
Optimally Scheduling Jobs with Multiple Tasks

Ziv Scully∗, Guy Blelloch,
Mor Harchol-Balter†

Computer Science Department
Carnegie Mellon University

{zscully, blelloch, harchol}@cs.cmu.edu

Alan Scheller-Wolf
Tepper School of Business
Carnegie Mellon University

awolf@andrew.cmu.edu

ABSTRACT
We consider optimal job scheduling where each job consists
of multiple tasks, each of unknown duration, with precedence
constraints between tasks. A job is not considered complete
until all of its tasks are complete. Traditional heuristics, such
as favoring the job of shortest expected remaining processing
time, are suboptimal in this setting. Furthermore, even if we
know which job to run, it is not obvious which task within
that job to serve. In this paper, we characterize the optimal
policy for a class of such scheduling problems and show that
the policy is simple to compute.

1. INTRODUCTION
Scheduling jobs of unknown service requirements in pre-

emptive multiclass single-server queueing systems is a classic,
well-studied problem. The optimal choice of scheduling pol-
icy for minimizing mean response time depends on the job
size distributions. For instance, the shortest expected re-
maining processing time (SERPT) policy is optimal for some
size distributions, but other policies, such as highest hazard
rate (HHR), are optimal for others [1]. In this setting, re-
searchers usually treat each job as a single chunk of work that
must be served for a certain length of time until completion.

In this paper, we introduce and study a new single-processor
scheduling problem in which jobs consist of multiple tasks.
Our job model differs from standard models in several ways.
• Jobs may have multiple tasks. A task is a single pre-

emptible chunk of work that must be served for a certain
length of time until it completes. The processor serves
individual tasks rather than jobs as a whole. Tasks
have unknown sizes drawn from known distributions.
• Tasks within each job are subject to precedence con-

straints. The constraints keep the scheduler from serv-
ing certain tasks until others have completed. There
are never constraints between tasks of different jobs.
• A job exits the system when all of its tasks are complete.

We measure response time of jobs, so there is no “partial
credit” for completing only some of a job’s tasks.

∗Supported by an ARCS Foundation scholarship and the
National Science Foundation Graduate Research Fellowship
Program under Grant No. DGE-1252522. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
†This research was supported by NSF-XPS-1629444, NSF-
CMMI-1538204, NSF-CMMI-1334194, and Faculty Awards
from Google and Facebook.

Copyright is held by author/owner(s).

The central question is: what scheduling policy minimizes
mean response time? Specifically, at every moment in time,
which job should we run, and which task of that job should
we serve? In fact, we permit sharing the processor between
multiple tasks of multiple jobs, further complicating matters.

We call this problem single-processor multitask scheduling,
or simply multitask scheduling, and we call the jobs multitask
jobs. In this paper, we provide the first analysis of multitask
scheduling, deriving a provably optimal policy for a case in
which all jobs are present at the start. It is worth highlighting
with some examples how multitask scheduling differs from
standard scheduling problems and what makes it challenging.

Example 1.1. Suppose job J has a single task of size S1+S2

and job K has two tasks, one each of size S1 and S2, where
S1 and S2 are arbitrary size distributions. Suppose further
that a precedence constraint forces completing K’s task of
size S1 first. Although both J and K have total size S1 +S2,
they are very different: in a scenario in which J and K have
received service for the same amount of time, we have more
information about K’s remaining size than J’s because we
know whether K’s first task is complete. We can use this
information when scheduling to reduce mean response time.

Example 1.2. Suppose jobs J and K each have 5 tasks
with no precedence constraints. Each of J ’s tasks takes
either 1 second, with probability 0.9, or 100 seconds, with
probability 0.1. Each of K’s tasks takes 10 seconds. In
expectation, J is longer than K, so SERPT (using total size)
would run K first. However, with probability 0.95 ≈ 0.59, all
of J ’s tasks are short, in which case we would rather run J
first. It turns out the optimal policy first serves tasks from J
but switches to K if any of J ’s tasks turns out to be long.

Example 1.3. Suppose jobs J and K have 2 and 3 tasks, re-
spectively, with no precedence constraints. All tasks have the
same Pareto size distribution, but they have received different
amounts of service previously. J ’s tasks have ages ji and K’s
tasks have ages ki with j1 > j2 > k1 > k2 > k3 > m, where
m is the minimum possible value of the Pareto distribution.

Should we run J or K first? Because Pareto distributions
are heavy-tailed, K’s tasks are shorter in expectation, but
J has fewer tasks. SERPT is a natural heuristic, but it can
make the wrong tradeoff. HHR is optimal for single-task jobs
with Pareto size distributions [1], but it is not clear how to
define hazard rate with multiple tasks. Once we choose a job
to run, we still have to choose a task to serve, and unlike the
previous example, there is no clear “short vs. long” intuition.

In summary, none of the common heuristics work. To solve
this case, we need new machinery. We show in Section 5 how
to compute the optimal policy for this example. Curiously,
within each job, it is optimal to serve the longest task first.



Contributions. In this paper, we give the first theoretical
analysis of multitask scheduling. Our contribution is two-fold:
we give an optimal policy for a case of multitask scheduling,
and, in deriving the policy, we introduce two novel techniques.

We derive the optimal policy for multitask scheduling with
jobs whose tasks have “aged Pareto” size distributions, as
in Example 1.3 (see Section 5). The policy is distinct from
SERPT, HHR, and other common heuristics. Though it has
no closed-form description, it is easy to compute numerically.

Our approach is built on the theory of the Gittins index.
Though the Gittins index has been applied to scheduling
problems in the past [1], there are major obstacles to apply-
ing it to multitask scheduling (see Section 2). We introduce
a pair of new tools that help overcome these obstacles. The
composition law simplifies Gittins index computations for
jobs whose tasks can be grouped into “phases” that must be
served in a fixed order (see Section 3). The autopiloting law
adds “imaginary precedence constraints” to certain jobs (see
Section 4). This is crucial for proving optimality of the Git-
tins index approach for such jobs, and it makes the optimal
policy practical to compute using the above composition law.

There has been much progress in the study of scheduling
monolithic single-task jobs. However, real-world applications
in domains such as web services [2], pharmaceuticals [5], and
data analytics [8] increasingly deal with jobs consisting of
multiple tasks. Our long-term goal is to understand schedul-
ing of such jobs in multiple-processor, heterogeneous-server,
and other realistic settings. This paper presents an initial
step towards this goal in analyzing single-processor multitask
scheduling, which already presents significant challenges.

Related Work. Task graph scheduling bears a resem-
blance to multitask scheduling. Roughly speaking, task graph
scheduling considers scheduling a single multitask job, usually
with known task sizes, on multiple processors. In contrast,
single-processor multitask scheduling considers scheduling
multiple multitask jobs with unknown task sizes. Task graph
scheduling is NP-complete [6], but simple heuristics give
constant-factor approximations.

Another related problem is scheduling jobs with interjob
precedence constraints [3, Section 4.6]. The problem appears
similar to multitask scheduling and has also been studied
using the Gittins index, but it differs in two important ways:
the precedence constraints are between separate jobs, whereas
our precedence constraints are between tasks within a single
job, and the solution treats the nonpreemptive case, whereas
preemption is what makes multitask scheduling hard.

2. GITTINS INDEX BACKGROUND
The Gittins index was originally introduced by Gittins

and Jones [4] to solve the multi-armed bandit problem. In
its 45-year history, it has been applied to a menagerie of
optimization problems [3]. The Gittins index theorem [3, Sec-
tion 3.3] is a result for standard single-task scheduling which
shows that the Gittins index policy, which we call Gittins
scheduling, always minimizes mean response time. Gittins
scheduling always serves the (single-task) job of maximal
Gittins index, which is a quantity computed for each job
independently of other jobs in the system. The Gittins index
theorem can also apply to multitask jobs, but only under
certain conditions (see Definition 2.3).

There are several equivalent definitions of the Gittins index.
Our definition uses an unorthodox auxiliary optimization

problem but is easily shown to agree with usual definitions.
Single-job profit (SJP) is an optimization problem con-

cerning a multitask job J and a potential reward r ≥ 0.
At every instant, we choose between running the job and
giving up. The process ends when the job completes or we
choose to give up, whichever comes first. If the job completes,
we receive value r, but we are continuously charged value
at rate 1 while serving the job. The goal is to maximize
expected net value.

We call a policy for SJP a job policy. A job policy π = (σ, τ)
has two components: a stopping policy σ, deciding when to
run the job and when to give up, and a task policy τ , deciding
which task of the job to serve while running it.

Definition 2.1. In SJP with job J and reward r, the utility
of job policy π is

U [r](J , π) = rP{π completes J } −E[time π runs J ],

and the optimal profit, or simply profit, is

V [r](J ) = sup
π
U [r](J , π),

where π ranges over job policies. The profit function of job J
is the profit as a function of reward, V [·](J ).

SJP can measure how “desirable” it is to run a job. If we
increase the reward starting from 0, the profit also increases
starting from 0 and eventually becomes positive. The point
at which profit becomes positive is the minimum reward that
entices us to run the job for at least an instant in SJP. Jobs
that require larger rewards are less desirable to run.

Definition 2.2. In SJP with job J , the fair reward is

R(J ) = inf{r > 0 | V [r](J ) > 0},

and the Gittins index of J is G(J ) = 1/R(J ).

Unfortunately, simple counterexamples exist showing that
Gittins scheduling is not optimal in general for multitask
scheduling. There is, however, a sufficient condition given by
Whittle [7] which, when satisfied by every job, enables the
proof of the Gittins index theorem.

Definition 2.3. A job J satisfies the Whittle condition, or
is simply called Whittle, if there exists a task policy τ∗ such
that for any reward r,

V [r](J ) = sup
π=(σ,τ)

U [r](J , π) = sup
σ
U [r](J , (σ, τ∗)),

where σ ranges over stopping policies and τ ranges over task
policies. We call such a task policy τ∗ an autopilot of J .

The idea behind the Whittle condition is as follows. In
SJP with job J , the optimal job policy π = (σ, τ) depends
on the reward r. Job J is Whittle if we can find a fixed task
policy τ∗ that we can always use in our optimal job policy,
regardless of r. An optimal job policy for J is thus specified
by just a stopping policy σ, as we can optimally use τ = τ∗.

In summary, a job is Whittle if we can pretend that we must
always serve its tasks according to the autopilot. Roughly
speaking, the fact that only the stopping policy varies allows
the proof of the Gittins index theorem to go through [7].

Theorem 2.4 (Gittins Index Theorem for Whittle Jobs).
Gittins scheduling minimizes mean response time in multitask
scheduling when all jobs are Whittle, provided that within
each job, tasks are served according to the job’s autopilot.



Why Multitask Scheduling is an Open Problem.
We have seen that to solve multitask scheduling using the
Gittins index, it suffices to (i) prove that all the jobs are
Whittle and (ii) compute the Gittins indices of all the jobs.
Both of these are very hard in general: the space of job poli-
cies for a job may be extremely large, which can make both
the Whittle condition proof and Gittins index computation
intractable. While there is prior work on the Whittle condi-
tion [3, Chapter 4], results are limited and do not directly
apply to multitask scheduling. In the rest of this paper, we
present two new techniques for overcoming these obstacles.

3. A NEW COMPOSITION LAW
One obstacle to using the Gittins index for multitask

scheduling is that computing Gittins indices of general mul-
titask jobs is very complicated. Our next result simplifies
the Gittins index computation for jobs whose tasks can be
grouped into “phases” that must be served in a fixed order.

Definition 3.1. The sequential composition of jobs J and K,
written [J ;K], is the multitask job consisting of the tasks
from both J and K with their original precedence constraints.
Additionally, all tasks from J have precedence over all tasks
from K. We call J and K the phases of [J ;K].

Theorem 3.2 (Composition Law). The profit function of a
sequential composition is the composition of the phases’ profit
functions. That is, for any jobs J and K and any reward r,

V [r]([J ;K]) = V [V [r](K)](J ).

Proof. Because SJP is a Markov decision process, any SJP
policy for [J ;K] decomposes into two policies: πJ , operating
during phase J , and πK, operating during phase K. Let

PJ = P{πJ completes phase J }
EJ = E[time πJ runs phase J ]

PK = P{πK completes phase K | πJ completes phase J }
EK = E[time πK runs phase K | πJ completes phase J ].

Observe that running phase K of [J ;K] is identical to running
just job K. Recalling Definition 2.1, we compute

V [r]([J ;K]) = sup
πJ ,πK

(rPJPK − (EJ + PJEK))

= sup
πJ

(
sup
πK

(rPK − EK)PJ − EJ
)

= V [V [r](K)](J ).

By Definition 2.2, computing the Gittins index of a job
requires finding the largest zero of its profit function. Profit
functions are increasing, convex, and Lipschitz continuous,
so finding this zero is simple with numerical methods. Thus,
to compute the Gittins index of a sequential composition, it
suffices to compute the profit functions of its phases, which
are much smaller individual computations.

4. A NEW AUTOPILOTING LAW
Another obstacle to using the Gittins index in multitask

scheduling is that Gittins scheduling is only optimal when
all the jobs are Whittle, and proving the Whittle condition
can be very difficult in general. Our next result establishes
a class of Whittle jobs.

The aged Pareto distribution of shape α > 1 and age k > 0
is the distribution with tail F (t) = kα(k+ t)−α. It is the dis-
tribution of (X | X > k) for Pareto-distributedX, provided k

is at least X’s minimum possible value. Example 1.3 uses
tasks of aged Pareto size. A job is multi-Pareto of shape α
if its tasks have aged Pareto sizes of the same shape α.

Theorem 4.1 (Autopiloting Law). Any multi-Pareto job of
shape α ≥ 2 with no precedence constraints is Whittle. Its
autopilot always serves the incomplete task of maximal age.

We omit the proof for lack of space. The full autopiloting
law and proof is actually more general, applying to any “aged
distribution family” that satisfies a certain condition. We
have proven the condition for the aged Pareto family of shape
α ≥ 2, and we have numerical evidence for it when 1 < α < 2.

5. APPLYING THE LAWS
The composition law and autopiloting law combine to give

the optimal policy for multitask scheduling of multi-Pareto
jobs. The autopiloting law implies that Gittins scheduling is
indeed the optimal policy, and we use both laws together to
compute the Gittins index of a multi-Pareto job.

By the autopiloting law, we know it is always optimal to
serve a multi-Pareto job’s tasks in a specific order, so we
may imagine adding precedence constraints enforcing this
order. We can then view the job as a sequential composition
of single-task phases. Each phase is a single-task job Jα,k
with aged Pareto size distribution of shape α and age k. A
simple derivation gives the profit function of each phase:

V [r](Jα,k) =

{
r − k

α(α−1)

(
α−

(
αr
k

)−(α−1))
if k < αr

0 otherwise.

Thus, using the composition law, we can compute the job’s
profit function, from which we can compute its Gittins index.

6. CONCLUSION AND FUTURE WORK
We propose a new problem, single-processor multitask

scheduling, and solve it for a case where tasks have aged
Pareto size distributions. To do so, we introduce two novel
techniques, the composition and autopiloting laws, which
greatly simplify the computation of the Gittins index policy
and verify its optimality. This work opens up a huge space of
new problems on multitask scheduling, from analyzing more
task size distributions to considering multiple processors.

References
[1] S. Aalto, U. Ayesta, and R. Righter. On the Gittins index in

the M/G/1 queue. Queueing Systems, 63(1):437–458, 2009.

[2] N. Dragoni et al. Microservices: yesterday, today, and tomor-
row. 2016. arXiv:1606.04036.

[3] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit
allocation indices. John Wiley & Sons, 2011.

[4] J. C. Gittins and D. M. Jones. A dynamic allocation index
for the sequential design of experiments. In J. Gani, editor,
Progress in Statistics, pages 241–266. North-Holland, Amster-
dam, NL, 1974.

[5] A. Toumi et al. Design and optimization of a large scale bio-
pharmaceutical facility using process simulation and scheduling
tools. Pharmaceutical Engineering, 30(2):1–9, 2010.

[6] J. D. Ullman. NP-complete scheduling problems. Journal of
Computer and System Sciences, 10(3):384–393, 1975.

[7] P. Whittle. Multi-armed bandits and the Gittins index. Jour-
nal of the Royal Statistical Society. Series B (Methodological),
pages 143–149, 1980.

[8] M. Zaharia et al. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In
NSDI ’12. USENIX Association, 2012.


	Introduction
	Gittins Index Background
	A New Composition Law
	A New Autopiloting Law
	Applying the Laws
	Conclusion and Future Work

