is relatively easy, but the
jump Δ𝑊 is more difficult, because we can’t condition on a jump occurring at any fixed
time 𝑡 . Specifically, because J𝑊 is countable [Asm. 1.4], stationarity implies P[𝑡 ∈ J𝑊 ] = 0.

Palm calculus is a set of techniques that allows us to “condition on a jump happening at
time 𝑡” without dividing by zero. It takes the form of a key definition [§ 1.3.1] and several
key formulas about it, three of which we focus on here [§§ 1.3.2–1.3.4].

1.3.1 Defining Palm expectation
Definition 1.20. Let 𝑋 ≥ 0, a nonnegative process, and 𝐴, a point process, be jointly
stationary. The Palm expectation of 𝑋 with respect to stationary point process𝐴 at time 𝑡 is

E𝑡𝐴 [𝑋 (𝑡)] B 1
𝜆𝐴𝑢

E

[ ∑︁
𝑎∈𝐴∩(0,𝑢]

𝑋 (𝑎)
]
=

1
𝜆𝐴𝑢

E

[
𝑁 (0,𝑢]∑︁
𝑖=1

𝑋 (𝐴𝑖)
]
,

where 𝑢 > 0 is arbitrary, as all values of 𝑢 yield the same result by stationarity [Exr. 1.1].
Similarly, the time 𝑡 is arbitrary, so we often omit it [Ntn. 1.8(b)], writing

E𝐴 [𝑋 ] = E𝑡𝐴 [𝑋 (𝑡)] .
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For general 𝑋 , we define E𝐴 [𝑋 ] = E𝐴 [𝑋 +] − E𝐴 [𝑋−], which means E𝐴 [𝑋 ] is undefined if
E𝐴 [𝑋 +] = E𝐴 [𝑋−] = ∞.

As discussed in Notation 1.3(d), we denote the probability measure corresponding to
E𝑡
𝐴
[·], called the Palm probability with respect to 𝐴 at time 𝑡 , by P𝑡

𝐴
[·] = E𝑡

𝐴
[𝟙(·)].

The key intuition one should have about Palm expectation is

E𝑡𝐴 [𝑋 (𝑡)] = “E[𝑋 (𝑡) | 𝑡 ∈ 𝐴]”,

where the right-hand side isn’t rigorously defined because P[𝑡 ∈ 𝐴] = 0. But the above
intuition concisely communicates a lot of things about E𝑡

𝐴
[·]. The most important of these

is that E𝑡
𝐴
[·] is a valid expectation operator, representing integration with respect to a

valid probability measure P𝑡
𝐴
[·], so all the usual properties of expectations (e.g. Markov’s

inequality) hold for E𝑡
𝐴
[·].

Remark 1.21. If 𝑋 and 𝐴 are jointly stationary, then E𝑡
𝐴
[𝑋 (𝑠)] makes sense even if 𝑠 ≠ 𝑡 .

The key is to view 𝑋 (𝑠) as the value of the stationary process 𝑟 ↦→ 𝑋 (𝑟 + 𝑠 − 𝑡) at time 𝑡 , so

E𝑡𝐴 [𝑋 (𝑠)] = 1
𝜆𝐴𝑢

E

[ ∑︁
𝑎∈𝐴∩(0,𝑢]

𝑋 (𝑎 + 𝑠 − 𝑡)
]
=

1
𝜆𝐴𝑢

E

[
𝑁 (0,𝑢]∑︁
𝑖=1

𝑋 (𝐴𝑖 + 𝑠 − 𝑡)
]
.

1.3.2 RCL: Miyazawa’s Rate Conservation Law

Theorem 1.22: Miyazawa’s Rate Conservation Law (RCL). Let 𝑋 be a stationary
process.

(a) We have, possibly with +∞ on both sides,2

E[(D𝑋 )+] + 𝜆J𝑋 EJ𝑋 [(Δ𝑋 )+] = E[(D𝑋 )−] + 𝜆J𝑋 EJ𝑋 [(Δ𝑋 )−] .

(b) If E[|D𝑋 |] < ∞ and EJ𝑋 [|Δ𝑋 |] < ∞, then

E[D𝑋 ] + 𝜆J𝑋 EJ𝑋 [Δ𝑋 ] = 0.

Both conclusions still hold if J𝑋 is replaced by a point process 𝐴 ⊇ J𝑋 that is jointly stationary
with 𝑋 .

Miyazawa’s Rate Conservation Law is important enough to deserve a brief but distinct
name. For the benefit of those reading in hyperlinkless print, we call it “RCL 1.22”. We do
similarly for other key formulas throughout. See Baccelli and Brémaud [1, Section 1.3.3]
and Miyazawa [7] for more about RCL 1.22, its proof, and its generalizations.

2We write 𝑥+ = max{𝑥, 0} and 𝑥− = (−𝑥)+ for the positive and negative parts of 𝑥 , respectively.
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Remark 1.23.
(a) Written out for a generic time 𝑡 , RCL 1.22(a) says

E
[
(D𝑡𝑋 (𝑡))+

]
+ 𝜆J𝑋 E𝑡J𝑋

[
(Δ𝑡𝑋 (𝑡))+

]
= E

[
(D𝑡𝑋 (𝑡))−

]
+ 𝜆J𝑋 E𝑡J𝑋

[
(Δ𝑡𝑋 (𝑡))−

]
,

and, also writing out Δ𝑡𝑋 (𝑡) [Def. 1.11(b)], RCL 1.22(b) says,

E[D𝑡𝑋 (𝑡)] + 𝜆J𝑋 E𝑡J𝑋 [𝑋 (𝑡+) − 𝑋 (𝑡−)] = 0.

(b) The fact that one may replace J𝑋 with any stationary point process 𝐴 ⊃ J𝑋 follows
from Exercise 1.2.

(c) RCL 1.22(b) can hold even if E[|𝑋 |] = ∞, and this is useful in many applications of it.
However, it never holds when E[|D𝑋 |] = ∞ or EJ𝑋 [|Δ𝑋 |] = ∞, because an implicit
conclusion is that E[D𝑋 ] and EJ𝑋 [Δ𝑋 ] are well defined and finite.

(d) Baccelli and Brémaud [1, Section 1.3.3] state and prove RCL 1.22(b) under the stronger
precondition that |𝑋 | is bounded, but they note that it holds under the weaker
precondition we give in RCL 1.22(b) [1, Remark 1.3.4]. In fact, they point out that if
E[|𝑋 |] < ∞, then either E[|D𝑋 |] < ∞ or EJ𝑋 [|Δ𝑋 |] < ∞ implies the other.

(e) Miyazawa [7] gives a survey of more general RCLs. Both parts of RCL 1.22 arise as
special cases of his results [7, Theorem 2.1, Remark 2.2]. RCL 1.22(a) is especially
useful, as it does not require checking finiteness of expectations.

Applying Miyazawa’s RCL to the M/G/1

We can try to apply RCL 1.22 to analyze E[𝑊 ] for an M/G/1 work process𝑊 . A general
rule of thumb is that to understand E[𝑓 (𝑊 )], one should apply RCL 1.22 with 𝑋 = 𝑔(𝑊 ),
where 𝑔 is roughly the integral of 𝑓 . So let’s apply RCL 1.22(b) to 𝑋 =𝑊 2.

• For the derivative, using Definition 1.15, we compute3

D𝑋 (𝑡) = D𝑡𝑊 (𝑡)2

= 2𝑊 (𝑡) · D𝑊 (𝑡)
= 2𝑊 (𝑡)

(
−1 + 𝟙(𝑊 (𝑡) = 0)

)
= −2𝑊 (𝑡).

• For the jump, if 𝑡 ∈ 𝐴 = J𝑋 is an arrival time, then using Definition 1.15, we compute

Δ𝑋 (𝑡) = Δ𝑡𝑊 (𝑡)2

=𝑊 (𝑡+)2 −𝑊 (𝑡−)2

= (𝑊 (𝑡−) + 𝑆)2 −𝑊 (𝑡−)2

= 2𝑆𝑊 (𝑡−) + 𝑆2,

where 𝑆 , the size of the arriving job [Ntn. 1.17(c)], is independent of𝑊 (𝑡−).
3As usual, D𝑡𝑊 (𝑡)2 means D𝑡 (𝑊 (𝑡)2), not (D𝑡𝑊 (𝑡))2. We use the same convention for Δ𝑡 .
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Assuming for now that E[𝑆2] < ∞ to ensure the precondition of RCL 1.22(b), we get

0 = −E[2𝑊 ] + 𝜆 E𝐴 [2𝑆𝑊(−) + 𝑆2]
= −2E[𝑊 ] + 2𝜌 E𝐴 [𝑊(−)] + 𝜆 E[𝑆2] . (1.1)

To clarify, the second line follows by
• the independence of 𝑆 from𝑊(−) [Def. 1.15(b)],
• the fact that 𝜌 = 𝜆 E[𝑆] [Def. 1.15(c)], and
• our convention for expectations with “one-off” samples from 𝑆 [Ntn. 1.3(f)].
Unfortunately, we are now at an impasse: we have a potential formula for E[𝑊 ], but it

involves E𝐴 [𝑊(−)]. We can think of E𝐴 [𝑊(−)] as the mean amount of work observed by an
arriving job (excluding its own size). This seems at least as difficult to characterize as the
stationary mean E[𝑊 ]. Fortunately, for the special case of M/G arrivals, we are in luck!
We will see in Section 1.3.4 that, somewhat miraculously,

E𝐴 [𝑊(−)] = E[𝑊 ], (1.2)

from which we obtain

E[𝑊 ] =
𝜆
2 E[𝑆

2]
1 − 𝜌

=

1
2 (1 + 𝑐

2
𝑆
)𝜌

1 − 𝜌
E[𝑆], (1.3)

where 𝑐2
𝑆
= Var[𝑆]/E[𝑆]2 is the squared coefficient of variation of 𝑆 . We further discuss

this formula and provide an intuitive interpretation of it in Section 1.4.2.
Of course, we could have written𝑊 instead of𝑊(−) throughout, thanks to our left-

continuity convention [Def. 1.13(c)]. We will often do this in the future, but we were
explicit about jumps for this first derivation.
Remark 1.24. Strictly speaking, (1.3) does not immediately follow from (1.1) and (1.2),
because E[𝑊 ] = ∞ is also a possible solution. One can rule this out using a truncation
argument: instead of using RCL 1.22 on𝑊 2, we use it on (min{𝑊,𝑚})2, obtain an upper
bound on E[𝑊 𝟙(𝑊 ≤ 𝑚)], then take the𝑚 → ∞ limit to show E[𝑊 ] is finite.

We usually omit such finiteness-verifying truncation arguments in order to stay focused
on the main queueing theory ideas. But see the proof of Lemma 2.22 for an example of such
a truncation argument worked out in full. A rule of thumb is that if you can use RCL 1.22
on some process 𝑌 to show a concrete upper bound on an expectation E[𝑋 ] assuming only
E[𝑋 ] < ∞ a priori, then one can use RCL 1.22 on a truncated process min{𝑌, 𝑛} to bound
E[𝑋 𝟙(𝑋 ≤ 𝑚)] (where𝑚 and 𝑛 are related but not necessarily the same), then take the
𝑚 → ∞ limit to show E[𝑋 ] < ∞.

1.3.3 PIF: Palm Inversion Formula
Theorem 1.25: Palm Inversion Formula (PIF). Let 𝑋 ≥ 0, a nonnegative stationary
process, and 𝐴, a point process, be jointly stationary. Then

E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 𝐴1

0
𝑋 (𝑢) d𝑢

]
.
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Proof. We apply RCL 1.22 to

𝑌 (𝑡) B
∫ 𝐴1 (𝑡)

𝑡

𝑋 (𝑢) d𝑢. (1.4)

We need to understand the derivative and jump of 𝑌 .
• The derivative is

D𝑌 (𝑡) = −𝑋 (𝑡).
• 𝑌 jumps only when 𝐴1 jumps, which happens at points in 𝐴, so J𝑌 ⊆ 𝐴.
• For 𝑡 ∈ 𝐴, by right-continuity of 𝐴1 [Def. 1.10(c)], we have

𝐴1(𝑡−) = 𝑡,

𝐴1(𝑡+) = 𝐴1(𝑡),

and thus

Δ𝑌 (𝑡) = 𝑌 (𝑡+) − 𝑌 (𝑡−) =
∫ 𝐴1 (𝑡)

𝑡

𝑋 (𝑢) d𝑢 − 0.

Combining this with RCL 1.22 tells us

E[𝑋 (𝑡)] = −E[D𝑌 (𝑡)] = 𝜆𝐴 E𝑡𝐴 [Δ𝑌 (𝑡)] = 𝜆𝐴 E𝑡𝐴

[∫ 𝐴1 (𝑡)

𝑡

𝑋 (𝑢) d𝑢
]
. □

Remark 1.26. It is worth checking carefully that 𝑌 from (1.4) is indeed jointly stationary
with 𝑋 and 𝐴. One way to see this is to rewrite 𝑌 (𝑡) using shiftings [Defs. 1.7(a), 1.10(d)]:

𝑌 (𝑡) =
∫ 𝐴1 (𝑡)−𝑡

0
𝑋 (𝑡 + 𝑢) d𝑢 =

∫ (𝐴shift (𝑡))1

0
(𝑋shift(𝑡)) (𝑢) d𝑢.

Having defined 𝑌 (𝑡) in terms of 𝑋shift(𝑡) and 𝐴shift(𝑡), and knowing already that 𝑋 and 𝐴
are jointly stationary, we can conclude that 𝑌 is jointly stationary with 𝑋 and 𝐴, too. In
more detail:

• By joint stationarity of𝑋 and𝐴, the joint distribution of𝑋shift(𝑡), 𝐴shift(𝑡) is the same
for all 𝑡 .

• Because shiftings of a stationary process are jointly stationary, for all 𝑢1, . . . , 𝑢𝑛 , the
joint distribution of

𝑋shift(𝑡 + 𝑢1), . . . , 𝑋shift(𝑡 + 𝑢𝑚), 𝐴shift(𝑡 + 𝑢1), . . . , 𝐴shift(𝑡 + 𝑢𝑛)

is the same for all 𝑡 .
• Because 𝑌 (𝑡) and 𝑋 (𝑡) are functions of 𝐴shift(𝑡) and 𝑋shift(𝑡), for all 𝑢1, . . . , 𝑢𝑛, the
joint distribution of

𝑌 (𝑡 + 𝑢1), . . . , 𝑌 (𝑦 + 𝑢𝑛), 𝑋 (𝑡 + 𝑢1), . . . , 𝑋 (𝑡 + 𝑢𝑚), 𝐴shift(𝑡 + 𝑢1), . . . , 𝐴shift(𝑡 + 𝑢𝑛)

is the same for all 𝑡 . And this is the same as joint stationarity of 𝑌 , 𝑋 , and 𝐴shift, as
desired.
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1.3.4 PASTA: Poisson Arrivals See Time Averages
Theorem 1.27: Poisson Arrivals See Time Averages (PASTA). Let 𝑋 ≥ 0, a nonnegative
process (satisfying Assumption 1.4), and 𝐴, a Poisson process, be jointly stationary. Suppose
{𝑋 (𝑢) : 𝑢 < 𝑡} is independent of {𝑎 ∈ 𝐴 : 𝑎 ≥ 𝑡} for all times 𝑡.4 Then

E[𝑋 ] = E𝐴 [𝑋(−)] .

In particular, if 𝑋 is left-continuous, then

E[𝑋 ] = E𝐴 [𝑋 ] .

See Wolff [8] or Baccelli and Brémaud [1, Section 3.3.1] for a proof of PASTA 1.27, or
have a go yourself [Exrs. 1.9–1.11]. Because an M/G/1 work process evolves in a way that
is independent of when future arrivals occur [Defs. 1.13, 1.16], PASTA 1.27 implies (1.2),
the last missing ingredient behind the M/G/1 E[𝑊 ] formula (1.3).

Remark 1.28. Written out for a generic time 𝑡 , PIF 1.25 says

E[𝑋 (𝑡)] = 𝜆𝐴 E𝑡𝐴

[∫ 𝐴1 (𝑡)

𝑡

𝑋 (𝑢) d𝑢
]
,

and PASTA 1.27 says
E[𝑋 (𝑡)] = E𝑡𝐴 [𝑋 (𝑡−)] .

Remark 1.29. We can relax the 𝑋 ≥ 0 constraint of PIF 1.25 and PASTA 1.27 to 𝑋− being
bounded. We can remove the constraint entirely under some conditions on 𝑋 [8]. But we’ll
make do with nonnegative processes.

1.4 Work ≈ intensity × variability
In this section, we finally return to Question 1.1 in earnest. We’ll see that as a rule of thumb,
there are two main properties of the arrival process that determine the stationary work
distribution, both of which appear in our M/G/1 E[𝑊 ] formula (1.3).

• Intensity refers broadly to (a factor related to) how quickly work is added to the
system. In (1.3), this manifests as the factor 𝜆

1−𝜌 .
5

• Variability refers broadly to (a factor related to) how irregularly work is added to
the system. In (1.3), this manifests as the factor E[𝑆2] = Var[𝑆] + E[𝑆]2.

4By stationarity, if this holds for one time 𝑡 , e.g. 𝑡 = 0, then it holds for all times 𝑡 .
5We introduce the term “intensity” to distinguish the formally defined load 𝜌 [Def. 1.15] from the vague

idea of intensity referred to in the rule of thumb. While intensity often manifests in work formulas as a
factor in the dominant term (hence the “×” in the rule of thumb), this intensity factor is seldom simply 𝜌 .
One should not confuse this vague notion of intensity with the formally defined intensity of a point process
[1, Section 1.8], which we won’t cover here.



18 Chapter 1 Analyzing work via Palm calculus

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5

time 𝑡

wait𝑊 (𝑡)

𝑆1 𝑆2 𝑆3 𝑆4

Figure 1.2. An 𝑆-renewal process𝐴 [Def. 1.30] and its bus process𝑊 [Def. 1.31]. This models a bus
stop where the gaps between the bus arrival times 𝐴 are fresh samples from 𝑆 . The wait𝑊 (𝑡) is
how long you would have to wait for the next bus if you arrived at time 𝑡 . We write 𝑆𝑖 B Δ𝑊 (𝐴𝑖)
for the gap between the 𝑖th and (𝑖 + 1)th arrivals.

1.4.1 Effect of job size variance: waiting for the bus
Definition 1.30. Let 𝑆 > 0 be a distribution. An 𝑆-renewal process with gap distribution
𝑆 is a point process 𝐴 such that conditional on 𝐴0, the following sequence is i.i.d. with
distribution 𝑆 :

. . . , (𝐴−1 −𝐴−2), (𝐴0 −𝐴−1), (𝐴1 −𝐴0), (𝐴2 −𝐴1), . . . ∼ 𝑆.

Provided E[𝑆] < ∞, one can show that a stationary 𝑆-renewal process exists, so we restrict
attention to this case.

Definition 1.31.
(a) Let 𝐴 be a point process. The bus process of 𝐴 (a.k.a. forward recurrence process of 𝐴)

is a standard work process𝑊 defined by

𝑊 (𝑡) = 𝐴1(𝑡) − 𝑡 .

The intuition is that if 𝐴 is the times buses arrive to a bus stop, then𝑊 (𝑡), which
we call the wait at 𝑡 , is the time from 𝑡 until the next bus.

(b) If 𝑆 is a distribution on (0,∞), then an 𝑆-bus process is the bus process of an 𝑆-renewal
process.

See Figure 1.2 for an illustration of an 𝑆-renewal process and its bus process.

Theorem 1.32. Let𝑊 be a stationary 𝑆-bus process.
(a) The mean wait is

E[𝑊 ] = E[𝑆2]
2E[𝑆] .
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(b) The transform of wait is, for 𝜃 ∈ ℝ,6

E[𝑒𝜃𝑊 ] = E[𝑒𝜃𝑆 ] − 1
𝜃 E[𝑆] .

(c) The tail probability of wait is, for 𝑥 ≥ 0,

P[𝑊 > 𝑥] = E[(𝑆 − 𝑥)+]
E[𝑆] .

Proof. One can derive (a) and (b) from (c), but it is instructive to prove each of them directly.
For simplicity, we assume that the right-hand sides are finite in these direct proofs of (a)
and (b). One could extend them to cover the infinite case by following the same strategy
as Exercise 1.12(b).

We prove all of the parts using RCL 1.22 on functions of𝑊 . Writing 𝐴 B J𝑊 for the
𝑆-renewal process [Def. 1.31], we need to understand D𝑊 , 𝜆𝐴, and the joint distribution of
𝑊(−) and𝑊(+) under P𝐴 [·].

• By Definitions 1.13(a) and 1.31, D𝑊 = −1.
• By Definition 1.31,𝑊(−) = 0 and𝑊(+) = Δ𝑊 ∼ 𝑆 freshly under P𝐴 [·].
• Applying RCL 1.22 to𝑊 and using the above facts yields

0 = −1 + 𝜆𝐴 E𝐴 [𝑊(+) −𝑊(−)] = −1 + 𝜆𝐴 E[𝑆],

so 𝜆𝐴 = 1/E[𝑆].
With the above in hand, we just need to apply RCL 1.22 to the right processes.
(a) Applying RCL 1.22 to𝑊 2 yields

0 = E[2𝑊 · D𝑊 ] + 𝜆𝐴 E𝐴 [𝑊 2
(+) −𝑊 2

(−)] = −2E[𝑊 ] + E[𝑆2]
E[𝑆] .

(b) Applying RCL 1.22 to 𝑒𝜃𝑊 yields

0 = E[𝜃𝑒𝜃𝑊 · D𝑊 ] + 𝜆𝐴 E𝐴 [𝑒𝜃𝑊(+) − 𝑒𝜃𝑊(−) ] = −𝜃 E[𝑒𝜃𝑊 ] + E[𝑒𝜃𝑆 ] − 1
E[𝑆] .

(c) Applying RCL 1.22 to (𝑊 − 𝑥)+ yields

0 = E[𝟙(𝑊 > 𝑥) · D𝑊 ] + 𝜆𝐴 E𝐴 [(𝑊(+) − 𝑥)+ − (𝑊(−) − 𝑥)+]

= −P[𝑊 > 𝑥] + E[(𝑆 − 𝑥)+]
E[𝑆] . □

6Weuse the term “transform” as a catch-all for moment generating function, Laplace transform, probability
generating function, etc. For 𝜃 ∈ ℝ, the transform E[𝑒𝜃𝑋 ] of 𝑋 is always well defined, though it may be ∞.
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Definition 1.33. Let 𝑋 ≥ 0 be a distribution with E[𝑋 ] ∈ (0,∞). The (stationary) excess
of 𝑋 , denoted 𝑋e, is the distribution on (0,∞) defined by

P[𝑋e > 𝑥] = E[(𝑋 − 𝑥)+]
E[𝑋 ] =

1
E[𝑋 ]

∫ ∞

𝑥

P[𝑋 > 𝑦] d𝑦.

One can check that, in line with Theorem 1.32,

E[𝑋 𝑝
e ] =

E[𝑆𝑝+1]
(𝑝 + 1) E[𝑆] , E[𝑒𝜃𝑋e] = E[𝑒𝜃𝑋 ] − 1

𝜃 E[𝑆] .

Remark 1.34. In brief, Theorem 1.32 says that for a stationary 𝑆-bus process𝑊 , at all
times 𝑡 ,

𝑊 (𝑡) ∼ 𝑆e.

But because𝑊 is stationary, we can interpret𝑊 (𝑡) as𝑊 viewed at a random time [Rmk. 1.9].
This gives us the following intuition for 𝑆e: if we observe an 𝑆-renewal process at a random
time, then the remaining time until the the next point is distributed as 𝑆e.

We will see excess distributions pop up in many settings where we care about the
remaining time for something to happen, such as the remaining work of a job in an M/G/1
queue [§ 1.4.2].

What does our study of bus processes say about Question 1.1? The clearest relationship
comes from viewing a bus process as the work in a queue that always has exactly one job.
Specifically, the “job” is “wait for the next bus to arrive”, so the size distribution is 𝑆 . The
presence of an E[𝑆2] in Theorem 1.32(a) tells us that even in a queue with only one job,
there can be a large amount of work on average if the job size variance is high. We can
make this more precise by rewriting E[𝑊 ] = E[𝑆e] in terms of Var[𝑆]:

E[𝑆e] =
E[𝑆2]
2E[𝑆] =

Var[𝑆] + E[𝑆]2
2E[𝑆]2 E[𝑆] =

1 + 𝑐2
𝑆

2
E[𝑆], (1.5)

where 𝑐2
𝑆
= Var[𝑆]/E[𝑆]2 is the squared coefficient of variation of 𝑆 .

Remark 1.35. In Definition 1.31, we asserted that a stationary 𝑆-renewal process exists pro-
vided E[𝑆] < ∞. One would hope that Theorem 1.32 and Definition 1.33 would essentially
tell us how to do this. Specifically, it might seem like freshly sampling 𝐴1 ∼ 𝑆e then freshly
sampling the gaps 𝐴𝑖+1 −𝐴𝑖 ∼ 𝑆 would make 𝐴 a stationary 𝑆-renewal process.

However, there is an issue: the above sampling procedure might result in 𝐴0 > 0.
The above procedure still works “forwards in time”, sampling 𝐴 ∩ (0,∞). Similarly, by
symmetry, one could sample 𝐴 ∩ (−∞, 0] by going in reverse, starting with 𝐴0 ∼ −𝑆e.
However, 𝐴0 and 𝐴1 are in general not independent, so we cannot simply combine the
above procedures. For example, when 𝑆 = 𝑠 is deterministic, 𝐴1 = 𝑠 −𝐴0 ∼ Unif (0, 𝑠]. We
need to find the joint distribution of 𝐴0 and 𝐴1 that makes the process stationary when the
rest of the gaps are freshly sampled from 𝑆 . You will figure out what this distribution must
be in Exercise 1.17.
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time 𝑡

work𝑊 (𝑡)

Figure 1.3. The “work layers” of an M/G/1 work process𝑊 . The layer labeled 𝐿𝑖 corresponds to
the job that arrives at time 𝐴𝑖 . The height of a job’s layer at time 𝑡 is what that job’s remaining
work would be under the Preemptive Last-Come First-Served (PLCFS) policy, which always serves
the job that arrived most recently. Put another way, the height of the top layer decreases at rate 1,
other layer heights stay put, and each arrival creates a new layer on top of existing ones.

1.4.2 Effect of load: M/G/1 vs. waiting for the bus
We continue exploring Question 1.1 by looking at the mean work in an M/G/1. We saw
already at the start of Section 1.4 that the mean work depends on both the job size variance
and the load. In this section, we will gain further insight into the M/G/1 by comparing it
to a bus process using the same distribution 𝑆 . To that end, let

• 𝑊bus be an 𝑆-bus process and
• 𝑊M/G/1 be a (𝜆, 𝑆)-M/G/1 work process.
To understand the relationship between E[𝑊bus] and E[𝑊M/G/1], it helps to express

them using formulas that look as similar as possible. With the definition of 𝑆e in hand
[Def. 1.33], we can rewrite the mean formulas from Theorem 1.32(a) and (1.3) as

E[𝑊bus] = E[𝑆e], E[𝑊M/G/1] =
𝜌

1 − 𝜌
E[𝑆e] .

This way of writing the formulas makes it seem as if the M/G/1 is secretly a pile of 𝜌

1−𝜌
buses stacked on top of each other. Remarkably, there is a sense in which this is true!
Below, we give a mostly intuitive argument, with references to exercises throughout that
fill in some of the gaps. In particular, see Exercise 1.18 for a way to formalize the end result.

To find the 𝑆-buses hiding inside a (𝜆, 𝑆)-M/G/1, it helps to draw the M/G/1 work
process in a way that emphasizes individual job sizes, because those are the quantities that
are sampled from 𝑆 . Figure 1.3 illustrates this by associating with each job a “layer” of work.
To understand these layers, it helps to think of the M/G/1 as using a scheduling policy
called PLCFS, explained below. But this is not a restriction: all scheduling policies that
don’t leave the server unnecessarily idle result in the same M/G/1 work process𝑊M/G/1, so
we are free to imagine that it is PLCFS.
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The Preemptive Last-Come First-Served (PLCFS) scheduling policy, in brief, always serves
the job that arrived most recently. The “preemptive” in the name comes from the fact that
whenever a new job arrives, if a job is in service, we preempt that job in service so that we
can immediately start serving the new job. We are assuming that preemption is instant
and that all progress on the preempted job is retained.

Warmup: the top layer, i.e. analyzing the job in service under PLCFS

Let’s start by thinking about just the top layer, imagining the system uses PLCFS scheduling
so that we can discuss this in terms of jobs. To understand the first layer, we ask: what is
the chance there is a job in service; and if so, how much remaining work does the job in
service have?

• As long as the server has work, there is at least one job in service, which happens
with probability P[𝑊 > 0] = 𝜌 [Exr. 1.5]

• Given that there is at least one job, the intuition from Remark 1.34 tells us that we
can imagine that we have observed that job “at a random time”, and that the job’s
remaining work is distributed as the excess 𝑆e [Exr. 1.16(f)].

Combining these observations tells us

P[there is a job in service with remaining work > 𝑥] = 𝜌 P[𝑆e > 𝑥],
E[remaining work of job in service (or 0 if no jobs)] = 𝜌 E[𝑆e] .

Number of layers, i.e. number of jobs under PLCFS

More generally, we can ask: under PLCFS, what is the distribution of the number of jobs 𝑁 ;
and given that a job is present, what is its remaining work distribution?

Perhaps surprisingly, the distribution of 𝑁 is pretty simple: it’s geometric! Specifically,
𝑁 ∼ Geo0(1 − 𝜌) [Exr. 1.18(c)]. The easiest way to show this is to argue that for all 𝑘 ∈ ℕ,

P[𝑁 ≥ 𝑘 + 1 | 𝑁 ≥ 𝑘] = 𝜌, (1.6)

which implies P[𝑁 ≥ 𝑘] = 𝜌𝑘 . We do not yet have the tools to give a short rigorous
argument of this, but here is a short sketch. We already know P[𝑊 = 0] = 1 − 𝜌 and
P[𝑊 > 0] = 𝜌 [Exr. 1.5], which means P[𝑁 = 0] = 1 − 𝜌 and P[𝑁 ≥ 1] = 𝜌 . Imagine
removing all times 𝑡 when 𝑁 (𝑡) = 0 from the timeline, which amounts to conditioning on
P[𝑁 ≥ 1]. The resulting system looks just like an ordinary M/G/1 using PLCFS, except
there’s always an extra job on the bottom layer. This means

P[𝑁 ≥ 2 | 𝑁 ≥ 1] = P[𝑁 ≥ 1] = 𝜌.

The story for (1.6) is essentially the same, except we condition on 𝑁 ≥ 𝑘 instead of 𝑁 ≥ 1,
which yields an M/G/1 using PLCFS with 𝑘 extra jobs at the bottom instead of just 1.
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Height of each layer, i.e. remaining work of each job under PLCFS

We now turn to the remaining work of each job. Above, we used Remark 1.34 to argue that
the job in service has remaining work distributed as 𝑆e. Perhaps surprisingly, the same is
true of every other job, and independently so! That is, conditional on 𝑁 , the remaining
work amounts 𝑅1, . . . , 𝑅𝑁 are i.i.d. with distribution 𝑆e [Exr. 1.18(d)].

To sketch why this is, let’s start by thinking about the bottom layer. Let 𝑅1(𝑡) be the
remaining work in the job that arrived longest ago that is present at time 𝑡 , with 𝑅1(𝑡) = 0
if the system is empty at 𝑡 . The key idea is that we can view 𝑅1 as a sometimes-paused
𝑆-bus process. Specifically, in terms of an 𝑆-bus process𝑊bus and the number of jobs 𝑁 ,
we can write, at least for 𝑡 ≥ 𝐴0,

𝑅1(𝑡) = 𝟙(𝑁 (𝑢) ≥ 1)𝑊bus

(
𝐴0 +

∫ 𝑡

𝐴0

𝟙(𝑁 (𝑢) = 1) d𝑢
)
.

That is, if we filter out the times 𝑡 when 𝑁 (𝑡) = 0, we can view 𝑅1 as an 𝑆-bus process that
advances while 𝑁 (𝑡) = 1, pauses when 𝑁 (𝑡) ≥ 2, then resumes when 𝑁 (𝑡) = 1 again.

The question is thus: do the pauses introduce any differences between the stationary
distributions of 𝑅1 and 𝑊bus? Because the arrivals are Poisson, the pauses happen at
“uniformly random” times. Additionally, while the the pause times are random, they are
independent of when in the timeline they happen. (Specifically, one can show that each
pause is essentially a freshly sampled busy period [Exr. 1.8].) This should convince us that
the steady-state distribution is the same as that of𝑊bus, namely 𝑆e, so we conclude

P[𝑅1 > 𝑥 | 𝑁 ≥ 1] = P[𝑊bus > 𝑥] = P[𝑆e > 𝑥] .

The above story led us to P[𝑅1 > 𝑥 | 𝑁 ≥ 1] by thinking about the bottom layer. If we
think about the 𝑘th layer from the bottom instead, we find P[𝑅𝑘 | 𝑁 ≥ 𝑘] = P[𝑆e > 𝑥] by
essentially the same reasoning. To show that all the layers are independent, we have to
think about multiple layers at a time. For example, we might reason about pausing the
bottom two layers while 𝑁 (𝑡) ≥ 3, arguing that the length of the pause is independent
of the events 𝑅1(𝑡) > 𝑥1 and 𝑅2(𝑡) > 𝑥2. But writing this down precisely is unwieldy
enough that the approach outlined in Exercise 1.18, which requires only applying RCL 1.22
sufficiently cleverly, starts to look more appealing.

1.4.3 Effect of arrival time variance: G/G/1 vs. M/G/1
As a last example, we will see how variability in the arrival time process impacts the work
process. To do this, we first need to define a queueing model where we can vary the arrival
time variability. The G/G/1 queue, defined below, serves as such a model.

Definition 1.36.
(a) An 𝑆-GD/G arrival process of an arrival times point process𝐴 (or simplyGD/G arrivals

of 𝐴) with size distribution 𝑆 > 0 is a process 𝑡 ↦→ 𝑆 (𝑡) such that 𝑆 (𝑡) ∼ 𝑆 freshly if
𝑡 ∈ 𝐴, and 𝑆 (𝑡) = 0 otherwise.
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(b) A (𝑅, 𝑆)-G/G arrival process (or simply G/G arrivals) with interarrival time distribution
𝑅 > 0 is a G/G arrival process whose arrival times are an 𝑅-renewal process (that is
independent of the job sizes).

Just like Definition 1.15, we also define the arrival rate 𝜆 B 𝜆𝐴 and load 𝜌 B 𝜆 E[𝑆]. For
G/G arrivals, we can also write the arrival rate as 𝜆 = 1/E[𝑅] [Exr. 1.4].

Definition 1.37.
(a) We say a work process𝑊 has GD/G arrivals if its jump Δ𝑊 is a GD/G arrival process,

and analogously for saying𝑊 has G/G arrivals.
(b) A (standard) GD/G/1 work process is a standard work process that has GD/G arrivals,

and analogously for a (standard) G/G/1 work process.

Notation 1.38. The conventions of Notation 1.17 apply, plus we let 𝑅𝑖 (𝑡) B 𝐴𝑖+1(𝑡) −𝐴𝑖 (𝑡)
be the gap between the 𝑖th and (𝑖 + 1)th arrival times.

Notation 1.39. Now that we are moving beyond just M/G arrivals, it is worth explaining the
·/· notation for arrival processes. The first slot describes the arrival times, and the second
slot describes the job sizes. Each slot, can contain any of the following:
(a) D, for deterministic, indicates interarrival times or job sizes are deterministic.
(b) M, for memoryless, indicates interarrival times or job sizes are generated by fresh

sampling from an exponential distribution [Def. 1.5(b)]. For arrivals, this corresponds
to arrival times being a Poisson process [Def. 1.14].

(c) G, for general (independent), indicates interarrival times or job sizes are generated by
fresh sampling from a positive distribution. By default, we call the distribution 𝑆 for

(d) GD, for general dependent, indicates only that the arrival time point process or job
size sequence is stationary.

Actually, in the literature, our “G” is denoted “GI”, and our “GD” is denoted “G”. We reserve
the shorter “G” for the independent case because we use it far more commonly.

Queueing systems are typically notated using their arrival process, followed by a third
slot with the number of servers, and sometimes followed by an additional slot with more
information. For instance, the “1” in M/G/1 or G/G/1 refers to the fact that there is a single
server, whereas you will study the 𝑘-server M/G/𝑘 in Exercise 1.15.

This type of notation is called Kendall notation [4].

Analyzing mean work in the G/G/1 seen by arrivals

Let𝑊 be a stationary G/G/1 work process. We will actually analyze E𝐴 [𝑊 ] = E𝐴 [𝑊(−)],
the mean work seen by arrivals, instead of E[𝑊 ], but it is not too hard to express E[𝑊 ] and
E𝐴 [𝑊 ] in terms of each other [Exr. 1.19]. Throughout this section, we take advantage of
the left-continuity of𝑊 , writing𝑊 and𝑊 (𝑡) instead of𝑊(−) and𝑊 (𝑡−) to reduce clutter.

Our plan is to use a discrete-time analogue of the RCL that you will prove in Exercise 1.6.
In our setting, it says, roughly, saying that if we take the perspective of a job arriving at
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time 𝐴0, then the work we see, namely𝑊 (𝐴0), has the same distribution as the work the
following job sees, namely𝑊 (𝐴1). Specifically, applying Exercise 1.6 to the process 𝑓 (𝑊 )
and point process 𝐴, we get that as long as E𝐴 [|𝑓 (𝑊 ) |] < ∞,

E𝐴 [𝑓 (𝑊 (𝐴0))] = E𝐴 [𝑓 (𝑊 (𝐴1))] . (1.7)

Also recall𝑊 (𝐴0) =𝑊 [Ntn. 1.8(b)], so the left-hand-side is E𝐴 [𝑓 (𝑊 )].
In order to use (1.7), we need to understand the relationship between𝑊 (𝐴0) and𝑊 (𝐴1).

Remembering that𝑊 is a standard work process [Def. 1.13, Fig. 1.1], we see that there are
three things that can affect how𝑊 changes between (just before) 𝐴0 and (just before) 𝐴1.

• At time 𝐴0, a job of size 𝑆0 = 𝑆 (𝐴0) arrives.
• During the time interval (𝐴0, 𝐴1), we serve up to 𝐴1 −𝐴0 work.
• The only thing that might stop us from serving 𝐴1 −𝐴0 work is if the work hits zero
prior to time 𝐴1. If this happens, then the work will still be zero at time 𝐴1.

Combining these observations yields

𝑊 (𝐴1) =
(
𝑊 (𝐴0) + 𝑆0 − (𝐴1 −𝐴0)

)+
.

a recursion known as the Lindley equation. Plugging this into (1.7) and writing 𝑅 and 𝑆 for
variables that are fresh samples from the corresponding distributions [Ntn. 1.3(g)] (namely
𝑆0 and (𝐴1 −𝐴0), respectively), we get

E𝐴 [𝑓 (𝑊 )] = E𝐴
[
𝑓
(
(𝑊 + 𝑆 − 𝑅)+

) ]
. (1.8)

We know the drill now: apply (1.8) with just the right function 𝑓 . The “try the integral”
rule of thumb for RCL 1.22 applies just as well to (1.7) and (1.8). Choosing 𝑓 (𝑥) = 𝑥2 yields,
assuming E[𝑅2] < ∞ and E[𝑆2] < ∞,

E𝐴 [𝑊 2] = E𝐴
[ (
(𝑊 + 𝑆 − 𝑅)+

)2]
= E𝐴 [(𝑊 + 𝑆 − 𝑅)2] − E𝐴

[ (
(𝑅 − 𝑆 −𝑊 )+

)2]
= E𝐴 [𝑊 2] + 2E𝐴 [𝑊 ] E[𝑆 − 𝑅] + E[(𝑆 − 𝑅)2] − E𝐴

[ (
(𝑅 − 𝑆 −𝑊 )+

)2]
,

where the last line uses the fact that 𝑅, 𝑆 , and𝑊 are independent in P𝐴 [·] [Def. 1.36]. This
rearranges to

E𝐴 [𝑊 ] =
E[(𝑅 − 𝑆)2] − E𝐴

[ (
(𝑅 − 𝑆 −𝑊 )+

)2]
2E[𝑅 − 𝑆]

=
Var[𝑅 − 𝑆]
2E[𝑅 − 𝑆] +

E[𝑅 − 𝑆]2 − E𝐴
[ (
(𝑅 − 𝑆 −𝑊 )+

)2]
2E[𝑅 − 𝑆] . (1.9)

The second on the right-hand side of (1.9) is related to the length distribution of
idle periods of the G/G/1, namely the distribution of how long periods of zero work are
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[Exr. 1.20]. This is a famously intractable quantity to analyze exactly, but we can still bound
it. First, by Jensen’s inequality,

E𝐴
[ (
(𝑅 − 𝑆 −𝑊 )+

)2] ≥ E𝐴 [(𝑅 − 𝑆 −𝑊 )+]2. (1.10)

This means it suffices to understand just E𝐴 [(𝑅 − 𝑆 −𝑊 )+], which is significantly easier.
Choosing 𝑓 (𝑥) = 𝑥 in (1.8) yields

E𝐴 [𝑊 ] = E𝐴 [(𝑊 + 𝑆 − 𝑅)+] = E𝐴 [𝑊 ] − E[𝑅 − 𝑆] + E𝐴 [(𝑅 − 𝑆 −𝑊 )+],

and therefore
E𝐴 [(𝑅 − 𝑆 −𝑊 )+] = E[𝑅 − 𝑆] . (1.11)

Combining (1.9–1.11) yields a result called the Kingman bound [5],

E𝐴 [𝑊 ] ≤ Var[𝑅 − 𝑆]
2E[𝑅 − 𝑆] =

1
2 (𝑐

2
𝑅
+ 𝜌2𝑐2

𝑆
)

1 − 𝜌
E[𝑅], (1.12)

where 𝑐2
𝑅
and 𝑐2

𝑆
are the squared coefficients of variation of 𝑅 and 𝑆 , respectively.

The Kingman bound (1.12) gives us another instance of “work = intensity × variability”.
Just as job size variance impacts work, which we know from the M/G/1 formula (1.3), we
see we get a similar impact from interarrival time variance, as captured by the appearance
of Var[𝑅] and 𝑐2

𝑅
in (1.12).

Remark 1.40. Virtually all of the reasoning above works even if each job size 𝑆 and the
following interarrival time 𝑅 are not independent. Specifically, you can check that all of
expressions above where 𝑅 and 𝑆 appear only as part of an 𝑅 − 𝑆 term hold under the
weaker assumption that the (𝑅, 𝑆) pairs are i.i.d. More formally, the weaker assumption is
that the

(
𝐴𝑖+1 −𝐴𝑖 ; 𝑆 (𝐴𝑖)

)
pairs are i.i.d. in P𝐴 [·].

1.5 Exercises

1.5.1 Understanding Palm expectation
Exercise 1.1.
(a) Show that every rational 𝑢 > 0 yields the same value in Definition 1.20. If you prefer,

you can restrict to dyadic rationals, i.e. 𝑢 = 𝑛/2𝑘 for 𝑛, 𝑘 ∈ ℤ. Hint: Use linearity of
expectation and stationarity.

(b) Assuming 𝑋 ≥ 0, extend your argument to irrational 𝑢 > 0. (The conclusion for
general 𝑋 then follows by decomposing 𝑋 = 𝑋 + − 𝑋−.)

Solution on page 63.

Exercise 1.2. Let 𝐴 and 𝐵 be jointly stationary point processes that are (almost surely)
disjoint.
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(a) Show
𝜆𝐴∪𝐵 = 𝜆𝐴 + 𝜆𝐵 .

(b) Show that for any process 𝑋 that is jointly stationary with 𝐴 and 𝐵,

𝜆𝐴∪𝐵 E𝐴∪𝐵 [𝑋 ] = 𝜆𝐴 E𝐴 [𝑋 ] + 𝜆𝐵 E𝐵 [𝑋 ] .

This result is especially handy when applying RCL 1.22 to unions of point processes.

Solution on page 64.

Exercise 1.3. Let 𝐴 be a Poisson process. Explain why for any bounded function 𝑓 ,

E[𝑓 (𝐴 ∪ {𝑡})] = E𝑡𝐴 [𝑓 (𝐴)] .

That is, explain why the distribution of 𝐴 ∪ {𝑡} under P[·] is the same as the distribution
of 𝐴 under P𝑡

𝐴
[·]. Hint: How would you generate a sample of the entire Poisson process 𝐴

“starting at” time 𝑡?

Solution on page 65.

1.5.2 Practice with RCL and PIF
Exercise 1.4. Let 𝐴 be a stationary point process. Show

𝜆𝐴 =
1

E𝐴 [𝐴1]
.

The intuition is that the rate 𝜆𝐴 of the point process is the reciprocal of the average amount
of time between its points, namely E𝐴 [𝐴1] = E𝐴 [𝐴1 −𝐴0].
Solution on page 66.

Exercise 1.5. Let𝑊 be a stationary M/G/1 work process. Show

𝜌 = P[𝑊 > 0] .

Hint: Use RCL 1.22, remembering the rule of thumb: consider, roughly, the integral of the
function you’re finding the expectation of. Thinking of P[𝑊 > 0] = E[𝟙(𝑊 > 0)] as an
expectation of a “zeroth-order” function of𝑊 , what does the rule of thumb suggest?

Solution on page 67.

Exercise 1.6. Let 𝑋 and 𝐴 be jointly stationary.
(a) Show

E𝐴 [𝑋 (𝐴1)] = E𝐴 [𝑋 (𝐴0)] .
Hint: The right-hand side can be more simply written as E𝐴 [𝑋 ], because 𝐴0 = 0
under P𝐴 [·] [Def. 1.20]. It’s written the way it is as a suggestion of how you might
use RCL 1.22 to prove it.
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(b) Show that for all 𝑖 ∈ ℤ,
E𝐴 [𝑋 (𝐴𝑖)] = E𝐴 [𝑋 (𝐴0)] .

Hint: You can either adapt the argument you used for (a), or you can directly apply
the result of (a) to 𝑡 ↦→ 𝑋 (something with 𝑡).

Solution on page 68.

Exercise 1.7. In this problem, you will explore variants of PIF 1.25. Let 𝑋 ≥ 0 and 𝐴 be
jointly stationary.
(a) Show

E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 0

𝐴−1

𝑋 (𝑢) d𝑢
]
.

(b) Show

E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 1
2𝐴1

1
2𝐴−1

𝑋 (𝑢) d𝑢
]
.

Solution on page 69.

Exercise 1.8. Let𝑊 be a stationary M/G/1 work process. Let a (maximal) busy period be a
maximal contiguous interval of times 𝑡 during which𝑊 (𝑡) > 0. Let 𝐵 and 𝐶 be the ends
and starts, respectively, of busy periods.7 You may take as given that 𝐵 and 𝐶 are jointly
stationary with𝑊 .
(a) Find 𝜆𝐶 , the average rate with which busy periods start. Hint: Think about the

relationship between 𝐶 and the arrival times point process, then use PASTA 1.27.
(b) Find E𝐶 [𝐵1], the mean length of a busy period. Hint: Use PIF 1.25.

Hint: You might find previous exercise helpful for both parts.

Solution on page 71.

1.5.3 Increasingly unwieldy PASTA
Exercise 1.9 (Cavatappi). In this problem, youwill prove an easy special case of PASTA 1.27
using PIF 1.25. Let 𝑋 ≥ 0 and 𝐴, a Poisson process, be jointly stationary and independent.
Show

E[𝑋 ] = E𝐴 [𝑋 ] .
Specifically, use the fact that 𝐴1 ∼ Exp(𝜆𝐴) under P𝐴 [·] [Def. 1.14] to show

𝜆𝐴 E𝐴

[∫ 𝐴1

0
𝑋 (𝑢) d𝑢

]
= E𝐴 [𝑋 (𝐴1)],

7Formally, we could define 𝐵 and𝐶 as the processes satisfying the followingmutual recursion: 𝐵1 (𝐶0 (𝑡)) =
min{𝑢 > 𝐶0 (𝑡) :𝑊 (𝑢) = 0}, and𝐶1 (𝐵0 (𝑡)) = min{𝑢 > 𝐵0 (𝑡) :𝑊 (𝑢+) > 0}. But for this problem, you should
manage with the “ends and starts of busy periods” definition.
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then conclude using Exercise 1.6. Hint: It often helps to rewrite a random-domain integral
as a deterministic-domain integral with an indicator in the integrand. Also, if 𝐴 and 𝑋 are
independent, then𝐴 and J𝑋 are (almost surely) disjoint, so you can assume𝑋 (𝑎−) = 𝑋 (𝑎+)
for all 𝑎 ∈ 𝐴.

Solution on page 72.

Exercise 1.10 (Fettuccine). In this problem, you will prove a relatively easy, but still very
useful, special case of PASTA 1.27 for the M/G/1. Let𝑊 be a stationary M/G/1 work process,
and let 𝑓 be a nonnegative function. Following the approach from Exercise 1.9, prove

E[𝑓 (𝑊 )] = E𝐴 [𝑓 (𝑊 )],

where we recall that𝑊 is left-continuous, so𝑊 = 𝑊(−) [Def. 1.13(c)]. You may take as
given the fact that𝑊(+) and 𝐴1 are independent under P𝐴 [·]. Hint: However, this does
not imply that𝑊 (𝑢) is independent of 𝐴1 under P𝐴 [·] for 𝑢 > 0. Either argue why this
extra independence holds, or come up with an approach that only needs independence of
𝑊(+) =𝑊 (0+) and 𝐴1.

Solution on page 73.

Exercise 1.11 (Capellini). Prove PASTA 1.27. You may use the fact that if 𝐴 is a Poisson
process, then as 𝛿 → 0+,

P[𝑁𝐴 (0, 𝛿) = 1] ∼ 𝜆𝐴𝛿,

P[𝑁𝐴 (0, 𝛿) ≥ 2] ≤ 𝑂 (𝛿2).

(a) Give a proof under the assumption that 𝑋 is continuous and |D𝑋 | is bounded.
(b) Challenge! If you really like real analysis, try to extend (a) to a less stringent condition.

1.5.4 Increasingly fancy M/G/1 variants

Exercise 1.12. Let𝑊 be a stationary M/G/1 work process. Find a formula for E[𝑒𝜃𝑊 (𝑡)]
using RCL 1.22 and PASTA 1.27.
(a) Do this assuming 𝜃 ≤ 0. Hint: What, roughly, is the integral of𝑤 ↦→ 𝑒𝜃𝑤?
(b) Challenge! Do this assuming 𝜃 > 0, obtaining the same formula as in (a), but carefully

tracking what preconditions are needed to ensure E[𝑒𝜃𝑊 (𝑡)] < ∞. Hint: Apply
RCL 1.22 to a truncated version of what you used in (a). You might get quantities
that you can’t analyze exactly, but you can bound them.

(c) Open-ended. . . . Can you find the secret buses [§ 1.4.2] hiding your formula?

Solution on page 74.
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Exercise 1.13. The M/G/1 with setup times (M/G/1/setup) is a variant of the M/G/1, but
with the following change: whenever a job arrives to an empty system, in addition to
the job’s size 𝑆 being added to the work, an additional setup time, sampled i.i.d. from a
distribution𝑈 on [0,∞), is also added. This represents the server taking extra time𝑈 to
set up after being idle.

Let𝑊 be a stationary standard M/G/1/setup work process, and let𝑊M/G/1 be a standard
M/G/1 work process with the same arrival rate and size distribution.
(a) Find a formula for E[𝑊 ] of the form

E[𝑊 ] = E[𝑊M/G/1] + something,

where the M/G/1 and M/G/1/setup have the same arrival rate and size distribution.
(b) Can you interpret the “something” in your answer to (a) as the mean of some

distribution? What might that distribution represent?
(c) Find a formula for E[𝑒𝜃𝑊 ]. You should find a similar decomposition to what you

found in (a). You may assume 𝜃 ≤ 0.
(d) Based on your answer to (c), was the distribution you found in (b) was correct, or

did you find a different distribution that happens to have the right mean?

Solution on page 76.

Exercise 1.14. Repeat Exercise 1.13, but for the M/G/1 with vacations (M/G/1/vacation). In
the M/G/1/vacation, whenever the work reaches 0, it immediately jumps up by a vacation
amount, which is sampled i.i.d from a distribution 𝑉 on (0,∞). This represents server
taking a break whenever there’s no work to do, coming back after time 𝑉 .

The main difficulty of this problem is that in the M/G/1/vacation, Δ𝑊 is not simply the
arrival times 𝐴. But you can partition Δ𝑊 = 𝐴 ∪ 𝐵, where 𝐵 is the times when vacations
start. One can show that 𝐴 and 𝐵 are (almost surely) disjoint, and you may use this fact
without proof for this problem. Hint: You might find Exercise 1.2 handy. You can’t use
PASTA 1.27 under P𝐵 [·], so hopefully you won’t need to. . . .

Solution on page 79.

Exercise 1.15. Challenge! The M/G/𝑘 is a multiserver variant of the M/G/1. Specifically,
let’s imagine that the M/G/𝑘 has 𝑘 “slow” servers, which run 𝑘 times slower than the single
server of the M/G/1. A job of size 𝑠 thus takes time 𝑘𝑠 to finish on one of the slow servers,
but this is balanced out by the fact that there are 𝑘 servers. If all 𝑘 servers are busy at
time 𝑡 , then the M/G/𝑘 is still completing work at rate 1, so D𝑊 (𝑡) = −1.

However, the M/G/𝑘’s work process𝑊 is not standard [Def. 1.13], because if there are
fewer than 𝑘 jobs in the system at time 𝑡 , then D𝑊 (𝑡) ≠ −1, even if𝑊 (𝑡) > 0. In fact,
this reveals that D𝑊 (𝑡) is no longer a deterministic function of𝑊 (𝑡): it depends on the
number of jobs in the system, which we can’t infer from𝑊 (𝑡) alone.
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The above difficulties make analyzing the M/G/𝑘’s mean work E[𝑊 ] intractable in
general. However, we can still get some useful formulas which lead to bounds under some
conditions. The key idea is to define an idleness process [Def. 2.18]

𝐼 (𝑡) B 1 − # jobs present at 𝑡
𝑘

= fraction of servers that are idle at 𝑡,

then express D𝑊 (𝑡) in terms of 𝐼 (𝑡). You may assume𝑊 and 𝐼 are jointly stationary.
(a) Show

E[𝑊 ] = E[𝑊M/G/1] +
E[𝐼𝑊 ]
1 − 𝜌

.

(b) Assuming there exists𝑚 such that P[𝑆 ≤ 𝑚] = 1, show

E[𝑊 ] ≤ E[𝑊M/G/1] + (𝑘 − 1)𝑚.

Hint: If 𝐼 (𝑡) > 0, how many jobs can there possibly be in the system at time 𝑡?
(c) Try to give an intuitive interpretation of the E[𝐼𝑊 ]/(1 − 𝜌) term. Hint: Here’s one

somewhat heavy approach. Define the Palm-like expectation E𝐼 [𝑋 ] = E[𝐼𝑋 ]/(1− 𝜌)
for 𝑋 jointly stationary with𝑊 and 𝐼 . Just as E𝐴 [·] captures the perspective of an
arriving job, consider: what perspective does E𝐼 [·] capture?

(d) Find a formula for E[𝑒𝜃𝑊 ] analogous to (a). You may assume 𝜃 ≤ 0. Hint: You should
get E[𝑒𝜃𝑊M/G/1] [Exr. 1.12] times a factor that can be written using E𝐼 [·].

(e) Open-ended. . . . To what extent do the above results generalize beyond the M/G/𝑘?

Solution on page 81.

1.5.5 Buses and recurrence time
Exercise 1.16. Let a (𝜆, 𝑆)-bus process be, roughly, an 𝑆-bus process [Def. 1.31] where
buses mercifully pause at the bus stop for Exp(𝜆) time. More formally, let arrivals 𝐴 and
departures 𝐵 be point processes defined recursively by fresh sampling:

𝐴𝑖 − 𝐵𝑖−1 ∼ 𝑆,

𝐵𝑖 −𝐴𝑖 ∼ Exp(𝜆) .
Then the standard work (or “wait”) process

𝑊 (𝑡) B
{
𝐴1(𝑡) − 𝑡 if 𝐴1(𝑡) < 𝐵1(𝑡)
0 otherwise

is a (𝜆, 𝑆)-bus process.
Provided E[𝑆] < ∞ and 𝜆 ∈ (0,∞), one can show that a stationary (𝜆, 𝑆)-bus process

𝑊 exists, so we restrict attention to this case. Note that if𝑊 is stationary, then it is jointly
stationary with𝐴 and 𝐵, because𝐴 and 𝐵 can be expressed as functions of𝑊 . Hint: Despite
the Exp(𝜆), neither 𝐴 nor 𝐵 is a Poisson process, so you can’t use PASTA 1.27.

In this problem, you will adapt Theorem 1.32 to (𝜆, 𝑆)-bus processes, then compare
your results. Specifically:
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(a) Find E[𝑊 ]. You may assume E[𝑆2] < ∞.
(b) Find E[𝑒𝜃𝑊 ]. You may assume 𝜃 ≤ 0.
(c) Find P[𝑊 > 𝑥].
(d) Describe𝑊 ’s distribution in terms of the excess distribution 𝑆e [Def. 1.33].
(e) Describe how “work ≈ intensity × variability” manifests in your E[𝑊 ] formula.
(f) Open-ended. . . . What is the most general version of this result you can state and

prove? Can Exp(𝜆) be replaced by an arbitrary distribution 𝑍 > 0? Can𝐴, 𝐵, or both
be replaced with an arbitrary stationary point processes?

Exercise 1.17. Let 𝐴 be an 𝑆-renewal process, let𝑊 B 𝐴1(𝑡) − 𝑡 be its bus process, and
let its reverse-bus process be

𝑉 (𝑡) B 𝑡 −𝐴0(𝑡),

i.e. the time since the previous bus arrived. Find P[𝑉 > 𝑥 ;𝑊 > 𝑦]. Hint: Use PIF 1.25.
The significance of this problem is that, as mentioned in Remark 1.35, it tells us how to

set the joint distribution of 𝐴0 and 𝐴1 such that 𝐴 is stationary. This is because at 𝑡 = 0,
we have 𝑉 = −𝐴0 and𝑊 = 𝐴1.

Exercise 1.18. Challenge! In this problem, we will give a more rigorous account of the
“work layers” intuition of the M/G/1 introduced in Section 1.4.2. As discussed there, we
will assume PLCFS scheduling, so that each layer corresponds to a job. You will show that

• the number of jobs 𝑁 has distribution Geo0(1 − 𝜌); and
• conditional on 𝑁 , the 𝑁 jobs’ remaining work amounts 𝐿1, . . . , 𝐿𝑁 are i.i.d. with
distribution 𝑆e.

You should feel comfortable with Exercise 1.12(a) before attempting this problem.
Before we state the result you will show, let’s be a little more precise about what 𝑁

and 𝐿𝑖 are as processes. Let8

𝑁 (𝑡) B number of jobs present at time 𝑡,

𝐿𝑖 (𝑡) B
{
remaining work of 𝑖th most recently arrived job if 𝑁 (𝑡) ≥ 𝑖

0 if 𝑁 (𝑡) < 𝑖 .

We assume the sequence-valued process (𝐿1, 𝐿2, . . . ) is stationary. This means it is jointly
stationary with𝑊 and 𝑁 , because they can be expressed as

𝑊 =

∞∑︁
𝑖=1

𝐿𝑖, 𝑁 = max{𝑖 ∈ ℕ : 𝐿𝑖 > 0}.

8The subscripts on the 𝐿𝑖 below don’t quite match with the subscripts on the 𝐿𝑖 in Figure 1.3. Below, the
subscripts of layers in the system are always 1, . . . , 𝑁 . But in Figure 1.3, a layer’s subscript corresponds to a
job’s absolute arrival index, so the subscripts of layers in the system need not be contiguous.
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Your will find the joint transform of the 𝐿1, 𝐿2, . . . sequence. Specifically, let 𝜃1, 𝜃2, . . . be
a real sequence, which you may assume is nonpositive, and let

𝑋𝑘 B
𝑘∏
𝑖=1

𝑒𝜃𝑖𝐿𝑖 = exp
( 𝑘∑︁
𝑖=1

𝜃𝑖𝐿𝑖

)
.

Your task is to show that for all 𝑘 ∈ ℕ,

E[𝑋𝑘 𝟙(𝑁 = 𝑘)] = (1 − 𝜌)𝜌𝑘
𝑘∏
𝑖=1

E[𝑒𝜃𝑖𝑆e], (1.13)

then explain how this yields the claims at the start of this problem.
(a) Show (1.13) for 𝑘 = 0.
(b) Use RCL 1.22 to express E[𝑋𝑘 𝟙(𝑁 = 𝑘)] in terms of E[𝑋𝑘−1 𝟙(𝑁 = 𝑘 − 1)], then

show (1.13) for all 𝑘 by induction. Hint: You might be tempted to put indicators in
the process you apply RCL 1.22 to. This can work, but it’s a bit of a trap: you’ll likely
get jumps when jobs depart, which we don’t yet have great tools for handling. Try
to choose a process that only jumps when jobs arrive, which makes PASTA 1.27
applicable. If in doubt, try applying RCL 1.22 to 𝑋𝑘 , then see what happens.

(c) Use (1.13) to show 𝑁 ∼ Geo0(1 − 𝜌) by finding P[𝑁 = 𝑘].
(d) Combine (1.13) and (c) to conclude that the conditional joint transform of 𝐿1, . . . , 𝐿𝑘

given 𝑁 = 𝑘 , namely E[𝑋𝑘 | 𝑁 = 𝑘], is the joint transform of 𝑘 i.i.d. samples from 𝑆e.
(e) Use (1.13) to obtain a formula for E[𝑒𝜃𝑊 ], and check that it agrees with your answer

to Exercise 1.12.
(f) Open-ended. . . . Try adapting (1.13) to the M/G/1/setup [Exr. 1.13] or M/G/1/vacation

[Exr. 1.14]. You’ll have to think about how to define the “work layers” corresponding
to setups or vacations.

1.5.6 Non-Poisson arrivals
Exercise 1.19. Let𝑊 be a stationary G/G/1 work process.
(a) Express E[𝑊 ] in terms of E𝐴 [𝑊 ]. Hint: Either RCL 1.22 or PIF 1.25 can work
(b) Use (a) and material from Section 1.4.3 to upper bound E[𝑊 ] similarly to (1.12).
(c) Without using material from Section 1.4.3, find a second relationship between E[𝑊 ]

and E𝐴 [𝑊 ], then combine it with (a) to prove (1.9). Hint: Try whichever of RCL 1.22
or PIF 1.25 you didn’t use in (a).

Exercise 1.20. Challenge! Let𝑊 be a stationary G/G/1 work process. Let a (maximal)
idle period be a maximal contiguous interval of times 𝑡 such that𝑊 (𝑡) = 0. Let 𝑈 be the
distribution of the length of idle periods. Specifically, letting 𝐵 be the stationary point
process of the starts of idle periods, let𝑈 be the distribution of 𝐴1 in P𝐵 [·].

Express E𝐴
[ (
(𝑅−𝑆 −𝑊 )+

)2] , the intractable term from the G/G/1 E𝐴 [𝑊 ] formula (1.9),
in terms of the excess𝑈e.
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Exercise 1.21. Open-ended. . . . Let𝑊 be a stationary G/G/1 work process. Try to adapt
the strategy used in Section 1.4.3 to find a formula for the work transform E𝐴 [𝑒𝜃𝑊 ]. Make
whatever additional assumptions you deem necessary. Can you get an exact formula that
contains some intractable terms like (1.9)? How about a bound like (1.12)?

Exercise 1.22. Open-ended. . . . Consider a system where jobs are scheduled to arrive with
deterministic gaps between arrivals of 1/𝜆 seconds, but, relatably, jobs always arrive late.
Specifically, suppose a job that is scheduled to arrive at time 𝑡 actually arrives at time
freshly sampled from Unif (𝑡, 𝑡 + 𝛼/𝜆), where 𝛼 ∈ [0, 1].
(a) Formalize the above description into a definition of an arrival time point process 𝐴.
(b) Let𝑊 be the standard work process whose jumps are the 𝑆-GD/G arrival process

of 𝐴. Try to bound E[𝑊 ] from both above and below. Feel free to prove a bound that
relies on finiteness for whatever expectations related to 𝑆 you need.

(c) Describe how “work ≈ intensity × variability” manifests in your E[𝑊 ] bounds.
(d) Repeat (b), but for E[𝑒𝜃𝑊 ]. Hint: To avoid trivial bounds, e.g. 0 ≤ E[𝑒𝜃𝑊 ] ≤ 1 for

𝜃 ≤ 0, try to prove bounds that you believe hold for 𝜃 > 0, even if you don’t work
through all the details as rigorously as in Exercise 1.12(b).

(e) Challenge! Can you extend any of your bounds to 𝛼 ∈ (1, 2]? How about 𝛼 > 2?
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Dispatching and state-space collapse

Having spent Chapter 1 developing tools to analyze work in queues, we’re now ready to
solve our first control problems in queues. The specific type of control we’ll consider is
dispatching decisions. In the dispatching system we’ll study in this chapter, whenever a job
arrives, we must immediately send it to one of multiple queues, as shown in Figure 2.1.
Our objective will be to minimize the mean response time, where a job’s response time is
the total amount of time it spends in the system between arrival and departure.

It turns out that even the very simplest dispatching problems are usually intractable
to solve exactly! As such, we’ll have to settle for near-optimal policies. To narrow our
focus, we’ll consider a dispatching system with M/G arrivals [Def. 1.15], and we’ll focus on
achieving near-optimality in heavy traffic, meaning when the load is near the maximum.
Even this problem was solved only recently [9].

The main technical tool that will enable us to analyze dispatching policies is state-
space collapse. Roughly speaking, state-space collapse occurs when a system’s state nearly
always stays in, or at least nearby, a subset of the possible states. For example, we will
soon encounter a dispatching policy called Least Work Left (LWL) that tries to keep the
amount of work balanced across two queues. Modeling the state of this system as the
pair (𝑊1,𝑊2), where𝑊𝑖 is the amount of work in queue 𝑖 [Fig. 2.1], the full state space
is [0,∞)2, but LWL induces state-space collapse to the subset where𝑊1 = 𝑊2. Beyond
LWL, we’ll see that optimal dispatching largely boils down to inducing the right type of
state-space collapse.

2.1 Setting: the heavy-traffic M/G/2/dispatch

We consider a dispatching system with two queues, as pictured in Figure 2.1. We write𝑊1
and𝑊2 for the work processes of the two queues. We assume an M/G arrival process with
arrival rate 𝜆, job size distribution 𝑆 , and load 𝜌 . This creates a system which we call the
M/G/2/dispatch, defined formally in Definition 2.3 below.

2.1.1 Marks on point processes
Below, we will introduce notation for the queue to which a job is dispatched [Def. 2.3(a)]
and the amount of time a job spends in the system [Def. 2.7]. These concepts really only
make sense when we’re talking about a specific job. We’ll integrate this into our notation
as a process that we only need to define at arrival times, which we call a mark process on
the arrival times.
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speed 1

2
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speed 1
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Queue 1

Queue 2

work𝑊1

work𝑊2

Dispatcherarriving jobs

Figure 2.1. A two-server dispatching system. Whenever a job arrives, the dispatcher immediately
sends it to one of the two servers, where it waits in a server-specific queue. The work waiting in
queue 𝑖 is denoted𝑊𝑖 . Both servers have speed 1/2, so𝑊𝑖 decreases at rate 1/2 while it is nonzero.
This speed convention makes the system comparable to a single-server queue with speed 1.

Definition 2.1. Let 𝐴 be a point process. A mark process on 𝐴 is a right-continuous,
piecewise-constant process that only changes value at times in 𝐴. Equivalently, 𝑀 is a
mark process on 𝐴 if for all 𝑡 ,

𝑀 (𝑡) = 𝑀 (𝐴0(𝑡)) .

This means that when defining a mark process𝑀 on 𝐴, it suffices to define𝑀 (𝑡) only for
𝑡 ∈ 𝐴. We also define

𝑀𝑖 (𝑡) B 𝑀 (𝐴𝑖 (𝑡)),

which generalizes𝑀 = 𝑀0.

2.1.2 The M/G/𝒌/dispatch queueing system

Definition 2.2. A stochastic process𝑊 is a speed 𝑐 standard work process if𝑊 /𝑐 is a
standard work process [Def. 1.13, Fig. 1.1]. That is,𝑊 is like a standard work process,
but it decreases at rate 𝑐 instead of rate 1. We define speed 𝑐 versions of specific types of
standard work processes similarly, e.g. a speed 𝑐 M/G/1 work process [Def. 1.16].

Definition 2.3. A (𝜆, 𝑆)-M/G/𝑘/dispatch is a queueing system with 𝑘 servers, each with
its own queue. Jobs arrive according to a (𝜆, 𝑆)-M/G arrival process, and whenever a job
arrives, it is immediately sent to one of the 𝑘 servers.

(a) The dispatch index 𝐽 is a mark process on arrival times 𝐴, where 𝐽 (𝑡) is the server
to which the arrival at time 𝑡 ∈ 𝐴 is dispatched.

(b) The queue 𝑖 work process, denoted𝑊𝑖 , is a speed 1/𝑘 standard work process with
jump

Δ𝑊𝑖 (𝑡) B 𝑆 (𝑡) 𝟙(𝐽 (𝑡) = 𝑖).
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(c) The (total) work process𝑊 is

𝑊 B
𝑘∑︁
𝑖=1

𝑊𝑖 .

(d) For 𝑘 = 2, the (work) gap process 𝐺 is

𝐺 B |𝑊1 −𝑊2 |,

which means

min{𝑊1,𝑊2} =𝑊 −𝐺,

max{𝑊1,𝑊2} =𝑊 +𝐺.

We define dispatching systems with other arrival processes analogously, with names based
on Notation 1.39. For instance, the G/G/𝑘/dispatch is defined as above, but with G/G arrivals
[Def. 1.36] instead of M/G arrivals.

For the most part, we work with the M/G/2/dispatch, though you’ll explore the
M/G/𝑘/dispatch in some of the exercises [Exrs. 2.8, 2.11]. This choice is mostly for ease
of presentation: many of the results and takeaways apply for all 𝑘 , but they require more
involved notation.

Remark 2.4.

(a) The reason we define the M/G/𝑘/dispatch to use speed 1/𝑘 servers instead of speed 1
servers is to make it comparable to the standard M/G/1. In particular, we will see
that the total work in an M/G/𝑘/dispatch is bounded below by the work in an M/G/1.

(b) If𝑊 is a speed 𝑐 standard work process, then 𝑡 ↦→ 𝑊 (𝑡/𝑐) is a speed 1 standard
work process with the same stationary distribution, as well as the same distribution
of Δ𝑊 under PJ𝑊 [·].

(c) In the M/G/𝑘/dispatch, with the right parameterization of the arrival process, the
stationary distribution of the queue 𝑖 work processes𝑊𝑖 would be the same if we
used a speed 1 convention instead of our speed 1/𝑘 convention. Specifically, in light
of Remark 2.4(b), if we write a formula for E[𝑊𝑖] in terms of 𝑆 and 𝜌 but not 𝜆, it
remains valid under either server speed convention.

In Definition 2.3(a), the concrete definition of 𝐽 is left unspecified. This is because 𝐽

depends on the dispatching policy, meaning the rule that decides which server to send each
arrival to. The main aim of this chapter is to develop tools for designing and analyzing
dispatching policies.

Notation 2.5.

(a) We usually denote a generic policy by the variable 𝜋 , and we denote specific policies
by their (possibly abbreviated) name.
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(b) We write policies in the subscript when helpful for disambiguation, e.g.𝑊𝜋 or 𝐽𝜋 .
But for the most part, we focus on analyzing one policy at a time, in which case we
usually omit the subscript.

(c) We also sometimes use a subscript “M/G/1” to denote a quantity in a standard M/G/1
[Def. 1.16], using first-come first-served [§ 2.1.3] if the scheduling policy is relevant.

Assumption 2.6. We make the following assumptions in this chapter.
(a) Unless specified otherwise, we assume that all of the M/G/𝑘/dispatch-related pro-

cesses are jointly stationary. This amounts to assuming the existence of 𝐽 ,𝑊1, . . . ,𝑊𝑘

that are jointly stationary with the M/G arrival process, as everything else we define
will be in terms of those.

(b) We assume E[𝑆2] < ∞. This is essential assumption, because if it doesn’t hold, then
E[𝑊M/G/1] = ∞ [(1.3)], which leads to all of the policies we study having infinite
mean response time in heavy traffic [§ 2.1.3].

(c) For the most part, we assume 𝑆 is continuous. This is only for ease of presentation,
as the main obstacle has a straightforward workaround [Rmk. 2.16].

(d) Even when we consider non-continuous 𝑆 , we still assume 𝑆 is not deterministic.
This enables us make strict some inequalities [(2.4), (2.5)] that are equalities only in
the deterministic case.

2.1.3 Metric: heavy-traffic mean response time
Definition 2.7.
(a) A job’s waiting time 𝑇wait is the total amount of time it spends in the system prior to

the first moment it enters service.
(b) A job’s residence time 𝑇 resd is the total amount of time it spends in the system after

it first enters service.
(c) A job’s response time 𝑇 = 𝑇wait +𝑇 resd is the total amount of time it spends in the

system.
Formally, if 𝐴 is the arrival times point process, we let𝑇 be a mark process on 𝐴, with𝑇 (𝑡)
denoting the response time of the job that enters the system at time 𝑡 ∈ 𝐴, and similarly
for 𝑇wait and 𝑇 resd.

Of course, a job’s response time 𝑇 depends on the dispatching policy, just like the
dispatch index 𝐽 . In general, response time can also depend on the scheduling policy in use
at each queue. In this chapter, we’ll assume that each queue uses First-Come First-Served
(FCFS). This means a job’s waiting time 𝑇wait is simply the server speed times the work𝑊𝐽

at the server it is dispatched to, so in the M/G/𝑘/dispatch, for 𝑡 ∈ 𝐴,

𝑇wait(𝑡) = 𝑘𝑊𝐽 (𝑡), 𝑇 resd(𝑡) = 𝑘𝑆 (𝑡), 𝑇 (𝑡) = 𝑘𝑊𝐽 (𝑡) + 𝑘𝑆 (𝑡). (2.1)

Our aim is to design a dispatching policy 𝜋 for the M/G/2/dispatch that minimizes
mean response time E𝐴 [𝑇𝜋 ]. Thanks to (2.1), this amounts to minimizing E𝐴 [𝑊𝐽 ]. We call
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𝑊𝐽 the observed work, because it’s the amount of work observed by an arrival at the server
to which it is dispatched, excluding its own size [Def. 1.13(c)].

However, it turns out that minimizing E𝐴 [𝑇 ] in the M/G/2/dispatch is essentially
intractable to solve exactly. As such, we’ll focus on the heavy-traffic regime, defined below,
where the problem is theoretically solvable. The hope is that solving the problem in heavy
traffic teaches us lessons that are relevant even outside of heavy traffic.

Definition 2.8. When working with M/G arrivals, the heavy-traffic limit refers to the limit
as 𝜆 → 1/E[𝑆], with 𝑆 remaining fixed. We write this as 𝜌 → 1 throughout. In informal
discussion, phrases like “heavy-traffic” and “in heavy traffic” refer to this 𝜌 → 1 limit.

One way to view the 𝜌 → 1 notation is to view 𝜌 and 𝑆 as the defining parameters of
the M/G arrival process, from which the arrival rate is defined as 𝜆 B 𝜌/E[𝑆].

Notation 2.9. We use the following notation for asymptotic comparisons.1 Suppose we are
considering positive functions 𝑓 (𝑥), 𝑔(𝑥) > 0 of 𝑥 in an 𝑥 → 𝑦 limit.
(a) 𝑓 (𝑥) ≪ 𝑔(𝑥) means lim𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) = 0.
(b) 𝑓 (𝑥) ≫ 𝑔(𝑥) means lim𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) = ∞.
(c) 𝑓 (𝑥) ≲ 𝑔(𝑥) means lim sup𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) < ∞.
(d) 𝑓 (𝑥) ∼ 𝑔(𝑥) means lim sup𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) < ∞ and lim inf𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) > 0.
(e) 𝑓 (𝑥) ≳ 𝑔(𝑥) means lim inf𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) > 0.
(f) 𝑓 (𝑥) ⪅ 𝑔(𝑥) means lim sup𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) ≤ 1.
(g) 𝑓 (𝑥) ≈ 𝑔(𝑥) means lim𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) = 1.
(h) 𝑓 (𝑥) ⪆ 𝑔(𝑥) means lim inf𝑥→𝑦 𝑓 (𝑥)/𝑔(𝑥) ≥ 1.

Notation 2.10. In this chapter, we use the relations in Notation 2.9 only for the 𝜌 → 1 limit,
so we often omit the “as 𝜌 → 1” for brevity.

How does mean response time behave in heavy traffic? We know that in an M/G/1
using FCFS, we have

E𝐴 [𝑇M/G/1] = E[𝑊M/G/1] + E[𝑆] ≈ E[𝑆e]
1 − 𝜌

.

It’s natural to expect the same 1
1−𝜌 scaling of mean response time in the M/G/2/dispatch.

We therefore define the heavy-traffic constant of 𝜋 to be

𝐶𝜋 B lim
𝜌→1

(1 − 𝜌) E𝐴 [𝑇𝜋 ] .

1There’s no standard binary relation notation that accounts for all of these. Our choice here is a compro-
mise between existing standards while maintaining internal consistency, e.g. a single ∼ squiggle meaning
“modulo a multiplicative constant” and a double ≈ meaning “with a tight multiplicative constant”. It will
always be clear from context when ∼ means “has distribution”.
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That is, if 𝐶𝜋 ∈ (0,∞), then
E𝐴 [𝑇𝜋 ] ≈

𝐶𝜋

1 − 𝜌
.

For example, 𝐶M/G/1 = E[𝑆e]. We now have the terminology to precisely state the problem
we’ll solve in the rest of this chapter.

Question 2.11. Consider dispatching policies for the M/G/2/dispatch.
(a) What is the optimal heavy-traffic constant 𝐶∗ B inf𝜋 𝐶𝜋?
(b) What dispatching policy 𝜋 , if any, achieves tail constant 𝐶∗?

Notation 2.12. By “policy”, we often really mean parameterized policy family. For example,
the dispatching policies we design may depend on the size distribution 𝑆 and load 𝜌 .

2.2 Two dispatching policies
How do we achieve low mean response time in the M/G/2/dispatch? There are at least two
natural ideas that come to mind, each of which leads to a policy.

• We could dispatch each job in the way that is best for its individual response time.
This idea leads to a policy called Least Work Left (LWL) [§ 2.2.1].

• We could protect small jobs from waiting behind large jobs by reserving one of
the queues for them, much like the “𝑛 items or less” checkout lane in a grocery
store. This idea leads to a policy called Size Interval Task Assignment (SITA) [§ 2.2.2],
introduced by [3].

Below, we’ll define LWL and SITAmore precisely, then compare how they perform [§ 2.2.3].

2.2.1 LWL: Least Work Left
Policy 2.13. Least Work Left (LWL) is the dispatching policy that sends each arriving job
to the queue with the least work. That is, under LWL, the dispatch index at arrival times
𝑡 ∈ 𝐴 is

𝐽LWL(𝑡) B argmin
𝑖

𝑊𝑖 (𝑡),

where𝑊𝑖 (𝑡) =𝑊𝑖 (𝑡−) is the work before the dispatching occurs [Def. 1.13(c)].

LWL’s strategy of sending jobs to the queue with least work has two potential benefits.
• Given queue work amounts𝑊1, . . . ,𝑊𝑘 , LWL achieves the minimum possible ob-
served work𝑊𝐽 = min𝑖𝑊𝑖 .

• By always choosing smallest work amount to increase, LWL tends to balance the
work across the 𝑘 queues evenly.

So, what heavy-traffic constant𝐶LWL do these properties lead to? It turns out LWL roughly
mimics a single-server M/G/1 for the following reasons.
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• Because𝑊1 and𝑊2 are roughly balanced, the total work process𝑊 behaves roughly
like a standard work process, so

E[𝑊LWL] ≈ E[𝑊M/G/1] .

• Again because𝑊1 and𝑊2 are roughly balanced, the observed work𝑊𝐽 is roughly
half of the total work𝑊 , so

E𝐴 [𝑇wait
LWL] = 2E[𝑊𝐽 ] ≈ E[𝑊LWL] .

Combining these observations, we get

E𝐴 [𝑇LWL] ≈ E[𝑊LWL] + 2E[𝑆] ≈ E[𝑊M/G/1], (2.2)

which means
𝐶LWL = 𝐶M/G/1 = E[𝑆e] . (2.3)

In fact, this holds for the M/G/𝑘/dispatch for general 𝑘 ≥ 2 [Exr. 2.11].
We’ll formally state and prove the observations above in Section 2.3. For exposition

purposes, we’ll do so under an extra assumption on 𝑆 , but it can be removed [Exr. 2.10].

2.2.2 SITA: Size Interval Task Assignment

Definition 2.14.
(a) For a given size distribution 𝑆 and integer 𝑘 ≥ 2, the load-equalizing thresholds,

denoted 𝑞1, . . . , 𝑞𝑘−1, are the thresholds such that for all 𝑖 ∈ {1, . . . , 𝑘},

E[𝑆 𝟙(𝑆 ∈ [𝑞𝑖−1, 𝑞𝑖))] =
E[𝑆]
𝑘

,

where 𝑞0 = 0 and 𝑞𝑘 = ∞ as edge cases. Such thresholds exist as long as 𝑆 is a
continuous distribution [Asm. 2.6(c)].

(b) When 𝑘 = 2, we write 𝑞 B 𝑞1 and call 𝑞 the load median. It is the threshold such that

E[𝑆 𝟙(𝑆 ≤ 𝑞)] = E[𝑆 𝟙(𝑆 > 𝑞)] = E[𝑆]
2

, (2.4)

This means

P[𝑆 ≤ 𝑞] = E[𝑆]
2E[𝑆 | 𝑆 ≤ 𝑞] >

1
2
>

E[𝑆]
2E[𝑆 | 𝑆 > 𝑞] = P[𝑆 > 𝑞] . (2.5)

Policy 2.15. The Size Interval Task Assignment (SITA) dispatching policy with thresholds
𝑟1, . . . , 𝑟𝑘−1 is the 𝑘-queue dispatching policy that sends jobs of size [𝑟𝑖−1, 𝑟𝑖) to server 𝑖 ,
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where 𝑟0 B 0 and 𝑟𝑘 B ∞ as edge cases. That is, under SITA, the dispatch index at arrival
times 𝑡 ∈ 𝐴 is

𝐽SITA(𝑡) B



1 if 𝑆 (𝑡) < 𝑟1

2 if 𝑆 (𝑡) ∈ [𝑟1, 𝑟2)
...

𝑘 − 1 if 𝑆 (𝑡) ∈ [𝑟𝑘−2, 𝑟𝑘−1)
𝑘 if 𝑆 (𝑡) ≥ 𝑟𝑘−1.

When 𝑘 = 2, we write 𝑟 B 𝑟1 for the single threshold.
We usually consider SITA with one of two ways of setting thresholds.

(a) SITA with load-Equalizing thresholds (SITA-E) uses the load-equalizing thresholds
𝑟𝑖 = 𝑞𝑖 [Def. 2.14]. These depend on the size distribution but not the load.

(b) SITA with Optimized thresholds (SITA-O) uses whatever thresholds minimize mean
response time. These depend on both the size distribution and the load.

Remark 2.16. If 𝑆 is not a continuous distribution, then load-equalizing thresholds might
not exist. This is because 𝑥 ↦→ E[𝑆 𝟙(𝑆 ≤ 𝑥)] is not continuous, and if it jumps over an
integer multiple of E[𝑆]/𝑘 , then one of the load-equalizing thresholds fails to exist.

Fortunately, this obstacle can be easily overcome using random tie-breaking. The intu-
ition is that if we perturbed each job’s size by very narrow continuously distributed noise,
we would have a continuous size distribution, and thus load-equalizing thresholds. Instead
of actually perturbing the sizes, we’ll assume that each job arrives with a freshly sampled
tiebreaker 𝑈 ∼ Unif (0, 1), then compare size-tiebreaker pairs (𝑠,𝑢) lexicographically.

Load-equalizing size-tiebreaker pairs (𝑞1, 𝑢1), . . . , (𝑞𝑘 , 𝑢𝑘) always exist.
• If E[𝑆 𝟙(𝑆 ≤ 𝑥)] = 𝑖

𝑘
E[𝑆] for some 𝑥 , then we can set 𝑞𝑖 = 𝑥 and𝑢 ∈ [0, 1] arbitrarily.

• If instead 𝑖
𝑘
E[𝑆] is “skipped” by a jump discontinuity of 𝑥 ↦→ E[𝑆 𝟙(𝑆 ≤ 𝑥)], then

we can set 𝑞𝑖 to the value where the relevant jump happens, and set 𝑢𝑖 to ensure
E[𝑆 𝟙(𝑆 ≤ 𝑞𝑖 ;𝑈 ≤ 𝑢𝑖)] = 𝑖

𝑘
E[𝑆].

The main benefit of SITA is that small jobs don’t have to wait behind large jobs. They
aren’t even in the same queue! So, what heavy-traffic constant 𝐶SITA does this lead to?

Due to the splitting property of Poisson processes [2, Section 11.7], SITA actually
creates two independent M/G/1 queues, one with size distribution (𝑆 | 𝑆 < 𝑟 ) and the other
with size distribution (𝑆 | 𝑆 ≥ 𝑟 ). This means once we specify the threshold 𝑟 , we can
obtain 𝐶SITA using the M/G/1 mean work formula (1.3). We’ll discuss SITA-E here, leaving
SITA-O for you to think about [Exr. 2.6]. Accounting for the server speed of 1/2, some
computation [Exr. 2.5] yields

E𝐴 [𝑇SITA-E] =
2𝜆

1 − 𝜌

(
P[𝑆 < 𝑞] E[𝑆2 𝟙(𝑆 < 𝑞)] + P[𝑆 ≥ 𝑞] E[𝑆2 𝟙(𝑆 ≥ 𝑞)]

)
+ 2E[𝑆], (2.6)
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and so, because 𝜆 → 1/E[𝑆] as 𝜌 → 1,

𝐶SITA-E =
2

E[𝑆]

(
P[𝑆 < 𝑞] E[𝑆2 𝟙(𝑆 < 𝑞)] + P[𝑆 ≥ 𝑞] E[𝑆2 𝟙(𝑆 ≥ 𝑞)]

)
. (2.7)

Let’s try to unpack 𝐶SITA-E. To understand the E[𝑆2 𝟙(𝑆 < 𝑞)] terms, we observe using
(2.4) and Assumption 2.6(c) that

E[𝑆2 𝟙(𝑆 < 𝑞)] < 𝑞 E[𝑆 𝟙(𝑆 < 𝑞)] = 𝑞 E[𝑆 𝟙(𝑆 ≥ 𝑞)] < E[𝑆2 𝟙(𝑆 ≥ 𝑞)] .
Along similar lines, (2.5) tells us P[𝑆 < 𝑞] > 1

2 > P[𝑆 ≥ 𝑞]. This means

𝐶SITA-E <
2

E[𝑆]

(
1
2
E[𝑆2 | 𝑆 < 𝑞] + 1

2
E[𝑆2 | 𝑆 ≥ 𝑞]

)
=
E[𝑆2]
E[𝑆] = 2E[𝑆e] . (2.8)

Roughly speaking, the more variable 𝑆 , the greater the gap in the inequality is. SITA does
well when balanced load between the two servers results in unbalanced arrival rates, with
the smaller-size half of the load consisting of many more jobs than the larger-size half.

2.2.3 Which is better: LWL or SITA?
How do LWL and SITA compare in heavy-traffic? Combining (2.3) and (2.8), we see
𝐶SITA-E < 2𝐶LWL, but this is far from conclusive. When is this bound tight enough that
LWL is better. When is it loose enough that SITA-E is better? Does using SITA-O instead
of SITA-E make a big difference?

To gain some intuition for these questions, Figure 2.2 investigates them for numeri-
cally the simplest possible non-deterministic size distribution: a two-point distribution.
Specifically, for some 𝑏 > 𝑎 > 0 and 𝑝 ∈ (0, 1), let

𝑆 B

{
𝑎 with probability 𝑝
𝑏 with probability 1 − 𝑞,

so that all jobs are either “small” (size 𝑎) or “large” (size 𝑏).
There are two important quantities that determine the relative performance of different

dispatching policies.
• The size ratio 𝑏/𝑎 between large and small jobs.
• The load fraction made up of each size of job. There are only two sizes, so we can
consider just one of them:

size 𝑎 load fraction B
E[𝑆 𝟙(𝑆 = 𝑎)]

E[𝑆] =
𝑝𝑎

𝑝𝑎 + (1 − 𝑞)𝑏 . (2.9)

If this fraction is greater than 1/2, then in heavy traffic, SITA sends only small jobs
to queue 1 and sends a mix of both sizes to queue 2; and vice versa if it’s less than 1/2
[Rmk. 2.16].

These two quantities determine a policy’s heavy-traffic constant up to a normalizing factor,
which could be E[𝑆]. In particular, they determine ratios of heavy-traffic constants between
any two policies.
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Figure 2.2. Normalized heavy-traffic constants 𝐶𝜋/𝐶LWL for a size distribution with two possible
sizes 𝑎 < 𝑏 (“small” and “large”, respectively). The policies are LWL [Pol. 2.13], two variants of SITA
[Pol. 2.15], and a policy called CARD introduced later [Pol. 2.32]. The 𝑥 axis is the fraction (2.9) of
load made up of small jobs. SITA beats LWL when the overall size distribution is variable (larger
size ratio 𝑏/𝑎), but the size distribution of the lower and upper halves of the load are less variable
(size 𝑎 load fraction closer to 1/2). CARD, which minimizes the heavy-traffic constant [§§ 2.4, 2.5],
consistently beats both SITA and LWL.

Explaining the performance differences between LWL and SITA

Figure 2.2 compares the heavy-traffic constants of LWL, SITA-E, and SITA-O as the size
ratio and size 𝑎 load fraction vary. Both SITA variants do best relative to LWL when the
size ratio 𝑏/𝑎 is large, but the load is split roughly equally between the two sizes. Here’s
one way to understand this intuitively in terms of job size variability [§ 1.4].

• The larger 𝑏/𝑎 is, the more variable the overall size distribution 𝑆 is, leading to
larger 𝐶LWL.

• The closer the size 𝑎 load fraction (2.9) is to 1/2, the less variable the size distributions
at each of the two queues is under SITA, leading to smaller 𝐶SITA.

However, both of the above factors seem to favor LWL. Why, then, is SITA sometimes
much worse than LWL? It’s because SITA has, in some sense, a more variable arrival
process at each queue.

• SITA uses open-loop control, meaning it doesn’t use the system state decisions.
Specifically, 𝐽SITA doesn’t depend on𝑊1 and𝑊2. As explained in Section 2.2.2, SITA
results in M/G arrivals at each queue.

• In contrast, LWL uses closed-loop control, meaning it uses the system state when
making decisions. Specifically, 𝐽LWL is a function of the state (𝑊1,𝑊2). As explored
in Section 2.3 and Exercise 2.9, LWL effectively “spreads out variability” from the
overall M/G arrival process, resulting in less variable arrival processes at each of
the two queues. If, for instance, a very large job arrives and is sent to queue 1, LWL
compensates by sending the next several arrivals to queue 2.
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Combining the strengths of LWL and SITA

To summarize the above discussion, here are the main strengths of LWL and SITA.
• LWL uses closed-loop dispatching to regulate the arrival processes to the two queues.
• SITA uses size-based dispatching to protect small jobs from getting stuck behind
large jobs.

This prompts a natural question: can we combine closed-loop and size-based dispatching
to get the best of both worlds? Yes we can! The last policy in Figure 2.2, called CARD
[Pol. 2.32], does exactly this, and we see that it outperforms both LWL and SITA, often
significantly so.

We’ll properly discuss CARD in Section 2.5. For now, here’s the high-level idea of how
it combines closed-loop and size-based dispatching.

• Like LWL, CARD uses closed-loop control. But instead of keeping𝑊1 and𝑊2 nearly
equal, CARD aims for maximal asymmetry, keeping𝑊1 much smaller than𝑊2.

• Like SITA, CARD protects small jobs from large jobs. But CARD is much better for
the small jobs than SITA: CARD can send them to queue 1, where they experience
negligible waiting time.

In fact, CARD has optimal mean response time in heavy traffic, i.e. 𝐶CARD = 𝐶∗ B inf𝜋 𝐶𝜋 ,
answering Question 2.11(b). Roughly speaking, this is because giving all small jobs negli-
gible response time is the best possible outcome. We’ll make this more precise when we
prove a lower bound on 𝐶∗ in Section 2.4.

To figure out the details of how CARD should work, we need to better understand
closed-loop control. In particular, it is not yet clear how to implement closed-loop control
while also dispatching jobs based on their size. As such, we’ll spend Section 2.3 studying
closed-loop control in a simpler context, namely analyzing LWL, with an eye towards
takeaways that will help with designing CARD [Q. 2.17].

2.3 Analyzing LWL

The aim of this section is to rigorously analyze LWL while, as discussed at the end of
Section 2.2.3, building understanding of closed-loop control in dispatching.

Question 2.17. Consider designing closed-loop dispatching policies in the M/G/2/dispatch.
(a) What types of stationary distributions on the system state (𝑊1,𝑊2) are achievable

with closed-loop control? Given such a distribution, how do we design a dispatching
policy that achieves it?

(b) How do we combine closed-loop and size-based dispatching? Can we control the
system state with policies that are only “partially” closed-loop?

With these questions in mind, we’ll analyze not just LWL, but also an LWL-𝑞 variant
that mixes LWL with random dispatching [§ 2.3.4]. We’ll see that LWL, and even LWL-𝑞,
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cause the system state distribution to concentrate on states where the work gap𝐺 is small,
an instance of a more general phenomenon called state-space collapse Section 2.3.2.

For instructive purposes, we sometimes assume throughout this section that 𝑆 is light-
tailed, namely that there exists 𝜂 > 0 such that such that E[𝑒𝜂𝑆 ] < ∞. We make this
assumption because it enables one to prove tighter concentration bounds on the gap 𝐺 ,
namely an exponential concentration. This is not essential for showing 𝐶LWL = 𝐶M/G/1,
but it is helpful as a warmup for CARD’s analysis in Section 2.5, which involves proving
exponential concentration using a similar strategy.

2.3.1 Bounding response time in terms of the work gap
Definition 2.18. The idleness process of a work process𝑊 , denoted 𝐼𝑊 or simply 𝐼 , is

𝐼 (𝑡) B 1 − D𝑊 (𝑡).

Theorem 2.19. Let𝑊 be a work process that has M/G arrivals, and suppose E[𝑆2] < ∞
[Asm. 2.6(b)]. Then

E[𝑊 ] = 𝜌 E[𝑆e] + E[𝐼𝑊 ]
1 − 𝜌

= E[𝑊M/G/1] +
E[𝐼𝑊 ]
1 − 𝜌

,

where𝑊M/G/1 is an M/G/1 work process with the same M/G arrival parameters [Ntn. 1.17(e)].

Proof. Using RCL 1.22 on𝑊 2 yields, along the same lines as in Section 1.3.2,

0 = 2E[𝑊 · D𝑊 ] + 𝜆 E𝐴 [(𝑊 + 𝑆)2 −𝑊 2]
= −2E[𝑊 ] + 2E[𝐼𝑊 ] + 2𝜆 E𝐴 [𝑆𝑊 ] + 𝜆 E𝐴 [𝑆2]
= −2E[𝑊 ] + 2E[𝐼𝑊 ] + 2𝜌 E[𝑊 ] + 𝜆 E[𝑆2],

where the last line uses PASTA 1.27, the independence of 𝑆 from𝑊 [Def. 1.15(b)], and our
notation convention for expectations involving a freshly sampled job size 𝑆 [Ntn. 1.3(f)].
The result follows by solving for E[𝑊 ] and applying (1.3) and Definition 1.33. □

What does the E[𝐼𝑊 ] term from Theorem 2.19 look like in the M/G/2/dispatch? When-
ever 𝐼 is nonzero, one of the queues has no work, in which case𝑊 = 𝐺 . This means

𝐼𝑊 = 𝐼𝐺 =
𝟙(𝑊1 = 0) + 𝟙(𝑊2 = 0)

2
·𝐺. (2.10)

So understanding the E[𝐼𝑊 ] term requires understanding the gap 𝐺 .
In fact, understanding the response time of LWL boils down nearly entirely to under-

standing 𝐺 . In particular, because we always send jobs to the queue with less work,

𝑇wait = 2𝑊𝐽 =𝑊 −𝐺.
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This means

E𝐴 [𝑇wait] = E[𝑊M/G/1] +
E[𝐼𝐺]
1 − 𝜌

− E[𝐺] (2.11)

= E[𝑊M/G/1] +
Cov[𝐼 ,𝐺]
1 − 𝜌

,

with the covariance framing [6] following from the fact that E[𝐼 ] = 1 − 𝜌 [Exr. 2.3].
Exactly analyzing E[𝐼𝐺] is essentially intractable, as doing so would amount to an

exact analysis of the intractable (central-queue) M/G/𝑘 [Exr. 2.1]. But the following lemma
shows that it suffices to prove what amount to tail bounds for 𝐺 , specifically bounds on
E[(𝐺 − 𝑥)+].

Lemma 2.20. In the M/G/2/dispatch using any dispatching policy, for all 𝑥 ≥ 0,

E[𝐼𝑊 ]
1 − 𝜌

=
E[𝐼𝐺]
1 − 𝜌

≤ 𝑥 + E[(𝐺 − 𝑥)+]
1 − 𝜌

.

Proof. We have 𝐼𝑊 = 𝐼𝐺 from (2.10). We then compute

E[𝐼𝐺] ≤ E
[
𝐼
(
𝑥 + (𝐺 − 𝑥)+

) ]
= 𝑥 E[𝐼 ] + E[𝐼 (𝐺 − 𝑥)+]
≤ 𝑥 E[𝐼 ] + E[(𝐺 − 𝑥)+]

and use the fact that E[𝐼 ] = 1 − 𝜌 [Exr. 2.3]. □

Lemma 2.21. In the M/G/2/dispatch using LWL, for all 𝑥 ≥ 0,��E𝐴 [𝑇wait
LWL] − E𝐴 [𝑇wait

M/G/1]
�� ≤ 𝑥 + E[(𝐺 − 𝑥)+]

1 − 𝜌
,

and so ��E𝐴 [𝑇LWL] − E𝐴 [𝑇M/G/1]
�� ≤ 𝑥 + E[(𝐺 − 𝑥)+]

1 − 𝜌
+ E[𝑆] .

Proof. Combining (2.11) and Lemma 2.20 yields��E𝐴 [𝑇wait] − E[𝑊M/G/1]
�� ≤ max

{
E[𝐺], 𝑥 + E[(𝐺 − 𝑥)+]

1 − 𝜌

}
,

and we can drop the E[𝐺] branch because

E[𝐺] ≤ 𝑥 + E[(𝐺 − 𝑥)+] ≤ 𝑥 + E[(𝐺 − 𝑥)+]
1 − 𝜌

.

The result then follows from (2.1), the following observations about waiting and response
time in the M/G/1 under FCFS (where 𝑡 ∈ 𝐴), and PASTA 1.27:

𝑇M/G/1(𝑡) = 𝑇wait
M/G/1(𝑡) + 𝑆 (𝑡), 𝑇wait

M/G/1(𝑡) =𝑊M/G/1(𝑡). □
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2.3.2 Bounding the work gap
With Lemma 2.21 in hand, proving E𝐴 [𝑇LWL] ≈ E𝐴 [𝑇LWL] amounts to proving bounds
on the work gap 𝐺 under LWL, specifically bounding E[(𝐺 − 𝑥)+]. By a Chernoff bound
argument [Exr. 2.4], we can bound E[(𝐺 − 𝑥)+] by an exponentially decreasing function
of 𝑥 if we can bound E[𝑒𝜂𝐺 ] for some 𝜂 > 0.

Lemma 2.22. Consider an M/G/2/dispatch using LWL. For all 𝜃 > 0 such that E[𝑒𝜃𝑆 ] < ∞,

E[𝑒𝜃𝐺 ] ≤ E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]
E[1 − 𝑒−𝜃𝑆 ]

=
E[𝑒𝜃𝑆e]
E[𝑒−𝜃𝑆e]

+ 1.

Proof. The main idea is to use RCL 1.22 on 𝑒𝜃𝐺 . We first give a proof that assumes E[𝑒𝜃𝐺 ] <
∞, then show how to adapt the proof to work without this extra assumption. Note that
the two expressions given for the bound are equal by Theorem 1.32(b).

As usual, we start by understanding the derivative and jumps of 𝑒𝜃𝐺 , which amounts
to understanding the derivative and jumps of 𝐺 .

• It turns out that for our purposes, it suffices to observe D𝐺 ∈ {−1/2, 0}. This holds
because between arrivals, 𝐺 only changes if the two servers are completing work at
different rates. But this only happens when one server is idle and the other is busy,
which decreases the gap 𝐺 at rate 1/2.

• The gap only jumps when a job arrives, so J𝐺 ⊆ 𝐴.2

• At arrival times 𝑡 ∈ 𝐴, the gap changes from 𝐺 (𝑡−) = 𝐺 (𝑡) to 𝐺 (𝑡+) = |𝐺 (𝑡) − 𝑆 |,
where 𝑆 , the size of the arriving job [Ntn. 1.17(c)], is independent of 𝐺 (𝑡).

Using RCL 1.22 on 𝑒𝜃𝐺 , the above observations, and PASTA 1.27 yields

0 = 𝜃 E[𝑒𝜃𝐺 · D𝐺] + 𝜆 E𝐴 [𝑒𝜃 |𝐺−𝑆 | − 𝑒𝜃𝐺 ] ≤ 𝜆 E[𝑒𝜃 |𝐺−𝑆 | − 𝑒𝜃𝐺 ], (2.12)

where we have used the fact that

E[|𝑒𝜃 |𝐺−𝑆 | − 𝑒𝜃𝐺 |] < max{E[𝑒𝜃𝑆 ], E[𝑒𝜃𝐺 ]} < ∞.

The next step is to isolate E[𝑒𝜃𝐺 ] on the right-hand side of (2.12). If we had 𝑒𝜃 (𝐺−𝑆)

instead of 𝑒𝜃 |𝐺−𝑆 | , because 𝑆 is independent of 𝐺 , we would have

E[𝑒𝜃 (𝐺−𝑆) − 𝑒𝜃𝐺 ] = −E[𝑒𝜃𝐺 ] E[1 − 𝑒−𝜃𝑆 ] .

So let’s add and subtract 𝑒𝜃 (𝐺−𝑆) from (2.12), obtaining

0 ≤ E[𝑒𝜃 (𝐺−𝑆) − 𝑒𝜃𝐺 + 𝑒𝜃 |𝐺−𝑆 | − 𝑒𝜃 (𝐺−𝑆)] . (2.13)
2In fact, one can show that J𝐺 = 𝐴 almost surely. The only way for an arrival to cause no jump is if the

arrival has size 2𝐺 . But one can show that (𝐺 | 𝐺 ≠ 0) has a continuous distribution under M/G arrivals, so
this happens with probability 0.
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After some rearranging, we get

E[𝑒𝜃𝐺 ] E[1 − 𝑒−𝜃𝑆 ] ≤ E[𝑒𝜃 |𝐺−𝑆 | − 𝑒𝜃 (𝐺−𝑆)]
= E[(𝑒𝜃 (𝑆−𝐺) − 𝑒𝜃 (𝐺−𝑆))+]
= E[sup

𝑔≥0
(𝑒𝜃 (𝑆−𝑔) − 𝑒𝜃 (𝑔−𝑆))+]

= E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ], (2.14)

which yields the desired formula.
How do we adapt the above argument to work without assuming E[𝑒𝜃𝐺 ] < ∞? The

idea is, for generic𝑚 > 0, to use RCL 1.22 on 𝑒𝜃 min{𝐺,𝑚} instead of 𝑒𝜃𝐺 , use this to obtain a
bound that involves some sort of truncation by𝑚, then take the𝑚 → ∞ limit.

Using RCL 1.22 on 𝑒𝜃 min{𝐺,𝑚}, by the same reasoning as (2.12), we get

0 ≤ E[𝑒𝜃 min{|𝐺−𝑆 |,𝑚} − 𝑒𝜃 min{𝐺,𝑚}] .

The key idea is to notice that if𝐺 ≥ 𝑚, thenmin{𝐺,𝑚} can only jump down. And if𝐺 < 𝑚,
then simplifications like min{𝐺,𝑚} = 𝐺 become possible. We compute

0 ≤ E[𝑒𝜃 min{|𝐺−𝑆 |,𝑚} − 𝑒𝜃 min{𝐺,𝑚}]
≤ E

[ (
𝑒𝜃 min{|𝐺−𝑆 |,𝑚} − 𝑒𝜃 min{𝐺,𝑚}) 𝟙(𝐺 < 𝑚)

]
= E

[ (
−𝑒𝜃𝐺 (1 − 𝑒−𝜃𝑆 ) + (𝑒𝜃 min{𝑆−𝐺,𝑚} − 𝑒𝜃 (𝐺−𝑆))+

)
𝟙(𝐺 < 𝑚)

]
≤ E

[
−𝑒𝜃𝐺 (1 − 𝑒−𝜃𝑆 ) 𝟙(𝐺 < 𝑚) + (𝑒𝜃 (𝑆−𝐺) − 𝑒𝜃 (𝐺−𝑆))+

]
≤ −E[𝑒𝜃𝐺 𝟙(𝐺 < 𝑚)] E[1 − 𝑒−𝜃𝑆 ] + E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ],

where the last step uses the independence of 𝑆 and 𝐺 and the reasoning leading up to
(2.14). Rearranging, we get

E[𝑒𝜃𝐺 𝟙(𝐺 < 𝑚)] ≤ E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]
E[1 − 𝑒−𝜃𝑆 ]

.

The result follows from monotone convergence theorem by taking𝑚 → ∞. □

Corollary 2.23. Consider an M/G/2/dispatch using LWL. For all 𝜃 > 0 such that E[𝑒𝜃𝑆 ] < ∞
and all 𝑥 > 0,

P[𝐺 > 𝑥] ≤ E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]
E[1 − 𝑒−𝜃𝑆 ]

𝑒−𝜃𝑥 , E[(𝐺 − 𝑥)+] ≤ E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]
𝑒𝜃 E[1 − 𝑒−𝜃𝑆 ]

𝑒−𝜃𝑥 ,

so P[𝐺 > 𝑥] ≲ 𝑒−𝜃𝑥 and E[(𝐺 − 𝑥)+] ≲ 𝑒−𝜃𝑥 as 𝑥 → ∞.

Proof. Both bounds follow quickly from Lemma 2.22. The bound on P[𝐺 > 𝑥] is the
standard Chernoff bound that follows from Markov’s inequality, namely

P[𝐺 > 𝑥] = P[𝑒𝜃𝐺 > 𝑒𝜃𝑥 ] ≤ E[𝑒𝜃𝐺 ] 𝑒−𝜃𝑥 .
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From this, a weaker bound on E[(𝐺 − 𝑥)+] follows from the tail integral formula:

E[(𝐺 − 𝑥)+] =
∫ ∞

𝑥

P[𝐺 > 𝑦] d𝑦 ≤ E[𝑒𝜃𝐺 ]
∫ ∞

𝑥

𝑒−𝜃𝑦 d𝑦 =
E[𝑒𝜃𝐺 ]

𝜃
𝑒−𝜃𝑥 .

The desired bound, which is has an extra 1/𝑒 factor, follows from Exercise 2.4. □

State-space collapse under LWL

Notice that the bounds in Corollary 2.23 depend on the job size distribution 𝑆 , but not on
the load 𝜌 . That is, although the distribution of the gap 𝐺 changes as 𝜌 → 1, it remains
uniformly bounded.

Here’s a way to visualize this. We can view 𝐺 as measuring the (1-norm) distance
from the system state (𝑊1,𝑊2) to its projection onto the diagonal 𝔻 B {(𝑥, 𝑥) : 𝑥 ∈ ℝ},
namely (𝑊 /2,𝑊 /2). So we can interpret Corollary 2.23 as saying that the distance between
(𝑊1,𝑊2) and 𝔻 remains stochastically bounded as 𝜌 → 1, even though other aspects of
the system’s state, namely𝑊 , grow unboundedly.

In light of this, we say that LWL induces state-space collapse to the diagonal 𝔻 in heavy
traffic. In general, state-space collapse refers to when a system state’s distance to some
subset of states remains stochastically bounded in some limiting regime, usually while
other distances grow unboundedly in the same limit. Some sources reserve the term for
exponential tail bounds on the distance, which is the case in Corollary 2.23. But we use the
term more broadly. For instance, when 𝑆 is heavy-tailed, we still get a stochastic bound on
the gap 𝐺 under LWL, though its tail can be far from exponential [Exr. 2.10].

2.3.3 Bounding LWL’s mean response time

Theorem 2.24. Consider an M/G/2/dispatch using LWL, and suppose E[𝑒𝜃𝑆 ] < ∞ for some
𝜃 > 0. Then��E𝐴 [𝑇LWL] − E𝐴 [𝑇M/G/1]

�� ≤ 1
𝜃

(
log

1
1 − 𝜌

+ log
E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]
E[1 − 𝑒−𝜃𝑆 ]

)
+ E[𝑆] .

This means as 𝜌 → 1, ��E𝐴 [𝑇LWL] − E𝐴 [𝑇M/G/1]
�� ≲ log

1
1 − 𝜌

,

and thus E𝐴 [𝑇LWL] ≈ E𝐴 [𝑇M/G/1] and 𝐶LWL = 𝐶M/G/1 = E[𝑆e].

Proof. Plugging Corollary 2.23 into Lemma 2.21 yields��E𝐴 [𝑇LWL] − E𝐴 [𝑇M/G/1]
�� ≤ 𝑥 + 𝑚

𝑒𝜃 (1 − 𝜌)𝑒
−𝜃𝑥 + E[𝑆],
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where𝑚 B E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]/E[1 − 𝑒−𝜃𝑆 ]. This is minimized when

𝑥 =
1
𝜃

(
log

𝑚

1 − 𝜌
− 1

)
,

yielding ��E𝐴 [𝑇LWL] − E𝐴 [𝑇M/G/1]
�� ≤ 1

𝜃
log

𝑚

1 − 𝜌
+ E[𝑆] . □

2.3.4 Extending the analysis to partially randomized LWL-𝒒
Policy 2.25. Random is the dispatching policy that dispatches each job uniformly at
random. That is, 𝐽Random is the i.i.d. mark process on 𝐴 where for all 𝑡 ∈ 𝐴,

𝐽Random(𝑡) ∼ Unif{1, . . . , 𝑘}.

Policy 2.26. LWL-𝑞 is the dispatching policy that for each arrival follows LWL with
probability 𝑞, following Random otherwise. That is, at arrival times 𝑡 ∈ 𝐴,

𝐽LWL-𝑞 (𝑡) =
{
𝐽LWL(𝑡) with probability 𝑞
𝐽Random(𝑡) with probability 1 − 𝑞.

Notation 2.27. We have introduced yet another mild abuse of notation in Policy 2.26.
• In Definition 2.3(a) and Notation 2.5, we write 𝐽 or 𝐽𝜋 for the actual dispatch index
in an M/G/𝑘/dispatch under a generic policy 𝜋 .

• But in Policy 2.26, we write 𝐽LWL and 𝐽Random for what the dispatch index would be
under LWL and Random, respectively, even though the actual policy in use is LWL-𝑞.

This notation should be understood in the obvious way. For example, given some other
dispatching policy, which induces some queue work processes𝑊1, . . . ,𝑊𝑘 , we let 𝐽LWL(𝑡) B
argmin𝑖𝑊𝑖 (𝑡), even if some policy other than LWL is in use.

An alternative would be to give some other name to 𝑡 ↦→ argmin𝑖𝑊𝑖 (𝑡), then define
LWL to be the policy under which 𝐽 is that process. Instead, we simply ensure it is clear
from context what policy is actually in use whenever notation like 𝐽LWL appears.

Under LWL-𝑞, by PASTA 1.27 and (2.1) we have

E𝐴 [𝑇LWL-𝑞] = E[𝑊 ] − 𝑞 E[𝐺] + 2E[𝑆] .

This is because with probability 𝑞, we follow LWL, contributing −𝐺 to waiting time; and
otherwise, we follow Random, contributing 0 to waiting time in expectation. By the same
reasoning as Lemma 2.21, we obtain��E𝐴 [𝑇LWL-𝑞] − E𝐴 [𝑇M/G/1]

�� ≤ 𝑥 + E[(𝐺 − 𝑥)+]
1 − 𝜌

+ E[𝑆] . (2.15)

So understanding LWL-𝑞 boils down to understanding𝐺 . We’ll soon see that the bounds we
get on𝐺 get larger the smaller 𝑞 is. Our is to characterize how small 𝑞 can be as a function
of the load 𝜌 in the heavy traffic limit while still maintaining E𝐴 [𝑇LWL-𝑞] ≈ E𝐴 [𝑇M/G/1].
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Remark 2.28. Equation (2.15) leaves open the possibility that LWL-𝑞’s mean response time
could benefit from having a larger gap. However, Exercise 2.14 implies E𝐴 [𝑇𝜋 ] ⪆ E𝐴 [𝑇M/G/1]
for a class of policies 𝜋 that includes LWL-𝑞.

We can also see E𝐴 [𝑇LWL-𝑞] ⪆ E𝐴 [𝑇M/G/1] directly. The lower bound

E𝐴 [𝑇LWL-𝑞] = E[𝑊 ] − 𝑞 E[𝐺] + 2E[𝑆] ≥ E[𝑊 ] − 𝑞 E[𝑊 ] ≥ (1 − 𝑞) E[𝑊M/G/1]

shows that we don’t benefit from a large gap if 𝑞 is small, and in particular not if we take
𝑞 → 0 as 𝜌 → 1. And we’ll soon see that if 𝑞 remains constant as 𝜌 → 1, then E[𝐺]
remains bounded by a constant. Either way, we get E𝐴 [𝑇LWL-𝑞] ⪆ E[𝑊M/G/1] ≈ E𝐴 [𝑇M/G/1].

Bounding LWL-𝒒’s work gap and mean response time

Notation 2.29. We say that a statement holds for 𝑥 sufficiently close to 𝑦 if there exists an
interval of nonzero length 𝑍 ∋ 𝑦 such that the statement holds for all 𝑥 ∈ 𝑍 \ {𝑦}. Whether
𝑍 should contain points below, above, or on both sides of 𝑦 will be clear from context.
Sufficiently small means sufficiently close to 0, and sufficiently large means sufficiently
close to ∞.

Lemma 2.30. Consider an M/G/2/dispatch using LWL-𝑞. Suppose there exists 𝜂 > 0 such
that E[𝑒𝜂𝑆 ] < ∞, and let

𝑟 (𝜃 ) B E[𝑒𝜃𝑆 + 𝑒−𝜃𝑆 − 2]
E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ]

=
E[𝑒𝜃𝑆e − 𝑒−𝜃𝑆e]
E[𝑒𝜃𝑆e + 𝑒−𝜃𝑆e]

.

(a) For all 𝜃 ∈ [0, 𝜂] such that 𝑟 (𝜃 ) < 𝑞,

E[𝑒𝜃𝐺 ] ≤ 1 + 𝑞
𝑞 − 𝑟 (𝜃 ) .

(b) For all 𝜃 ∈ [0, 𝜂],
𝑟 (𝜃 ) ≤ E[𝑒𝜃𝑆e − 1] .

In particular, for sufficiently small 𝜃,

𝑟 (𝜃 ) ≤ 2𝜃 E[𝑆e] .

(c) For sufficiently small 𝑞 and all 𝑥 ≥ 0,

E
[
exp

(
𝑞

4E[𝑆e]
𝐺

)]
≤ 4
𝑞
, E[(𝐺 − 𝑥)+] ≤ 16E[𝑆e]

𝑒𝑞2
exp

(
− 𝑞

4E[𝑆e]
𝑥

)
.

Specifically, there exists 𝑞′ > 0, which depends only on 𝑆, such that the bounds hold
for 𝑞 ∈ (0, 𝑞′]; and for 𝑞 ∈ (𝑞′, 1], the bounds hold with 𝑞 replaced by 𝑞′.
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Proof.

(a) The approach is very similar to the proof of Lemma 2.22, so we explain just the
key differences. Applying RCL 1.22 to 𝑒𝜃𝐺 and following the reasoning from the proof of
Lemma 2.22

0 = 𝜃 E[𝑒𝜃𝐺 · D𝐺] + 𝜆 E𝐴
[
𝑒𝐺+𝑆 𝟙(𝐽 = argmax

𝑖

𝑊𝑖) + 𝑒𝜃 |𝐺−𝑆 | 𝟙(𝐽 = argmin
𝑖

𝑊𝑖) − 𝑒𝜃𝐺
]

≤ 𝜆 E
[
1 − 𝑞

2
𝑒𝜃 (𝐺+𝑆) + 1 + 𝑞

2
𝑒𝜃 |𝐺−𝑆 | − 𝑒𝜃𝐺

]
,

where the second step uses the fact that the event 𝐽 = argmin𝑖𝑊𝑖 is independent of 𝐺
and 𝑆 . Bounding

𝑒𝜃 |𝐺−𝑆 | = 𝑒𝜃 (𝐺−𝑆) + (𝑒𝜃 (𝑆−𝐺) − 𝑒𝜃 (𝐺−𝑆))+ ≤ 𝑒𝜃 (𝐺−𝑆) + 𝑒𝜃𝑆 − 𝑒−𝜃𝑆

and using the independence of 𝐺 and 𝑆 , this becomes

E[𝑒𝜃𝐺 ] E[(1 − 𝑞)𝑒𝜃𝑆 − (1 + 𝑞)𝑒−𝜃𝑆 − 2] ≤ E[𝑒𝜃𝑆 − 𝑒−𝜃𝑆 ] .

Provided E[(1 − 𝑞)𝑒𝜃𝑆 − (1 + 𝑞)𝑒−𝜃𝑆 − 2] > 0, or equivalently 𝑟 (𝜃 ) < 𝑞, this rearranges
to the desired bound in terms of 𝑟 (𝜃 ). The two expressions given for 𝑟 (𝜃 ) are equal by
Theorem 1.32(b).

Above, we implicitly assumed that E[𝑒𝜃𝐺 ] < ∞ when applying RCL 1.22 to 𝑒𝜃𝐺 . But,
as in the proof of Lemma 2.22, essentially the same computation with 𝐺 replaced by
min{𝐺,𝑚} gives a proof that doesn’t rely on this assumption.

(b) The first bound on 𝑟 (𝜃 ) follows by Jensen’s inequality, specifically E[𝑒−𝜃𝑆e] ≥
1/E[𝑒𝜃𝑆e], and the fact that 𝑥−1/𝑥

𝑥+1/𝑥 ≤ 𝑥 − 1 for all 𝑥 ≥ 1. The second bound follows by
convexity of 𝜃 ↦→ E[𝑒𝜃𝑆e].

(c) The first bound follows by plugging in 𝜃 =
𝑞

4E[𝑆e] , and the second follows from the
first by Exercise 2.4. The last statement about substituting in sufficiently small 𝑞′ if 𝑞 isn’t
small enough holds because the bound in (a) is monotonic in 𝑞. □

Theorem 2.31. Consider an M/G/2/dispatch using LWL-𝑞, and suppose E[𝑒𝜃𝑆 ] < ∞ for some
𝜃 > 0.
(a) For sufficiently small 𝑞,��E𝐴 [𝑇LWL-𝑞] − E𝐴 [𝑇M/G/1]

�� ≤ 4
𝑞

(
log

1
1 − 𝜌

+ log
4
𝑞

)
.

(b) If 𝑞 remains fixed as 𝜌 → 1, or more generally if 𝑞 ∼ 1, then��E𝐴 [𝑇LWL-𝑞] − E𝐴 [𝑇M/G/1]
�� ≲ log

1
1 − 𝜌

.

and thus E𝐴 [𝑇LWL-𝑞] ≈ E𝐴 [𝑇M/G/1] and 𝐶LWL-𝑞 = 𝐶M/G/1 = E[𝑆e].
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(c) If we have, as 𝜌 → 1,
𝑞 ≫ (1 − 𝜌) log 1

1 − 𝜌
,

then E𝐴 [𝑇LWL-𝑞] ≈ E𝐴 [𝑇M/G/1] and 𝐶LWL-𝑞 = 𝐶M/G/1 = E[𝑆e].

Proof. Combining (2.15) and Lemma 2.30(c) gives a bound that is minimized when

𝑥 =
4E[𝑆e]

𝑞

(
log

4
𝑞(1 − 𝜌) − 1

)
,

yielding (a). This immediately implies (b), and (c) follows because E𝐴 [𝑇M/G/1] ∼ 1
1−𝜌 . □

2.4 Lower bound on optimal dispatching
Coming soon!

2.5 Designing a near-optimal dispatching policy
Coming soon!

Policy 2.32. Controlled Asymmetry Reduces Delay (CARD) is a pretty cool dispatching
policy. More coming soon!

2.6 Exercises

2.6.1 Basic properties of LWL
Exercise 2.1. Prove that for an arbitrary arrival sequence of jobs, using LWL dispatching
in a 𝑘-server system is equivalent to using a first-come first-served central queue. Hint:
When a job arrives to a central-server system, can you tell from the system state which
server will eventually serve it?

Exercise 2.2. Consider a GD/G/2/dispatch using LWL, and recall the gap is𝐺 = |𝑊1 −𝑊2 |
[Def. 2.3(d)]. Let 𝐺 be the process on [0,∞) that satisfies

𝐺 (0) = 𝐺 (0), (2.16)
D𝐺 (𝑡) = 0, (2.17)
𝐺 (𝑡+) = max

{
|𝐺 (𝑡−) − 𝑆 (𝑡) |, 𝑆 (𝑡)

}
for 𝑡 ∈ 𝐴, (2.18)

where 𝑆 = (𝑡 ↦→ 𝑆 (𝑡)) is the arrival process and 𝐴 is its set of arrival times [Def. 1.36].
(a) Show 𝐺 (𝑡) ≥ |𝐺 (𝑡) | for all 𝑡 ≥ 0.
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(b) What can you conclude about 𝐺 when the size distribution is bounded?
(c) Challenge! Define a version of 𝐺 that is jointly stationary with 𝑆 . Your definition

should still satisfy (2.17) and (2.18), but it need not satisfy (2.16). Hint: It’s not right to
start with 𝐺 (0) = 0, because 𝐺 (0) > 0 almost surely. But you would still eventually
get to some time 𝑡 when 𝐺 (𝑡) ≥ 𝐺 (𝑡). What if instead of 𝐺 (0) = 0, you started with
𝐺 (−100) = 0? It’s okay if your definition only works almost surely.

The motivation for this problem is that one thing that makes 𝐺 so difficult to analyze
exactly is that it is affected by when the servers are idle, which is intractable to capture
exactly. The idea is that 𝐺 is an upper bound on 𝐺 that is not affected by idleness.

2.6.2 Filling in details

Exercise 2.3. Let 𝐼 be the idleness process of a work process that has M/G arrivals. Show

E[𝐼 ] = 1 − 𝜌.

Exercise 2.4. Let 𝑉 be a random variable. Show that for any 𝜃 > 0,

E[(𝑉 − 𝑥)+] ≤ E[𝑒𝜃𝑉 ]
𝑒𝜃

𝑒−𝜃𝑥 .

Hint: The usual Chernoff bound uses the fact that 𝟙(𝑉 > 𝑥) ≤ 𝑒𝑉−𝑥 . What similar fact can
you use here?

Exercise 2.5. Complete the computation of E𝐴 [𝑇SITA-E], obtaining (2.6) and (2.7).

Exercise 2.6. Consider an M/G/2/dispatch using SITA-O with a continuous size distribu-
tion 𝑆 [Asm. 2.6(c)]. Let 𝑟 , which depends on the load 𝜌 , be the optimizing threshold, and
recall 𝑞 is the load median [Def. 2.14(b)]. We must have 𝑟 → 𝑞 as 𝜌 → 1, or else we would
make one of the queues unstable [Asm. 1.18].
(a) Show

P[𝑆 < 𝑟 ] ≈ P[𝑆 < 𝑞],
E[𝑆 𝟙(𝑆 < 𝑟 )] ≈ E[𝑆 𝟙(𝑆 < 𝑞)],
E[𝑆2 𝟙(𝑆 < 𝑟 )] ≈ E[𝑆2 𝟙(𝑆 < 𝑞)]

(b) Use (a) to express 𝐶SITA-O as the solution to a single-variable optimization problem.
Hint: It might seem like (a) implies there are no choices to be made. However, there
is one part of the mean response time formula where simply substituting a limiting
value from (a) is not valid! This is where the decision variable comes from.

(c) Compute 𝐶SITA-O.
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2.6.3 Dispatching as altering the arrival process
Exercise 2.7. The next few exercises ask you to think about dispatching systems from the
perspective of a single queue. From one queue’s perspective, being in a dispatching system
with M/G arrivals looks like being a single-server queue with a more complicated arrival
process, such as G/G arrivals. This means the Kingman bound (1.12) can give us insight
into dispatching systems. To that end, in this problem, you’ll show the Kingman bound for
the G/G/1 is actually tight in heavy traffic, namely (2.19) below. That said, free to skip this
problem and take (2.19) as given for now.

Consider the heavy-traffic G/G/1 with E[𝑅2] < ∞ and E[𝑆2] < ∞. More precisely,
consider the 𝜌 → 1 limit with fixed size distribution 𝑆 and linearly scaled interarrival
time distribution 𝑅, meaning there exists a fixed distribution 𝑅′ such that 𝑅 B 𝑅′/𝜌 and
E[𝑅′] = E[𝑆]. Your task is to show

E𝐴 [𝑊 ] ≈ Var[𝑅 − 𝑆]
2E[𝑅 − 𝑆] ≈

1
2 (𝑐

2
𝑅
+ 𝑐2

𝑆
)

1 − 𝜌
E[𝑆] . (2.19)

(a) Show E𝐴
[ (
(𝑅 − 𝑆 −𝑊 )+

)2] , the intractable term from the G/G/1 E𝐴 [𝑊 ] formula
(1.9), can be expressed as

E𝐴
[ (
(𝑅 − 𝑆 −𝑊 )+

)2]
= 2E[𝐼𝐴1],

where 𝐼 = 𝟙(𝑊 = 0) is the idleness process of the G/G/1 work process𝑊 . Hint: Use
PIF 1.25, and recall what variables have distributions 𝑅 and 𝑆 under P𝐴 [·].

(b) Show (2.19) by showing lim𝜌→1 E[𝐼𝐴1] = 0. If you like, you may assume an extra
condition on 𝑅, but the result can be shown without such a condition. Hint: For
example, if you assume E[𝑅3] < ∞, then there is a solution using Cauchy-Schwarz.
More generally, use the fact that 𝑅 B 𝑅′/𝜌 is uniformly integrable as a function of 𝜌 .

(c) Show E[𝑊 ] ≈ E𝐴 [𝑊 ] in heavy traffic.

Exercise 2.8. Consider an M/G/𝑘/dispatch using Round Robin (RR), which dispatches jobs
by cycling through servers in a fixed order: 1, 2, . . . , 𝑘, 1, 2, . . . . Formally,

𝐽𝑖+1 ≡ 𝐽𝑖 + 1 mod 𝑘.

Give upper bounds on the waiting time 𝑘 E𝐴 [𝑊𝐽 ] for the following systems.
(a) The M/G/2/dispatch using RR. Hint: This is secretly a G/G/1 question.
(b) The M/G/𝑘/dispatch using RR. Hint: This is still secretly a G/G/1 question.
(c) Challenge! The M/G/𝑘/dispatch using a variant of RR where within each “cycle” of

sending one job to each server, the order of the servers is freshly sampled uniformly
at random. Hint: This is secretly a GD/G/1 question, not simply a G/G/1 question!
It’s related to Exercise 1.22.

Throughout, consider how your answers relate to the “work ≈ intensity × variability”
intuition from Section 1.4.
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Exercise 2.9. Consider an M/G/𝑘/dispatch using LWL. Each queue 𝑖 work process𝑊𝑖 is a
speed 1/𝑘 standard work process. In heavy traffic, by symmetry and (2.3),

E[𝑊𝑖] ≈
1
𝑘
E[𝑊LWL] ≈

1
𝑘
E[𝑊M/G/1] .

Compare this to the Kingman bound on E[𝑊G/G/1] in (1.12), using a G/G/1 with the same
size distribution 𝑆 and load 𝜌 . Given the fact that the Kingman bound is tight in heavy traffic
[Exr. 2.7], what would 𝑐2

𝑅
need to be to have E[𝑊G/G/1] ≈ E[𝑊𝑖]? Hint: The hypothetical

word “would” is key.

2.6.4 Generalizations

Exercise 2.10. Consider an M/G/2/dispatch, and suppose E[𝑆2] < ∞. Do not assume other
moment or transform bounds on 𝑆 . (Well, aside from 𝑆 > 0, hence E[𝑆] > 0.)
(a) Show E[𝐺] ≤ E[𝑆e].
(b) Show

P[𝐺 > 𝑥 + 𝑦] ≤ E[(𝑆 − 𝑦)+]
E[min{𝑆, 𝑥}] .

Hint: Apply RCL 1.22 to (𝐺 − 𝑦)+. At some point, you’ll have a term that you wish
was 𝑆 , but it might be smaller. Under what conditions is the term at least min{𝑆, 𝑥}?

(c) Using your answer to (b), show

E[(𝐺 − 𝑥)+] ≤ E[((𝑆 − 𝑥)+)2]
E[min{𝑆, 𝑥}] .

Hint: Integrals and expectations were made to be swapped. Thanks, Tonelli!
(d) Show E𝐴 [𝑇LWL] ≈ E𝐴 [𝑇M/G/1] as 𝜌 → 1. Hint: Given that E[𝑆2] < ∞, how must

E[(𝐺 − 𝑥)+] behave as 𝑥 → ∞?

Exercise 2.11. Consider an M/G/𝑘/dispatch for general 𝑘 ≥ 2.
(a) Suppose 𝑆 is bounded, meaning there is a maximum size𝑚 such that P[𝑆 ≤ 𝑚] = 1.

Find universal constants 𝑎, 𝑏 > 0, meaning not depending on 𝜌 or 𝑆 , such that��E𝐴 [𝑇LWL] − E𝐴 [𝑇M/G/1]
�� ≤ (𝑘 − 1) (𝑎 E[𝑆] + 𝑏𝑚).

(b) Challenge! Suppose E[𝑒𝜃𝑆 ] < ∞ for some 𝜃 > 0. Show E𝐴 [𝑇LWL] ≈ E𝐴 [𝑇M/G/1] as
𝜌 → 1. Hint: The approach from Section 2.3 still works, but you’ll need to think
about more than one gap process. Start by thinking about 𝐺𝑖 𝑗 = |𝑊𝑖 −𝑊𝑗 |. Don’t
worry about proving the tightest possible bounds on terms that are ≲ 1

1−𝜌 .

Exercise 2.12. Consider dispatching in the heavy-trafficM/G/𝑘/dispatch. Try to answer the
following questions without doing a formal analysis. Instead, just give heuristic arguments.
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(a) What do you think 𝐶∗ B inf𝜋 𝐶𝜋 is? Hint: What do you think the ideal system state
(𝑊1, . . . ,𝑊𝑘) is? What’s the largest the the average size of jobs in the system can?

(b) How might you adapt CARD to get a policy that achieves 𝐶CARD = 𝐶∗? What size
classes do you need, and how do you dispatch each size class? How do you think
you should set the size thresholds as functions of 𝑘 and 𝜌? Hint: There are ways to
generalize CARD to the M/G/𝑘/dispatch that include about 2𝑘 size classes. But there
are also simpler ways that use just three classes, though the thresholds depend on 𝑘 .

Exercise 2.13. Open-ended. . . . Consider dispatching in the heavy-traffic G/G/2/dispatch,
G/G/𝑘/dispatch, or GD/G/𝑘/dispatch. (See Exercise 2.7 for a precise definition of “heavy
traffic” for G/G arrivals.)
(a) Can you prove anything about 𝐶SITA-E?
(b) Can you prove anything about 𝐶LWL?
(c) Open problem!? Can you prove anything about𝐶CARD and𝐶∗? Can you find conditions

such that 𝐶CARD = 𝐶∗?
Throughout, it’s okay to make additional assumptions about the size and interarrival time
distributions. You may use the fact that the Kingman bound (1.12) is tight in heavy traffic
[Exr. 2.7].

2.6.5 More closed-loop dispatching policies

Exercise 2.14. Consider an M/G/2/dispatch using an arbitrary size-oblivious dispatching
policy, meaning one where the dispatch index 𝐽 is (conditionally) independent of the
arrival’s size 𝑆 (given the system state (𝑊1,𝑊2)). You will prove that under any size-
oblivious policy, we have E𝐴 [𝑇 ] ⪆ E𝐴 [𝑇M/G/1] in heavy traffic.

For arrival times 𝑡 ∈ 𝐴, let

𝐵(𝑡) B
{−1 if 𝐽 (𝑡) = argmin𝑖𝑊𝑖

+1 if 𝐽 (𝑡) = argmax𝑖𝑊𝑖,

so under P𝐴 [·], the work gap jumps from 𝐺 (−) = 𝐺 to 𝐺 (+) = |𝐺 + 𝐵𝑆 |.
(a) Write an expression for E𝐴 [𝑇 ] in terms of𝑊 , 𝑆 , and 𝐵𝐺 .
(b) Give a load-independent lower bound on E𝐴 [𝐵𝐺]. Hint: Try applying RCL 1.22 to

some of the usual suspects, e.g. 𝐺 , 𝐺2, and 𝑒𝜃𝐺 . You’ll need to use the fact that 𝑆 is
independent of 𝐵 and 𝐺 at arrival times.

(c) Show E𝐴 [𝑇 ] ⪆ E𝐴 [𝑇M/G/1] by giving a lower bound on E𝐴 [𝑇 ]. One valid bound is

E𝐴 [𝑇 ] ≥ E𝐴 [𝑇M/G/1] + E[𝑆] − E[𝑆e],

but it’s okay if you show a different bound, as long as it is ≈ E𝐴 [𝑇M/G/1].
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Exercise 2.15. Consider anM/G/2/dispatch using a dispatching policy 𝜋 with the following
property: whenever a job arrives, the (conditional) probability it is sent to the server with
less work is at least 1/2 (given the system state (𝑊1,𝑊2) and the arrival’s size 𝑆). That is,
we (almost surely) have

P𝐴
[
𝐽𝜋 = argmin

𝑖

𝑊𝑖

��𝑊1,𝑊2, 𝑆
]
≥ 1

2
. (2.20)

You will show that this leads to at most as much work as under the Random policy
[Pol. 2.25], for which (2.20) holds with equality. Below, quantities refer to policy 𝜋 unless
otherwise stated.
(a) Explain why𝑊Random has the same distribution as (𝑊M/G/1)1 + (𝑊M/G/1)2, a sum of

two i.i.d. variables with the same distribution as𝑊M/G/1. Hint: One strategy is to
think about the splitting property of Poisson processes.

(b) Show E[𝑊 ] = E[𝑊1] +E[𝑊2] ≤ E[𝑊Random] = 2 E[𝑊M/G/1]. Hint: Try using RCL 1.22
on𝑊 2

1 +𝑊 2
2 instead of𝑊 2 = (𝑊1 +𝑊2)2. When you encounter difficult terms to do

with dispatching decisions, bound them using (2.20). You should get a bound for 𝜋
and an exact result for Random.

(c) Show E[𝑊 2
1 ] + E[𝑊 2

2 ] ≤ 2 E[𝑊 2
M/G/1]. Hint: What should you try using RCL 1.22 on?

(d) Show E[𝑊 2] ≲ 1
(1−𝜌)2 . Hint: This boils down to showing E[𝑊 2

M/G/1] ≲
1

(1−𝜌)2 . You can
use RCL 1.22 on some function of𝑊M/G/1, or you can look at the second derivative
of the transform E[𝑒𝜃𝑊M/G/1] [Exr. 1.12].

Exercise 2.16. Join Below Threshold 𝑧 (JBT-𝑧) is the dispatching policy that dispatches as
follows whenever a job arrives.

• If any queues have less than 𝑧 work, send the arrival to a uniformly random queue
with less than 𝑧 work.

• Otherwise, send the arrival to a uniformly random queue.
In this problem, you’ll investigate the question: how does 𝑧 need to scale as a function of
load 𝜌 for JBT-𝑧 to achieve E𝐴 [𝑇JBT-𝑧] ≈ E𝐴 [𝑇M/G/1] as 𝜌 → 1? Thanks to Exercise 2.14, we
can focus just on determining when E𝐴 [𝑇JBT-𝑧] ⪅ E𝐴 [𝑇M/G/1].

Throughout, we consider the M/G/2/dispatch at sufficiently high load. You may assume
a constant lower bound on 𝜌 , e.g. 𝜌 ≥ 2/3. We also assume the size distribution is light-
tailed, specifically E[𝑒𝜃𝑆 ] < ∞ for some 𝜃 > 0.

When analyzing LWL, the key was understanding and bounding the work gap 𝐺 . This
is because 𝐺 is the quantity that LWL keeps small by closed-loop control. However, under
JBT-𝑧, the work gap could be very large. What does JBT-𝑧 control?

We can think of JBT-𝑧 as trying to keep both queues’ work amounts above 𝑧. This is
because when𝑊1 < 𝑧 ≤𝑊2, JBT-𝑧 sends all arrivals to queue 1, increasing𝑊1 at rate 𝜌 .
This is faster than the rate at which decreases𝑊1, namely 1/2 (or 0 if𝑊1 = 0).

It thus seems like JBT-𝑧 might keep the quantity (𝑧 −min𝑖𝑊𝑖)+ small. However, JBT-𝑧
can’t generally prevent both queues from occasionally going below 𝑧 at the same time.
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Specifically, when𝑊1,𝑊2 < 𝑧, JBT-𝑧 splits arrivals evenly between the queues, so neither
queue’s work process increases on average (except when at zero).

It turns out that the key quantity that JBT-𝑧 controls is

𝑉 B min
{(
𝑧 −min

𝑖
𝑊𝑖

)+
, (𝐺 − 𝑧)+

}
.

Put another way, 𝑉 is the taxicab distance between the system state (𝑊1,𝑊2) and the
region

R B
{
(𝑥,𝑦) ∈ [0,∞)2 : min{𝑥,𝑦} ≥ 𝑧 or |𝑥 − 𝑦 | ≤ 𝑧

}
,

which is illustrated in Figure 2.3. (There are other possible definitions that could work for
𝑉 and R, but these ones make the computations simpler.)

How does understanding 𝑉 help us bound mean response time? As usual, bounding
mean response time boils down to bounding mean work E[𝑊 ], which in turn boils down
to bounding E[𝐼𝑊 ]. And 𝐼 is related to the 𝑉 , because we can see from Figure 2.3 that
whenever there’s enough work in the system, a server can be idle only if the state is at
least distance 𝑧 from R, i.e. only if 𝑉 = 𝑧. So we’ll want to bound P[𝑉 = 𝑧], for which
bounding E[𝑒𝜃𝑉 ] and using a Chernoff bound suffices.

Analyze JBT-𝑧 in the M/G/2/dispatch by following the steps below. You may assume
all the expectations related to 𝑉 and𝑊 you encounter are finite. (As usual, a truncation
argument can be used to remove this assumption [Rmk. 1.24, Lem. 2.22].)
(a) Show

E𝐴 [𝑇JBT-𝑧] ≤ E[𝑊 ] + 2𝑧 + 2E[𝑆] .

Hint: This is a loose bound, so don’t overthink it. What would the response time be
for a job that was dispatched randomly? What would the response time be for a job
that was dispatched to a queue with less than 𝑧 work?

(b) Give an upper bound on E[𝑊 ] in terms of E[𝑊M/G/1], 𝑧, and E[𝑊 𝟙(𝑉 = 𝑧)]. Hint:
Use a bound like𝑊 ≤ 𝑐𝑧 + (𝑊 − 𝑐𝑧)+ for some constant 𝑐 . Use Figure 2.3 to figure
out a good value for 𝑐 .

(c) Give an upper bound on E[𝑊 𝟙(𝑉 = 𝑧)] in terms of E[𝑊𝑒𝜃𝑉 𝟙(𝑉 > 0)].
(d) Show that for all 𝜃 such that the right-hand side has finite numerator and positive

denominator,

E[𝑒𝜃𝑉 𝟙(𝑉 > 0)] ≤ E[𝑒𝜃𝑆e]
E[𝑒−𝜃𝑆e] − 1

2𝜌
.

You may assume that there exists a constant value of 𝜃 , which depends only on 𝑆 ,
such that the above holds for all 𝜌 ≥ 2/3. Hint: Apply RCL 1.22 to 𝑒𝜃𝑉 . . . but you
knew that already. Notice that the ways that𝑉 can jump differ depending on whether
𝑉 = 0 or𝑉 > 0. To get a feel for this, draw pictures of possible ways the system state
can jump relative to R [Fig. 2.3], which is likely easier than writing out the formula
for 𝑉 . In order to isolate 𝑒𝜃𝑉 , you’ll need to use tricks similar to how (2.13) adds and
subtracts 𝑒𝜃 (𝐺−𝑆) . Finally, remember 𝜆 E[𝑒𝜃𝑆 − 1] = 𝜌𝜃 E[𝑒𝜃𝑆e] [Thm. 1.32(b)].
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𝑧

2𝑧

2𝑧

𝑧

𝑊1

𝑊2

R

Figure 2.3. Region R of the state space that JBT-𝑧 pushes the system state towards. The process
𝑉 = min{(𝑧 −min𝑖𝑊𝑖)+, (𝐺 − 𝑧)+} measures the taxicab distance from the system state (𝑊1,𝑊2)
to the region R.

(e) Verify that JBT-𝑧 satisfies the precondition of Exercise 2.15, which is (roughly) that
every job has at least probability 1/2 of being sent to the queue with less work.

(f) Using Exercise 2.15(d) and the Cauchy-Schwarz inequality, show that there exists a
constant 𝑐 , which depends only on 𝑆 , such that if we set 𝑧 satisfying

𝑐

𝜃
log

1
1 − 𝜌

≤ 𝑧 ≪ 1
1 − 𝜌

as 𝜌 → 1, then E𝐴 [𝑇JBT-𝑧] ≈ E[𝑊 ] ≈ E[𝑊M/G/1].
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Selected solutions

A.1 Solutions to exercises from Chapter 1
Exercise 1.1.
(a) Show that every rational 𝑢 > 0 yields the same value in Definition 1.20. If you prefer,

you can restrict to dyadic rationals, i.e. 𝑢 = 𝑛/2𝑘 for 𝑛, 𝑘 ∈ ℤ. Hint: Use linearity of
expectation and stationarity.

(b) Assuming 𝑋 ≥ 0, extend your argument to irrational 𝑢 > 0. (The conclusion for
general 𝑋 then follows by decomposing 𝑋 = 𝑋 + − 𝑋−.)

Solution.

(a) We prove this for rationals. Let

𝑚𝑡 (𝑢) = E

[ ∑︁
𝑎∈𝐴∩(𝑡,𝑡+𝑢]

𝑋 (𝑎)
]
.

Stationarity tells us that𝑚0(𝑢) =𝑚𝑡 (𝑢) for all 𝑡 and all 𝑢 ≥ 0. Our goal is to show that𝑚0
is a linear function when restricted to rationals. Even without the restriction, it is additive
by linearity of expectation and stationarity:

𝑚0(𝑢 + 𝑣) =𝑚0(𝑢) +𝑚𝑢 (𝑣) =𝑚0(𝑢) +𝑚0(𝑣).

So it remains only to show that𝑚0(𝑢) = 𝑢 ·𝑚0(1). This holds if 𝑢 = 1/𝑛 for 𝑛 ∈ ℕ because

𝑚0(𝑢)
𝑢

= 𝑛 ·𝑚0(𝑢) =
𝑛∑︁
𝑖=0

𝑚𝑖𝑢 (𝑢) =𝑚0(1),

where the last step uses linearity of expectation. Using this and additivity proves the result
for all rationals.

(b) The short version is that𝑚0 is monotone when 𝑋 ≥ 0, which implies linearity over
reals from linearity over rationals. To spell it out, let 𝑢 − 𝛿 < 𝑢 < 𝑢 + 𝜀 be such that 𝑢 − 𝛿

and 𝑢 + 𝜀 are rational. We can choose 𝛿 and 𝜀 arbitrarily small. Then (a) implies

𝑚0(1) =
𝑚0(𝑢 − 𝛿)
𝑢 − 𝛿

=
𝑚0(𝑢 + 𝜀)
𝑢 + 𝜀

.

By monotonicity of𝑚0,

(𝑢 − 𝛿) ·𝑚0(1) ≤ 𝑚0(𝑢) ≤ (𝑢 + 𝜀) ·𝑚0(1),

so the result follows by letting 𝛿, 𝜀 → 0.
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Exercise 1.2. Let 𝐴 and 𝐵 be jointly stationary point processes that are (almost surely)
disjoint.
(a) Show

𝜆𝐴∪𝐵 = 𝜆𝐴 + 𝜆𝐵 .

(b) Show that for any process 𝑋 that is jointly stationary with 𝐴 and 𝐵,

𝜆𝐴∪𝐵 E𝐴∪𝐵 [𝑋 ] = 𝜆𝐴 E𝐴 [𝑋 ] + 𝜆𝐵 E𝐵 [𝑋 ] .

This result is especially handy when applying RCL 1.22 to unions of point processes.

Solution.

(a) Definition 1.10 tells us that for a stationary point process 𝐶 ,

𝜆𝐶 E[#(𝐶 ∩ (0, 1])] .

Because 𝐴 and 𝐵 are disjoint,

#((𝐴 ∪ 𝐵) ∩ (0, 1]) = #(𝐴 ∩ (0, 1]) + #(𝐴 ∩ (0, 1]),

so by linearity of expectation,

𝜆𝐴∪𝐵 = E[#((𝐴 ∪ 𝐵) ∩ (0, 1])] = E[#(𝐴 ∩ (0, 1]) + #(𝐴 ∩ (0, 1])] = 𝜆𝐴 + 𝜆𝐵 .

(b) Definition 1.20 tells us that for a point process 𝐶 jointly stationary with 𝑋 ,

𝜆𝐶 E𝐶 [𝑋 ] = E

[ ∑︁
𝑡∈𝐶∩(0,1]

𝑋 (𝑡)
]
.

Because 𝐴 and 𝐵 are disjoint,∑︁
𝑡∈(𝐴∪𝐵)∩(0,1]

𝑋 (𝑡) =
∑︁

𝑡∈𝐴∩(0,1]
𝑋 (𝑡) +

∑︁
𝑡∈𝐵∩(0,1]

𝑋 (𝑡),

so by linearity of expectation,

𝜆𝐴∪𝐵 E𝐴∪𝐵 [𝑋 ] = E

[ ∑︁
𝑡∈(𝐴∪𝐵)∩(0,1]

𝑋 (𝑡)
]

= E

[ ∑︁
𝑡∈𝐴∩(0,1]

𝑋 (𝑡) +
∑︁

𝑡∈𝐵∩(0,1]
𝑋 (𝑡)

]
= 𝜆𝐴 E𝐴 [𝑋 ] + 𝜆𝐵 E𝐵 [𝑋 ] .

The intuition here is that 𝜆𝐶 E𝐶 [𝑋 ] is in some sense an average accumulation rate. Imagine
we keep track of a value, then add 𝑋 (𝑡) to it at each time 𝑡 ∈ 𝐶 . Then 𝜆𝐶 E𝐶 [𝑋 ] is the
average rate at which the value changes over time. This exercise shows that average rates
of disjoint accumulations are additive.
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Exercise 1.3. Let 𝐴 be a Poisson process. Explain why for any bounded function 𝑓 ,

E[𝑓 (𝐴 ∪ {𝑡})] = E𝑡𝐴 [𝑓 (𝐴)] .

That is, explain why the distribution of 𝐴 ∪ {𝑡} under P[·] is the same as the distribution
of 𝐴 under P𝑡

𝐴
[·]. Hint: How would you generate a sample of the entire Poisson process 𝐴

“starting at” time 𝑡?

Solution. By Definition 1.14, both distributions are induced by the following simulation.
• Sample 𝑅𝑖 ∼ Exp(𝜆) freshly for all 𝑖 ∈ ℤ.
• Return the set

{𝑡} ∪
{
𝑡 +

𝑖∑︁
𝑗=1

𝑅 𝑗 : 𝑖 ∈ ℕ
}
∪
{
𝑡 −

𝑖∑︁
𝑗=0

𝑅− 𝑗 : 𝑖 ∈ ℕ
}
.
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Exercise 1.4. Let 𝐴 be a stationary point process. Show

𝜆𝐴 =
1

E𝐴 [𝐴1]
.

The intuition is that the rate 𝜆𝐴 of the point process is the reciprocal of the average amount
of time between its points, namely E𝐴 [𝐴1] = E𝐴 [𝐴1 −𝐴0].

Solution. Applying PIF 1.25 to 𝑋 (𝑡) B 1 yields

1 = E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 𝐴1

0
𝑋 (𝑢) d𝑢

]
= 𝜆𝐴 E𝐴 [𝐴1] .
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Exercise 1.5. Let𝑊 be a stationary M/G/1 work process. Show

𝜌 = P[𝑊 > 0] .

Hint: Use RCL 1.22, remembering the rule of thumb: consider, roughly, the integral of the
function you’re finding the expectation of. Thinking of P[𝑊 > 0] = E[𝟙(𝑊 > 0)] as an
expectation of a “zeroth-order” function of𝑊 , what does the rule of thumb suggest?

Solution. Applying RCL 1.22 to𝑊 yields

0 = E[D𝑊 ] + 𝜆 E𝐴 [Δ𝑊 ] = −E[𝟙(𝑊 > 0)] + 𝜆 E[𝑆] = −P[𝑊 > 0] + 𝜌.
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Exercise 1.6. Let 𝑋 and 𝐴 be jointly stationary.
(a) Show

E𝐴 [𝑋 (𝐴1)] = E𝐴 [𝑋 (𝐴0)] .
Hint: The right-hand side can be more simply written as E𝐴 [𝑋 ], because 𝐴0 = 0
under P𝐴 [·] [Def. 1.20]. It’s written the way it is as a suggestion of how you might
use RCL 1.22 to prove it.

(b) Show that for all 𝑖 ∈ ℤ,
E𝐴 [𝑋 (𝐴𝑖)] = E𝐴 [𝑋 (𝐴0)] .

Hint: You can either adapt the argument you used for (a), or you can directly apply
the result of (a) to 𝑡 ↦→ 𝑋 (something with 𝑡).

Solution. We assume that𝑋 is bounded for now. We’ll explain how to extend to unbounded
𝑋 at the end.
(a) We apply RCL 1.22 to 𝑋 (𝐴1). The jump times are a subset of 𝐴, and the derivative is

zero, so

0 = E𝑡𝐴 [𝑋 (𝐴1(𝑡+))−𝑋 (𝐴1(𝑡−))] = E𝑡𝐴 [𝑋 (𝐴1(𝑡))−𝑋 (𝑡)] = E𝑡𝐴 [𝑋 (𝐴1(𝑡))−𝑋 (𝐴0(𝑡))] .

(b) Applying (a) to 𝑡 ↦→ 𝑋 (𝐴𝑖 (𝑡)) shows

E𝐴 [𝑋 (𝐴𝑖)] = E𝐴 [𝑋 (𝐴𝑖 (𝐴0))] = E𝐴 [𝑋 (𝐴𝑖 (𝐴1))] = E𝐴 [𝑋 (𝐴𝑖+1)],

so the result follows by induction on 𝑖 (in both directions).
Suppose now that 𝑋 is unbounded. Let 𝑖 ∈ ℤ, and let 𝑋𝑚,𝑛 = min{max{−𝑚,𝑋 }, 𝑛}.

Then for all𝑚,𝑛 ≥ 0,
E𝐴 [𝑋𝑚,𝑛 (𝐴𝑖)] = E𝐴 [𝑋𝑚,𝑛 (𝐴0)] .

This is enough to tell us that if E𝐴 [𝑋 (𝐴0)] is well defined, then so is E𝐴 [𝑋 (𝐴𝑖)], and the
expectations are equal. In more detail:

• Letting𝑚 = 0 and taking 𝑛 → ∞ yields E𝐴 [𝑋 (𝐴𝑖)+] = E𝐴 [𝑋 (𝐴0)+].
• Letting 𝑛 = 0 and taking𝑚 → ∞ yields E𝐴 [𝑋 (𝐴𝑖)−] = E𝐴 [𝑋 (𝐴0)−].
• If one of these is infinite, then E𝐴 [𝑋 (𝐴𝑖)] = E𝐴 [𝑋 (𝐴0)] are both ±∞. Otherwise,
E𝐴 [𝑋 (𝐴𝑖)] = E𝐴 [𝑋 (𝐴0)] are both finite.
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Exercise 1.7. In this problem, you will explore variants of PIF 1.25. Let 𝑋 ≥ 0 and 𝐴 be
jointly stationary.
(a) Show

E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 0

𝐴−1

𝑋 (𝑢) d𝑢
]
.

(b) Show

E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 1
2𝐴1

1
2𝐴−1

𝑋 (𝑢) d𝑢
]
.

Solution.

(a) The quick solution is to combine PIF 1.25 and Exercise 1.6. Letting

𝑌 (𝑡) B
∫ 𝐴1 (𝑡)

𝐴0 (𝑡)
𝑋 (𝑢) d𝑢

and noting 𝐴𝑖 (𝐴 𝑗 ) = 𝐴𝑖+ 𝑗 , we want to show E[𝑋 ] = E𝐴 [𝑌 (𝐴−1)]. This follows because
• PIF 1.25 tells us E[𝑋 ] = E𝐴 [𝑌 ] = E𝐴 [𝑌 (𝐴0)], and
• Exercise 1.6 tells us E[𝑌 (𝐴0)] = E[𝑌 (𝐴−1)].
Here’s a solution that doesn’t rely on Exercise 1.6. Applying RCL 1.22 to

𝑍 (𝑡) B
∫ 𝑡

𝐴0 (𝑡)
𝑋 (𝑢) d𝑢

and noting 𝐴0(𝑡−) = 𝐴−1(𝑡) and 𝐴0(𝑡) = 𝑡 for 𝑡 ∈ 𝐴 yields

E[𝑋 (𝑡)] = E
[
(D𝑍 (𝑡))+

]
= 𝜆𝐴 E𝑡𝐴

[
(Δ𝑍 (𝑡))−

]
= 𝜆𝐴 E𝑡𝐴

[∫ 𝑡

𝐴−1 (𝑡)
𝑋 (𝑢) d𝑢

]
.

(b) A common trap for this part is applying RCL 1.22 to a process that isn’t jointly
stationary with 𝑋 and 𝐴, e.g. 𝑡 ↦→ 𝑋 (𝑡/2). Another trap was doing a change of integration
variable: averaging the equations (a) and PIF 1.25 and substituting 𝑣 B 𝑢/2 yields

E[𝑋 ] = 𝜆𝐴

2
E𝐴

[∫ 𝐴1

𝐴−1

𝑋 (𝑢) d𝑢
]
= 𝜆𝐴 E𝐴

[∫ 1
2𝐴1

1
2𝐴−1

𝑋 (2𝑣) d𝑣
]
,

but we get a 2𝑣 where we really want just 𝑣 .
One solution is to combine PIF 1.25 and Exercise 1.6, this time together with (a). Letting

𝑌≤ (𝑡) B
∫ 𝐴1 (𝑡)

𝐴0 (𝑡)
𝑋 (𝑢) 𝟙

(
𝑢 ≤ 𝐴0(𝑡) +𝐴1(𝑡)

2

)
d𝑢,

𝑌> (𝑡) B
∫ 𝐴1 (𝑡)

𝐴0 (𝑡)
𝑋 (𝑢) 𝟙

(
𝑢 >

𝐴0(𝑡) +𝐴1(𝑡)
2

)
d𝑢

and noting 𝐴𝑖 (𝐴 𝑗 ) = 𝐴𝑖+ 𝑗 , we want to show E[𝑋 ] = E𝐴 [𝑌≤ (𝐴0) + 𝑌> (𝐴−1)]. This follows
because

• PIF 1.25 tells us E[𝑋 ] = E𝐴 [𝑌≤ + 𝑌>] = E𝐴 [𝑌≤ (𝐴0) + 𝑌> (𝐴0)], and
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• Exercise 1.6 tells us E[𝑌> (𝐴0)] = E[𝑌> (𝐴−1)].
Here’s another solution that doesn’t rely on Exercise 1.6 or (a). We apply RCL 1.22 to

𝑌 (𝑡) B
∫ 1

2 (𝐴0 (𝑡)+𝐴1 (𝑡))

𝑡

𝑋 (𝑢) d𝑢.

Note that integral’s upper limit may be less than its lower limit, in which case the integral
can be negative even though𝑋 ≥ 0. Critically,𝑌 is jointly stationary with𝑋 and𝐴, because
it can be written as

𝑌 (𝑡) =
∫ 1

2 ((𝐴shift (𝑡))0+(𝐴shift (𝑡))1)

𝑡

(𝑋shift(𝑡)) (𝑢) d𝑢.

See Remark 1.26 for further discussion. Applying RCL 1.22 𝑌 and reasoning through the
values of 𝐴−1, 𝐴0, and 𝐴1 right before and after time 0 under P𝐴 [·] (so 0 ∈ 𝐴), we get

E[𝑋 (𝑡)] = 𝜆𝐴 E𝐴

[∫ 1
2 (𝐴1+𝐴0)

0
𝑋 (𝑢) d𝑢 −

∫ 1
2 (𝐴0+𝐴−1)

0
𝑋 (𝑢) d𝑢

]
= 𝜆𝐴 E𝐴

[∫ 1
2𝐴1

1
2𝐴−1

𝑋 (𝑢) d𝑢
]
.
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Exercise 1.8. Let𝑊 be a stationary M/G/1 work process. Let a (maximal) busy period be a
maximal contiguous interval of times 𝑡 during which𝑊 (𝑡) > 0. Let 𝐵 and 𝐶 be the ends
and starts, respectively, of busy periods. You may take as given that 𝐵 and 𝐶 are jointly
stationary with𝑊 .
(a) Find 𝜆𝐶 , the average rate with which busy periods start. Hint: Think about the

relationship between 𝐶 and the arrival times point process, then use PASTA 1.27.
(b) Find E𝐶 [𝐵1], the mean length of a busy period. Hint: Use PIF 1.25.

Hint: You might find previous exercise helpful for both parts.

Solution. We know from Exercise 1.5 that P[𝑊 > 0] = 𝜌 , which is helpful for both parts.
We also write 𝜆𝐴 instead of 𝜆 throughout to disambiguate it from 𝜆𝐶 .
(a) A busy period starts whenever a job arrives to an empty system. This happens at

rate
𝜆𝐶 = 𝜆𝐴 P𝐴 [𝑊 = 0],

where 𝐴 is the arrival times. (We give a more formal argument for this below.) Using
PASTA 1.27, we get

𝜆𝐶 = 𝜆𝐴 P[𝑊 = 0] = 𝜆𝐴 (1 − 𝜌).
(b) We use PIF 1.25 on 𝟙(𝑊 > 0) and point process 𝐶 . We know from Exercise 1.5 that

E[𝟙(𝑊 > 0)] = P[𝑊 > 0] = 𝜌 (by a quick use of RCL 1.22 on𝑊 ), so

𝜌 = 𝜆𝐶 E𝐶

[∫ 𝐶1

0
𝟙(𝑊 (𝑢) > 0) d𝑢

]
= 𝜆𝐶 E𝐶

[∫ 𝐵1

0
1 d𝑢

]
= 𝜆𝐶 E𝐶 [𝐵1],

so
E𝐶 [𝐵1] =

𝜌

𝜆𝐶
=

𝜌

𝜆𝐴 (1 − 𝜌) =
E[𝑆]
1 − 𝜌

.

To argue 𝜆𝐶 = 𝜆𝐴 P𝐴 [𝑊 = 0] more formally, we can use the definition of Palm expecta-
tion [Def. 1.20]. Letting

𝑍 B {𝑡 ∈ ℝ :𝑊 (𝑡) = 0}
be times when there is zero work, we have 𝐶 = 𝐴 ∩ 𝑍 , from which we compute

𝜆𝐶 = E[𝑁𝐶 (0, 1]] = E[#(𝐴 ∩ 𝑍 ∩ (0, 1])] = E

[ ∑︁
𝑎∈𝐴∩(0,1]

𝟙(𝑊 (𝑎) = 0)
]
= 𝜆𝐴 P𝐴 [𝑊 = 0] .
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Exercise 1.9 (Cavatappi). In this problem, youwill prove an easy special case of PASTA 1.27
using PIF 1.25. Let 𝑋 ≥ 0 and 𝐴, a Poisson process, be jointly stationary and independent.
Show

E[𝑋 ] = E𝐴 [𝑋 ] .
Specifically, use the fact that 𝐴1 ∼ Exp(𝜆𝐴) under P𝐴 [·] [Def. 1.14] to show

𝜆𝐴 E𝐴

[∫ 𝐴1

0
𝑋 (𝑢) d𝑢

]
= E𝐴 [𝑋 (𝐴1)],

then conclude using Exercise 1.6. Hint: It often helps to rewrite a random-domain integral
as a deterministic-domain integral with an indicator in the integrand. Also, if 𝐴 and 𝑋 are
independent, then𝐴 and J𝑋 are (almost surely) disjoint, so you can assume𝑋 (𝑎−) = 𝑋 (𝑎+)
for all 𝑎 ∈ 𝐴.

Solution. Using PIF 1.25, Definition 1.14, Tonelli’s theorem, and the independence of 𝐴1
and 𝑋 under P𝐴 [·], we compute

E[𝑋 ] = 𝜆𝐴 E𝐴

[∫ 𝐴1

0
𝑋 (𝑢) d𝑢

]
= 𝜆𝐴

∫ ∞

0
E𝐴 [𝑋 (𝑢) 𝟙(𝑢 < 𝐴1)] d𝑢

= 𝜆𝐴

∫ ∞

0
E𝐴 [𝑋 (𝑢)] P[𝑢 < 𝐴1] d𝑢

=

∫ ∞

0
E𝐴 [𝑋 (𝑢)] 𝜆𝐴𝑒−𝜆𝐴𝑢 d𝑢

=

∫ ∞

0
E𝐴 [𝑋 (𝐴1) | 𝐴1 = 𝑢] 𝜆𝐴𝑒−𝜆𝐴𝑢 d𝑢

= E𝐴 [𝑋 (𝐴1)]
= E𝐴 [𝑋 ],

where the last step uses Exercise 1.6.
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Exercise 1.10 (Fettuccine). In this problem, you will prove a relatively easy, but still very
useful, special case of PASTA 1.27 for the M/G/1. Let𝑊 be a stationary M/G/1 work process,
and let 𝑓 be a nonnegative function. Following the approach from Exercise 1.9, prove

E[𝑓 (𝑊 )] = E𝐴 [𝑓 (𝑊 )],

where we recall that𝑊 is left-continuous, so𝑊 = 𝑊(−) [Def. 1.13(c)]. You may take as
given the fact that𝑊(+) and 𝐴1 are independent under P𝐴 [·]. Hint: However, this does
not imply that𝑊 (𝑢) is independent of 𝐴1 under P𝐴 [·] for 𝑢 > 0. Either argue why this
extra independence holds, or come up with an approach that only needs independence of
𝑊(+) =𝑊 (0+) and 𝐴1.

Solution. We can follow much the same strategy as the solution to Exercise 1.10. The key
is that under P𝐴 [·] (so 0 = 𝐴0 ∈ 𝐴), for 𝑢 ∈ (0, 𝐴1], we can express𝑊 (𝑢) in terms of the
work𝑊 =𝑊 (0) seen by the arrival at time 0, the size 𝑆 of the arrival, and the time 𝑢 since
the arrival:

𝑊 (𝑢) = (𝑊 + 𝑆 − 𝑢)+.
Using PIF 1.25, Definition 1.14, Tonelli’s theorem, and the independence of 𝐴1,𝑊 , and 𝑆
under P𝐴 [·], we compute

E[𝑓 (𝑊 )] = 𝜆𝐴 E𝐴

[∫ 𝐴1

0
𝑓 (𝑊 (𝑢)) d𝑢

]
= 𝜆𝐴

∫ ∞

0
E𝐴 [𝑓 (𝑊 (𝑢)) 𝟙(𝑢 < 𝐴1)] d𝑢

= 𝜆𝐴

∫ ∞

0
E𝐴 [𝑓 ((𝑊 (0) + 𝑆 − 𝑢)+)] P[𝑢 < 𝐴1] d𝑢

=

∫ ∞

0
E𝐴 [𝑓 ((𝑊 + 𝑆 − 𝑢)+)] 𝜆𝐴𝑒−𝜆𝐴𝑢 d𝑢

=

∫ ∞

0
E𝐴 [𝑓 ((𝑊 + 𝑆 −𝐴1)+) | 𝐴1 = 𝑢] 𝜆𝐴𝑒−𝜆𝐴𝑢 d𝑢

= E𝐴 [𝑓 (𝑊 (𝐴1))]
= E𝐴 [𝑓 (𝑊 )],

where the last step uses Exercise 1.6.
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Exercise 1.12. Let𝑊 be a stationary M/G/1 work process. Find a formula for E[𝑒𝜃𝑊 (𝑡)]
using RCL 1.22 and PASTA 1.27.
(a) Do this assuming 𝜃 ≤ 0. Hint: What, roughly, is the integral of𝑤 ↦→ 𝑒𝜃𝑤?
(b) Challenge! Do this assuming 𝜃 > 0, obtaining the same formula as in (a), but carefully

tracking what preconditions are needed to ensure E[𝑒𝜃𝑊 (𝑡)] < ∞. Hint: Apply
RCL 1.22 to a truncated version of what you used in (a). You might get quantities
that you can’t analyze exactly, but you can bound them.

(c) Open-ended. . . . Can you find the secret buses [§ 1.4.2] hiding your formula?

Solution.

(a) We follow the same strategy as the derivation of (1.3), except we apply RCL 1.22 to
𝑒𝜃𝑊 instead of𝑊 2. Because 𝑒𝜃𝑊 ≤ 1 for 𝜃 ≤ 0, we satisfy the preconditions of RCL 1.22(b).
Using PASTA 1.27 and the independence of 𝑆 and𝑊(−) =𝑊 under P𝐴 [·] [Defs. 1.16, 1.13(c)],
we compute

0 = E[𝑡 (𝑒𝜃𝑊 (𝑡))] + 𝜆 E𝑡𝐴 [Δ𝑡 (𝑒𝜃𝑊 (𝑡))]
= E[𝜃𝑒𝜃𝑊 · D𝑊 ] + 𝜆 E𝐴 [𝑒𝜃 (𝑊(−)+Δ𝑊 ) − 𝑒𝜃𝑊(−) ]
= 𝜃 E[𝑒𝜃𝑊 (−1 + 𝟙(𝑊 = 0))] + 𝜆 E[𝑒𝜃 (𝑊 +𝑆) − 𝑒𝜃𝑊 ]
= −𝜃 E[𝑒𝜃𝑊 ] + 𝜃 P[𝑊 = 0] + 𝜆 E[𝑒𝜃𝑊 ] E[𝑒𝜃𝑆 − 1] .

(Don’t forget that 𝑒𝜃0 = 1, not 0.) Plugging in P[𝑊 = 0] = 1 − 𝜌 [Exr. 1.5], we solve for

E[𝑒𝜃𝑊 ] = 𝜃 (1 − 𝜌)
𝜃 − 𝜆 E[𝑒𝜃𝑆 − 1]

.

(b) Roughly speaking, we’re going to follow the same computation as in (a), but using
RCL 1.22 on the truncated process 𝑒𝜃 min{𝑊,𝑚}, where𝑚 > 0 is a constant. This will yield a
bound on E[𝑒𝜃𝑊 𝟙(𝑊 ≤ 𝑚)], from which the same formula from (a) will follow by taking
the𝑚 → ∞ limit. We will find that the formula only holds for a limited range of 𝜃 , e.g.
E[𝑒𝜃𝑆 ] < ∞ is necessary.

Before diving into the computation, it’s worth considering: why should using RCL 1.22
on 𝑒𝜃 min{𝑊,𝑚} yield a bound on 𝑒𝜃𝑊 𝟙(𝑊 ≤ 𝑚)? How does the minimum become an
indicator? Remember the rule of thumb from Section 1.3.2: to get information about a
process, apply RCL 1.22 to its “integral”. Conversely, if we apply RCL 1.22 to a process, we
should expect information about its “derivative”. Indeed,

D𝑡𝑒
𝜃 min{𝑊 (𝑡),𝑚} = 𝜃𝑒𝜃𝑊 (𝑡) 𝟙(𝑊 (𝑡) ≤ 𝑚) · D𝑊 (𝑡).

For things to work out the way they did in (a), we would want the jump term to also result
in 𝑒𝜃𝑊 (𝑡) 𝟙(𝑊 (𝑡) ≤ 𝑚) times something. However, for 𝑡 ∈ 𝐴,

Δ𝑡𝑒
𝜃 min{𝑊 (𝑡),𝑚} = 𝑒𝜃𝑊 (𝑡) (𝑒𝜃 min{𝑆,(𝑚−𝑊 (𝑡))+} − 1),
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where we have a pesky𝑊 (𝑡) in the second factor on the right-hand side. The solution is
to settle for an upper bound on the jump:

Δ𝑡𝑒
𝜃 min{𝑊 (𝑡),𝑚} ≤ 𝑒𝜃𝑊 (𝑡) (𝑒𝜃𝑆 − 1) 𝟙(𝑊 (𝑡) ≤ 𝑚).

Here’s the intuition behind this bound.
• If𝑊 > 𝑚, then min{𝑊,𝑚} doesn’t change at all when we add 𝑆 to𝑊 .
• If𝑊 ≤ 𝑚, then min{𝑊,𝑚} jumps up by at most 𝑆 when we add 𝑆 to𝑊 .

Another perspective on the bound is that 𝑤 ↦→ min{𝑤,𝑚} is concave, and the bound
on the jump term comes from the fact that a concave function is less than first-order
approximations of it.

Having computed the derivative and jump terms, we can apply RCL 1.22 to 𝑒𝜃 min{𝑊,𝑚},
yielding

0 ≤ −𝜃 E[𝑒𝜃𝑊 𝟙(𝑊 ≤ 𝑚)] + 𝜃 P[𝑊 = 0] + 𝜆 E[𝑒𝜃𝑊 𝟙(𝑊 ≤ 𝑚)] E[𝑒𝜃𝑆 − 1] .
As long as

𝜆 E[𝑒𝜃𝑆 − 1] < 𝜃,

then we can divide both sides of the inequality by 𝜃 − 𝜆 E[𝑒𝜃𝑆 − 1], obtaining

E[𝑒𝜃𝑊 𝟙(𝑊 ≤ 𝑚)] ≤ 𝜃 (1 − 𝜌)
𝜃 − 𝜆 E[𝑒𝜃𝑆 − 1]

.

Taking𝑚 → ∞, the formula from (a) follows from monotone convergence theorem.
(c) Noticing that E[𝑒𝜃𝑆 −1] appears in Theorem 1.32(b), we might try rewriting E[𝑒𝜃𝑊 ]

in terms of E[𝑒𝜃𝑆e]. Writing 𝜆 = 𝜌/E[𝑆] to introduce the 1/E[𝑆] factor, this yields

E[𝑒𝜃𝑊 ] = 1 − 𝜌

1 − 𝜌 E[𝑒𝜃𝑆e]
under the condition

𝜌 E[𝑒𝜃𝑆e] < 1.
So there’s a natural way to write E[𝑒𝜃𝑊 ] in terms of the excess 𝑆e. But can we find the
“geometrically many buses” [§ 1.4.2]? Well, because 𝜌 E[𝑒𝜃𝑆e] < 1, we can write E[𝑒𝜃𝑊 ] as
a geometric series:

E[𝑒𝜃𝑊 ] =
∞∑︁
𝑛=0

(1 − 𝜌)𝜌𝑛 E[𝑒𝜃𝑆e]𝑛 .

Letting 𝑁 ∼ Geo0(1 − 𝜌) and 𝑅1, . . . , 𝑅𝑁 ∼ 𝑆e freshly as in Section 1.4.2, we have

E[𝑒𝜃𝑊 ] =
∞∑︁
𝑛=0

P[𝑁 = 𝑛] E[𝑒𝜃𝑆e]𝑛 =

∞∑︁
𝑛=0

P[𝑁 = 𝑛] E
[
exp

(
𝜃

𝑛∑︁
𝑖=1

𝑅𝑖

)]
= E

[
exp

(
𝜃

𝑁∑︁
𝑖=1

𝑅𝑖

)]
.

This tells us the distribution of𝑊 is the same as the distribution of the sum of Geo0(1− 𝜌)
many i.i.d. samples from 𝑆e, i.e. “geometrically many buses”.

Our finding here matches the heuristic “layers” argument [§ 1.4.2]. However, it doesn’t
yet precisely link the layers to the 𝑆e samples. This requires some more work, which you’ll
do in Exercise 1.18.
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Exercise 1.13. The M/G/1 with setup times (M/G/1/setup) is a variant of the M/G/1, but
with the following change: whenever a job arrives to an empty system, in addition to
the job’s size 𝑆 being added to the work, an additional setup time, sampled i.i.d. from a
distribution𝑈 on [0,∞), is also added. This represents the server taking extra time𝑈 to
set up after being idle.

Let𝑊 be a stationary standard M/G/1/setup work process, and let𝑊M/G/1 be a standard
M/G/1 work process with the same arrival rate and size distribution.
(a) Find a formula for E[𝑊 ] of the form

E[𝑊 ] = E[𝑊M/G/1] + something,

where the M/G/1 and M/G/1/setup have the same arrival rate and size distribution.
(b) Can you interpret the “something” in your answer to (a) as the mean of some

distribution? What might that distribution represent?
(c) Find a formula for E[𝑒𝜃𝑊 ]. You should find a similar decomposition to what you

found in (a). You may assume 𝜃 ≤ 0.
(d) Based on your answer to (c), was the distribution you found in (b) was correct, or

did you find a different distribution that happens to have the right mean?

Solution.

(a) We follow the same strategy as the derivation of (1.3), with one change: when an
arrival happens, we add 𝑆 +𝑈 instead of just 𝑆 if𝑊 = 0, where we recall that𝑊(−) =𝑊

[Def. 1.13(c)]. One convenient way to visualize this is to write that under P𝐴 [·],

𝑓 (𝑊(+)) = 𝑓 (𝑊 + 𝑆) + 𝟙(𝑊 = 0)
(
𝑓 (𝑆 +𝑈 ) − 𝑓 (𝑆)

)
.

Applying RCL 1.22 to𝑊 2 and using PASTA 1.27 and the independence assumptions of the
M/G/1/setup, we compute

0 = −2E[𝑊 ] + 𝜆 E𝐴
[
(𝑊 + 𝑆)2 −𝑊 2 + 𝟙(𝑊 = 0)

(
(𝑆 +𝑈 )2 − 𝑆2

) ]
= −2E[𝑊 ] + 2𝜆 E[𝑆] E[𝑊 ] + 𝜆 E[𝑆2] + 𝜆 P[𝑊 = 0]

(
2E[𝑆] E[𝑈 ] + E[𝑈 2]

)
,

which, recalling 𝜌 B 𝜆 E[𝑆] and Theorem 1.32(a), rearranges to

E[𝑊 ] = 𝜌 E[𝑆e]
1 − 𝜌

+
𝜆 P[𝑊 = 0] E[𝑆] E[𝑈 ] + 𝜆

2 E[𝑈
2]

1 − 𝜌
.

We can identify the first term as E[𝑊M/G/1], so it remains to compute the second term.
The main task is to compute P[𝑊 = 0]. Unlike in a standard M/G/1, isn’t simply 1 − 𝜌

[Exr. 1.5], because setup times change the work dynamics. But we can find P[𝑊 = 0] by
applying RCL 1.22 to𝑊 . Once again using PASTA 1.27 and the definition of theM/G/1/setup,
we compute

0 = −1 + P[𝑊 = 0] + 𝜆 E𝐴 [𝑆 +𝑈 𝟙(𝑊 = 0)]
= −1 + P[𝑊 = 0] + 𝜌 + 𝜆 E[𝑈 ] P[𝑊 = 0],
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so
P[𝑊 = 0] = 1 − 𝜌

1 + 𝜆 E[𝑈 ] .

Putting everything together, we get

E[𝑊 ] = E[𝑊M/G/1] +
𝜆 E[𝑈 ]

1 + 𝜆 E[𝑈 ] E[𝑈e + 𝑆] .

(b) We can think of the extra term in (a) as being a probability times the mean of a
positive random variable.

• The probability is 𝑞 B 𝜆 E[𝑈 ]/(1 + 𝜆 E[𝑈 ]).
• The random variable is𝑈e + 𝑆 .

We interpret each of these in turn.
From our work in (a), we know 𝑞 = 1−P[𝑊 = 0]/(1−𝜌). To interpret this, the key idea

is to think of 1−𝜌 as a probability. We know from Exercise 1.5 that in a standard M/G/1, the
server is busy with probability 𝜌 . Even in the M/G/1/setup, it’s still the case that the server
is busy with a job (not a setup time) with probability 𝜌 . (To show this formally, define a
process which is the work from just jobs, excluding setup times, and apply RCL 1.22 to it.)
This means

1 − 𝜌 = P[server isn’t busy with a job],

and therefore

P[𝑊 = 0]
1 − 𝜌

= P[server isn’t busy at all | server isn’t busy with a job],

so

𝑞 = 1 − P[𝑊 = 0]
1 − 𝜌

= P[server is busy with a setup time | server isn’t busy with a job] .

Another way to see this directly from the definition of 𝑞 is to think about what 𝜆 E[𝑈 ] and
1 + 𝜆 E[𝑈 ] might represent.

• 𝜆 E[𝑈 ] is the average number of jobs that arrive during each setup time, excluding
the job that triggers the start of the setup time.

• 1 + 𝜆 E[𝑈 ] is the average number of jobs that arrive during or trigger the start of each
setup time.

So 𝑞 is the probability that a job arrives during a setup time, given that it either arrives
during or triggers the start of a setup time. But these are exactly the jobs that arrive when
the server isn’t busy serving jobs.

So, if 𝑞 is a probability related to arriving during a setup time, how should we think
about 𝑈e + 𝑆? Roughly speaking, we can think of it as an amount of “extra work” seen by
arrivals that come during a setup time.

• The 𝑈e could be the remaining setup time as observed by arrivals that occur during
setup times [Rmk. 1.34, PASTA 1.27].
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• The 𝑆 is not quite as clear, but one possibility is that it could be the work due to the
job that started the setup time.

We might further guess that these are (conditionally) independent, but it isn’t clear based
on what we know so far.

(c) We can follow the same strategy as in (a), but applying RCL 1.22 to 𝑒𝜃𝑊 instead
of𝑊 2. This yields a computation that looks much like the solution to Exercise 1.12(a),
resulting in

0 = −𝜃 E[𝑒𝜃𝑊 ] + 𝜃 P[𝑊 = 0] + 𝜆 E[𝑒𝜃𝑊 ] E[𝑒𝜃𝑆 − 1] + 𝜆 P[𝑊 = 0] E[𝑒𝜃𝑆 ] E[𝑒𝜃𝑈 − 1] .

Plugging in P[𝑊 = 0] from (a) and, inspired by (b), packaging some expressions using
Theorem 1.32(b), we obtain

E[𝑒𝜃𝑊 ] =
P[𝑊 = 0]

(
1 + 𝜆 E[𝑈 ] E[𝑒𝜃𝑈e] E[𝑒𝜃𝑆 ]

)
1 − 𝜌 E[𝑒𝜃𝑆e]

=
1 − 𝜌

1 − 𝜌 E[𝑒𝜃𝑆e]
· 𝜆 E[𝑈 ]
1 + 𝜆 E[𝑈 ] E[𝑒

𝜃𝑈e] E[𝑒𝜃𝑆 ]

= E[𝑒𝜃𝑊M/G/1] · 𝜆 E[𝑈 ]
1 + 𝜆 E[𝑈 ] E[𝑒

𝜃𝑈e] E[𝑒𝜃𝑆 ] .

(d) The transform expression from (c) confirms our guess from (b). It tells us that the
work in an M/G/1/setup is distributed as an independent sum of:

• The work𝑊M/G/1 in a standard M/G/1 with the same M/G arrival process.
• A random variable distributed as

𝑈e + 𝑆 with probability
𝜆 E[𝑈 ]

1 + 𝜆 E[𝑈 ]
0 otherwise,

where the𝑈e and 𝑆 are independent.
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Exercise 1.14. Repeat Exercise 1.13, but for the M/G/1 with vacations (M/G/1/vacation). In
the M/G/1/vacation, whenever the work reaches 0, it immediately jumps up by a vacation
amount, which is sampled i.i.d from a distribution 𝑉 on (0,∞). This represents server
taking a break whenever there’s no work to do, coming back after time 𝑉 .

The main difficulty of this problem is that in the M/G/1/vacation, Δ𝑊 is not simply the
arrival times 𝐴. But you can partition Δ𝑊 = 𝐴 ∪ 𝐵, where 𝐵 is the times when vacations
start. One can show that 𝐴 and 𝐵 are (almost surely) disjoint, and you may use this fact
without proof for this problem. Hint: You might find Exercise 1.2 handy. You can’t use
PASTA 1.27 under P𝐵 [·], so hopefully you won’t need to. . . .

Solution. The reasoning in this problem is much like Exercises 1.12 and 1.13, so we focus
most of the explanation below on handling the differences. For instance, we use PASTA 1.27
throughout without explicit mention.

There are two key observations to make about vacations.
• Under P𝐵 [·], we have𝑊 = 0, because vacations only start when the work reaches 0.
• Under P[·], we have𝑊 > 0 and thus𝑊 = −1 almost surely, because vacations
ensure that there is almost always work to do.

Throughout, we write the arrival rate as 𝜆𝐴 = 𝜆 to disambiguate it from 𝜆𝐵 , the rate at
which vacations start.

(a) We apply RCL 1.22 to𝑊 2:

0 = −2E[𝑊 ] + 𝜆𝐴 E𝐴 [(𝑊 + 𝑆)2 −𝑊 2] + 𝜆𝐵 E𝐵 [(𝑊 +𝑉 )2 −𝑊 2]
= −2E[𝑊 ] + 2𝜌 E[𝑊 ] + 𝜆𝐴 E[𝑆2] + 𝜆𝐵 E[𝑉 2] .

Using Theorem 1.32(a) to write as much as possible in terms of excess distributions yields

E[𝑊 ] = 𝜌 E[𝑆e]
1 − 𝜌

+ 𝜆𝐵 E[𝑉 ]
1 − 𝜌

E[𝑉e] .

We recognize the first term as E[𝑊M/G/1], so it remains to compute the second term.
The main task is to compute 𝜆𝐵 . How should we approach this? As usual, we apply

RCL 1.22 to just the right process. In this case,𝑊 does the trick. The intuition for why this
should help is that 𝜆𝐵 is related to the rate at which work increases due to vacations, and
we already understand other ways work changes over time. Applying RCL 1.22 to𝑊 yields

0 = −1 + 𝜆𝐴 E𝐴 [(𝑊 + 𝑆) − 𝑆]𝜆𝐵 E[(𝑊 +𝑉 ) −𝑉 ] = −1 + 𝜌 + 𝜆𝐵 E[𝑉 ],

so
𝜆𝐵 =

1 − 𝜌

E[𝑉 ] .

The intuition is that vacations need to fill the 1 − 𝜌 fraction of time that there isn’t work
from jobs [Exr. 1.5], and each vacation has average length E[𝑉 ].

Putting everything together, we get

E[𝑊 ] = E[𝑊M/G/1] + E[𝑉e] .
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(b) The 𝑉e could be the remaining vacation time as observed by arrivals that occur
during vacations [Rmk. 1.34, PASTA 1.27].

(c) Applying RCL 1.22 to 𝑒𝜃𝑊 yields

0 = −𝜃 E[𝑒𝜃𝑊 ] + 𝜆𝐴 E[𝑒𝜃𝑊 ] E[𝑒𝜃𝑆 − 1] + 𝜆𝐵 E[𝑒𝜃𝑉 − 1] .

Plugging in the value of 𝜆𝐵 from (a) and using Theorem 1.32(b) to write as much as possible
in terms of excess distributions, this rearranges to

E[𝑒𝜃𝑊 ] = 1 − 𝜌

1 − 𝜌 E[𝑒𝜃𝑆e]
· E[𝑒𝜃𝑉e] = E[𝑒𝜃𝑊M/G/1] · E[𝑒𝜃𝑉e] .

(d) The transform formula from (c) confirms our guess from (b). It tells us that the
work in an M/G/1/setup is distributed as an independent sum of:

• The work𝑊M/G/1 in a standard M/G/1 with the same M/G arrival process.
• A random variable with distribution 𝑉e.

There is an intuitive interpretation of this: along the same lines as Section 1.4.2 and Fig-
ure 1.3, we can view the extra work due to vacations as an extra “bottom layer” of work
in the system, as illustrated below. The amount of work in the bottom layer has distribu-
tion 𝑉e because it is, roughly speaking, the amount of work remaining in an in-progress
vacation [Rmk. 1.34, PASTA 1.27]. This can be formalized using the strategy outlined in
Exercise 1.18.

𝐵1 𝐵2 𝐵3

Standard M/G/1

time 𝑡

work𝑊 (𝑡)

M/G/1/vacation

time 𝑡

work𝑊 (𝑡)

𝑉1
𝑉2 𝑉3
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Exercise 1.15. Challenge! The M/G/𝑘 is a multiserver variant of the M/G/1. Specifically,
let’s imagine that the M/G/𝑘 has 𝑘 “slow” servers, which run 𝑘 times slower than the single
server of the M/G/1. A job of size 𝑠 thus takes time 𝑘𝑠 to finish on one of the slow servers,
but this is balanced out by the fact that there are 𝑘 servers. If all 𝑘 servers are busy at
time 𝑡 , then the M/G/𝑘 is still completing work at rate 1, so D𝑊 (𝑡) = −1.

However, the M/G/𝑘’s work process𝑊 is not standard [Def. 1.13], because if there are
fewer than 𝑘 jobs in the system at time 𝑡 , then D𝑊 (𝑡) ≠ −1, even if𝑊 (𝑡) > 0. In fact,
this reveals that D𝑊 (𝑡) is no longer a deterministic function of𝑊 (𝑡): it depends on the
number of jobs in the system, which we can’t infer from𝑊 (𝑡) alone.

The above difficulties make analyzing the M/G/𝑘’s mean work E[𝑊 ] intractable in
general. However, we can still get some useful formulas which lead to bounds under some
conditions. The key idea is to define an idleness process [Def. 2.18]

𝐼 (𝑡) B 1 − # jobs present at 𝑡
𝑘

= fraction of servers that are idle at 𝑡,

then express D𝑊 (𝑡) in terms of 𝐼 (𝑡). You may assume𝑊 and 𝐼 are jointly stationary.
(a) Show

E[𝑊 ] = E[𝑊M/G/1] +
E[𝐼𝑊 ]
1 − 𝜌

.

(b) Assuming there exists𝑚 such that P[𝑆 ≤ 𝑚] = 1, show

E[𝑊 ] ≤ E[𝑊M/G/1] + (𝑘 − 1)𝑚.

Hint: If 𝐼 (𝑡) > 0, how many jobs can there possibly be in the system at time 𝑡?
(c) Try to give an intuitive interpretation of the E[𝐼𝑊 ]/(1 − 𝜌) term. Hint: Here’s one

somewhat heavy approach. Define the Palm-like expectation E𝐼 [𝑋 ] = E[𝐼𝑋 ]/(1− 𝜌)
for 𝑋 jointly stationary with𝑊 and 𝐼 . Just as E𝐴 [·] captures the perspective of an
arriving job, consider: what perspective does E𝐼 [·] capture?

(d) Find a formula for E[𝑒𝜃𝑊 ] analogous to (a). You may assume 𝜃 ≤ 0. Hint: You should
get E[𝑒𝜃𝑊M/G/1] [Exr. 1.12] times a factor that can be written using E𝐼 [·].

(e) Open-ended. . . . To what extent do the above results generalize beyond the M/G/𝑘?

Solution.

(a) This is a special case of Theorem 2.19.

(b) If 𝐼 > 0, then at least one of the 𝑘 servers must be idle, so there are at most 𝑘 − 1
jobs in the system, each of which contributes at most𝑚 work. Using RCL 1.22 on𝑊 shows
E[𝐼 ] = 1 − 𝜌 [Exr. 2.3], so

E[𝐼𝑊 ]
1 − 𝜌

≤ E[𝐼 · (𝑘 − 1)𝑚]
1 − 𝜌

= (𝑘 − 1)𝑚.
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