Performance of the Gittins Policy in the G/G/1 and G/G/k,
With and Without Setup Times

Yige Hong*
Carnegie Mellon University
yigeh@andrew.cmu.edu

1. INTRODUCTION

We consider the classic problem of preemptively schedul-
ing jobs of unknown size (a.k.a. service time) in a queue
to minimize mean number-in-system, or equivalently mean
response time (a.k.a. sojourn time). We know how to solve
this problem in an M/G/1, provided the job size distribution
is known to the scheduler. In this case, the optimal policy is
the Gittins policy (a.k.a. Gittins index policy) [1].

The Gittins policy works by assigning each job a numeric
rank, or priority level, then always serving the job of best
rank. A job’s rank depends on two things: (1) the overall
size distribution; and (2) the job’s age, namely the amount
of time the job has been served so far.

While Gittins solves the scheduling problem in the M/G/1
case, plenty of systems have features that require models
beyond the M/G/1 to faithfully capture, including:

(a) Multiple servers, e.g. the M/G/k with k > 2.

(b) Non-Poisson arrival processes, e.g. the G/G/1."

(¢) Periods of server unavailability, e.g. setup time models.
Optimal scheduling is an open problem in all of these cases.
While one may still use Gittins in these cases, e.g. by serving
the k jobs of k best ranks, Gittins is known to be suboptimal
for (a) and (b), and it is unknown whether Gittins is optimal
for (c). Combining multiple features, as in the G/G/k/setup
(G/G/k with setup times), makes optimal scheduling still
more challenging. Nevertheless, we might hope that Gittins
is a good heuristic, even if it is suboptimal. We therefore ask:

How good is Gittins’s mean number-in-system in
systems with features (a), (b), and (c)?

1.1 Recent Progress on Gittins in the M/G/k

Only feature (a) has been addressed in full generality in prior
work [2, 6, 8|. Specifically, it is known that in the M/G/k,
the additive suboptimality gap of Gittins is bounded by [6]?

E[N]™ —inf E[N]™ < C(k — 1) log : (1.1)
m —p
Let us briefly explain the notation used in (1.1):

*Supported by NSF grant no. ECCS-2145713.

"Research done in part while visiting the Simons Institute
for Theoretical Computer Science at UC Berkeley, and in
part while a FODSI postdoc at Harvard and MIT supported
by NSF grant nos. DMS-2023528 and DMS-2022448.
!Throughout, the G/G arrival notation refers to i.i.d. inter-
arrival and service times (a.k.a. GI/GI arrivals).
2Throughout, log is the natural logarithm.

Copyright is held by author/owner(s).

Ziv Scullyt
Cornell University
zivscully@cornell.edu

e E[N]™ is to the mean number-in-system under policy 7;

e k is the number of servers;

e p €[0,1) is the load (a.k.a. utilization), namely the

average fraction of servers that are busy; and

o C'= ﬁm /2 3.775 is a constant.
Under mild conditions (8], the right-hand side is dominated
by infr E[N]™ as p — 1. That is, as the M/G/k gets busier
and busier, Gittins’s suboptimality gap becomes negligible.
Gittins is thus considered heavy-traffic optimal in the M/G/k.

The above progress on analyzing Gittins in the multiserver

M/G/k is certainly promising for handling (a). But key steps
of the analysis rely on Poisson arrivals and constant server
availability, leaving (b) and (c) out of reach (Section 4).

1.2 Our Contribution

We give the first analysis of Gittins that handles any combi-
nation of (a) multiple servers, (b) G/G arrivals, and (c) setup
times. Our main G/G/k/setup result (Theorem 3.1) states

E[N]%" —inf E[N]” < L) + L) + Ly (12)

where each term on the right-hand side is a “suboptimality
loss” caused by the features in the subscript. For example, in
the M/G/k, the gap is at most £(,). It turns out £(,) is the
right-hand side of (1.1), so (1.2) strictly generalizes (1.1).
Remarkably, both £,y and £(a)¢(c) are uniformly bounded
at all loads. This implies Gittins is heavy-traffic optimal in
the G/G/k/setup under lenient assumptions (Theorem 3.2).
Note also that (1.2) has no £(.) term, implying another new
result: Gittins is optimal in the M/G/1/setup (Corollary 3.3).
While we focus for concreteness on the case where job
sizes are unknown, our techniques and results generalize
to cases where job sizes are known or partially known. In
particular, in the known job size case, Gittins reduces to
SRPT (Shortest Remaining Processing Time), yielding the
first mean number-in-system bounds on SRPT with G/G
arrivals. See the full version of this paper for details [3].

1.3 Main Challenge: G/G Arrivals

Analyzing E[N]" is not easy. Until 2018, even the M/G/1
case was open [7]. Since then, there has been much progress
understanding Gittins under M/G arrivals [2, 6, 8].

But under G/G arrivals, we know little beyond the fact
that Gittins is suboptimal in the G/G/1 [1]. This is likely
because G/G arrivals are significantly harder to work with
than M/G arrivals. For example, we can no longer use tools
like PASTA [9] or analyses based on M/G/1 busy periods [7].

We introduce a new work decomposition law for working
with G/G arrivals. It allows us to generalize certain prior
bounds for M/G arrivals to G/G arrivals (Section 4).

2. MODEL

We consider a preempt-resume G/G/k with a single central
queue and k identical servers. The system experiences G/G
arrivals (a.k.a. GI/GI arrivals). Jobs arrive one-by-one with
i.i.d. interarrival times drawn from distribution A; each job
has an i.i.d. size, or service requirement, drawn from distribu-
tion S; and interarrival times and job sizes are independent.
The M/G/k is the special case where A is exponential.

At any moment of time, a job in the system can be served
by one server. Any jobs not in service wait in the queue.
Once a job’s service is finished, it departs. We follow the
convention that each of the k servers has service rate 1/k.
This means a job of size S requires kS time in service to
finish. This convention gives all systems we study the same
maximum total service rate, namely k- 1/k = 1, and thereby
the same stability condition.

We write A = 1/E[A] for the arrival rate and p = AE[S]
for the system’s load, or utilization. One can think of p as the
average fraction of servers that are busy. We assume p < 1,
which is necessary for stability. However, it has never been
proven that p < 1 is sufficient for stability in the G/G/k
under policies like Gittins. Stability is not trivial to show
because the G/G/k may lack the regenerative busy period
structure of the G/G/1 [5]. Preemptive scheduling and setup
times only further complicate matters. We simply assume
the system is stable for p < 1, which we conjecture is indeed
the case, but leave proving it for future work.

We make one additional assumption on interarrival times A.

Assumption 2.1. There exist Amin, Amax € R>0 such that
for all a > 0,

E[A —a ‘ A > a] S [Atnin7 Amax]-

That is, no matter when the last arrival was, the expected
time until the next arrival is between Amin and Amax-.

Specifically, the quantity A(Amax —
results. We can think of it as measuring “how non-Poisson
arrival times are. For instance, when A is exponential, one
may use Amin = Amax = 1/, 80 A(Amax — Amin) = 0. More
generally, if A has hazard rate bounded in [Amin, Amax], One
may use Amin = 1/Amax and Amax = 1/Amin.

Many interarrival distributions A satisfy Assumption 2.1,
such as all phase-type distributions. One can think of As-
sumption 2.1 as a relaxation of the well-known New Better
than Used in Expectation (NBUE) property, which is the spe-
cial case where Amax = E[A]. The main distributions ruled
out by Assumption 2.1 are various classes of heavy-tailed
distributions, e.g. power-law tails.

Amin) appears in our
bk

2.1 Scheduling and Performance Objective

The system’s scheduling policy determines which subset of
jobs receive service at every moment in time. Job sizes and
interarrival times are unknown to the scheduler, but the job
size distribution S is known. The full version of this paper
also considers known and partially known sizes [3].

We consider only non-idling policies, meaning those that
never unnecessarily leave a server idle (see also Section 2.2).
We discuss idling policies in the full version of this paper [3].

We focus on minimizing the mean number-in-system, i.e.
the mean number of in the system. We denote the mean
number-in-system under policy = by E[N]™, omitting the
subscript if there is no ambiguity. By Little’s law, minimizing

E[N] is equivalent to minimizing mean response time, the
average amount of time between a job’s arrival and departure.

The main policy we focus on is the Gittins policy (abbre-
viated Gtn). Based on the job size distribution S, Gittins
constructs a rank function rankg : R>0 — R>0. When a
job’s age® (a.k.a. attained service) is x, the Gittins policy
assigns it rank, or priority level, rankgin (). Lower rank de-
notes better priority, so the Gittins policy always serves the
job or jobs of least rank, breaking ties arbitrarily.

The most important fact about the Gittins policy is that
thanks to the way rankgtn is defined, Gittins minimizes
E[N] in the M/G/1 among all nonanticipating policies. But
beyond this fact, the details of how rankgt, is defined are
not essential to this work. We thus omit them for brevity,
referring the curious reader to the literature [1, §].

2.2 Setup Times

We consider models in which servers require setup times to
transition from idle to busy. We denote this with an extra
“/setup”, as in G/G/k/setup. Whenever a server switches
from idle to busy, it must first complete an i.i.d. amount of
setup work, distributed as U. Like work from jobs, servers
complete setup work at rate 1/k, so setup work U results
in setup time kU. Setup work amounts are independent of
interarrival times and job sizes.

For the purposes of stating our results in a unified manner,
we consider the G/G/k without setup times to be the special
case of the G/G/k/setup where P[U = 0] = 1.

In multiserver systems, there are nontrivial modeling and
design choices to make about setup times. To simplify our
presentation, we assume the following specific model of setup
times, but the full version of this paper considers a broader
class of setup time models [3].

In our model, each server can be in one of three states:

e Setting-up, i.e. doing setup work.

e Busy, i.e. serving a job.

e [dle, i.e. neither serving a job nor doing setup work.

Servers transition between states as follows:

e When a setting-up server finishes its setup work, it
becomes busy.

e When a busy server is no longer assigned a job to serve,
e.g. due to having just completed a job, it becomes idle.

— If a setting-up server becomes busy but is not im-
mediately assigned a job, it immediately becomes
idle, effectively skipping the busy state.

e When an arrival causes the number of jobs in the queue
to strictly exceed the number of idle servers, an idle
server becomes setting-up.

In the context of setup times, non-idling means only letting
a server transition to idle if the queue is empty.

3. MAIN RESULTS

As in Section 1, we can describe a G/G/k/setup system by
whether it has (a) multiple servers, (b) non-Poisson arrivals,
and (c) setup times. Our main result bounds the suboptimal-
ity gap in terms of the features it has.

Theorem 3.1. In the G/G/k/setup, under Assumption 2.1,
the suboptimality gap of Gittins is bounded by

E[N]" —inf E[N]™ < L) + L) + e

3Specifically, in the G/C/k, a job’s age increases at rate 1/k
during service, staying constant while waiting in the queue.

where
1
by = k—l)logfp,
e(b = max - Amln),
Claye(e) = Il(k > 2 and P[U > 0] > 0)

X (2(k -1)+ A(Amax +];];[[?12]}))

Note that £(,) is nonzero only if feature (a) is present, and
similarly for £,y and £(.)g(c). The suboptimality gap is often
negligible in heavy traffic, and it is zero in the M/G/1/setup.

Theorem 3.2. Consider a G/G/k/setup, and suppose that
either S or A is not deterministic. Under Assumption 2.1,
if k=1 or E[S*(logS)T] < oo, then*

) E[N]th

lim ———— =1.

»1 inf, BE[N]™
Corollary 3.3. In the M/G/1/setup, the Gittins policy
minimizes E[N].

4. OBSTACLES AND KEY IDEAS

This section discusses how we prove Theorems 3.1 and 3.2.
We use the same overall strategy as prior work on Gittins
in the M/G/k [2, 6, 8], but applying it to the G/G/k/setup
presents several obstacles. We discuss two of the biggest:
e Bounding mean work under G/G arrivals (Section 4.1).
e Heavy-traffic analysis under G/G arrivals (Section 4.2).

4.1 Work Decomposition with G/G Arrivals

Prior work analyzes the performance of the Gittins policy
using the following identity, known as WINE (Work Integral
Number Equality) [6]:

BN = [TEWO . (4.1)

r2

WINE expresses mean number-in-system in terms of mean r-
work E[W (r)]. A system’s r-work is the total service required
to serve all jobs in the system until they all either complete
or reach rank greater than r, as determined by rankgin
(Section 2.1). For example, ordinary work is the r = co case.

Of course, to use WINE (4.1), we must compute mean
r-work. Prior work on M/G arrivals typically does so using a
work decomposition law. In the context of mean r-work, this
is a result of the form

E[W(r)]™ = E[W (r)]W /™ L A7 (7). (4.2)

Above, E[W (r)]M/G/1-min i the minimum mean r-work pos-
sible in an M/G/1,”> and A™(r) quantifies the degree to which
7 prioritizes r-work over other work. Combining (4.2) with
WINE (4.1), bounding E[N]" reduces to bounding A™(r).
We would like to take the same approach for G/G arrivals.
WINE (4.1) already holds under G/G arrivals. However,
nearly all work decomposition laws like (4.2) in the litera-
ture require M/G arrivals [6, Section 2.4.1]. For instance,
Miyazawa [4] uses Palm calculus to prove work decomposition

By p — 1, we mean a limit in which interarrival times are
scaled uniformly while job sizes remain fixed.

5The comparison is meaningful even if 7 is multiserver policy,
because we normalize total service rate to 1 (Section 2).

laws for M/G/1 systems with vacations, setup times, and
similar features. But the proofs rely crucially on PASTA [9],
the fact that Poisson arrivals observe a steady-state system.

We prove a new work decomposition law without using
PASTA, so it holds for G/G arrivals. It implies

E[W (r)]™ < E[W (r)] /910 4 A7(r) (4.3)
+)\(Amax -

where A7 (r) is essentially the same as it is in (4.2). The bound
degrades gracefully as A deviates further from an exponential
distribution, thanks to the A(Amax — Amin) factor.
Combining (4.3) with WINE (4.1) and bounds on A%t (r)
from prior work on the M/G/k [6] proves Theorem 3.1 for
systems without setup times. To complete the proof, we prove
new bounds on AS*®(r) under setup times. This additional
challenge is mostly orthogonal to the issue of G/G arrivals.

4.2 Heavy-Traffic Analysis with G/G Arrivals

To show prove Theorem 3.2 using Theorem 3.1, we need to
show that £,y + L) + L(a)&(c) is small relative to inf, E[N]"
as p — 1. Given that the former is @(log - -) we need to

show that in the G/G/k/setup, inf, E[N]™ > w(log =)

It actually suffices to prove such a bound for SRPT in the
G/G/1. This is because removing setup times, merging the
servers into one fast server, and revealing job sizes to the
scheduler can only reduce E[N]. However, while the heavy-
traffic performance of SRPT has been characterized in the
M/G/1, its G/G/1 performance is open.

By combining WINE (4.1) with our new work decomposi-
tion law for G/G arrivals (4.3), we were able to show that
SRPT’s heavy-traffic performance in the G/G/1 is only a
constant factor away from its M/G/1 performance.

Amin)E[r-work of a new arrival],

Theorem 4.1. Under Assumption 2.1, letting c3 = \éa[;[]‘g] A
e E[N]G/C/1-SRPT _ 4
p—1 E[N]M/G/I-SRPT A +1°

References

[1] J. C. Gittins, K. D. Glazebrook, and R. R. Weber. Multi-
Armed Bandit Allocation Indices. Wiley, Chichester, UK,
second edition, 2011.

[2] I. Grosof, Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf.
Optimal scheduling in the multiserver-job model under heavy
traffic. Proc. ACM Meas. Anal. Comput. Syst., 6(3):1-32, Dec.
2022.

[3] Y. Hong and Z. Scully. Performance of the Gittins policy in
the G/G/1 and G/G/k, with and without setup times, Apr.
2023. URL http://arxiv.org/abs/2304.13231.

[4] M. Miyazawa. Decomposition formulas for single server queues
with vacations : A unified approach by the rate conservation
law. Commun. Statist.—Stochastic Models, 10(2):389-413,
Jan. 1994.

[5] E. Morozov and B. Steyaert. Stability Analysis of Regenerative
Queueing Models: Mathematical Methods and Applications.
Springer, Cham, Switzerland, 2021.

[6] Z. Scully. A New Toolboz for Scheduling Theory. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, Aug. 2022.

[7] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. SOAP:
One clean analysis of all age-based scheduling policies. Proc.
ACM Meas. Anal. Comput. Syst., 2(1), Apr. 2018.

[8] Z. Scully, I. Grosof, and M. Harchol-Balter. The Gittins
policy is nearly optimal in the M/G/k under extremely general
conditions. Proc. ACM Meas. Anal. Comput. Syst., 4(3), Nov.
2020.

[9] R. W. Wolff. Poisson arrivals see time averages. Oper. Res.,
30(2):223-231, 1982.

http://arxiv.org/abs/2304.13231

	Introduction
	Recent Progress on Gittins in the M/G/k
	Our Contribution
	Main Challenge: G/G Arrivals

	Model
	Scheduling and Performance Objective
	Setup Times

	Main Results
	Obstacles and Key Ideas
	Work Decomposition with G/G Arrivals
	Heavy-Traffic Analysis with G/G Arrivals

