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ABSTRACT

Recent progress in queueing theory has made it possible
to analyze the mean response time of multiserver queueing
systems under advanced scheduling policies. However, this
progress has so far been limited to the metric of mean re-
sponse time. In practice, there are a wide variety of other
metrics that can be more important. One such metric is
mean slowdown, which is the average ratio between a job’s
response time and its size. While it is known that the “RS”
policy minimizes mean slowdown in the single-server M/G/1,
the problem is open for multiserver systems, including the
M/G/k and load-balancing systems.

In this work, we analyze RS scheduling in the M/G/k and
an immediate dispatch model with “M/G” arrivals, pairing
RS with a carefully designed class of dispatching policies
in the latter case. We prove a universal additive bound on
the gap between multiserver mean slowdown and RS’s mean
slowdown in an M/G/1 with the same total service capacity.
The bound depends on the number of servers but not the
load or job size distribution. The bound implies that RS is a
constant-factor approximation for mean slowdown.

Our mean slowdown bound also implies heavy-traffic op-
timality if the job size distribution has (roughly speaking)
finite third moment. Proving this result requires analyzing
the heavy-traffic behavior of RS’s mean slowdown in the
M/G/1, a result of independent interest.

1. INTRODUCTION

There is a vast literature in queueing theory on designing
scheduling and dispatching policies to lower mean response
time (a.k.a. sojourn time, latency) in queueing systems. In
particular, recent years have seen a flurry of results bounding
the performance of policies like SRPT (Shortest Remain-
ing Processing Time) in multiserver systems. For instance,
Grosof et al. [2] show that if the job size distribution has
(roughly speaking) finite variance, then SRPT minimizes
mean response time in the M/G/k in heavy traffic (Sec-
tion 2). Similarly, in load-balancing systems with “M/G”
arrivals, Grosof et al. [3] again obtain a heavy-traffic op-
timality result by pairing SRPT with a carefully designed
dispatching policy that obeys a “guardrail” constraint (Sec-
tion 2.3). Other results apply to systems with unknown job
sizes [6, 7]. The overall theme of these results is that policies
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that minimize mean response time in the M/G/1 also perform
well 1 multiserver systems.

Unfortunately, this recent progress in bounding multiserver
performance of scheduling policies has so far been limited
to the metric of mean response time. A metric that can be
more important in practice is mean slowdown, namely the
mean ratio between a job’s response time and its size (a.k.a
service requirement). The motivation for slowdown is that,
for example, a user would be more upset if a 1-second job
were delayed for 10 seconds than if a 100-second job were
delayed for 10 seconds.

The policy that minimizes mean slowdown in the M/G/1
is the “RS” policy [4] (Section 2.2). We ask: does RS have
low mean slowdown in multiserver systems? This question is
largely open. To the best of our knowledge, the most related
prior work is that of Hyytid et al. [4]. They design a new
heuristic dispatching policy for minimizing mean slowdown
in an immediate-dispatch model that uses RS scheduling at
each server. However, the only theoretical guarantee on their
heuristic is that it outperforms random dispatching.

1.1 Contributions

We give the first theoretical mean slowdown bounds for RS
in multiserver queueing systems. We study the M/G/k and
an immediate-dispatch model we call the M/G/k/dispatch,
pairing RS with a carefully designed dispatching policy in the
latter case. We compare the performance of each multiserver
system to an M/G/1 with the same total service capacity
(Section 2), proving the following results for both systems.

e (Theorem 3.1) Under RS, the mean slowdown gap
between the M/G/k and the M/G/1 is upper bounded
by 7k, namely a constant times the number of servers.
We obtain a similar bound, albeit somewhat weaker,
for the M/G/k/dispatch.

e (Corollary 3.2) RS is a constant-factor approximation
for mean slowdown in both multiserver systems.

o (Theorem 3.3) If the job size distribution S satisfies
E[S?] < oo, then RS is heavy-traffic optimal in both
multiserver systems.

2. PRELIMINARIES

We consider two different multiserver systems in this work.
Both systems have Poisson arrivals at rate A, a general job
size distribution S, and k servers.

e The first system is the M/G/k queue. This is a central-
queue model: there is only one queue, and jobs can be
sent between queue and any of the servers at any time.

e The second system is a load-balancing system with k
servers and an “M/G” arrival process, which we call



the M/G/k/dispatch. This is an immediate-dispatch

model: each server has its own queue, and every job

must be irrevocably assigned to a queue upon arrival.
In both settings, we use the convention that each server runs
at speed 1/k, meaning a job of size s takes s/k time to serve.
This means the total service capacity of the system is 1 for
all values of k.

We define load as p = AE[S] and assume p < 1 for stability.
We can interpret p as the average fraction of servers that
are busy. The heavy-traffic limit, written as p — 1, is the
limit as the arrival rate A approaches 1/E[S] while the size
distribution S remains fixed.

We assume a preempt-resume model in which jobs may be
preempted at any time with no delay or loss of work. Under
this assumption, an M/G/1 is strictly more powerful than the
M/G/k or M/G/k/dispatch for any k > 2. This is because the
M/G/1 could simulate either multiserver system by sharing
the processor between up to k jobs. Because the M/G/1
is more powerful than the multiserver systems, our results
analyze multiserver performance relative to the M/G/1. In
particular, optimal multiserver performance cannot be better
than optimal M/G/1 performance.

2.1 Objective: Mean Slowdown

In this work, we study the problem of minimizing mean
slowdown. A single job’s slowdown is the ratio between its
response time and its size, where response time is the amount
of time between the job’s arrival and departure. A job with
response time ¢ and size s has slowdown z = t/s. We write
Z for the equilibrium distribution of jobs’ slowdowns. Our
goal is to minimize E[Z].

Our results compare mean slowdown in multiserver sys-
tems to mean slowdown in an M/G/1, with both systems
using versions of RS scheduling (Sections 2.2 and 2.3). When
discussing slowdown in a generic system, we write simply Z
We write Z; to refer to the mean slowdown in the M/G/1,
and we similarly write Z for the multiserver systems. It will
always be clear from context whether we are discussing the
M/G/k or the M/G/k/dispatch.

2.2 Scheduling Policy: RS

We assume that the scheduler has perfect knowledge of
job sizes and can perfectly keep track of how long each job
has been served. We therefore describe the state of each job
as a tuple (s, z), where

e s is the job’s original size; and
e 1 is the job’s remaining size, namely s minus the amount
of service it has received so far.
A job of size s arrives in state (s,s) and departs once it
reaches state (s, 0).

All systems we consider use a version of the “RS” schedul-
ing policy. The name is a mnemonic for “remaining size times
(original) size”. RS works as follows: it assigns each job a
numeric rank based on the job’s state then prioritizes jobs
by rank, where lower rank means better priority. Specifically,
the rank of a job in state (s, z), meaning size s and remaining
size x, is

rank(s, ) = sx.
We may break ties between jobs of the same rank arbitrarily.

Here is how RS works in the systems we study.

e In single-server systems, such as the M/G/1, RS always
serves the job of lowest rank.

e In the M/G/k, RS serves the k jobs with the k lowest
ranks. If there are fewer than k jobs, then RS serves
all of them, leaving some servers idle.

e In the M/G/k/dispatch, we use RS at each server,
meaning the system serves the job of lowest rank at
each server. It may be that one server is left idle while
another server has multiple jobs.

It is known that RS minimizes mean slowdown in the
M/G/1 queue [4, Corollary 3]. Intuitively, one can think of
RS as a version of the famous “cu rule”: a job’s holding cost
is ¢ = 1/s, and its completion rate is u = 1/z, so prioritizing
by highest cu corresponds to prioritizing by lowest rank sz.

2.3 Dispatching Policy: Obey Guardrails

The only aspect of our system model that we have yet to
discuss is the dispatching policy, which determines how we
assign jobs to servers in the M/G/k/dispatch. Our results
hold not for a single dispatching policy but rather for all
dispatching policies satisfying a certain property, which we
describe below. This property was originally introduced by
Grosof et al. [3] when studying dispatching to SRPT servers.

To achieve good performance in a load-balancing system,
we want to avoid situations where one server is idle while
another has many jobs. More generally, given any rank u, it
turns out that we want to avoid situations where one server
has only jobs of rank more than u while another has many
jobs of rank u or less. The dispatching policies we consider
are designed to avoid this situation.

At any moment in time ¢, let vlm (s1, s2) be the total size of
jobs dispatched so far to server i, counting only jobs whose
size is in the interval [s1,s2). We call vft)(sth) a work
counter. We say that a dispatching policy obeys guardrails of
width ¢, where ¢ > 1 is a fixed parameter, if for all times ¢,
servers 1 < ¢ < j <k, and integers m € Z, the work counters
obey the following constraint:*

|’U§t) (C'm7 C'm+l) _ ’U](-t) (Cm7 Cm+1)| < Cm+1.

Instead of specifying a specific dispatching policy, our
results about the M/G/k/dispatch assume only that the
dispatching policy obeys guardrails.

It is simple to construct a dispatching policy that obeys
guardrails. An example: if a job of size s arrives at time t,
dispatch the job to server argmin, 'ugt)(cuogc sl clloge SH'l),
breaking ties arbitrarily. However, this is far from the only
policy that obeys guardrails. For example, Grosof et al. [3]
show how to modify a generic dispatching policy to make it
obey guardrails.

3. MAIN RESULTS

All systems discussed use “RS (with guardrails)”, meaning
they use RS scheduling (Section 2.2) and, in the case of the
M/G/k/dispatch, a dispatching policy that obeys guardrails
of some width ¢ > 1 (Section 2.3). Unless otherwise specified,
all of our results apply to any job size distribution S, any
load p, and any number of servers k.

Our main theorem bounds the mean slowdown gap between
the multiserver systems and the M/G/1.

!The original definition of guardrails given by Grosof et al. [3]
is both more general and more complicated than ours. The
definition we give suffices for our purposes, but our results
can be generalized to handle the more general definition.



Theorem 3.1.
(i) The mean slowdown gap between RS in the M/G/k and
RS in the M/G/1 is bounded by E[Z,] — E[Z] < 6k.
(i) The mean slowdown gap between RS with guardrails
of width ¢ > 1 in the M/G/k/dispatch and RS in the
M/G/1 is bounded by

A(c+2)(3¢—1)

E[Zi] - E[Z1] < (¢ — 1)E[Z] + 2 k.

c—1
These bounds imply that RS with guardrails is a constant-
factor approximation for mean slowdown.

Corollary 3.2.
(i) In the M/G/k, RS has mean slowdown within a factor
of 7 of optimal.
(i) In the M/G/k/dispatch, RS with guardrails of width
¢ = 1.36 has mean slowdown within a factor of 108.19
of optimal.

Proof. The optimal mean slowdown in either multiserver
system is at least k, because the servers run at speed 1/k. It
is also at least E[Z1], because the M/G/1 can simulate either
multiserver system, and RS minimizes mean slowdown in the
M/G/1 [4]. The result thus follows from Theorem 3.1. [

The bound in Theorem 3.1 implies RS (with guardrails)
is heavy-traffic optimal provided that lim,—1 E[Z1] = oc.
However, analyzing E[Z1] in heavy traffic is an open problem.
We therefore characterize the heavy-traffic scaling of E[Z].
For brevity, we omit the full theorem statement, instead
focusing on the result’s implications for multiserver systems.

Perhaps surprisingly, for job size distributions with infi-
nite third moment, RS sometimes achieves constant mean
slowdown in the heavy-traffic M/G/1, where the constant
depends on the job size distribution. However, with finite
third moment, RS’s mean slowdown does diverge in the
heavy-traffic limit, implying the following result.

Theorem 3.3. Consider an M/G/k or M/G/k/dispatch
with job size distribution S satisfying E[S?] < co.
(i) In the M/G/k, RS satisfies lim,_,1 E[Z;]/E[Z,] = 1.
(ii) There exists a function c(p) satisfying lim,—1 c(p) =1
such that in the M/G/k/dispatch, RS with guardrails
of width c(p) satisfies lim,—,1 E[Zx]/E[Z1] = 1.

4. PROOF OVERVIEW

We now sketch the proof of Theorem 3.1, focusing on the
M/G/k case. The key concept that makes the proof possible
is the following.

Definition 4.1. The r-work in the system is the total re-
maining size of all jobs whose rank is currently at most r.
We write W (r) for the equilibrium distribution of r-work.

To prove Theorem 3.1, rather than directly comparing
mean slowdowns, our argument goes via r-work, as the fol-
lowing diagram illustrates.

E[Z] __Theorem 3.1_ E[Z]
Lemma 4.2]

EWi(r)] tommaas EWi(r)]

Lemma 4.3

:[Lemma 4.2

The rest of this section covers the two lemmas in the diagram.
We prove Lemma 4.2 for both systems, and we sketch the
proof of Lemma 4.3 for the M/G/k.

Lemma 4.2. In the M/G/1, M/G/k, and M/G/k/dispatch,

Em:%ﬁwﬂ%@%h

Proof. By a generalization of Little’s law [1], it suffices to
show that the r-work contributed by a single job in arbitrary
state (s, ) integrates to the job’s holding cost, namely 1/s.
The r-work contributed by such a job is xl(r > sx): its
remaining size is x, but it is only counted if its rank sx is at
most r. From this, we compute

oo > oo
/ 7”“1(7”;5:‘) dr:/ %dr:l. O
0 T s T S

x

Lemma 4.3. Let

waw:E@m5§¢ﬂ+u+ayguS>wﬂ.
(i) The mean r-work gap between the M/G/k and the
M/G/1 is bounded by

E[Wi(r)] — E[W:(r)] < Mkv/ren (r).

(i) The mean r-work gap between the M/G/k/dispatch and
the M/G/1 is bounded by

E[Wi(r)] = E[Wi(r)] < fe(r) + ———Akv/ree(r),

c—

A(3c—1)
1

where f.(r) satisfies [~ fe(r)/r® dr < (¢ — 1)E[Z1].

Proof sketch of (i). We use a Palm calculus argument based
on Miyazawa’s rate conservation law [5] (see also Scully et al.
[6, Section 7]) to write an expression for E[Wj,(r)] —E[Wi(r)].
We obtain a result that looks like

E[Wi(r)] = E[W1(r)] < Ap1(r) - wmax(r),

where wmax (1) is, roughly speaking, the maximum amount
of r-work that a single server can have while another server
has no r-work. A single job’s r-work is maximized if the job

is in state (v/7,1/T), SO Wmax () = /7. O
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