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ABSTRACT
We consider scheduling in the M/G/1 queue with unknown
job sizes. It is known that the Gittins policy minimizes mean
response time in this setting. However, the behavior of the tail
of response time under Gittins is poorly understood, even
in the large-response-time limit. Characterizing Gittins’s
asymptotic tail behavior is important because if Gittins has
optimal tail asymptotics, then it simultaneously provides
optimal mean response time and good tail performance.

In this work, we give the first comprehensive account of
Gittins’s asymptotic tail behavior. For heavy-tailed job sizes,
we find that Gittins always has asymptotically optimal tail.
The story for light-tailed job sizes is less clear-cut: Gittins’s
tail can be optimal, pessimal, or in between. To remedy this,
we show that a modification of Gittins avoids pessimal tail
behavior while achieving near-optimal mean response time.

1. INTRODUCTION
Scheduling to minimize response time (a.k.a. sojourn time)

of single-server queueing systems is an important problem
in queueing theory, with applications in computer systems,
service systems, and beyond. In general, a queueing system
will have a response time distribution, denoted T , and there
are a variety of metrics one might hope to minimize. There
is significant work on minimizing mean response time E[T ],
which is the average response time of all jobs in a long arrival
sequence [1, 7, 10].

Much less is known about minimizing the tail of response
time P[T > t], which is the probability a job has response
time greater than a parameter t ≥ 0. In light of the diffi-
culty of studying the tail directly, theorists have studied the
asymptotic tail of response time, which is the asymptotic
decay of P[T > t] in the t→∞ limit [4, 5, 9, 12, 13]. In this
work, we study the M/G/1, a classic single-server queueing
model, and ask the following question.

Question 1.1. Does any scheduling policy simultaneously
optimize the mean and asymptotic tail of response time?

Prior work answers Question 1.1 when job sizes (a.k.a.
service times) are known to the scheduler. In this setting, the
Shortest Remaining Processing Time (SRPT) policy, which
preemptively serves the job of least remaining size, always
minimizes mean response time [10]. However, SRPT’s tail
performance depends on the job size distribution.
• If the job size distribution is heavy-tailed (Definition 2.3),
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then SRPT is tail-optimal, meaning it has the best pos-
sible asymptotic tail decay (Definition 2.4).
• If the job size distribution is light-tailed (Definition 2.6),

then SRPT is tail-pessimal, meaning it has the worst
possible asymptotic tail decay (Definition 2.7).

This answers Question 1.1 for known job sizes: “yes, namely
SRPT” in the heavy-tailed case, “no” in the light-tailed case.

Unfortunately, in practice, the scheduler often does not
know job sizes, and thus one cannot implement SRPT. In-
stead, the scheduler often only knows the job size distribution.
We study Question 1.1 in this unknown-size setting.

The question of minimizing mean response time with un-
known job sizes was settled by Gittins [7]. He introduced
a policy, now known as the Gittins policy, which leverages
the job size distribution to minimize mean response time.
Roughly speaking, Gittins uses each job’s age, namely the
amount of time each job has been served so far, to figure out
which job is most likely to complete after a small amount
of service, then serves that job. For some job size distribu-
tions, Gittins reduces to a simpler policy, such as First-Come,
First-Served (FCFS) or Foreground-Background (FB) [1, 2].

In the unknown-size setting, given that Gittins minimizes
mean response time, Question 1.1 reduces to the following.

Question 1.2. For which job size distributions does Gittins
optimize the asymptotic tail of response time?

Unfortunately, the asymptotic tail behavior of Gittins is
understood in only a few special cases.
• In the heavy-tailed case, Gittins has been shown to be

tail-optimal, but only under an assumption on the job
size distribution’s hazard rate [12, Corollary 3.5].
• In the light-tailed case, Gittins sometimes reduces to

FCFS or FB [1, 2]. For light-tailed job sizes, FCFS is
tail-optimal [5, 13], but FB is tail-pessimal [8].

This prior work leaves Question 1.2 largely open. We do not
know whether Gittins is always tail-optimal in the heavy-
tailed case, or whether it is sometimes suboptimal, or even
tail-pessimal. And we do not understand Gittins’s asymptotic
tail at all in the light-tailed case, aside from when Gittins
happens to reduce to a simpler policy.

The prior work above does tell us an important fact: Gittins
can be tail-pessimal. This prompts another question.

Question 1.3. For job size distributions for which Gittins
is tail-pessimal, is there another policy that has near-optimal
mean response time while not being tail-pessimal?

1.1 Contributions
In this work, we answer Questions 1.1–1.3 for the M/G/1

with unknown job sizes, covering wide classes of heavy- and
light-tailed job size distributions.



• (Section 3.1) If the job size distribution is heavy-tailed,
then Gittins is always tail-optimal.
• (Section 3.2) If the job size distribution is light-tailed,

then Gittins can be tail-optimal, tail-pessimal, or in
between. In the cases where Gittins is tail-pessimal, we
construct a modified policy that is not tail-pessimal but
has mean response time arbitrarily close to Gittins’s.

The key tool we use to analyze Gittins’s asymptotic re-
sponse time tail is the SOAP framework [11, 12]. SOAP
gives a universal M/G/1 response time analysis of all SOAP
policies, which are scheduling policies where a job’s priority
level is a function of its age. Underlying our Gittins results
is a general tail analysis of SOAP policies.

2. MODEL AND PRELIMINARIES
We consider an M/G/1 queue with arrival rate λ, job size

distribution X, and load ρ = λE[X]. For the tail of the job
size distribution, we write F (t) = P[X > t]. We denote the
maximum job size by xmax = inf{t ≥ 0 | F (t) = 0}, allowing
xmax = ∞. We write Tπ for the M/G/1’s response time
distribution under policy π.

In the rest of this section, we introduce SOAP policies in
general, the Gittins policy in particular, and background on
heavy- and light-tailed job size distributions.

2.1 SOAP Policies and the Gittins Policy
The Gittins policy assigns each job a rank, namely a pri-

ority, based on the job’s age, namely the amount of time the
job has been served so far. To analyze the Gittins policy,
we make use of the SOAP framework [11, 12], which gives a
response time analysis of the following broad class of policies.

Definition 2.1. A SOAP policy is a policy π specified by a
rank function rπ : [0, xmax)→ R. Policy π assigns rank rπ(a)
to a job at age a.1 We often omit the subscript and simply
write r(a). At every moment in time, a SOAP policy serves
the job of minimum rank, breaking ties in FCFS order.

Definition 2.2. The Gittins policy is the SOAP policy with
rank function

rGittins(a) = inf
b>a

∫ b
a
F (t) dt

F (a)− F (b)
.

Note that the Gittins rank function depends on the job size
distribution X by way of F .

As is standard [11, Appendix B], we assume rank func-
tions are piecewise-continuous and piecewise-monotonic with
finitely many pieces in any compact interval. This holds for
Gittins under very mild conditions [2].

2.2 Background on Heavy-Tailed Job Sizes
Definition 2.3 (Heavy-Tailed Job Size Distribution). We
say a job size distributionX is nicely heavy-tailed if xmax =∞
and both of the following hold:

(i) The tail F (·) is of intermediate regular variation [6],
meaning lim infε↓0 lim infx→∞ F ((1 + ε)x)/F (x) = 1.

(ii) There exist β ≥ α > 1 such that the upper and lower
Matuszewska indices of F (·) are in (−β,−α) [3, Sec-
tion 2.1]. This implies that there exists C > 0 such

1The full SOAP definition is more general [11], but the given
definition suffices for our unknown-size setting.

that for all sufficiently large x2 ≥ x1,

1

C

(
x2
x1

)−β
≤ F (x2)

F (x1)
≤ C

(
x2
x1

)−α
.

In informal discussion, we omit “nicely”.

Definition 2.4 (Tail Optimality in Heavy-Tailed Case).
Consider an M/G/1 with nicely heavy-tailed job size distri-
bution X. We call a scheduling policy π tail-optimal if

lim
t→∞

P[Tπ > t]

F ((1− ρ)t)
= 1.

Loosely speaking, tail-optimality holds if large jobs have a
response time of approximately 1/(1− ρ) times their size.

2.3 Background on Light-Tailed Job Sizes
Definition 2.5. The decay rate of random variable V , de-
noted d(V ), is

d(V ) = lim
t→∞

− log P[V > t]

t
.

Higher decay rates correspond to asymptotically lighter tails.

Definition 2.6 (Light-Tailed Job Size Distribution). We
say a job size distribution X is nicely light-tailed if xmax <∞
or d(X) > 0. In informal discussion, we omit “nicely”.

Definition 2.7 (Tail Optimality in Light-Tailed Case). Con-
sider an M/G/1 with nicely light-tailed job size distribu-
tion X. We say a scheduling policy π is
• log-tail-optimal if π maximizes d(Tπ),
• log-tail-pessimal if π minimizes d(Tπ), and
• log-tail-intermediate otherwise.

In each case, we mean minimizing or maximizing over work-
conserving policies. In informal discussion, we omit “log-”.

3. MAIN RESULTS
Our main results characterize the asymptotic tail behavior

of Gittins and other SOAP policies. The situation in the
heavy-tailed case is simple: Gittins is always tail-optimal.
• Theorem 3.3 gives a sufficient condition under which a

SOAP policy is tail-optimal for heavy-tailed job sizes.
• Theorem 3.4 shows that for heavy-tailed job sizes, Git-

tins always satisfies this sufficient condition, and is thus
always tail-optimal.

The situation in the light-tailed case is more complicated:
Gittins can be optimal, pessimal, or in between.
• Theorem 3.5 classifies SOAP policies into tail-optimal,

-intermediate, and -pessimal for light-tailed job sizes.
• Theorem 3.7 shows that for light-tailed job sizes, Gittins

can be any of tail-optimal, -intermediate, or -pessimal.
The fact that Gittins can be tail-pessimal raises a question:
can we improve tail performance while only slightly degrading
mean response time? We answer this affirmatively.
• Theorem 3.9 shows that making a small change to the

Gittins rank function results in only a small change to
mean response time.
• Theorem 3.10 shows that for a wide class of light-tailed

job size distributions for which Gittins is tail-pessimal,
making a small change to Gittins’s rank function results
in a tail-optimal or -intermediate policy with mean
response time arbitrarily close to Gittins’s.

Our results use the following general definitions, which
apply to any SOAP policy.



Definition 3.1.
(i) The worst ever rank of a job of size x is defined by

wx = sup0≤a<x r(a).
(ii) The worst age is a∗ = inf{a ≥ 0 | ∀b ∈ (a, xmax), r(a) ≥ r(b)},

namely the first age at which a job has the maximum
rank. If the rank function is unbounded, which only
happens when xmax =∞ (Section 2.1), then a∗ =∞.

(iii) A w-interval is an interval (b, c) with 0 ≤ b < c ≤ xmax

such that r(a) ≤ w for all a ∈ (b, c).

3.1 Results for Heavy-Tailed Job Sizes
Condition 3.2. There exist constants K > 0; ζ ∈ [0,∞);
θ ∈ [0,∞); and η ∈ [max{1, ζ + θ},∞] such that for suffi-
ciently large x, the following hold for any wx-interval (b, c):

(i) If b ≥ x, then c− b ≤ Kbζxθ.
(ii) c ≤ Kxη.

Condition 3.2 is a condition on SOAP policies. It is a
sharper version of the condition used by Scully et al. [12,
Assumption 3.2], mainly because it adds an extra parameter θ.
As such, the following theorem generalizes their main result
[12, Theorem 3.3].

Theorem 3.3. Consider an M/G/1 with nicely heavy-tailed
job size distribution under a SOAP policy. Condition 3.2
implies the policy is tail-optimal if

ζ + (θ − 1)+ − (1− θ)+

η
<
α− 1

β
. (3.1)

Theorem 3.4. Consider an M/G/1 with nicely heavy-tailed
job size distribution. Gittins satisfies Condition 3.2 with
ζ = 0, θ = 1, and η =∞, so it is tail-optimal.

3.2 Results for Light-Tailed Job Sizes
Theorem 3.5. Consider an M/G/1 with nicely light-tailed
job size distribution under a SOAP policy. The policy is
• log-tail-optimal if a∗ = 0,
• log-tail-intermediate if 0 < a∗ < xmax, and
• log-tail-pessimal if a∗ = xmax.

To apply Theorem 3.5 to the Gittins policy, we need to
characterize how the job size distribution X affects Gittins’s
worst age a∗. Results of Aalto et al. [1, 2] connect the follow-
ing classes of distributions to Gittins’s worst age a∗.

Definition 3.6. We define two classes of distributions.
• We say X is New Better than Used in Expectation,

writing X ∈ NBUE, if for all a ≥ 0,

E[X] ≥ E[X − a | X > a].

• We say X is Eventually New Better than Used in Expec-
tation, writing X ∈ ENBUE, if there exists a0 ≥ 0 such
that (X − a0 | X > a0) ∈ NBUE. That is, X ∈ ENBUE
if there exists a0 ≥ 0 such that for all a ≥ a0,

E[X − a0 | X > a0] ≥ E[X − a | X > a].

Theorem 3.7. Consider an M/G/1 with nicely light-tailed
job size distribution X. Gittins is
• log-tail-optimal if X ∈ NBUE,
• log-tail-intermediate if X ∈ ENBUE \ NBUE, and
• log-tail-pessimal if X 6∈ ENBUE.

Fortunately, in most cases where Gittins is tail-pessimal,
modifying Gittins yields a tail-intermediate policy with near-
optimal mean response time.

Definition 3.8. A SOAP policy π is a q-approximate Gittins
policy if there exists a constant m > 0 such that for all a ≥ 0,

m ≤ rπ(a)

rGittins(a)
≤ mq.

Theorem 3.9. Consider an M/G/1. For any q ≥ 1 and
any q-approximate Gittins policy π,

E[Tπ] ≤ qE[TGittins].

Theorem 3.10. Consider an M/G/1 with nicely light-tailed
job size distribution X. Suppose a job’s expected remaining
size is uniformly bounded at all ages, meaning xmax < ∞
or supa≥0 E[X − a | X > a] <∞. Then for all ε > 0, there
exists a (1 + ε)-approximate Gittins policy that is log-tail-
optimal or log-tail-intermediate.
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