
Reducing Heavy-Traffic Response Time with Asymmetric
Dispatching

Runhan Xie
University of California, Berkeley

runhan_xie@berkeley.edu

Ziv Scully
Cornell University

zivscully@cornell.edu

1. INTRODUCTION
Reducing mean response time has always been a desirable
goal in queueing systems. If job sizes (a.k.a. service times)
are known to the scheduler, the policy that minimizes mean
response time of a single-server queue is SRPT (Shortest
Remaining Processing Time). This is true even for queues
that are part of a larger system, such as immediate-dispatch
systems where jobs are sent to one of multiple single-server
queues upon arrival.

Despite the optimality of SRPT, in practice, FCFS (First-
Come, First-Served) is very common, even when job sizes are
known or can be estimated well. Concerns about SRPT in-
clude added implementation complexity, potential overheads
due to preempting jobs, and possible unfairness towards large
jobs. In light of this, we ask:

With known job sizes, what routing policy mini-
mizes mean response time in immediate-dispatch
systems with FCFS queues? Can we match the
performance of SRPT queues?

Hyytiä et al. [8] identify this as an open problem, even in
very simple settings like the following:

• We dispatch to just two identical single-server queues,
both using FCFS.

• We have just two possible job sizes: short jobs of size a,
and long jobs of size b.

We take a first attempt towards solving this problem by
considering it with M/G arrivals in the heavy-traffic regime,
i.e. as the system load approaches capacity (see Section 2).

1.1 Baselines: LWL and SITA
A number of dispatching policies have been studied with
FCFS servers. Many of these are designed for limited infor-
mation settings, such as unknown job sizes or incomplete
information about each servers’ state. But with known job
sizes, it is reasonable to assume we know the amount of work
at each server at every moment in time. The two dispatch-
ing policies from the literature that make the most sense in
our setting are therefore LWL (Least-Work-Left) and SITA
(Size-Interval-Task-Assignment) [4].

• LWL dispatches each job to the server with least work
present when the job arrives.

• SITA splits job sizes into intervals, then dispatches jobs
in each size interval to a different server.

It is known that LWL and SITA can each sometimes out-
perform the other, including in heavy traffic [5]. Moreover,
neither matches the performance achievable using SRPT (see

Copyright is held by author/owner(s).

Fig. 2), suggesting there may be room to improve.
Other more complicated dispatching heuristics have been

proposed in recent work [6, 7]. They show promise in simula-
tion, but analyzing them theoretically, even in heavy traffic,
remains open. We thus focus on LWL and SITA as baselines.

1.2 Our Contribution
Our main contribution is a new dispatching policy called
CRAB (Careful-Routing-to-Achieve-Bound). CRAB outper-
forms both SITA and LWL in heavy traffic. In the case where
the load of the short jobs is less than half of the total ser-
vice capacity, it even matches resource-pooled SRPT, which
means it is heavy-traffic optimal (see Fig. 2).

In the rest of this abstract, we:
• Define our model and the CRAB policy (Section 2).
• Compare the performance of CRAB to LWL, SITA,

and resource-pooled SRPT (Section 3).
• Outline how we analyze CRAB’s performance, includ-

ing the obstacles we encounter and the ideas we use to
overcome them (Section 4).

2. SYSTEM MODEL
We consider a queueing system with two identical FCFS
servers, each having processing rate 1/2 (i.e. a job of size s
has processing time 2s) and keeping its own queue. We have
M/G arrivals: jobs arrive as a Poisson process with rate λ,
and there is a two-point job size distribution

S =

{
a w.p. qa

b w.p. qb,

where a < b. We dispatch jobs immediately upon arrival. Let

ρa = λaqa and ρb = λbqb

be the loads due short and long jobs, respectively, and let
ρ = ρa + ρb be the total load. We focus on the heavy-traffic
regime λ → 1/E[S], which we denote by ρ ↑ 1 for short. We
further assume that ρa ̸= ρb for technical reasons, but we
believe this can be relaxed.

We represent the system’s state as a vector (Wl,Ws), where
each element is the amount of work at one of the queues.
The subscripts stand for “long” and “short”, respectively, as
we discuss when defining CRAB below. Abusing notation
slightly, we write (Wl,Ws) to refer to both a generic system
state and the stationary distribution of the system state.
The CRAB dispatching policy works by designating one

server to maintain less average work in steady state. We will
henceforth refer to this server as the short server (work Ws)
and the other one as the long server (work Wl). CRAB has a

Wl

Ws

c(ρ)

2c(ρ)

all jobs to Ws

short jobs to Ws, long jobs to Wl

all jobs to Wl

Figure 1: Illustration of the CRAB policy.

single threshold parameter, denoted c(ρ). Roughly speaking,
CRAB tries to keep Ws between c(ρ) and 2c(ρ). It does so
by as follows, as illustrated in Fig. 1.

• If Ws ⩽ c(ρ), all jobs are dispatched to the short server.
• If c < Ws ⩽ 2c(ρ), only short jobs are dispatched to

the short server queue. All long jobs are dispatched to
the long server queue.

• If Ws > 2c(ρ), all jobs are dispatched to the long server
queue until Ws drops below 2c(ρ).

3. CRAB VS. LWL, SITA, AND SRPT
In this section, we compare the heavy-traffic performance
of CRAB to that of several other policies. Throughout this
section, we write E[Tπ] for the mean response time, namely
the average amount of time between a job’s arrival and
departure, under policy π.

We begin by discussing LWL. It is known that for our job
size distribution S the mean response time of LWL, denoted
E[TLWL] (and more generally E[Tπ] for policy π) scales as

E[TLWL] ∼
E[S2]
2E[S]

1− ρ
, that is, lim

ρ↑1
(1− ρ)E[TLWL] =

E[S2]

2E[S]
.

We will use LWL as a baseline against which we compare
other policies. As such, we define the heavy-traffic constant
of policy π to be

Kπ = lim
ρ↑1

E[Tπ]

E[TLWL]
, so E[Tπ] ∼ KπE[TLWL].

Our main result characterizes CRAB’s heavy-traffic constant.

Theorem 3.1. In the ρ ↑ 1 limit, the CRAB policy with
threshold c(ρ) such that ω

(
log 1

1−ρ

)
< c(ρ) < o

(
1

1−ρ

)
has

mean response time E[TCRAB] ∼ KCRABE[TLWL], where

KCRAB = max

{
E[S]
b

, 2− E[S]
a

}
.

We compare the heavy-traffic constant of CRAB to that of
several other policies in Fig. 2. These include LWL, SITA,1

and resource-pooled SRPT. This last policy is SRPT in a
single M/G/1 with processing rate 1 (as opposed to our two
rate-1/2 servers), without any dispatching.2 One can straight-
forwardly show that with this resource pooling, E[TSRPT] is
1SITA is traditionally defined using a strict size threshold
[4]. However, because we have only two job sizes, a strict
threshold can result in one server becoming overloaded. As
such, when ρa > ρb, we route a fraction of short jobs to the
large jobs’ server, and vice versa when ρa < ρb. We choose
the exact fractions to minimize KSITA, which turns out to
very slightly bias the load towards the short jobs’ server.
2In our setting, one can match the heavy-traffic performance
of resource-pooled SRPT by dispatching to two SRPT servers
with processing speed 1/2 [1].

(a) b/a = 4 (b) b/a = 16

0.0 0.25 0.5 0.75 1.0
ρa/ρ0.0

0.5

1.0

1.5

2.0
Kπ

0.0 0.25 0.5 0.75 1.0
ρa/ρ0.0

0.5

1.0

1.5

2.0
Kπ

LWL SITA SRPT CRAB

Figure 2: Comparing the heavy-traffic performance
of CRAB against that of LWL, SITA, and (resource-
pooled) SRPT. For each policy π, we show Kπ, the
number such that E[Tπ] ∼ KπE[TLWL] as ρ ↑ 1, as a
function of ρa/ρ, the fraction of load consisting of
small jobs, for two values of a/b, the ratio of large jobs’
size to small jobs’ size. CRAB always outperforms
LWL and SITA, matching the lower bound of SRPT
when ρa/ρ < 1/2.

a lower bound on the mean response time of any dispatching
policy in our FCFS setting. Remarkably, CRAB matches
SRPT’s heavy-traffic performance when ρa < ρb.

3.1 Why CRAB Outperforms LWL and SITA
As has been previously observed by Harchol-Balter et al. [5],
neither LWL nor SITA consistently outperforms the other.
This is because the policies have different pros and cons.

• LWL actively regulates the system state, ensuring both
servers have roughly equal amounts of work. However,
that means both servers have a large amount of work,
so all jobs have large response time.

• SITA dispatches asymmetrically, sending short jobs to
a server which has less work on average. However, it
does not actively regulate the system state, so short
jobs can still experience large response times.

CRAB improves upon LWL and SITA by combining their
pros. Like LWL, CRAB actively regulates the system state.
But like SITA, it keeps one of the servers shorter than the
other, allowing it to give short jobs a “fast path” with much
lower response time. As we outline in Section 4, jobs sent
to the short server have response time O(c(ρ)), which is
negligible in heavy traffic as long as c(ρ) < o

(
1

1−ρ

)
.

We conclude this discussion by comparing CRAB to SRPT.

In our system, KSRPT = E[S]
b

. This matches KCRAB when
ρa < ρb, in which case CRAB is heavy-traffic optimal. The
question remains whether CRAB is also heavy-traffic optimal
when ρa > ρb. It seems difficult to match SRPT in this case,
because we cannot send all the short jobs to one server while
remaining stable in heavy traffic. But in heavy traffic, CRAB
sends the minimum possible fraction of short jobs to the long
server, even when ρa > ρb. We therefore conjecture CRAB
is heavy-traffic optimal when ρa > ρb.

4. OBSTACLES TO FORMAL ANALYSIS
4.1 Stability
It is not immediately clear whether CRAB stabilizes the
system, i.e. whether a stationary distribution exists. There is
good reason to worry: if the threshold c(ρ) is too small, e.g.
if c(ρ) = 0, then the system can be unstable even if ρ < 1.

Wl

Ws

c(ρ)

2c(ρ)

(a) ρa < 1/2

Wl

Ws

c(ρ)

2c(ρ)

(b) ρa > 1/2

Figure 3: Average drift of the system state under
CRAB in the ρa < 1/2 and ρa > 1/2 regimes. State
space collapse occurs around the thick dashed lines.

How do we find a value of c(ρ) that ensures stability?
Usual approaches to proving stability, such as fluid limits
and Foster-Lyapunov conditions, exploit the drift structure
of the system. But as shown in Fig. 3, CRAB has complicated
drift properties.

• There are discontinuities at Ws = c(ρ) and Ws = 2c(ρ),
complicating the fluid limit approach.

• The long server is overloaded in some regions and un-
derloaded in others, making it hard to find a Lyapunov
function with negative drift outside a compact region.

To solve this issue, we used a hybrid approach. The key
observation in our approach is that Ws is not impacted by
Wl. We thus start by showing stability of Ws alone, for which
standard Lyapunov functions suffice. With Ws in stationarity,
the arrivals to the long server become a stationary process
(albeit without i.i.d. interarrival times and job sizes). Loynes’s
construction for G/G/1 queues [9] therefore implies stability
of Wl, provided the short server does not let through too
much load.3 Showing this is part of the next challenge.

4.2 State-Space Collapse of the Short Server
As shown in Fig. 3, Ws drifts towards the threshold c(ρ) if
ρa < 1/2 and towards the threshold 2c(ρ) if ρa > 1/2. As a
result, we expect Ws to concentrate around the correspond-
ing threshold with high probability. Specifically, we should
expect state-space collapse, which is when the probability of
Ws being further than distance d from the threshold decays
exponentially in d. State-space collapse is important because
it implies that the short server is rarely idle, which is impor-
tant for both proving stability (Section 4.1) and bounding
response time (Section 4.3).

The main theoretical tool used to prove state-space collapse
is a generic result of Eryilmaz and Srikant [2, Lemma 1].
Roughly speaking, it says that state space collapse to a
region occurs if the system drifts towards that region on
average and has well controlled jumps. The result has been
used for numerous heavy-traffic analyses. However, both
the result and its uses are all for discrete-time systems,
whereas we study a continuous-time system. While we could
in principle consider an embedded discrete-time process, this
quickly becomes cumbersome, particularly when verifying
that jumps are well controlled.

Instead, we establish state-space collapse by proving a new
generic continuous-time state-space collapse result. It works
similarly to the result of Eryilmaz and Srikant [2], requiring
average drift towards a region and well controlled jumps. We

3An alternative idea is to show that Wl satisfies a Foster-
Lyapunov condition “on average” when Ws is in stationarity.
Foss et al. [3] show how to do this, but in discrete time, so
their results do not immediately apply to our setting.

prove the result by applying Miyazawa’s rate conservation
law from Palm calculus [10].

4.3 Response Time Analysis
Under FCFS, a job’s response time is the amount of work at
the queue to which it is dispatched, so analyzing response
time amounts to analyzing the joint distribution of (Wl,Ws).

State-space collapse implies that Ws = Θ(c(ρ)) < o
(

1
1−ρ

)
with high probability. In particular, the short server is rarely
idle. This means the total work is similar to that of a resource-
pooled M/G/1 queue, so E[Wl+Ws] = Θ

(
1

1−ρ

)
. This means

Wl dominates Ws in heavy traffic, so only jobs dispatched
to the long server contribute to the heavy-traffic constant
KCRAB (Section 3).

By the above discussion, in heavy traffic, a job’s response
time essentially boils down to two factors:

• the work at the long server Wl when it arrives, and
• whether it gets dispatched to the long server.

The main obstacle here is that these two factors are not inde-
pendent! Specifically, both are dependent on Ws. We resolve
this by showing that they are approximately independent.
Formally, we show that if ρa < 1/2,∣∣E[Wl | Ws < c(ρ)]− E[Wl | Ws ⩾ c(ρ)]

∣∣ ⩽ O(1), (1)

and similarly for threshold 2c(ρ) if ρa > 1/2. This implies
that all jobs dispatched to the long server see expected work
approximately E[Wl].
Why should we expect (1) to hold? The key observation

is that Ws cycles relatively rapidly between being above or
below the threshold c(ρ). Because the cycles are short, the
change in Wl during a cycle is small, so the two conditional
expectations in (1) cannot be too far apart. To formalize this
intuition, we use the Palm inversion formula.

References
[1] D. G. Down and R. Wu. Multi-layered round robin routing

for parallel servers. Queueing Systems, 53:177–188, 2006.
[2] A. Eryilmaz and R. Srikant. Asymptotically tight steady-state

queue length bounds implied by drift conditions. Queueing
Systems, 72:311–359, 2012.

[3] S. Foss, S. Shneer, and A. Tyurlikov. Stability of a markov-
modulated markov chain, with application to a wireless net-
work governed by two protocols. Stochastic Systems, 2(1):
208–231, 2013.

[4] M. Harchol-Balter, M. E. Crovella, and C. D. Murta. On
choosing a task assignment policy for a distributed server
system. Journal of Parallel and Distributed Computing, 59
(2):204–228, 1999.

[5] M. Harchol-Balter, A. Scheller-Wolf, and A. R. Young. Sur-
prising results on task assignment in server farms with high-
variability workloads. In Proceedings of the eleventh inter-
national joint conference on Measurement and modeling of
computer systems, pages 287–298, 2009.

[6] E. Hyytiä and R. Righter. STAR and RATS: Multi-level
dispatching policies. In 2020 32nd International Teletraffic
Congress (ITC 32), pages 81–89. IEEE, 2020.

[7] E. Hyytiä and R. Righter. On sequential dispatching policies.
In 2022 32nd International Telecommunication Networks and
Applications Conference (ITNAC), pages 1–6. IEEE, 2022.

[8] E. Hyytiä, P. Jacko, and R. Righter. Routing with too much
information? Queueing Systems, 100(3-4):441–443, 2022.

[9] R. M. Loynes. The stability of a queue with non-independent
inter-arrival and service times. In Mathematical Proceedings
of the Cambridge Philosophical Society, volume 58, pages
497–520. Cambridge University Press, 1962.

[10] M. Miyazawa. Rate conservation laws: a survey. Queueing
Systems, 15:1–58, 1994.

	Introduction
	Baselines: LWL and SITA
	Our Contribution

	System Model
	CRAB vs. LWL, SITA, and SRPT
	Why CRAB Outperforms LWL and SITA

	Obstacles to Formal Analysis
	Stability
	State-Space Collapse of the Short Server
	Response Time Analysis

