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A B S T R A C T

How should we schedule jobs to minimize mean queue length? In the preemptive M/G/1 queue,
we know the optimal policy is the Gittins policy, which uses any available information about
jobs’ remaining service times to dynamically prioritize jobs. For models more complex than the
M/G/1, optimal scheduling is generally intractable. This leads us to ask: beyond the M/G/1,
does Gittins still perform well?

Recent results show Gittins performs well in the M/G/k, meaning that its additive subop-
timality gap is bounded by an expression which is negligible in heavy traffic. But allowing
multiple servers is just one way to extend the M/G/1, and most other extensions remain open.
Does Gittins still perform well with non-Poisson arrival processes? Or if servers require setup
times when transitioning from idle to busy?

In this paper, we give the first analysis of the Gittins policy that can handle any combination
of (a) multiple servers, (b) non-Poisson arrivals, and (c) setup times. Our results thus cover the
G/G/1 and G/G/k, with and without setup times, bounding Gittins’s suboptimality gap in each
case. Each of (a), (b), and (c) adds a term to our bound, but all the terms are negligible in
heavy traffic, thus implying Gittins’s heavy-traffic optimality in all the systems we consider.
Another consequence of our results is that Gittins is optimal in the M/G/1 with setup times at
all loads.

1. Introduction

We consider the classic problem of preemptively scheduling jobs in a queue to minimize mean number-in-system, or equivalently
mean response time (a.k.a. sojourn time). Even in single-server queueing models, this can be a nontrivial problem whose answer
depends on the information available to the scheduler. The simplest case is when the scheduler knows each job’s size (a.k.a. service
time), for which the optimal policy is Shortest Remaining Processing Time (SRPT) [1]: always serve the job of least remaining work.

In the more realistic case of scheduling with unknown or partially known job sizes, the optimal policy is only known for the
M/G/1. It is called the Gittins policy (a.k.a. Gittins index policy) [2–5]. Based on whatever service time information is available for
each job, Gittins assigns each job a scalar rank (i.e. priority), then serves the job of least rank. For example, SRPT is the special
case of Gittins where job sizes are known exactly, and a job’s rank is its remaining work. More generally, a job’s rank is, roughly
speaking, an estimate of its remaining work based on whatever information is available.

The Gittins policy is known to be optimal in the M/G/1 [4,5]. But plenty of systems and models have more complex features,
including:
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(a) Multiple servers, such as the M/G/𝑘.
(b) Non-Poisson arrival processes, such as the G/G/1 (more specifically, the GI/GI/1).
(c) Periods of server unavailability, such as models with setup times.

Either (a) or (b) alone makes optimal scheduling intractable. Combining all three, as in the G/G/𝑘 with setup times (G/G/𝑘/setup),
only adds to the challenge.

With optimality out of reach, we are left to find a tractable near-optimal policy. We thus ask:

How well does Gittins perform in systems with features (a), (b), and (c) like the G/G/𝑘/setup?

Gittins is a natural candidate because its definition naturally generalizes beyond the M/G/1, even if its optimality proof does not [4].
For instance, in a G/G/𝑘, Gittins simply serves the 𝑘 jobs of 𝑘 least ranks, or all jobs if there are fewer than 𝑘.

Only feature (a) has been addressed in full generality in prior work [6–8]. Specifically, it is known that in the M/G/𝑘, the additive
suboptimality gap of Gittins (abbreviated in equations to ‘‘Gtn’’) is bounded by [8]1

𝐄[𝑁]GtnM/G/𝑘 − inf
policies 𝜋

𝐄[𝑁]𝜋M/G/𝑘 ≤ 𝐶(𝑘 − 1) log 1
1 − 𝜌

. (1.1)

et us briefly explain the notation used in (1.1):

• 𝐄[𝑁]𝜋M/G/𝑘 is the mean number-in-system under policy 𝜋 in M/G/𝑘.
• 𝑘 is the number of servers.
• 𝜌 ∈ [0, 1) is the load (a.k.a. utilization), namely the average fraction of servers that are busy.
• 𝐶 ≈ 3.775 is a constant.

notable feature of (1.1) is that under mild conditions [6], the right-hand side is dominated by inf𝜋 𝐄[𝑁]𝜋M/G/𝑘, the performance of
the optimal policy, in the heavy-traffic limit, meaning as 𝜌 → 1. That is, as the M/G/𝑘 gets busier and busier, the difference between
Gittins’s performance and that of the optimal policy becomes negligible. Gittins is thus considered heavy-traffic optimal in the M/G/𝑘.

The above progress on analyzing Gittins in the multiserver M/G/𝑘 is certainly promising for handling (a). But, as we explain in
ore detail in Section 1.2, key steps of the prior M/G/𝑘 analysis rely on Poisson arrivals and uninterrupted server availability, so

hey cannot handle (b) and (c).

.1. Results: Performance bounds and heavy-traffic optimality

We give the first analysis of the Gittins policy for systems with any combination of (a) multiple servers, (b) G/G arrivals, and
c) setup times. We frame our results in terms of the G/G/𝑘 with setup times (G/G/𝑘/setup), which can have all three features. But
hey also apply to systems with a subset of the features, such as the G/G/1 or M/G/𝑘/setup, because we can view them as special
ases of the G/G/𝑘/setup.

Our main results, presented in full in Section 4, can be summarized as

𝐄[𝑁]GtnG/G/𝑘/setup − inf
policies 𝜋

𝐄[𝑁]𝜋G/G/𝑘/setup ≤ 𝓁(a) + 𝓁(b) + 𝓁(a)&(c), (1.2)

where each term on the right-hand side is a ‘‘suboptimality loss’’ that is non-zero when the model has the features in the subscript.
For example, the M/G/𝑘/setup has only features (a) and (c), so 𝓁(b) = 0. A particularly notable case is the M/G/1/setup, which has
nly feature (c), so all three loss terms in (1.2) are zero. Indeed, we show that Gittins is optimal among non-idling policies in the
/G/1/setup, a previously unknown result.

Our result generalizes prior work on Gittins in the M/G/𝑘 in the sense that 𝓁(a) turns out to be the right-hand side of (1.1).
Remarkably, the other loss terms, 𝓁(b) and 𝓁(a)&(c), are uniformly bounded at all loads. This implies that, under mild conditions,
Gittins is heavy-traffic optimal in the G/G/𝑘/setup.

Stability of the G/G/𝑘/setup under complex scheduling policies
Perhaps a more basic question than optimizing mean response time is stability: under which scheduling policies is the

G/G/𝑘/setup stable? This is an open question which is outside the scope of our work. As such, our results hold under an assumption
on the stability region of the G/G/𝑘/setup (Assumption 3.1). We believe the assumption always holds, giving a partial proof sketch
in Appendix D.

1 Throughout this paper, log is the natural logarithm.
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Beyond the G/G/𝑘/setup
The techniques underlying our results are very general, applying even beyond the G/G/𝑘/setup. In Section 10, we sketch how

ur results could be extended to other systems.

• Building on the theme of multiple servers, we consider systems with multiserver jobs, which must be simultaneously served by
multiple servers [9]. Due to the prevalence of multiserver jobs in cloud computing, these models have received lots of recent
attention [7,10–15].

• Building on the theme of non-Poisson arrivals, we consider batch arrivals of jobs [16].
• Building on the theme of setup times, we consider generalized vacations, which model a variety of scenarios where servers are

temporarily unavailable [17,18].

1.2. Main obstacles and key ideas

While there is a substantial literature on scheduling in the M/G/1 [19, Part VII], much less is known as soon as we introduce
features (a), (b), and (c). Any two of these, let alone all three, yields a system where optimal scheduling has never been studied. This
is perhaps unsurprising in light of the fact analyzing these systems under First-Come First-Served (FCFS) is already very difficult.
See Li and Goldberg [20] and references therein for a review of the G/G/𝑘, and similarly for Williams et al. [21] for the M/G/𝑘/setup.
Even in the G/G/1, we only know the optimal scheduling policy for known job sizes, when it is SRPT [1].

Fortunately, recent advances analyzing Gittins in the M/G/𝑘 [6–8] give us hope in the form of a new avenue for analyzing
performance. Scully et al. [6] introduce a new queueing identity, now known as WINE [8] (Section 6),2 which relates the number
of jobs 𝑁 in the system to, roughly speaking, the amount of work in the system. This is helpful because bounding the amount of

ork in an M/G/𝑘, which WINE turns into a bound on 𝐄[𝑁], turns out to be significantly easier than directly bounding 𝐄[𝑁].
WINE holds in any queueing system, including the G/G/𝑘/setup, so we can and do use the same overall strategy of bounding

ork, then using WINE to turn the work bound into an 𝐄[𝑁] bound. However, there are significant obstacles to carrying out this
trategy in the G/G/𝑘/setup.

on-Poisson arrivals
The first step of our strategy is to analyze the amount of work in the system. The approach that prior work takes to analyze the

/G/𝑘 is to use a work decomposition law. This is a result which, in its most general form, relates the amount of work in a generic
ystem with M/G arrivals to the amount of work in a ‘‘resource-pooled’’ M/G/1 experiencing the same arrivals. The prior M/G/𝑘
ound in (1.1) comes from the fact that the M/G/𝑘 and resource-pooled M/G/1 turn out to have similar amounts of work. We would
ike to take a similar approach with the G/G/𝑘/setup. Unfortunately, the combination of G/G arrivals and multiple servers rules
ut using existing work decomposition laws (Section 2.3).

To overcome this, we prove a new work decomposition law for G/G arrivals (Section 7). We view this as the main technical
ontribution that makes our results possible. Indeed, by combining WINE and our new work decomposition law, the 𝓁(a) and 𝓁(b)
erms of (1.2) follows relatively easily. But the 𝓁(c) term and heavy-traffic analysis present additional obstacles, as discussed below.

etup times
One of the key observations behind the prior M/G/𝑘 analysis is that whenever there are 𝑘 jobs in the system, all servers are

ccupied. This implies that in terms of work, an M/G/𝑘 never falls too far behind an M/G/1, where the M/G/1 experiences the
ame arrivals and has the same total service capacity. But in an M/G/𝑘/setup or G/G/𝑘/setup, there is no analogous limit to how
ar behind an M/G/1/setup or G/G/𝑘/setup system can be, because there is no limit on the number of jobs that might arrive during
setup time.

To overcome this, we perform a novel analysis of setup times to bound the number of arrivals during one setup time in expectation.
his analysis is the basis of the 𝓁(a)&(c) term of (1.2).

eavy traffic analysis
The above ideas are enough to prove the bound in (1.2). But the question remains: is the right-hand side of (1.2) small or large

elative to inf𝜋 𝐄[𝑁]𝜋G/G/𝑘/setup, the performance of the optimal policy? If the latter dominates the former in the 𝜌 → 1 limit, then
ittins is optimal in heavy traffic. The right-hand side grows as 𝑂

(

log 1
1−𝜌

)

, so the main challenge is to give a lower bound on the
performance of the optimal policy. In prior work on the M/G/𝑘, one can use SRPT in a resource-pooled M/G/1 as a lower bound
on the optimal policy, which is helpful because the SRPT has been analyzed in heavy traffic [26]. We would like to use the same
approach with the G/G/1 as the lower bound, but SRPT has never been analyzed in the heavy-traffic G/G/1.

To overcome this, we give the first heavy-traffic analysis of SRPT in the G/G/1. This provides a lower bound on inf𝜋 𝐄[𝑁]𝜋G/G/𝑘/setup,
which turns out to be enough for our purposes. The key ingredient of our heavy-traffic analysis is, once again, our new work
decomposition law for G/G arrivals, underscoring its importance as our key technical contribution.

2 Scully [8, Section 2.2.3] notes that WINE builds upon several similar identities that precede it [22–25].
3
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1.3. Outline

The rest of the paper is organized as follows:

• Section 2 reviews related work.
• Section 3 describes our G/G/𝑘/setup model, and in particular details of the setup times.
• Section 4 presents our main results on Gittins: suboptimality gap bounds (Theorems 4.1 and 4.2) and heavy-traffic optimality

(Theorem 4.3).
• Section 5 gives a high-level overview of how we prove our main results.
• Section 6 reviews necessary background on Gittins and WINE.
• Section 7 proves a new work decomposition law for systems with G/G arrivals. This is the key technical contribution that underlies

all of our other results.
• Section 8 proves the suboptimality gap bounds (Theorems 4.1 and 4.2).
• Section 9 proves heavy-traffic optimality (Theorem 4.3). The key step involves giving first heavy-traffic analysis of SRPT in the
G/G/1, a result of independent interest.

. Related work

.1. Optimal scheduling in queues

ittins in single-server systems
The Gittins policy was originally conceived to solve the Markovian multi-armed bandit problem [4,27], but it was soon adapted

o also solve the problem of scheduling in an M/G/1 to minimize mean number of jobs and similar metrics. See Scully and Harchol-
alter [5] and the references therein for a review of Gittins in the M/G/1. However, aside from some particular cases [1,28], the
egree to which Gittins performs well in the G/G/1 or G/G/1/setup was previously unknown.

The ‘‘SOAP’’ technique of Scully et al. [29] can be used to analyze the performance of the Gittins policy in the M/G/1. However,
hile SOAP is convenient for analyzing any fixed size distribution (e.g. numerically), using it to prove theorems that hold for
ll size distributions is cumbersome [30, Section 1.1]. Moreover, SOAP is limited to the M/G/1 and, thanks to an extension
y van Vreumingen [31], the M/G/1/setup. Analyzing Gittins with G/G arrivals or multiple servers seems to be beyond SOAP [32,
ppendix B].

ittins in multi-server systems
Gittins is known to be suboptimal with multiple servers [4], but researchers have studied the extent to which the suboptimality

ap is large or small. The earliest results of this type analyzed an M/M/𝑘 with Bernoulli feedback [22] and nonpreemptive M/G/𝑘
ith Bernoulli feedback [23]. These results proved (in the latter case, under an additional assumption) constant suboptimality gaps

or Gittins in these systems. But both models are somewhat restrictive, excluding, for instance, heavy-tailed job size distributions
hat are common in computer systems [33–37]. More recent work, which we discussed in Section 1, overcomes these limitations
o bound the performance of Gittins in the M/G/𝑘 for general job sizes, including heavy-tailed sizes [7,8,38]. However, all of the
bove work assumes M/G arrivals with no server unavailability.

.2. Setup times

ultiserver models
A significant line of previous work has studied the M/M/𝑘/setup with exponential setup times and FCFS scheduling [39–44].

mong those works, Gandhi and Harchol-Balter [40] and Gandhi and Harchol-Balter [42] also demonstrate that their results
eneralize to M/G/𝑘/setup with exponential setup times via simulation or analyzing special examples. Recently, Williams et al.
21] go beyond exponential setup times, studying M/M/𝑘/setup with deterministic setup times and FCFS scheduling. However,

none of these prior works apply to general setup times, non-Poisson arrivals, or scheduling policies beyond FCFS.
We note that Glazebrook [23], who studies the nonpreemptive M/G/𝑘 with Bernoulli feedback, actually studies a more general

model that allows for certain types of server unavailability, such as server breakdowns. However, setup times are not covered
by Glazebrook [23]. It is likely that more general future work could simultaneously cover setup times, server breakdowns, and
other types of server unavailability. See Section 10.3 for additional discussion.

Single-server models
Compared with multiserver models, single-server models with setup times are better understood [17,18,45–53]. See Doshi [52]

for a survey of the work before 1986 and [53] for a more recent survey. These works consider various arrival and service processes,
as well as other types of server unavailability in addition to setup times.

However, none of the above works discuss optimal scheduling in the presence of setup times. Progress was made by van
Vreumingen [31], who obtains the mean response time of Gittins in the M/G/1/setup as a special case of a more general analysis
4

(Section 2.1). But the analysis does not show that other policies might outperform Gittins, nor does it apply to the G/G/1/setup.
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2.3. Decomposition laws in queues

There is a long tradition of proving work decomposition laws for queueing systems [6,8,17,18,22,23,51,54,55]. Most of these
aws take the form

𝐄[work in complex system with M/G arrivals] = 𝐄[work in M/G/1] + 𝐄[extra work due to complexity].

or example, if the complex system is an M/G/1/setup, the extra work from complexity depends on the setup time distribution.
ost work decomposition laws are actually even stronger, holding distributionally instead of just in expectation.

We need a work decomposition law where the complexity includes, among other factors, having multiple servers. Such a result
or M/G arrivals is relatively recent [6,8], and no such result exists for G/G arrivals. While there are work decomposition laws for
/G arrivals in the literature [46,51,55], to the best of our knowledge, they apply only to single-server models with vacations. To

he best of our knowledge, we prove the first work decomposition law for G/G arrivals that holds for multiserver systems like the
/G/𝑘.

. Model

.1. Core queueing models: G/G/𝑘, G/G/1, M/G/𝑘, and M/G/1

We consider a G/G/𝑘 queueing model with a single central queue and 𝑘 identical servers. The system experiences G/G arrivals:
jobs arrive one-by-one with i.i.d. interarrival times, and each job has an i.i.d. size, or service requirement. Interarrival times and job
sizes are independent of each other. We denote a generic random interarrival time by 𝐴 and a generic random job size by 𝑆.3

At any moment of time, a job in the system can be served by one server. Any jobs not in service wait in the queue. Once a job’s
service is finished, it departs. We follow the convention that each of the 𝑘 servers has service rate 1∕𝑘. A job of size 𝑆 thus requires
𝑆 time in service to finish. This convention gives all systems we study the same maximum total service rate, namely 𝑘 ⋅ 1∕𝑘 = 1,
nd thereby the same stability condition.

The name ‘‘G/G/𝑘’’ denotes the fact that the system has G/G arrivals and 𝑘 servers. When 𝐴 is exponentially distributed, we
rite M/G in place of G/G, as in ‘‘M/G/𝑘’’.

cheduling policies
The scheduling policy decides, at every moment in time, which job is in service at which server. We consider a preempt-resume

odel where preemption occurs without delay or loss of work.
The scheduling objective is minimizing the mean number of jobs in the system. We denote the mean number of jobs in system SYS

nder scheduling policy 𝜋 by 𝐄[𝑁]𝜋SYS, omitting the ‘‘SYS’’ and/or ‘‘𝜋’’ if there is no ambiguity. By Little’s law [56], minimizing 𝐄[𝑁]
s equivalent to minimizing mean response time, the average amount of time a job spends between its arrival and departure.

We use a flexible model of how much the scheduler knows about each job’s size (Section 3.3). We restrict attention to non-idling
olicies, which are those that never unnecessarily leave servers idle. Nevertheless, our results have implications even for idling
olicies (Section 4.1).

As a consequence of frequent preemption, the server can share one server between multiple jobs. We formalize this in
ppendix B.1, but our presentation does not depend on the formal details.

oad and stability
We write 𝜆 = 1∕𝐄[𝐴] for the average arrival rate and 𝜌 = 𝜆𝐄[𝑆] for the system’s load, or utilization. One can think of 𝜌 as

the average fraction of servers that are busy. It is clear that 𝜌 < 1 is a necessary condition for stability (unless both 𝐴 and 𝑆 are
deterministic), so we assume this throughout.

Some of our results are stated for the heavy-traffic limit. For our purposes, this limit, denoted 𝜌 → 1, refers to a limit as the job size
distribution 𝑆 remains constant, and the interarrival time distribution 𝐴 is scaled uniformly down with its mean approaching the
mean job size. That is, the system with load 𝜌 has interarrival time 𝐴𝜌 = 𝐴1∕𝜌 for some fixed distribution 𝐴1, where 𝐄[𝐴1] = 𝐄[𝑆].

It seems intuitive that 𝜌 < 1 should be sufficient for stability under non-idling policies, and it is in the G/G/1 [57]. But to the
best of knowledge, there are no results characterizing stability of the G/G/𝑘 under complex scheduling policies. Even under FCFS,
proving stability of the G/G/𝑘 is not simple, because the system can be stable even when it never empties [58–61]. Setup times
further complicate the matter.

We consider the question of proving stability of the G/G/𝑘/setup under arbitrary non-idling scheduling policies to be outside
the scope of this paper, so we simply assume stability when 𝜌 < 1. We expect this is indeed the case, giving the initial steps of a
roof sketch in Appendix D.

ssumption 3.1. For all 𝜌 < 1, the G/G/𝑘/setup is stable under all non-idling scheduling policies, including the Gittins policy.

3 This arrival process is often referred to more specifically as GI/GI arrivals, with the ‘‘I’’ emphasizing the independence assumption. Under this convention,
/G arrivals include even more general stationary arrival processes where independence does not hold. In this work, we focus only on the independent case, so
5

e write simply ‘‘G/G’’ instead of ‘‘GI/GI’’ for brevity.
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Additional assumption on interarrival times
Our results for G/G arrivals depend on ‘‘how non-Poisson’’ arrival times are, which we quantify using the following assumption.

ssumption 3.2. There exist 𝐴min, 𝐴max ∈ R≥0 such that 𝐄[𝐴− 𝑎 | 𝐴 > 𝑎] ∈ [𝐴min, 𝐴max] for all 𝑎 ≥ 0. That is, letting the interarrival
ge 𝐴age be the time since the last arrival and residual interarrival time 𝐴res be the amount of time until the next arrival, we have

𝐄[𝐴res | 𝐴age] ∈ [𝐴min, 𝐴max] with probability 1.

ne may always use 𝐴min = inf𝑎≥0 𝐄[𝐴 − 𝑎 | 𝐴 > 𝑎] and 𝐴max = sup𝑎≥0 𝐄[𝐴 − 𝑎 | 𝐴 > 𝑎], so this assumption boils down to the latter
eing finite.

Our results use Assumption 3.2 via the quantity 𝜆(𝐴max −𝐴min), which we can think of as measuring ‘‘how non-Poisson’’ arrival
imes are. In the Poisson case, one may use 𝐴min = 𝐴max = 1∕𝜆, so 𝜆(𝐴max − 𝐴min) = 0.

Many interarrival distributions 𝐴 satisfy Assumption 3.2, such as all phase-type distributions. One can also think of Assump-
ion 3.2 as a relaxation of the well-known New Better than Used in Expectation (NBUE) property, which is the special case where
𝐴max = 𝐄[𝐴]. The main distributions ruled out by Assumption 3.2 are various classes of heavy-tailed distributions, e.g. power-law
tails.

3.2. Setup times

In addition to the basic G/G/𝑘 model defined above, we also consider models in which servers require setup times to transition
rom idle to busy. We denote these models with an extra ‘‘/setup’’, as in G/G/𝑘/setup. Whenever a server switches from idle to
usy, it must first complete an i.i.d. amount of setup work, denoted 𝑈 . Like work from jobs, servers complete setup work at rate 1∕𝑘,
o setup work 𝑈 results in setup time 𝑘𝑈 . Setup work amounts are independent of interarrival times and job sizes.

For the purposes of stating our results and proofs in a unified manner, we consider the G/G/𝑘 without setup times to be the
special case of the G/G/𝑘/setup where 𝑈 = 0 with probability 1.

In our model, a server can be in one of three states:

• Setting up, i.e. doing setup work.
• Busy, i.e. serving a job.
• Idle, i.e. neither serving a job nor doing setup work.

n the G/G/1/setup, state transitions are straightforward: the server goes from setting up to busy when it finishes its setup work,
rom busy to idle when no jobs remain in the system, and from idle to setting up when a job arrives to an empty system. But in
he G/G/𝑘/setup, the transitions are more complicated. This is because there are several design choices to make, and thus multiple
odels that might be studied. For example, if we already have one busy server, how many jobs should there be in the queue before
e start setting up a second server? For concreteness, we study one particular setup time model, described below, but our work still
as implications for alternative models (Sections 4.1 and 10.3).

In the G/G/𝑘/setup, we use the following setup time model: a server transitions

• from setting up to busy when it finishes its setup work,
• from busy to idle when the system has fewer jobs than busy servers, and
• from idle to setting up when the system has fewer busy or setting up servers than jobs.

hus, transitions to setting up are triggered by arrivals, and transitions to idle are generally triggered by departures. Servers transition
‘one at a time’’, e.g. an arrival triggers at most server to start setting up.

Note that once a setup time begins, it is never canceled, even if the job whose arrival triggered the setup time begins service at
nother server. Unless another job arrives during the setup time, the server will transition from setting up to busy, then immediately
ack to idle. Not canceling setup times is a natural modeling choice for some systems, e.g. computer systems where cutting power
uring startup is undesirable. But our techniques could also be used to analyze setup times that can be canceled (Section 10.3).

.3. What the scheduler knows about jobs’ sizes

We consider a flexible model of the scheduler’s knowledge called the Markov-process job model [5,6,8]. In this model, each job
as a state, which inhabits some job state space X, representing what the scheduler knows about that job. Each job’s state evolves as
n i.i.d. absorbing continuous-time Markov-process {𝑋(𝑡)}𝑡≥0 on some state space X, where 𝑋(𝑡) is the state of the job after it has
eceived 𝑡 ≥ 0 service. That is, a job’s state evolves while it is in service but stays static while it is in the queue. There is an extra
bsorbing state ⊤ ∉ X, corresponding to the job finishing, i.e. jobs exit the system when their state becomes ⊤.

We call {𝑋(𝑡)}𝑡≥0 the job Markov process. We can recover the job size from the job Markov process as

𝑆 = inf{𝑡 ≥ 0 | 𝑋(𝑡) = ⊤}.

o clarify, the amount of service 𝑡 in 𝑋(𝑡) is measured in work rather than time, so jobs evolve at rate 1∕𝑘 when served in a 𝑘-
erver system (Section 3.1). As discussed in Appendix B.3, we make some purely technical assumptions on the job Markov process
e.g. r.c.l.l.) to ensure Gittins is well defined.
6
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We assume that the scheduler always knows the state of all jobs in the system, which we denote by (𝑋1,… , 𝑋𝑁 ). We also assume
he scheduler knows the dynamics of the job Markov process, e.g. the size distribution 𝑆. A job’s state thus encodes everything the

scheduler knows about the job. For example, given a job in state 𝑥, the scheduler knows its remaining work, namely the amount of
service the job needs to complete, is distributed as4

𝑆(𝑥) =
(

inf{𝑡 ≥ 0 | 𝑋(𝑡) = ⊤} |

|

|

𝑋(0) = 𝑥
)

.

Below are two concrete examples of the Markov-process job model. These are extremes: the first is perfect size information, and
the other is zero size information beyond knowing the distribution 𝑆. For additional examples, including cases where the scheduler
has partial size information, see Scully et al. [6, Section 3].

Example 3.3. The case of known sizes is when a job’s state is its remaining work. The state space is X = (0,∞), the initial state is
distributed as 𝑋(0) ∼ 𝑆, and the absorbing state is ⊤ = 0. During service, the job’s state decreases at rate 1. That is, 𝑋(𝑡) = (𝑋(0)−𝑡)+.
In state 𝑥, the remaining work is 𝑆(𝑥) = 𝑥.

Example 3.4. The case of unknown sizes is when a job’s state is the amount of service it has received so far. The state space is
X = [0,∞), the initial state is 𝑋(0) = 0, and the absorbing state is an isolated point ⊤. During service, the job’s state increases at
rate 1 and has a chance to jump to ⊤, with the exact chance depending on the distribution of 𝑆. That is, 𝑋(𝑡) = 𝑡 until the job
completes, after which 𝑋(𝑡) = ⊤. In state 𝑥, the remaining work is the conditional distribution 𝑆(𝑥) ∼ (𝑆 − 𝑡 | 𝑆 > 𝑡).

3.4. The Gittins policy

The scheduling policy we focus on in this work is the Gittins policy (a.k.a. Gittins index policy). Gittins is primarily known for
the fact that it minimizes 𝐄[𝑁] in the M/G/1 [4,5]. In formulas, we abbreviate Gittins to ‘‘Gtn’’, as in 𝐄[𝑁]GtnG/G/𝑘/setup.

The Gittins policy has a relatively simple form. It assigns each job a numerical priority, called a rank, where lower rank is better.
Gittins always serves the job or jobs of least rank,5 and it is non-idling, serving as many jobs as the number of available servers
allows. Gittins determines ranks using a rank function

rankGtn ∶ X → R≥0,

assigning rankGtn(𝑥) to a job in state 𝑥 ∈ X. A job’s rank thus depends only on its own state.
It turns out that our proofs do not directly use the definition of Gittins’s rank function. As such, we specify the Gittins rank

function for the concrete job Markov processes in Examples 3.3 and 3.4, the latter of which in particular explains the key intuition.
We refer the curious reader to Appendix B.2 for the general definition, though we emphasize it does not play a direct role in our
proofs.

Example 3.5. In the case of known job sizes, it turns out that Gittins reduces to SRPT, which always serves the job of least remaining
work. A job’s rank is thus its remaining work. Recalling from Example 3.3 that a job’s state is its remaining work under known sizes,
we simply have rankGtn(𝑥) = 𝑥.

Example 3.6. In the case of unknown job sizes, recall from Example 3.4 that a job’s state 𝑥 is the amount of service it has already
received. In this case, the Gittins rank function is [4]

rankGtn(𝑥) = inf
𝑦>𝑥

𝐄[min{𝑆, 𝑦} − 𝑥 | 𝑆 > 𝑥]
𝐏[𝑆 ≤ 𝑦 | 𝑆 > 𝑥]

.

The intuition for this formula is as follows. Consider a job in state 𝑥, and suppose we start serving the job, but decide to ‘‘give up’’ if it
eaches state 𝑦. On the right-hand side, the numerator is the expected amount of service until we either complete the job or give up,
nd the denominator is the probability the job completes before we give up. The right-hand side is thus a ‘‘service-per-completion’’
atio, giving an expected amount of effort it would take to finish one job in expectation. A job’s rank under Gittins is the best
ervice-per-completion ratio one can obtain by optimally choosing the state 𝑦 in which to give up.

. Main results

We now state our main results. All of our results hold under the assumptions of Section 3, and in particular Assumptions 3.1
nd 3.2. As in Section 1, we can view a G/G/𝑘/setup system, or any special case thereof, by whether it has (a) multiple servers,

4 Abusing notation slightly, we interpret conditioning 𝑋(0) = 𝑥 as the usual notion of starting the job Markov process from state 𝑥. This gets around the
corner case where the initial state 𝑋(0) is never 𝑥.

5 Much literature on the Gittins policy uses the opposite convention, where higher numbers are better. These works typically call a job’s priority its index [2–4],
7
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(b) non-Poisson arrivals, and (c) setup times. Our bounds use the quantities

𝓁(a) = 𝐶(𝑘 − 1) log 1
1 − 𝜌

,

𝓁(b) = 𝜆(𝐴max − 𝐴min),

𝓁(c) = 1(𝐏[𝑈 > 0] > 0)
(

2(𝑘 − 1) + 𝜆(𝐴max + 𝑘𝐄[𝑈e])
)

,

where 𝐶 = 9
8 log 1.5 + 1 ≈ 3.775. The idea is that 𝓁(a) is the loss due to feature (a), as it is nonzero only for systems with 𝑘 ≥ 2 servers,

and similarly for 𝓁(b) and 𝓁(c).6

Theorem 4.1. The performance gap between the Gittins policy in G/G/𝑘/setup and the optimal policy in G/G/1 is bounded by

𝐄[𝑁]GtnG/G/𝑘/setup − inf
𝜋

𝐄[𝑁]𝜋G/G/1 ≤ 𝓁(a) + 𝓁(b) + 𝓁(c).

Note that although Theorem 4.1 is not directly about the suboptimality gap of Gittins policy in G/G/𝑘/setup, it still provides an
upper bound on the suboptimality gap, because the optimal performance of G/G/1 is a lower bound to G/G/𝑘/setup. This is because
servers in G/G/𝑘/setup have speed 1∕𝑘 (Section 3.1), so the G/G/1 can mimic any policy in the G/G/𝑘/setup through processor
sharing and idling.

With that said, in the special case of the non-idling G/G/1/setup, we can prove a stronger result that drops the 𝓁(c) term by
comparing to a G/G/1/setup instead of a G/G/1.

Theorem 4.2. In the G/G/1/setup, the performance gap between the Gittins policy and the optimal non-idling policy is bounded by

𝐄[𝑁]GtnG/G/1/setup − inf
𝜋

𝐄[𝑁]𝜋G/G/1/setup ≤ 𝓁(b).

In particular, in the M/G/1/setup, the Gittins policy minimizes 𝐄[𝑁] among non-idling policies.

The suboptimality gap in Theorem 4.1 is constant when 𝑘 = 1 and 𝑂
(

log 1
1−𝜌

)

when 𝑘 ≥ 2. In both cases, the gap grows more
slowly in the 𝜌 → 1 limit than 𝐄[𝑁]𝜋G/G/1, implying heavy-traffic optimality.

Theorem 4.3. In the G/G/𝑘/setup, if either 𝑘 = 1 or 𝐄[𝑆2(log𝑆)+] < ∞, and if either 𝑆 or 𝐴 is not deterministic, the Gittins policy is
heavy-traffic optimal. Specifically, lim𝜌→1 𝐄[𝑁]GtnG/G/𝑘/setup∕inf𝜋 𝐄[𝑁]𝜋G/G/1 = 1.

We prove this result in Section 9. The main obstacle is showing a lower bound on 𝐄[𝑁]G/G/1𝜋 . We use SRPT as a lower bound, so
the first step of the proof is to analyze SRPT in the heavy-traffic G/G/1 (Theorem 9.1). We find its performance is within a constant
factor of SRPT in the heavy-traffic M/G/1.

4.1. Remarks on main results

Alternative setup time models
Because Theorems 4.1 and 4.3 compare Gittins in the G/G/𝑘/setup to the optimal policy in a G/G/1, it also effectively compares

Gittins under our setup time model to Gittins in the G/G/𝑘 with essentially any other setup time model. This is because the G/G/1
serves as a lower bound for alternative setup time models, not just our specific G/G/𝑘/setup. The takeaway is that changing the
setup time model does not significantly impact performance in heavy traffic, which makes intuitive sense: servers seldom set up if
they are usually busy.

Idling policies
We say in Section 3.1 that we only consider non-idling policies, but Theorem 4.1 still compares Gittins to idling policies. This

is because the optimal policy in a G/G/1 is clearly non-idling, and, by the discussion above, it gives a lower bound on any policy,
idling or non-idling, in the G/G/𝑘/setup.

Why, then, does Theorem 4.2 only compare to the optimal non-idling policy? This is because in the G/G/1/setup, idling the server
can change when setup times occur. By idling with one job in the queue, one can effectively control when setup times occur by
choosing when to start the job, without waiting for an arrival. Hypothetically, this could improve performance in the G/G/1/setup.
That is, idling effectively allows a policy to use an alternative setup time model, so we rule it out.

6 The reason (1.2) has an 𝓁 term instead of an 𝓁 term is because it summarizes both Theorems 4.1 and 4.2.
8
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Opportunities for a tighter bound
The bound shown in Theorem 4.1 represents a trade-off between proving a tight bound and stating the result simply. We

rioritized making the statement as simple as possible while ensuring the 𝓁(a) term matches the bound for Gittins in the M/G/𝑘
from prior work [8]. But there are at least two clear avenues for tightening our bounds.

First, there are other bounds on Gittins in the M/G/𝑘 [6,7], which can be better than 𝓁(a) in some cases. We believe that one may
take 𝓁(a) to be the minimum of these bounds, but doing so would complicate the result and proof without substantially changing
the main takeaway.

Second, our bound is loose in light traffic. We should have 𝐄[𝑁] → 0 as 𝜌 → 0, but our 𝓁(b) and 𝓁(c) terms remain nonzero at all
oads. One can sharpen our analysis for the special case of the M/G/𝑘/setup to obtain a suboptimality gap that becomes zero in the
→ 0 limit. But we doubt even this improved bound is very tight at low loads, so we omit the extra casework.

. Proof overview

In this section, we give an overview of the proofs of our main results: bounds on Gittins’s suboptimality gap (Theorems 4.1 and
.2) and Gittins’s heavy-traffic optimality (Theorem 4.3). At a high level, our proofs work by combining two queueing identities:
INE, which is from prior work; and a novel work decomposition law, which is built on similar decomposition results from prior
ork (Section 2.3).

The first tool, WINE (Lemma 6.2), expresses the mean number-in-system in terms of mean r-work 𝐄[𝑊𝑟] [5,6,8]:

𝐄[𝑁] = ∫

∞

0

𝐄[𝑊𝑟]
𝑟2

d𝑟.

A system’s r-work 𝑊𝑟 is the total service required to serve all jobs in the system until they all either complete or reach rank greater
than 𝑟, as determined by rankGtn (Section 3.3). For example, ∞-work is the total remaining work of all jobs, which we call total work
or simply work. See Section 6 for details.

The second tool, the work decomposition law (Theorem 7.2), implies bounds on 𝐄[𝑊𝑟] under any policy, including Gittins.
Combining this with WINE yields bounds on 𝐄[𝑁]. Our proof thus boils down to three steps:

• Proving the work decomposition law (Section 5.1).
• Using the work decomposition law to bound Gittins’s suboptimality gap (Section 5.2).
• Using the suboptimality gap bounds to show Gittins is heavy-traffic optimal (Section 5.3).

5.1. New tool: Work decomposition law for G/G arrivals

Our work decomposition law, Theorem 7.2, characterizes mean r-work 𝐄[𝑊𝑟] in the G/G/𝑘/setup. For simplicity of presentation,
below we focus on the special case of mean total work 𝐄[𝑊 ].

Theorem 7.2 implies that in the G/G/𝑘/setup under any policy 𝜋,

𝐄[𝑊 ]𝜋 − 𝐄[𝑊 ]G/G/1 ≤
𝐄[𝐽idle𝑊 ]𝜋

1 − 𝜌
+

𝐄[𝐽setup𝑊 ]𝜋

1 − 𝜌
+ 𝜌(𝐴max − 𝐴min). (5.1)

bove, 𝐄[𝑊 ]G/G/1 is the mean work in a non-idling G/G/1, which is policy-invariant; and 𝐽idle and 𝐽setup are the fraction of idle and
etting-up servers, respectively. Flipping the sign on the 𝜌(𝐴max − 𝐴min) term yields a lower bound instead of an upper bound.

The work decomposition law decomposes work 𝐄[𝑊 ]𝜋 into the policy-invariant term 𝐄[𝑊 ]G/G/1, plus error terms that can depend
n the policy 𝜋. Each error term characterizes the consequence of a complicating factor that G/G/𝑘/setup has on the top of the
/G/1 system:

(a) The first term is due to having multiple servers. It vanishes when 𝑘 = 1, as then 𝐽idle = 0 if 𝑊 > 0.7
(b) The second term is due to the setup time. It vanishes if servers do not need setup, as then 𝐽setup = 0.
(c) The third term is due to non-Poisson arrivals. It vanishes for Poisson arrivals, as then 𝐴max = 𝐴min.

ow we prove the work decomposition law
The proof of work decomposition laws in prior work involves viewing 𝑊 as a process in the steady state and analyzing its

ontinuous changes and jumps. This strategy works well in M/G systems, because all times have an equal chance of seeing 𝑊 jump
p due to an arrival. But in G/G systems, the chance of having an arrival in the next moment depends on 𝐴age, the amount of time
ince the previous arrival. The jumps of 𝑊 are thus more complicated to analyze.

The key idea in our proof is to smooth out the non-constant jumping rate of 𝑊 . Specifically, we consider the process 𝑊 − 𝜌𝐴res,
hich only differs from 𝑊 by one interarrival time. This process decreases at a constant rate of 1 − 𝜌. When an arrival happens,

he process jumps, but the expected change is 𝐄[𝑆] − 𝜌𝐄[𝐴] = 0. Therefore, arrivals only have a ‘‘second-order’’ effect on 𝑊 , which
akes them easier to analyze. This idea builds upon similar smoothing approaches in recent queueing literature [62,63].

7 When generalizing (5.1) from total work to r-work, there are actually two terms due to having multiple servers. But both vanish when 𝑘 = 1.
9
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5.2. From work decomposition to suboptimality gap bounds

We focus here on proving Theorem 4.1, commenting only briefly on the similar proof of Theorem 4.2.
Combining our work decomposition law with WINE gives a formula for Gittins’s suboptimality gap that has the same types of

rror terms as (5.1). Each error term in the work decomposition law will result in one term in the suboptimality gap 𝓁(𝑎) +𝓁(𝑏) +𝓁(𝑐)
n Theorem 4.1, after doing the integration and applying some additional treatments that are specific to each term.

Among the three error terms, 𝓁(𝑎) can be derived similarly to prior work on the M/G/𝑘 [6–8], and 𝓁(𝑏) follows from
ssumption 3.2. But the term corresponding to setup, 𝓁(𝑐), requires a new analysis. We demonstrate the intuition by bounding
[𝐽setup𝑊 ] in (5.1). First, we write 𝐄[𝐽setup𝑊 ] = 1

𝑘
∑𝑘

𝑖=1 𝐄[𝐽setup,𝑖𝑊 ], where 𝐽setup,𝑖 = 1(server 𝑖 is setting up). Observe that

𝐄[𝐽setup,𝑖𝑊 ] = 𝐏[𝐽setup,𝑖 = 1]𝐄[𝑊 | 𝐽setup,𝑖 = 1].

Intuitively, 𝐏[𝐽setup,𝑖 = 1] should be diminishing as the load gets heavy because the queue length will get longer the server 𝑖 will be
urned off less frequently. The second factor, 𝐄[𝑊 | 𝐽setup,𝑖 = 1], should be bounded because given that the server 𝑖 is setting up,
he work in the system should be no more than the work that arrives during the setup, plus the work that already exists when the
etup happens.

For the proof of Theorem 4.2, which gives a tighter bound for the single-server case, we apply WINE and work decomposition
aw in the same way as above. We will get an expression for 𝐄[𝑁]GtnG/G/1/setup in terms of one G/G/1 term, and two error terms
orresponding to non-Poisson arrivals and setup times. Instead of analyzing the setup term as in the proof of Theorem 4.1, we make
he simple observation that the setup term is the same for all non-idling policies, so it does not contribute to the suboptimality gap.

.3. From suboptimality gap bounds to heavy-traffic optimality

Theorem 4.1 provides an upper bound on the suboptimality gap of Gittins policy in G/G/𝑘/setup. To show that the suboptimality
ap is small compared with inf𝜋 𝐄[𝑁]𝜋G/G/𝑘/setup and establish heavy-traffic optimality of the Gittins policy, we need a lower bound
n inf𝜋 𝐄[𝑁]𝜋G/G/𝑘/setup. This lower bound can be obtained by analyzing 𝐄[𝑁]SRPTG/G/1 because SRPT gives the optimal number-in-system
n G/G/1 with known job sizes [1], which is no more than the optimal number-in-system in G/G/𝑘/setup achievable by a policy
hat does not know the job size.

We use WINE and work-decomposition law, in a similar way as in the proofs in the suboptimality gaps, to connect SRPT’s
erformance in the G/G/1 to its performance in the M/G/1. Our end result (Theorem 9.1) shows that 𝐄[𝑁]SRPTG/G/1 is a constant factor
way from 𝐄[𝑁]SRPTM/G/1 as 𝜌 → 1. This lets us to use the known heavy-traffic asymptotics of SRPT in the M/G/1 [26] to lower bound
[𝑁]SRPTG/G/1 and thus show Gittins’s heavy-traffic optimality in the G/G/𝑘/setup.

. Background on WINE and r-work

A queueing system’s work 𝑊 is the total remaining work of all jobs in the system: 𝑊 =
∑𝑁

𝑖=1 𝑆(𝑋𝑖), where 𝑆(𝑋𝑖) is the remaining
ork of job 𝑖 (Section 3.3). We define r-work similarly: we first define the remaining r-work of a job, then define the system’s r-work

o be the sum of all jobs’ remaining r-work.

efinition 6.1. Let 𝑟 ≥ 0. The remaining r-work of a job in state 𝑥, denoted 𝑆𝑟(𝑥), is the amount of service it needs until it either
inishes or reaches a state whose rank is at least 𝑟:

𝑆𝑟(𝑥) = amount of service a job starting at 𝑥 needs to finish or reach rank at least 𝑟

=
(

inf{𝑡 ≥ 0 | 𝑋(𝑡) = ⊤ or rankGtn(𝑋(𝑡)) ≥ 𝑟} |

|

|

𝑋(0) = 𝑥
)

.

system’s r-work, denoted 𝑊𝑟, is the sum of the remaining r-work of all jobs in the system: 𝑊𝑟 =
∑𝑁

𝑖=1 𝑆𝑟(𝑋𝑖).

We now present the WINE identity. It holds for any scheduling policy that has access to only the current and past system states
Section 3.3). For concreteness, we state WINE for our specific queueing model, but it holds in essentially any system which uses
he Markov-process job model.

emma 6.2 (WINE [6, Theorem 6.3]). In the G/G/𝑘/setup under any scheduling policy,

𝑁 = ∫

∞

0

𝐄[𝑊𝑟 | 𝑋1,… , 𝑋𝑁 ]
𝑟2

d𝑟, 𝐄[𝑁] = ∫

∞

0

𝐄[𝑊𝑟]
𝑟2

d𝑟.

WINE, which integrates the entire system’s r-work to get the number of jobs, follows from a more basic identity, sometimes
alled ‘‘single-job WINE’’ [8], which integrates a single job’s remaining r-work.

emma 6.3 (Single-Job WINE [6, Lemma 6.2]). For any job state 𝑥 ∈ X, we have ∫ ∞
0

𝐄[𝑆𝑟(𝑥)]
𝑟2

d𝑟 = 1.

One subtlety about WINE is that while it applies to any scheduling policy, the definition of r-work uses Gittins’s rank function.
s a general rule, this makes analyzing Gittins’s performance using WINE easier than analyzing other policies’ performance using
INE, particularly when proving upper bounds, though there are some exceptions [8,64]. Our work is no exception: we prove our
10

ain results by upper bounding Gittins’s r-work and lower-bounding the optimal policies’ r-work.
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6.1. Additional definitions for reasoning about r-work

WINE reduces the problem of analyzing the steady-state mean number of jobs 𝐄[𝑁] to the problem of analyzing steady-state
mean r-work 𝐄[𝑊𝑟]. In order to analyze r-work, we need to understand the means by which the amount of r-work in the system
changes over time. This section introduces the standard concepts and vocabulary used to discuss r-work [6,8,29].

The definitions in this section are parameterized by a rank 𝑟 ≥ 0, as denoted by a prefix ‘‘r-’’. We often drop this prefix when
he rank 𝑟 is clear from context or not important to the discussion.

elevant, irrelevant, fresh, and recycled jobs
We call a job r-relevant whenever its rank is less than 𝑟. Otherwise, the job is r-irrelevant.
Whether a job is r-relevant or r-irrelevant varies over time. Consider one job’s journey through the system. When the job arrives,

t may be either, depending on its initial state 𝑋(0). As the job is served, its rank can go up and down, so it may alternate between
-relevant and r-irrelevant, possibly multiple times, before eventually finishing and exiting the system.

From the above discussion, it is evident that there are two ways for the amount of r-work in a system to increase. Both are
mportant, so we introduce terminology for discussing both.

efinition 6.4. We call an r-relevant job r-fresh if it has been r-relevant ever since its arrival. That is, new arrivals that are initially
-relevant are r-fresh until they either finish or become r-irrelevant.

• We write 𝑆𝑟 = 𝑆𝑟(𝑋(0)) for the random amount of service during which a newly arrived job is r-fresh. Arriving jobs may be
r-irrelevant, so it may be that 𝑆𝑟 = 0 with nonzero probability.

• We call 𝜌𝑟 = 𝜆𝐄[𝑆𝑟] the r-fresh load. It is the average rate r-work is added by new arrivals.

efinition 6.5. We call an r-relevant job r-recycled if it was r-irrelevant at some point in the past. We refer to the moment a job
witches from r-irrelevant to r-recycled as an r-recycling.

• We write 𝜆r-rcy for the average rate of r-recyclings.
• We write 𝑆r-rcy for the random amount of r-work added by a single r-recycling.
• We call 𝜌r-rcy = 𝜆r-rcy𝐄[𝑆r-rcy] the r-recycled load. It is the average rate r-work is added by r-recyclings.

Note that r-recyclings can only occur when an r-irrelevant job is in service. This is because a job’s rank depends only on its state,
hich only changes during service (Sections 3.3 and 3.4).

We assume for ease of presentation that 𝜆r-rcy < ∞ for all 𝑟 ≥ 0. This is actually not always the case, but the assumption can be
traightforwardly relaxed by appealing to more advanced Palm calculus techniques. See Scully et al. [6, Appendix E] for details.

erver states
Finally, we need notations for discussing how many servers are doing r-work or setting up.

efinition 6.6.

• We write 𝐽𝑟 for the fraction of servers that are serving r-relevant jobs.8 Note that 𝐄[𝐽𝑟] = 𝜌𝑟 + 𝜌r-rcy.
• We write 𝐽setup for the fraction of servers that are setting up.

. Work decomposition law for G/G arrivals

In this section, we introduce a new formula for the expected r-work in systems with G/G arrivals, which we call the work
ecomposition law. The formula decomposes mean r-work into multiple terms, where each term is either fixed or easy to analyze.
o present the formula and its proof, we need to first review a concept called Palm expectation. We give an intuitive review that
uffices for our purposes below, referring the reader to Miyazawa [65] and Baccelli and Brémaud [66] for more formal treatments.

.1. Palm expectation and notation

Consider the amount of work in the system as seen by arriving jobs. Intuitively speaking, to define the long-run average as seen
y arrivals, we would like to start with the steady-state average, then condition on the event ‘‘an arrival is occurring’’. However,
he probability that an arrival occurs at any given point in time is 0, so we cannot naively apply the usual conditional expectation
ormula. Palm expectations solve this problem, giving a way of formally defining a notion that corresponds to conditioning on events
ike ‘‘an arrival is occurring’’. We use two main Palm expectations in our analysis of r-work:

• The Palm expectation at arrivals, denoted 𝐄arv[⋅].

8 If processor sharing is occurring, we interpret 𝐽 as the total service rate assigned to r-relevant jobs (Appendix B.1).
11
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• The Palm expectation at r-recyclings, denoted 𝐄r-rcy[⋅].

That is, 𝐄arv[𝑉 ] is the expectation of random quantity 𝑉 , which may depend on the system state, sampled at the time ‘‘just before’’
an arrival occurs; and 𝐄r-rcy[𝑉 ] is the same, but for r-recyclings instead of arrivals.

Although we define 𝐄arv[⋅] and 𝐄r-rcy[⋅] as referring to the moment ‘‘just before’’ an event, it is also helpful to be able to refer to
the quantity ‘‘just after’’ the event. To facilitate this, we use the following notation:

• Within 𝐄arv[⋅], we denote the remaining r-work of the arriving job by 𝑆𝑟.

– By our independence assumptions (Section 3.1), 𝑆𝑟 is independent of the system state.

• Within 𝐄r-rcy[⋅], we denote the remaining r-work of the job being recycled by 𝑆r-rcy.

– In general, 𝑆r-rcy is not independent of the system state, because recyclings are caused by events happening within the
system.

A notation shortcut
In addition to the Palm expectation, we also define the notation 𝐄r-acc[⋅] as

𝐄r-acc[𝑉 ] =
𝐄[(1 − 𝐽𝑟)𝑉 ] + 𝜆r-rcy𝐄r-rcy[𝑆r-rcy𝑉 ]

1 − 𝜌𝑟
, (7.1)

where 𝐽𝑟 is the fraction of servers that are busy with r-relevant jobs (Section 6.1). One can interpret 𝐄r-acc[⋅] as a type of Palm
expectation. For instance, it behaves like an expectation in the sense that 𝐄r-acc[𝑣] = 𝑣 for deterministic values 𝑣. But for our purposes,
it suffices to understand 𝐄r-acc[⋅] as simply a notation shortcut.

Excess distributions
We introduce a piece of notation that occurs frequently in queueing and renewal theory [19,67], including in the statement of

our work decomposition law below.

Definition 7.1. Given a nonnegative distribution 𝑉 , we define its excess, denoted 𝑉e, to be the distribution with tail9

𝐏[𝑉e > 𝑡] = ∫

∞

𝑡

𝐏[𝑉 > 𝑢]
𝐄[𝑉 ]

d𝑢, which has mean 𝐄[𝑉e] =
𝐄[𝑉 2]
2𝐄[𝑉 ]

.

7.2. Statement and proof of work decomposition law

Now we are ready to present the work decomposition law for systems with G/G arrivals. We state the result for r-work 𝑊𝑟, but
we can apply the result to total work 𝑊 by taking an 𝑟 → ∞ limit.

heorem 7.2 (Work Decomposition Law for G/G Arrivals). In the G/G/𝑘/setup under any policy 𝜋,

𝐄[𝑊𝑟]𝜋 =
𝜌𝑟
(

𝐄[(𝑆𝑟)e] − 𝐄[𝑆𝑟] + 𝐄[𝐴e]
)

+ 𝜌r-rcy𝐄[(𝑆r-rcy)e]
1 − 𝜌𝑟

+ 𝐄r-acc[𝑊𝑟]𝜋 − 𝜌𝑟𝐄r-acc[𝐴res]𝜋 .

roof. We drop the superscript 𝜋 throughout. For each 𝑟, define

𝑍𝑟 =
1
2
(𝑊𝑟 − 𝜌𝑟𝐴res)2. (7.2)

e use 𝑍𝑟 as a ‘‘test function’’ and extract information about the G/G system by looking at how 𝑍𝑟 changes and applying Miyazawa’s
ate Conservation Law (RCL) [65]. We discuss why 𝑍𝑟 is the right choice of test function in Remark 7.4 below.

Over time, the quantity 𝑍𝑟 changes in the following ways: continuous change as r-work and remaining arrival time decrease
ver time, jump when a new job arrives, and jump at an r-recycling event. We use 𝑍′

𝑟 to denote the continuous change of 𝑍𝑟, use
arv𝑍𝑟 to denote the jumps of 𝑍𝑟 at arrival times, and use 𝛥rcy𝑍𝑟 to denote jumps of 𝑍𝑟 at recycling times. Analogous notations are
sed for 𝑊𝑟 and 𝐴res.

Miyazawa’s RCL [65] implies

𝐄[𝑍′
𝑟] + 𝜆𝐄arv[𝛥arv𝑍𝑟] + 𝜆r-rcy𝐄r-rcy[𝛥r-rcy𝑍𝑟] = 0. (7.3)

his RCL is simply describing the fact that the contribution of continuous changes (𝐄[𝑍′
𝑟]) and jumps (𝐄arv[𝛥arv𝑍𝑟] and 𝜆r-rcy

r-rcy[𝛥r-rcy𝑍𝑟]) in 𝑍𝑟 cancel out in the long-run average sense.
To extract information about the G/G system, we analyze 𝑍′

𝑟, 𝛥arv𝑍𝑟, and 𝛥r-rcy𝑍𝑟 as below.

9 As a corner case, if 𝑉 = 0 with probability 1, we let 𝑉 = 0 with probability 1.
12
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• At all times, 𝑊𝑟 decreases at rate −𝑊 ′
𝑟 = 𝐽𝑟, and 𝐴res decreases at rate −𝐴′

res = 1, so 𝑍𝑟 decreases at rate −𝑍′
𝑟 =

(𝐽𝑟 − 𝜌𝑟)(𝑊𝑟 − 𝜌𝑟𝐴res).
• When a new arrival happens, 𝑍𝑟 jumps as follows. The new job contributes r-work 𝑆𝑟, so 𝑊𝑟 jumps up by 𝛥arv𝑊𝑟 = 𝑆𝑟. And by

definition, the new arrival happens just as 𝐴res reaches 0, at which point it jumps up to a newly sampled interarrival time 𝐴,
so 𝛥arv𝐴res = 𝐴. This means that when a new arrival happens, 𝑍𝑟 jumps by 𝛥arv𝑍𝑟 = (𝑆𝑟 − 𝜌𝑟𝐴)𝑊𝑟 +

1
2 (𝑆𝑟 − 𝜌𝑟𝐴)2.

• When an r-recycling happens, the r-work 𝑊𝑟 increases by 𝛥r-rcy𝑊𝑟 = 𝑆r-rcy, and 𝐴res is unaffected, so 𝛥r-rcy𝑍𝑟 = 𝑆r-rcy(𝑊𝑟 −
𝜌𝑟𝐴res) +

1
2𝑆

2
r-rcy.

Given the above formulas for 𝑍′
𝑟, 𝛥arv𝑍𝑟 and 𝛥r-rcy𝑍𝑟, the terms in (7.3) can be computed one-by-one as follows. For 𝐄[𝑍′

𝑟], we
have

𝐄[𝑍′
𝑟] = −(1 − 𝜌𝑟)𝐄[𝑊𝑟] + 𝜌𝑟(1 − 𝜌𝑟)𝐄[𝐴e] + 𝐄[(1 − 𝐽𝑟)𝑊𝑟] − 𝜌𝑟𝐄[(1 − 𝐽𝑟)𝐴res],

where we have used the fact that by basic renewal theory, 𝐄[𝐴res] = 𝐄[𝐴e]. For 𝜆𝐄arv[𝛥arv𝑍𝑟], we have

𝜆𝐄arv[𝛥arv𝑍𝑟] = 𝜆𝐄arv[(𝑆𝑟 − 𝜌𝑟𝐴)𝑊𝑟 +
1
2
(𝑆𝑟 − 𝜌𝑟𝐴)2]

= 𝜆𝐄[𝑆𝑟 − 𝜌𝑟𝐴]𝐄arv[𝑊𝑟] +
1
2
𝜆𝐄[(𝑆𝑟 − 𝜌𝑟𝐴)2]

= 𝜌𝑟𝐄[(𝑆𝑟)e] + 𝜌2𝑟𝐄[𝐴e] − 𝜌𝑟𝐄[𝑆𝑟],

(7.4)

where the second equality is due to the fact that the new job’s r-work 𝑆𝑟 and next interarrival time 𝐴 are independent of the previous
amount of r-work 𝑊𝑟, and the third equality uses Definition 7.1 and the fact that 𝐄[𝑆𝑟] = 𝜌𝑟𝐄[𝐴]. Finally, for 𝜆r-rcy𝐄r-rcy[𝛥r-rcy𝑍𝑟],
we have

𝜆r-rcy𝐄r-rcy[𝛥r-rcy𝑍𝑟] = 𝜆r-rcy𝐄r-rcy
[

𝑆r-rcy𝑊𝑟
]

− 𝜌𝑟𝜆r-rcy𝐄r-rcy
[

𝑆r-rcy𝐴res
]

+ 𝜌r-rcy𝐄[(𝑆r-rcy)e].

Combining the three terms with (7.3) completes the proof. □

Remark 7.3. The proof of Theorem 7.2 does not depend on the details of the Gittins policy. It relies only partitioning the job
states, with one part playing the role of states with rank less than 𝑟. See Scully [8, Sections 7.2 and 8.3] for an example of this with
M/G arrivals.

Remark 7.4. The basic reason for multiplying 𝐴res by 𝜌𝑟 in the definition of 𝑍𝑟 is that we want to avoid having a 𝐄arv[𝑊𝑟] term in
(7.3), as it is likely to be a large and intractable term. As we can see from (7.4), when computing 𝜆𝐄arv[𝛥arv𝑍𝑟], the term involving
𝐄arv[𝑊𝑟] vanishes because 𝐄[𝑆𝑟 − 𝜌𝑟𝐴] = 𝐄[𝑆𝑟](1 − 𝜆𝐄[𝐴]) = 0. Intuitively, ensuring 𝑊𝑟 − 𝜌𝑟𝐴res has zero change in expectation when
a new job arrives prevents the Palm expectation of arrivals from appearing in the RCL equation. This trick appears throughout the
literature on applying the RCL to queues [62,63].

8. Bounding Gittins’s suboptimality gap

In this section, we prove the main results using WINE and the work decomposition law introduced in Sections 6 and 7. We first
derive a general formula that decomposes the suboptimality gap into four terms and analyze each term based on the specific settings
of each theorem. We express the formula in terms of the following quantities.

Definition 8.1. We define residual interarrival cost 𝑚res, recycling cost 𝑚rcy, idleness cost 𝑚idle, and setup cost 𝑚setup as follows:

𝑚res = ∫

∞

0

−𝜌𝑟𝐄r-acc
[

𝐴res
]

𝑟2
d𝑟, 𝑚idle = ∫

∞

0

𝐄[(1 − 𝐽𝑟 − 𝐽setup)𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟,

𝑚rcy = ∫

∞

0

𝜆r-rcy𝐄r-rcy[𝑆r-rcy𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟, 𝑚setup = ∫

∞

0

𝐄[𝐽setup𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟.

emma 8.2 (Decomposition of Performance Difference). The performance difference between the Gittins policy in G/G/𝑘/setup and any
olicy 𝜋 in the G/G/1 (or G/G/1/setup) can be decomposed as below:

𝐄[𝑁]GtnG/G/𝑘/setup − 𝐄[𝑁]𝜋G/G/1 =
(

𝑚Gtn
res − 𝑚𝜋

res
)

+ 𝑚Gtn
rcy + 𝑚Gtn

idle +
(

𝑚Gtn
setup − 𝑚𝜋

setup
)

.

roof. Only the last two terms in Theorem 7.2, namely 𝐄r-acc
[

𝑊𝑟
]

and 𝜌𝑟𝐄r-acc
[

𝐴res
]

, depend on the specific scheduling policy. After
expanding the definitions of the cost terms (Definition 8.1) and 𝐄r-acc[⋅] (Section 7.1 and (7.1)), the result follows immediately from

INE (Lemma 6.2) and the fact that 𝑚𝜋
rcy and 𝑚𝜋

idle are nonnegative. □

Note that we state Lemma 8.2 in terms of the Gittins policy only because our focus is the optimality of Gittins. The lemma is
till true if we replace Gittins with any other policy.

Bounding Gittins’s suboptimality gap thus reduces to bounding the four terms in Lemma 8.2. We address one in each of
ections 8.1–8.4, combining the bounds to prove our main results in Section 8.5.
13
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8.1. Analysis of the residual interarrival cost

Proposition 8.3 (Residual Interarrival Cost). For any policy 𝜋,

𝑚Gtn
res − 𝑚𝜋

res ≤ 𝜆(𝐴max − 𝐴min).

roof. Observe that for deterministic 𝑣, we have 𝐄r-acc[𝑣] = 𝑣 by the computation

𝐄r-acc[𝑣] =
𝐄[(1 − 𝐽𝑟)𝑣] + 𝜆r-rcy𝐄[𝑆r-rcy𝑣]

1 − 𝜌𝑟
=

1 − 𝜌𝑟 − 𝜌r-rcy + 𝜌r-rcy

1 − 𝜌𝑟
𝑣 = 𝑣.

The result follows from the fact that 𝐄r-acc[𝐴res] = 𝐄r-acc[𝐄[𝐴res | 𝐴age]] and Assumption 3.2. □

8.2. Analysis of the recycling cost

Proposition 8.4 (Recycling Cost). In the G/G/𝑘/setup, under the Gittins policy, we have

𝑚Gtn
rcy ≤ (𝑘 − 1) log 1

1 − 𝜌
.

roof. The same bound has been shown for M/G/𝑘 without setup times, e.g. [8, Proposition 17.9] and [7, Lemma B.5]. It turns
ut that the prior proofs rely only on the following fact:

Immediately before an r-recycling, the number of r-relevant jobs is at most 𝑘 − 1.
his fact still holds in the G/G/𝑘/setup under Gittins, so the same proof goes through. The fact holds because immediately before
he recycling, the job that is about to be recycled is in service but is r-irrelevant. If there were 𝑘 jobs that were r-relevant, they
ould have priority under Gittins, preventing the r-irrelevant job from being in service and thus preventing the r-recycling. □

.3. Analysis of the idleness cost

roposition 8.5 (Idleness Cost). In the G/G/𝑘/setup, under the Gittins policy, we have

𝑚Gtn
idle ≤ (𝐶 − 1)(𝑘 − 1) log 1

1 − 𝜌
+ (𝑘 − 1)1(𝐏[𝑈 > 0] > 0),

where 𝐶 = 9
8 log 1.5 + 1 ≈ 3.775.

The proof of Proposition 8.5 proceeds similarly to the proof of [8, Proposition 17.6], but with a small modification to account
for setup times. Given the similarity to prior work, we defer it to Appendix C.

8.4. Analysis of the setup cost

Proposition 8.6 (Single-Server Setup Cost). In the G/G/1/setup, the setup cost is fixed for any setup-non-idling policy. In particular, since
Gtn is also a setup-non-idling policy, we have

𝑚Gtn
setup − 𝑚𝜋

setup = 0,

for any other setup-non-idling policy 𝜋.

Proof of Proposition 8.6. Because 𝐽setup ∈ {0, 1}, we have

𝐄[𝐽setup𝑊𝑟]𝜋 = 𝐄[𝑊𝑟 | 𝐽setup = 1]𝜋𝐏[𝐽setup = 1]𝜋 .

Therefore, recalling Definition 8.1, it suffices to show that both 𝐏[𝐽setup = 1]𝜋 and 𝐄[𝑊𝑟 | 𝐽setup = 1]𝜋 do not depend on setup-non-
dling policy 𝜋. Observe that under any setup-non-idling policy, the distributions of busy periods (the continuous periods when there
s work in the system) are unaffected by the order of serving specific jobs, and 𝐽setup equals 1 only during the first 𝑆setup unit of time
n each busy period, so 𝐏[𝐽setup = 1]𝜋 do not depend on 𝜋. As for 𝐄[𝑊𝑟 | 𝐽setup = 1]𝜋 , because the server cannot serve jobs when
etting up and there is no r-work in the system when the setup begins, 𝑊𝑟 is determined by the amount of r-work that has arrived
ince the setup begins, whose distribution is independent of the policy. □

roposition 8.7 (Multiserver Setup Cost). In the G/G/𝑘/setup, the setup cost under any setup-non-idling 𝜋 has the following bound:

𝑚𝜋
setup ≤ 1(𝐏[𝑈 > 0] > 0)

(

𝜆𝑘𝐄[𝑈e] + 𝜆𝐴max + 𝑘 − 1
)

. (8.1)

n particular, the bound holds for Gittins.

To prove Proposition 8.7, we require a helper lemma. The lemma bounds the expected number of jobs in the system during a
etup time. To state the lemma, we let 𝐽setup,𝑖 be the indicator of whether server 𝑖 is setting up and let 𝑈age,𝑖 be the age of server 𝑖’s
14

etup process for each 𝑖 = 1, 2,… , 𝑛. We set 𝑈age,𝑖 to zero if server 𝑖 is not setting up.
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Lemma 8.8. In the G/G/𝑘/setup, for any server 𝑖 and all 𝑎 ≥ 0, we have

𝐄[𝑁 | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎] ≤ 𝜆𝑎 + 𝜆𝐴max + 𝑘 − 1. (8.2)

The proof of Lemma 8.8 is nontrivial but uses standard techniques, so we defer it to Appendix C and move on to proving
roposition 8.7.

roof of Proposition 8.7. The case where 𝑈 = 0 is clear, so we assume that 𝑈 > 0 with nonzero probability. We first bound r-setup
error using the fact that 𝜌𝑟 ≤ 𝜌.

𝑚setup = ∫

∞

0

𝐄[𝐽setup𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟 ≤ ∫

∞

0

𝐄[𝐽setup𝑊𝑟]

𝑟2(1 − 𝜌)
d𝑟 = ∫

∞

0

𝐄[𝐄[𝐽setup𝑊𝑟 | 𝑋1,… , 𝑋𝑁 ]]

𝑟2(1 − 𝜌)
d𝑟, (8.3)

here 𝑋1, 𝑋2,…𝑋𝑁 are the states of all the jobs in the system (Section 3.3). Using Tonelli’s theorem and WINE (Lemma 6.2), the
ast expression can be rewritten as

∫

∞

0

𝐄[𝐄[𝐽setup𝑊𝑟 | 𝑋1,… , 𝑋𝑁 ]]

𝑟2(1 − 𝜌)
d𝑟 = 𝐄

[𝐽setup
1 − 𝜌 ∫

∞

0

𝐄[𝑊𝑟 | 𝑋1,… , 𝑋𝑁 ]
𝑟2

d𝑟
]

=
𝐄[𝐽setup𝑁]

1 − 𝜌
. (8.4)

y 𝐽setup =
1
𝑘
∑𝑘

𝑖=1 𝐽setup,𝑖, 𝐄[𝐽setup,𝑖𝑁] = 𝐄[𝐄[𝑁 | 𝐽setup,𝑖 = 1, 𝑈age,𝑖]] and Lemma 8.8,

𝐄[𝐽setup𝑁]
1 − 𝜌

≤ 𝜆
𝑘(1 − 𝜌)

𝑘
∑

𝑖=1
𝐄[𝐽setup,𝑖𝑈age,𝑖] +

𝜆𝐴max + 𝑘 − 1
𝑘(1 − 𝜌)

𝑘
∑

𝑖=1
𝐄[𝐽setup,𝑖]. (8.5)

ow it remains to compute ∑𝑘
𝑖=1 𝐄[𝐽setup,𝑖] and ∑𝑘

𝑖=1 𝐄[𝐽setup,𝑖𝑈age,𝑖]. The mean fraction of servers setting up is no more than the mean
raction of non-busy servers, which is 1 − 𝜌, so

1
𝑘

𝑘
∑

𝑖=1
𝐄[𝐽setup,𝑖] = 𝐄[𝐽setup] ≤ 1 − 𝜌, (8.6)

Basic renewal theory and the 1∕𝑘 service rate (Section 3.1) imply the average age of a setup time is 𝑘𝐄[𝑈e] (Definition 7.1), so

1
𝑘

𝑘
∑

𝑖=1
𝐄[𝐽setup,𝑖𝑈age,𝑖] =

𝑘
∑

𝑖=1
𝐄[𝐽setup,𝑖]𝐄[𝑈e]. (8.7)

ombining (8.3)–(8.7) finishes the proof. □

.5. Proofs of main results

roof of Theorem 4.1. After expressing the suboptimality gap using Lemma 8.2, we apply Propositions 8.3–8.5 and 8.7 and use
he fact that 𝑚𝜋

setup is non-negative. Grouping the log 1
1−𝜌 terms to form 𝓁(a) and grouping the 1(𝐏[𝑈 > 0] > 0) terms to form 𝓁(c)

ields the result. □

roof of Theorem 4.2. After expressing the suboptimality gap using Lemma 8.2, we apply Propositions 8.3–8.6. The only nonzero
ontribution comes from 𝑚Gtn

res − 𝑚𝜋
res, which Proposition 8.3 shows to be at most 𝓁(b).

. Heavy-traffic optimality

We now turn to prove Theorem 4.3, which amounts to showing that Gittins’s suboptimality gap, namely 𝐄[𝑁]Gtn − inf𝜋 𝐄[𝑁]𝜋 is
mall relative to the performance of the optimal policy, namely inf𝜋 𝐄[𝑁]𝑖. It turns out that this is indeed the case: the suboptimality
ap is small relative to the performance of SRPT in the G/G/1, which is a lower bound on the performance of any policy in the
/G/𝑘/setup.

We first relate SRPT’s performance in the G/G/1 to its performance in the M/G/1, which is known from prior work [26]. We
hen use this result to prove Theorem 4.3.

heorem 9.1. Given Assumption 3.2, in the heavy traffic limit, we have

lim
𝜌→1

𝐄[𝑁]SRPTG/G/1

𝐄[𝑁]SRPTM/G/1
=

𝑐2𝑆 + 𝑐2𝐴
𝑐2𝑆 + 1

,

here 𝑐2𝑉 = 𝐕𝐚𝐫[𝑉 ]∕𝐄[𝑉 ]2 and the two systems have the same service time distribution and average arrival rate. If 𝑐2𝑆 = ∞, then we interpret
he right-hand side as 1.

roof of Theorem 9.1. If 𝑐2𝑆 = 𝑐2𝐴 = 0, the result holds because 𝐄[𝑁] → ∞ in the M/G/1 but not the G/G/1, which in this case are
he M/D/1 and D/D/1, respectively (D is for ‘‘deterministic’’), implying the result. So we focus on the case where 𝑐2𝑆 + 𝑐2𝐴 > 0. We

2 2
15

resent the full proof for the 𝑐𝑆 < ∞ case first, briefly sketching how to adapt the argument to the 𝑐𝑆 = ∞ case at the end.
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Since SRPT is a special case of Gittins (Example 3.5), we can analyze 𝐄[𝑁] in the G/G/1 under SRPT using WINE and the work
decomposition law. By Lemma 6.2, Theorem 7.2, and Definition 8.1, we have

𝐄[𝑁] = ∫

∞

0

𝜌𝑟
(

𝐄[(𝑆𝑟)e] − 𝐄[𝑆𝑟] + 𝐄[𝐴e]
)

+ 𝜌r-rcy𝐄[(𝑆r-rcy)e]

𝑟2(1 − 𝜌𝑟)
d𝑟 + 𝑚setup + 𝑚idle + 𝑚rcy + 𝑚res.

ince SRPT is a Gittins policy, by Propositions 8.3–8.6, we have that in the G/G/1, 𝑚setup = 𝑚idle = 𝑚rcy = 0 and 𝑚res ∈
−𝜆𝐴max,−𝜆𝐴min]. We also note that under SRPT, the rank of a job is its remaining size, which together with Definition 7.1 implies

𝐄[𝑆𝑟] = 𝐄[𝑆1(𝑆 ≤ 𝑟)], 𝜌𝑟𝐄[(𝑆𝑟)e] =
𝜆
2𝐄[𝑆

21(𝑆 ≤ 𝑟)], 𝜌r-rcy𝐄[(𝑆r-rcy)e] =
𝜆
2 𝑟

2𝐏[𝑆 > 𝑟].

orrowing the notation of Harchol-Balter [19], we write

𝑆𝑟 = min{𝑆, 𝑟} 𝜌𝑟 = 𝜆𝐄[𝑆𝑟],

iving us

𝐄[𝑁] = ∫

∞

0

𝜌𝑟𝐄[(𝑆𝑟)e] + 𝜌𝑟(−𝐄[𝑆𝑟] + 𝐄[𝐴e])
𝑟2(1 − 𝜌𝑟)

d𝑟 + 𝑂(1). (9.1)

in the G/G/1 under SRPT. Using Definition 7.1 and the fact that 𝐄[𝑆] = 𝜌𝐄[𝐴], we can compute

𝜌(𝐄[𝑆e] − 𝐄[𝑆] + 𝐄[𝐴e]) =
𝜆
2 (𝐕𝐚𝐫[𝑆] + 𝐕𝐚𝐫[𝐴]) + 𝑂(1 − 𝜌).

Reasoning similarly and using the fact that 𝜌𝑟 − 𝜌𝑟 ≤ 1 − 𝜌𝑟, we have

𝜌𝑟𝐄[(𝑆𝑟)e] + 𝜌𝑟(−𝐄[𝑆𝑟] + 𝐄[𝐴e]) =
𝜆
2 (𝐕𝐚𝐫[𝑆𝑟] + 𝐕𝐚𝐫[𝐴]) + 𝑂(1 − 𝜌𝑟).

Because 𝑆𝑟 = min{𝑆, 𝑟}, we have lim𝑟→∞ 𝐕𝐚𝐫[𝑆𝑟] = 𝐕𝐚𝐫[𝑆]. Thus, for all 𝜀 > 0, there exists 𝑟∗ such that for any 𝑟 ≥ 𝑟∗, we have
|𝐕𝐚𝐫[𝑆𝑟∗ − 𝐕𝐚𝐫[𝑆]]| ≤ 𝜀. Since 𝑆 does not depend on 𝜌, we can fix a sufficiently small constant 𝜀 so that 𝑟∗ is also a constant
independent of 𝜌. Applying (9.1), we can write 𝐄[𝑁] as

𝐄[𝑁] = ∫

𝑟∗

0

𝜌𝑟𝐄[(𝑆𝑟)e] + 𝜌𝑟(−𝐄[𝑆𝑟] + 𝐄[𝐴e])
𝑟2(1 − 𝜌𝑟)

d𝑟 + ∫

∞

𝑟∗

( 𝜆
2 (𝐕𝐚𝐫[𝑆𝑟] + 𝐕𝐚𝐫[𝐴])

1 − 𝜌𝑟
+ 𝑂(1)

)

1
𝑟2

d𝑟 + 𝑂(1).

bserve that the first integral is non-negative, and it can be uniformly bounded at all loads by substituting 𝜌𝑟 ↦ 𝐄[𝑆𝑟]∕𝐄[𝑆] and
𝑟 ↦ 𝐄[𝑆𝑟]∕𝐄[𝑆], so it is 𝑂(1).10 As for the second integral, note first that we can ignore the 𝑂(1) since ∫ ∞

𝑟∗
𝑂(1)
𝑟2

d𝑟 = 𝑂(1). Moreover,
y our choice of 𝑟∗, we have

∫

∞

𝑟∗

𝜆
2 (𝐕𝐚𝐫[𝑆𝑟] + 𝐕𝐚𝐫[𝐴])

𝑟2(1 − 𝜌𝑟)
1
𝑟2

d𝑟 = 𝜆
2 (𝐕𝐚𝐫[𝑆] + 𝐕𝐚𝐫[𝐴] + 𝛿)∫

∞

𝑟∗

1
𝑟2(1 − 𝜌𝑟)

d𝑟,

where 𝛿 ∈ [−𝜀, 𝜀]. Therefore, we have that in the G/G/1 under SRPT, for some 𝛿 ∈ [−𝜀, 𝜀],

𝐄[𝑁]SRPTG/G/1 =
𝜆
2 (𝐕𝐚𝐫[𝑆] + 𝐕𝐚𝐫[𝐴] + 𝛿)∫

∞

𝑟∗

1
𝑟2(1 − 𝜌𝑟)

d𝑟 + 𝑂(1). (9.2)

f course, the M/G/1 is a special case of the G/G/1, so (9.2) also holds for the M/G/1, with 𝐕𝐚𝐫[𝐴] = 𝐄[𝐴]2 and 𝛿 replaced by
ome other 𝛿′ ∈ [−𝜀, 𝜀]. Wierman et al. [68, Theorem 5.8] show 𝐄[𝑁]SRPTM/G/1 = 𝛺

(

log 1
1−𝜌

)

, so

𝐄[𝑁]G/G/1-SRPT

𝐄[𝑁]M/G/1-SRPT = 𝐕𝐚𝐫[𝑆] + 𝐕𝐚𝐫[𝐴] + 𝛿
𝐕𝐚𝐫[𝑆] + 𝐄[𝐴]2 + 𝛿′

+ 𝑂

(

1
log 1

1−𝜌

)

=
𝜌2𝑐2𝑆 + 𝑐2𝐴 + 𝛿𝜆2

𝜌2𝑐2𝑆 + 1 + 𝛿′𝜆2
+ 𝑂

(

1
log 1

1−𝜌

)

.

The result follows because 𝑐2𝑆 and 𝑐2𝐴 are independent of 𝜌, and 𝛿, 𝛿′ ∈ [−𝜀, 𝜀] for arbitrarily small 𝜀.
We have proven the result assuming 𝑐2𝑆 < ∞. If instead 𝑐2𝑆 = ∞, then 𝐕𝐚𝐫[𝑆𝑟] → ∞ as 𝑟 → ∞. This means that for sufficiently

large 𝑟, the dominant term of 𝑊𝑟 is simply 𝐕𝐚𝐫[𝑆𝑟]∕(1 − 𝜌𝑟), which does not depend on 𝐴 and is thus the same in the G/G/1 and
M/G/1. One can use this fact to show that the performance ratio approaches 1 in heavy traffic by, as in the 𝑐2𝑆 < ∞ case, splitting
the WINE integral at large 𝑟∗, then observing that the 𝑟 > 𝑟∗ part is dominant in heavy traffic. □

Proof of Theorem 4.3. It suffices to show that the suboptimality gap in Theorem 4.1, which is 𝑂(1) for the 𝑘 = 1 case and 𝑂
( 1
1−𝜌

)

for the 𝑘 ≥ 2 case, is dominated by 𝐄[𝑁]𝜋 for any policy 𝜋.
We begin by observing that for any G/G arrival process, 𝐄[𝑁]SRPTG/G/1 is a lower bound on 𝐄[𝑁]𝜋 for any policy 𝜋. This is because

we can view the G/G/𝑘/setup as a version of a G/G/1 that imposes extra constraints on the scheduler (Section 3.3), and SRPT
minimizes 𝐄[𝑁] in the G/G/1 [1].

Next, we observe that by Theorem 9.1 and our assumption that 𝑐2𝑆 + 𝑐2𝐴 > 0, SRPT’s G/G/1 heavy-traffic performance is within
constant factor of its M/G/1 heavy-traffic performance.

10 It is not a priori obvious that the integral converges due to the 𝑟 → 0 behavior. This can be verified by direct computation, but for our purposes, it suffices
16

o use the prior knowledge that 𝐄[𝑁] is finite under SRPT.
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It thus suffices to show a lower bound on 𝐄[𝑁]SRPTM/G/1. When 𝑘 = 1, we need only an 𝜔(1) bound, which always holds [68,
Theorem 5.8]. When 𝑘 ≥ 2, we need an 𝜔

(

log 1
1−𝜌

)

bound, which prior work [6, Proof of Theorem 1.3 in Appendix B.2] shows to
hold if 𝐄[𝑆2(log𝑆)+] < ∞. □

10. Potential extensions

We have seen that combining our new work decomposition law (Theorem 7.2) with WINE (Lemma 6.2) enables the analysis
of systems with many complex features, such as the G/G/𝑘/setup. Thanks to the generality of both systems, we could apply the
same technique even beyond the G/G/𝑘/setup. This section sketches how this can be done for three features: multiserver jobs,
batch arrivals, and generalized vacations. We emphasize that our goal here is not to give full proofs, but rather to demonstrate the
applicability of our technique to additional systems. We thus say ‘‘should be’’ rather than ‘‘is’’ when stating the end results.

10.1. Multiserver jobs

We study a variation of the model of Grosof et al. [7]. We consider a variant of our G/G/𝑘 model where each job has a server
need 𝑚(𝑥), which is a function of its state 𝑥. Whenever a job in state 𝑥 runs, it must occupy exactly 𝑚(𝑥) servers. It is thus served
at rate 𝑚(𝑥)∕𝑘, thanks to our convention of servers operating at rate 1∕𝑘 (Section 3.1). We refer to this model as the G/G/𝑘/MSJ,
where MSJ stands for ‘‘multiserver job’’. Grosof et al. [7] study what we would call the M/G/𝑘/MSJ.11

One of the main challenges when scheduling in MSJ systems is that it is no longer clear how to stabilize the system. Indeed,
analyzing stability even in M/M/𝑘/MSJ systems is an area of current research [13,69], and optimal scheduling in these systems is
an open problem. However, Grosof et al. [7] show that if every possible server need 𝑚(𝑥) is a divisor of the number of servers 𝑘,
then one can ensure stability with a procedure called DivisorFilling.

The DivisorFilling procedure takes as input any set of 𝑘 jobs, then outputs a subset of those jobs whose server needs sum to
exactly 𝑘. DivisorFilling can be combined with the Gittins policy by passing the 𝑘 jobs of least Gittins rank to DivisorFilling, resulting
in a policy called DivisorFiling-Gittins [7].

The G/G/𝑘/MSJ under DivisorFilling-Gittins can be analyzed in much the same way as the G/G/𝑘 under Gittins. Recalling the
structure of the latter analysis from Section 8, we encounter the same four ‘‘cost terms’’ (Definition 8.1) to bound.

• The residual interarrival cost 𝑚setup can be bounded exactly as in Proposition 8.3.
• The recycling cost 𝑚rcy can be bounded exactly as in Proposition 8.4, because DivisorFilling-Gittins ensures the key property

that makes the proof work [7, Lemma B.5].
• The idleness cost 𝑚idle can be bounded by following the same steps as [7, Lemma B.3], because their proof does not rely on

Poisson arrivals. The resulting bound is 𝑚idle ≤ 𝑒(𝑘 − 1)
⌈

log 1
1−𝜌

⌉

.12

• The setup cost 𝑚setup is zero, as there are no setup times.

e thus see that the suboptimality gap of DivisorFilling-Gittins in the G/G/𝑘/MSJ should be at most

𝐄[𝑁]DivisorFilling-Gittins
G/G/𝑘/MSJ − inf

𝜋
𝐄[𝑁]𝜋G/G/1 ≤ 𝑒(𝑘 − 1)

⌈

log 1
1 − 𝜌

⌉

+ 𝜆(𝐴max − 𝐴min).

his is analogous to what Theorem 4.1 says about the G/G/𝑘, as 𝓁(a) is replaced by 𝑒(𝑘 − 1)
⌈

log 1
1−𝜌

⌉

.
It is likely that, for a suitable definition of setup times in an MSJ model, one could analyze the same system with setup times,

obtaining a result analogous to the one we obtain for the G/G/𝑘/setup.

10.2. Batch arrivals

Scully and Harchol-Balter [5] introduce a general model of batch arrivals that we call batch-M/G arrivals. The main notable
feature of the model is that it makes few assumptions about what batches look like. For example, it may be that the initial states
of jobs in the same batch are correlated with each other. We consider the same type of batches but allow general batch interarrival
times, resulting in batch-G/G arrivals. All of the results in Section 4 should generalize to batch-G/G arrivals. There are three changes
needed for the proof, and only the third impacts the end results.

First, one needs to modify the definitions of load, r-fresh load, and other concepts related to the arrival process. But these are
straightforward changes. The most important note here is that Assumption 3.2 should refer to the batch interarrival time.

Second, batch arrivals affect the work decomposition law (Theorem 7.2). But they only affect the term that is common to all
systems, namely the numerator of the 1∕(1 − 𝜌𝑟) term. By Lemma 8.2, this change does not affect suboptimality gaps, which is the
basis of all of the results in Section 4.

Third, batch arrivals affect the setup cost 𝑚setup in multiserver systems. Specifically, we need to slightly modify the statement
and proof of Proposition 8.7 to account for the fact that multiple jobs can arrive at once. If more jobs arrive than there are idle

11 Grosof et al. [7] actually consider a slightly more restrictive case in which jobs’ server needs remain constant throughout service, though their proofs could
e straightforwardly generalized to handle dynamically changing server needs. The main novelty of our discussion is thus the extension to G/G arrivals.
12 In the 𝜌 → 1 limit, this bound below is actually slightly better than that in Proposition 8.5. See Section 4.1 for discussion.
17
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servers, this means a single setup is effectively triggered by multiple jobs. The end result is that one must incorporate a term related
to the batch size distribution. In contrast, the setup cost in single-server systems is unaffected.

Taken together, these observations imply that our G/G/𝑘 and G/G/1/setup results should generalize immediately to batch
arrivals. With some effort, the G/G/𝑘/setup results should also generalize.

10.3. Generalized vacations

The term generalized vacations refers to a range of models where servers may be unavailable, including:

• Setup times, as studied in this work. This includes models beyond ours, e.g. where we make different decisions about when
to start setting up a server, or where a setup time can be canceled if the job that triggered it enters service at another server.

• Vacations, where whenever the server goes idle, it goes on vacation for a given amount of time, then only begins serving jobs
again when it returns.

• Server breakdowns, where servers can become unavailable in the middle of serving a job.
• Threshold policies, where servers stay idle until there are a given number of jobs in the system.

These are only a few examples of what generalized vacations can model [18,51,52].
One can, in principle, bound Gittins’s suboptimality gap in the G/G/𝑘 with generalized vacations using essentially the same

approach we take for the G/G/𝑘/setup. The main change is that we now interpret 𝐽setup as the fraction of servers that are unavailable,
o we now think of 𝑚setup as an unavailability cost.

Of course, whether bounding 𝑚setup is tractable to bound depends on the specifics of the model. As in the proofs of Propositions 8.6
and 8.7, the key question is: how many jobs might there be in the system while a server is unavailable? Sometimes, this will be very
hard to bound, e.g. for server breakdowns. But in other cases, the bound is nearly immediate. For example, consider a threshold
policy that does not start serving jobs until there are 𝑛 jobs present, at which point it serves jobs until the system empties. We would
then have 𝑚setup ∈ [0, 𝑛] under any scheduling policy.

One important application of generalized vacations is to more general setup time models. For instance, in practice, it is helpful
o not turn servers off as soon as they become idle. One can imagine a wide range of power management policies controlling when

servers turn on and off. Provided we do not wait too long to set up servers while there are jobs in the queue, 𝑚setup should not
e too large, in which case Gittins would have a small suboptimality gap. This means that, in some sense, the power management
nd job scheduling problems are orthogonal, because a single scheduling policy, namely Gittins, performs well for a wide range of
ower management policies.

1. Conclusion

This work presents the first analysis of the Gittins policy in the G/G/𝑘/setup. We prove simple and explicit bounds on Gittins’s
uboptimality gap, which are tight enough to imply that Gittins is optimal in heavy traffic in the G/G/𝑘/setup. As a corollary, we
ind that Gittins is optimal in the M/G/1/setup. Prior to these results, Gittins had not been analyzed in even the G/G/1, let alone
he G/G/𝑘/setup.

There are several ways in which one might hope to improve our bounds. This is especially true in light traffic, namely the 𝜌 → 0
imit. Here we have a constant suboptimality gap for mean number of jobs, but by Little’s law [56], this corresponds to an infinite
uboptimality gap for mean response time. We conjecture that Gittins’s mean response time suboptimality gap remains bounded
n light traffic, but there are significant obstacles to doing so, related to the notorious problem of analyzing the idle period of the
/G/1 [70,71].

Our theoretical results also raise several questions that could be studied with simulations. One such question is related to the
dditive structure of our suboptimality gap bound in Theorem 4.1, in which each of (a) multiple servers, (b) non-Poisson arrivals,
nd (c) setup times contributing to the bound via a separate term. If we simulate Gittins in systems with various mixtures of (a),
b), and (c), do we observe an analogous (approximate) additive structure in its empirical performance? We hypothesize the answer
s ‘‘yes’’, because each of the terms in Theorem 4.1 has a distinct cause, and we suspect the interactions between these causes are
elatively weak. Investigating this is an interesting direction for future work.

Taking a step back, we might ask: should one use Gittins to minimize mean number of jobs in practice, even beyond the
/G/𝑘/setup modeling assumptions? While this is clearly a question larger than we can definitively answer, we believe that our
ain results, the potential extensions sketched in Section 10, and other recent work on Gittins and SRPT in multiserver systems [6–
,72,73] point towards ‘‘yes’’. Even though the currently known theoretical bounds on Gittins and SRPT are not tight, we have no
omparable bounds for other policies, aside from a few close relatives of SRPT [72]. The mere existence of these bounds is thus a
oint in favor of Gittins. But we are still in the early years of understanding multiserver scheduling.
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ppendix A. Summary of notation

ore G/G/𝑘/setup model (Sections 3.1 and 3.2).

• 𝑘: number of servers

– Each server has speed 1∕𝑘, so the total service capacity is always 𝑘 ⋅ 1∕𝑘 = 1

• 𝑆: job size random variable

– With 𝑘 servers, job of size 𝑆 results in 𝑘𝑆 service time

• 𝑈 : setup work random variable (Section 3.2)

– With 𝑘 servers, setup work 𝑈 results in 𝑘𝑈 setup time

• 𝐴: interarrival time random variable
• 𝜆 = 1∕𝐄[𝐴]: arrival rate
• 𝜌 = 𝜆𝐄[𝑆] < 1: load
• 𝑁 : number of jobs in the system
• 𝐄[𝑁]𝜋SYS: mean number of jobs in system SYS under policy 𝜋

– To reduce clutter, we omit ‘‘SYS’’ and/or ‘‘𝜋’’ when there is no ambiguity

emaining interarrival time (Assumption 3.2).

• 𝐴res: residual interarrival time, i.e. time until next arrival
• 𝐴age: interarrival age, i.e. time since last arrival
• 𝐴min, 𝐴max: bounds on 𝐄[𝐴res | 𝐴age]

arkov-process job model (Section 3.3).

• See Examples 3.3 and 3.4 for concrete examples of the Markov-process job model
• X: space of possible job states
• 𝑋(𝑡): state of a job that has received 𝑡 service so far
• 𝑋𝑖: state of the 𝑖th job currently in the system (𝑖 ∈ {1,… , 𝑁})
• ⊤: terminal state, i.e. a job completes once 𝑋(𝑡) = ⊤
• 𝑆(𝑥): remaining work of a job in state 𝑥
• 𝑊 =

∑𝑁
𝑖=1 𝑆(𝑋𝑖): (total) work in the system

ittins policy (Section 3.4).

• Gtn: abbreviation for Gittins in formulas, e.g. 𝐄[𝑁]Gtn

• rankGtn(𝑥): rank, i.e. priority (lower is better), of job in state 𝑥

– See Examples 3.5 and 3.6 for concrete examples of the rank function

ain results (Section 4).

• 𝓁(a),𝓁(c),𝓁(c): suboptimality due to (a) multiple servers, (b) non-Poisson arrivals, (c) setup times
• 𝑐2𝑉 = 𝐕𝐚𝐫[𝑉 ]

𝐄[𝑉 ]2 : squared coefficient of variation of 𝑉

INE and r-work (Section 6).

• 𝑆𝑟(𝑥): remaining r-work of a job in state 𝑥
• 𝑊𝑟 =

∑𝑁
𝑖=1 𝑆𝑟(𝑋𝑖): r-work in the system

• r-fresh, r-recycled: see Definitions 6.4 and 6.5
• 𝑆𝑟 = 𝑆𝑟(𝑋(0)): remaining r-work of a newly arrived job
19
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• 𝜆r-rcy: remaining r-work of a newly r-recycled job
• 𝑆r-rcy: remaining r-work of a newly r-recycled job
• 𝜌r-rcy = 𝜆r-rcy𝐄[𝑆r-rcy]: r-recycled load
• 𝐽𝑟: fraction of servers that are serving jobs of rank at most 𝑟
• 𝐽setup: fraction of servers that are setting up

Stating work decomposition law (Section 7.1).

• 𝐄arv[⋅]: expectation sampled immediately before an arrival
• 𝐄r-rcy[⋅]: expectation sampled immediately before an r-recycling
• 𝐄r-acc[⋅]: an expectation defined in terms of 𝐄r-rcy[⋅] in (7.1)
• 𝑉e: excess of random variable 𝑉

– Key property: 𝐄[𝑉e] =
𝐄[𝑉 2]
2𝐄[𝑉 ]

Proofs of main results (Section 8).

• 𝑚𝜋
res: contribution to 𝐄[𝑁]𝜋 due to residual interarrival time, bounded in Proposition 8.3

• 𝑚𝜋
rcy: contribution to 𝐄[𝑁]𝜋 due to recyclings, bounded in Proposition 8.4

• 𝑚𝜋
idle: contribution to 𝐄[𝑁]𝜋 due to idle servers, bounded in Proposition 8.5

• 𝑚𝜋
setup: contribution to 𝐄[𝑁]𝜋 due to setup times, bounded in Propositions 8.6 and 8.7

ppendix B. Additional model details

.1. Processor sharing

Thus far, we have discussed the scheduler as assigning jobs to servers in one-to-one fashion. However, because we are in a
reemptive setting, it is possible for the scheduler to effectively share a server between multiple jobs by rapidly switching between
hem. As such, we explicitly allow the scheduler to use processor sharing, simultaneously serving multiple jobs at reduced rates.
rocessor sharing arises naturally when using Gittins [2,3].

Exactly how processor sharing works with multiple servers and setup times has some subtle corner cases, so for completeness,
e give the details below. But for ease of discussion, we do not concern ourselves with these details during the proofs, because

hey complicate the arguments without adding insight. With that said, modifying the proofs to account for processor sharing is a
traightforward exercise. For instance, instead of referring to the job at server 𝑖, we might refer to an appropriately weighted random
hoice among jobs currently sharing server 𝑖.

In a system without setup times, the scheduler’s action is a service rate vector 𝛼 = (𝛼1,… , 𝛼𝑁 ), where recall that 𝑁 is the number
f jobs. Here 𝛼𝑖 is the rate at which job 𝑖 is being served. In the G/G/𝑘, the fact that we have 𝑘 servers of service rate 1∕𝑘 corresponds

to 𝛼 obeying the constraints ∑𝑁
𝑖=1 𝛼𝑖 ≤ 1 and 𝛼𝑖 ∈ [0, 1∕𝑘]. From this perspective, a non-idling policy is one such that no 𝛼𝑖 can be

increased without violating a constraint. To clarify, the service rate vector 𝛼 is a gradual control: it is chosen at every moment in
time and can be changed at will.

In a system with setup times, the situation is similar, but we can only assign jobs to busy servers. The first constraint on 𝛼 thus
hanges to ∑𝑁

𝑖=1 𝛼𝑖 ≤ 𝐾busy∕𝑘, where 𝐾busy is the number of busy servers.

.2. General definition of the Gittins rank function

How does Gittins decide what rank to assign each job? The main idea is to assign jobs low rank if they are likely to finish with
small amount of service. To formalize this intuition, consider a job in state 𝑥, and suppose we were to serve the job until it enters

ome state in set Y ⊆ X. This would involve serving the job for some amount of time, and there would be some chance the job
ompletes. Let

𝑆Y(𝑥) = amount of service a job starting at 𝑥 needs to finish or enter Y

=
(

inf{𝑠 ≥ 0 | 𝑋(𝑠) ∈ Y ∪ {⊤}} |

|

|

𝑋(0) = 𝑥
)

, (B.1)

𝐶Y(𝑥) = event that a job starting at 𝑥 finishes before entering Y

=
[

𝑋
(

inf{𝑠 ≥ 0 | 𝑋(𝑠) ∈ Y ∪ {⊤}}
)

= ⊤ |

| 𝑋(0) = 𝑥
]

. (B.2)
20
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We can think of 𝐄[𝑆Y(𝑥)]∕𝐏[𝐶Y(𝑥)] as a time-per-completion ratio for jobs in state 𝑥, as measured by serving them until they finish
or enter Y. The key idea of the Gittins policy is to let a job’s rank be its best possible time-per-completion ratio13:

rankGtn(𝑥) = inf
Y⊆X

𝐄[𝑆Y(𝑥)]
𝐏[𝐶Y(𝑥)]

. (B.3)

As an example, consider the case of known job sizes, where a job’s state 𝑥 is its remaining work. The best completion ratio
is achieved by always running the job until it finishes, i.e. Y = ∅. This results in 𝑆∅(𝑥) = 𝑥 and the event 𝐶∅(𝑥) occurring with
probability 1, so rankGtn(𝑥) = 𝑥. That is, Gittins always serves the jobs of least remaining work, so it reduces to SRPT (Example 3.5).

B.3. Technical considerations for the job Markov process

We have omitted some technical details and assumptions in our definition of the Gittins policy. For example, in (B.1)–(B.3), we
must restrict attention to sets Y ⊆ X such that 𝑆Y(𝑥) and 𝐶Y(𝑥) are measurable with respect to the natural filtration on the job

arkov process. More generally, the theory of the Gittins policy relies on being able to solve an optimal stopping problem which
s known in the Markov-process job model literature as the ‘‘Gittins game’’ [5,6,8].

Following the convention of prior literature, we consider the technical foundations of the Gittins game to be outside the scope
f this paper. Our results apply to any job Markov process where the foundations can be established. As explained by Scully et al.
6, Appendix D], this is not a restrictive assumption.

ppendix C. Deferred proofs

roposition 8.5 (Idleness Cost). In the G/G/𝑘/setup, under the Gittins policy, we have

𝑚Gtn
idle ≤ (𝐶 − 1)(𝑘 − 1) log 1

1 − 𝜌
+ (𝑘 − 1)1(𝐏[𝑈 > 0] > 0),

where 𝐶 = 9
8 log 1.5 + 1 ≈ 3.775.

Proof. At a high level, we follow the same main as the proof of [8, Proposition 17.6], but one of the steps requires modification
to account for setup times.

By following the same argument as [8, Lemma 17.4], one can show that

𝑚Gtn
idle = ∫

∞

0

𝐄[(1 − 𝐽𝑟 − 𝐽setup)𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟 ≤ (𝑘 − 1) inf

𝑛∈Z≥1
𝑛
(

1
1 − 𝜌

)1∕𝑛
. (C.1)

he key fact is that when 1 − 𝐽𝑟 − 𝐽setup > 0, there is an idle server, so there are at most 𝑘 − 1 jobs in the system, as otherwise a
erver would start setting up. Given this fact, the rest of the proof carries through verbatim. We can also show an alternative bound
or 𝑚Gtn

idle that is tighter in light traffic:

𝑚Gtn
idle = ∫

∞

0

𝐄[(1 − 𝐽𝑟 − 𝐽setup)𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟 ≤ (𝑘 − 1)

𝜌
1 − 𝜌

+ (𝑘 − 1)1(𝐏[𝑈 > 0] > 0). (C.2)

e prove (C.2) below. Combining (C.1) and (C.2) yields

𝑚Gtn
idle ≤ (𝑘 − 1)min

{

inf
𝑛∈Z≥1

𝑛
(

1
1 − 𝜌

)1∕𝑛
,

𝜌
1 − 𝜌

+ 1(𝐏[𝑈 > 0] > 0)
}

≤ (𝑘 − 1)min
{

inf
𝑛∈Z≥1

𝑛
(

1
1 − 𝜌

)1∕𝑛
,

𝜌
1 − 𝜌

}

+ (𝑘 − 1)1(𝐏[𝑈 > 0] > 0)

≤ (𝐶 − 1)(𝑘 − 1) log 1
1 − 𝜌

+ (𝑘 − 1)1(𝐏[𝑈 > 0] > 0),

where the last inequality follows from the same computation as in [8, Proposition 17.6].
It remains only to prove (C.2). The proof follows the same steps as [8, Lemma 17.5], but setup times add some additional

considerations. For the purposes of this proof, we abuse notation slightly by defining 𝑋𝑖 = ⊤ for the state of job 𝑖 if there is no 𝑖th
job. We then define the remaining r-work of ⊤ to be 𝑆𝑟(⊤) = 0.

We begin by noting that if 𝐽𝑟 + 𝐽setup < 1, then there are less than 𝑘 jobs in the system, so

𝐄[(1 − 𝐽𝑟 − 𝐽setup)𝑊𝑟] =
𝑘
∑

𝑖=1
𝐄[𝑆𝑟(𝑋𝑖)(1 − 𝐽𝑟 − 𝐽setup)] ≤

𝑘 − 1
𝑘

𝑘
∑

𝑖=1
𝐄[𝑆𝑟(𝑋𝑖)], (C.3)

13 We consider the ratio to be ∞, and thus not the infimum, if 𝐏[𝐶 (𝑥)] = 0.
21

Y



Performance Evaluation 163 (2024) 102377Y. Hong and Z. Scully

d

T

s

T

C

where the last equality follows from the fact that 𝐽𝑟 + 𝐽setup < 1 is an integer multiple of 1∕𝑘. Applying Lemma 6.3 and (C.3) to the
efinition of 𝑚Gtn

idle yields

𝑚Gtn
idle = ∫

∞

0

𝐄[(1 − 𝐽𝑟 − 𝐽setup)𝑊𝑟]

𝑟2(1 − 𝜌𝑟)
d𝑟

≤ 𝑘 − 1
𝑘(1 − 𝜌) ∫

∞

0

𝑘
∑

𝑖=1

𝐄[𝑆𝑟(𝑋𝑖)]
𝑟2

d𝑟

≤ 𝑘 − 1
𝑘(1 − 𝜌)

𝑘
∑

𝑖=1
𝐏[𝑋𝑖 ≠ ⊤]

=
(𝑘 − 1)𝐄[min{𝑁, 𝑘}]

𝑘(1 − 𝜌)
. (C.4)

The fact that we are considering the setup-non-idling version of Gittins (Section 3.2) implies that the number of non-idle servers
(i.e. busy or setting-up) is always at least min{𝑁, 𝑘}. So it suffices to bound the mean fraction of non-idle servers.

• The mean fraction of busy servers is 𝜌.
• The mean fraction of setting-up servers is at most (1 − 𝜌)1(𝐏[𝑈 > 0] > 0).

– If there are no setup times, it is clearly zero.
– If there are setup times, it is at most the fraction of non-busy servers, namely 1 − 𝜌.

his means
(𝑘 − 1)𝐄[min{𝑁, 𝑘}]

𝑘(1 − 𝜌)
≤ (𝑘 − 1)

𝜌
1 − 𝜌

+ (𝑘 − 1)1(𝐏[𝑈 > 0] > 0). (C.5)

Combining (C.4) and (C.5) yields (C.2), as desired. □

Lemma 8.8. In the G/G/𝑘/setup, for any server 𝑖 and all 𝑎 ≥ 0, we have

𝐄[𝑁 | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎] ≤ 𝜆𝑎 + 𝜆𝐴max + 𝑘 − 1. (8.2)

Proof. Observe that during setup, the number of jobs in the system can be divided into three sets: jobs present when setup started,
jobs triggered the setup and jobs that have arrived since setup started. Therefore, to bound 𝐄[𝑁 | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎], it is sufficient
to bound the total number of jobs in the three sets on the right. Just before the setup starts, there is at least one idle server, so there
are at most 𝑘−1 jobs present. And there is exactly 1 job that triggers the setup. Let 𝑁arv(𝑎) be the number of jobs that have arrived
ince 𝑎 unit of time ago, then the above argument shows that

𝐄[𝑁 | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎] ≤ 𝐄[𝑁arv(𝑎) | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎] + 𝑘. (C.6)

herefore, to prove the lemma, it is sufficient to show that for any 𝑎 ≥ 0,

𝐄[𝑁arv(𝑎) | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎] ≤ 𝜆𝑎 + 𝜆𝐴max − 1. (C.7)

Conditioned on 𝐽setup,𝑖 = 1 and 𝑈age,𝑖 = 𝑎, we know that server 𝑖 started setup process 𝑎 unit of time ago. Since the setup process
is triggered by an arrival, if we denote the sequence of interarrival times since the setup as 𝐴1, 𝐴2,… , 𝐴𝑛,… , then we have the
equation

𝐄
[𝑁arv(𝑎)+1

∑

𝑛=1
𝐴𝑛

|

|

|

|

|

|

𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎

]

= 𝐄[𝑎 + 𝐴res | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎]. (C.8)

The right-hand side of (C.8) can be upper bounded using Assumption 3.2 and the fact that 𝐴res is conditionally independent of the
past given the age:

𝐄[𝑎 + 𝐴res | 𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎] = 𝐄[𝑎 + 𝐴res | 𝑈age,𝑖 = 𝑎] ≤ 𝑎 + 𝐴max. (C.9)

To bound the left-hand side of (C.8), observe that 𝐽setup,𝑖 = 1 and 𝑈age,𝑖 = 𝑎 is equivalent to having a setup process start 𝑎 unit of
time ago and last until now, which is determined by the setup time and is independent of arrival process in the recent 𝑎 unit of
time, so we have

𝐄
[𝑁arv(𝑎)+1

∑

𝑛=1
𝐴𝑛

|

|

|

|

|

|

𝐽setup,𝑖 = 1, 𝑈age,𝑖 = 𝑎

]

= 𝐄
[𝑁arv(𝑎)+1

∑

𝑛=1
𝐴𝑛

]

. (C.10)

We further observe that 𝐴1, 𝐴2,… , 𝐴𝑛,… are a sequence of i.i.d. variables, and 𝑁arv + 1 is the smallest 𝑛 such that the partial sum
𝐴1 +⋯𝐴𝑛 ≥ 𝑎, by Wald’s equation,

𝐄
[𝑁arv(𝑎)+1

∑

𝑛=1
𝐴𝑛

]

= 𝐄[𝑁arv(𝑎) + 1]𝐄[𝐴] =
𝐄[𝑁arv(𝑎) + 1]

𝜆
. (C.11)

ombining (C.8)–(C.11), we get 𝐄[𝑁 (𝑎) + 1]∕𝜆 ≤ 𝑎 + 𝐴 , implying (C.7). □
22

arv max



Performance Evaluation 163 (2024) 102377Y. Hong and Z. Scully

D

o
w
s
s

𝐴

𝐴

w
r

w

L
t

T

D

r
(
w

i
s

Appendix D. Towards proving stability of the G/G/𝒌/setup under work-conserving scheduling policies

In this section, we sketch some initial ideas that we believe could be used to prove the stability of the G/G/𝑘/setup under Gittins
and other complex scheduling policies. For simplicity, we focus on the G/G/𝑘 under stationary scheduling policies.

.1. Partial proof sketch

Assume we are using some scheduling policy that makes the system a Markov process. Consider the embedded Markov process
f our system at arrival instants. We construct a Lyapunov function and show its negative drift for this embedded Markov process
hen the total work in the system or the largest job size is outside a bounded region. The negative drift of the Lyapunov function

hould imply the stability of the system after applying a certain version of the Foster–Lyapunov theorem, although there are still
ome technical obstacles, as we discuss in the next section.

At any time 𝑡 ≥ 0, we let 𝑊 (𝑡) be the total work in the system, let 𝑆big(𝑡) be the size of the largest job in the system, and let
res(𝑡) be the residual arrival time.

Fix large constants 𝛼 > 0 and 𝛽 > 0. Define the Lyapunov function 𝑉 = 𝑊 − 𝜌𝐴res + 𝑘(𝑆big − 𝛼)+. Note that at each arrival point,
res = 0 and 𝑉 ≥ 0. The continuous rate of change of 𝑉 is

�̇� = −(1 − 𝜌) + 1 − 𝐽 − 𝑘1{𝑆big > 𝛼}�̇�big(𝑡)

≤ −(1 − 𝜌) + 1 − 𝐽 − 1{𝑆big > 𝛼, 𝐽 < 1}

≤ −(1 − 𝜌) + (1 − 𝐽 )1{𝑆big ≤ 𝛼},

here in the first inequality, we use the fact that when 𝐽 < 1, all jobs are in service, so the size of the largest job decreases at a
ate 1∕𝑘; and in the second inequality, we use the fact that 1{𝐽 < 1} ≥ 1 − 𝐽 . The expected jump of 𝑉 at an arrival point is

𝛥𝑉 = 𝐄[𝑆 − 𝜌𝐴 + 𝑘max((𝑆big − 𝛼)+, (𝑆 − 𝛼)+) − 𝑘(𝑆big − 𝛼)+]

≤ 𝑘𝐄[(𝑆 − 𝛼)+],

here we have used the fact that 𝐄[𝑆] = 𝜌𝐄[𝐴]. Consider the change of 𝑉 between two consecutive arrivals:

𝐄[𝑉 (𝐴)] − 𝑉 (0) = ∫

𝐴

0
�̇� (𝑡) d𝑡 + 𝜆𝛥𝑉

≤ 𝐄
[

∫

𝐴

0

(

−(1 − 𝜌) + (1 − 𝐽 (𝑡))1{𝑆big(𝑡) ≤ 𝛼}
)

d𝑡
]

+ 𝜆𝑘𝐄
[

(𝑆 − 𝛼)+
]

= −𝜆(1 − 𝜌) + 𝐄
[

∫

𝐴

0
(1 − 𝐽 (𝑡))1{𝑆big(𝑡) ≤ 𝛼} d𝑡

]

+ 𝜆𝑘𝐄
[

(𝑆 − 𝛼)+
]

.

et  = [0, 𝑘(𝛼 + 𝛽) + 𝛽] × [0, 𝛼 + 𝛽], a compact region. We show that 𝐄[𝑉 (𝐴)] − 𝑉 (0) < 0 as long as (𝑊 (0), 𝑆big(0)) ∉ . There are
wo cases to consider:

• If 𝑆big(0) > 𝛼 + 𝛽, then 𝑆big(𝑡) > 𝛼 + 𝛽 − 𝑡. As a result,

𝐄[𝑉 (𝐴)] − 𝑉 (0) ≤ −𝜆(1 − 𝜌) + 𝐄[(𝐴 − 𝛽)+] + 𝜆𝑘𝐄[(𝑆 − 𝛼)+].

• If 𝑆big(0) ≤ 𝛼+𝛽 but 𝑊 (0) > 𝑘(𝛼+𝛽)+𝛽, then we have 𝑆big(𝑡) ≤ 𝛼+𝛽, and 𝑊 (𝑡) ≥ 𝑘(𝛼+𝛽)+𝛽− 𝑡. For 𝑡 ≤ 𝛽, 𝑁(𝑡) ≥ 𝑊 (𝑡)∕𝑆big ≥ 𝑘,
implying 𝐽 (𝑡) = 1. As a result,

𝐄[𝑉 (𝐴)] − 𝑉 (0) ≤ −𝜆(1 − 𝜌) + 𝐄[(𝐴 − 𝛽)+] + 𝜆𝑘𝐄[(𝑆 − 𝛼)+].

aking sufficiently large 𝛼 and 𝛽, we get 𝐄[𝑉 (𝐴)] − 𝑉 (0) < 0 in both cases.

.2. Remaining obstacles

We have given a Lyapunov function that has negative drift for the embedded Markov process when (𝑊 ,𝑆big) is outside a compact
egion . However, (𝑊 ,𝑆big) is not a complete state description of the Markov process. Moreover, the set of states such that
𝑊 ,𝑆big) ∈  might not be compact. We believe one can show that this set of states is petite [74], even if it is not compact,
hich will suffice. However, this seems to require reasoning about the details of the job state space.

Of course, so far we have just been focusing on the existence of a stationary distribution for the embedded process at arrival
nstants. Once this is established, we need to use it to construct a stationary distribution for the continuous-time process, but this
tep is more standard.
23
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