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Isn’t this old news? 
[Gittins, 1979; Gittins, 1989]
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Goal: find large function value 
with few function evaluations
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In[26]:= plot[{"FCFS", "SRPT"}, {10^-4, 1}, ScalingFunctions → "Log10"]
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Figure 6: Empirical benchmark regret curves, shown using medians, as well as quartiles to show
variability. We see in both the varying-cost and uniform-cost settings that PBGI exhibits strong
performance on the Pest Control and Lunar Lander problems. On the Robot Pushing problem, LogEI
variants perform strongest, with PBGI-D performing second-strongest and matching or outperforming
all other baselines. See Figure 14 for an alternative visualization using mean and standard error.

potential mismatch between the objective and the prior in terms of degree of multimodality, as this
can be counteracted in part by its decay behavior, particularly compared to PBGI.

4.3 Empirical objectives

Finally, we benchmark PBGI policies on three empirical global optimization problems motivated
by applied challenges: Pest Control where d = 25 [31], Lunar Lander where d = 12 [15], and
Robot Pushing where d = 14 [42]. Detailed descriptions of these problems and associated cost
functions are in Appendix C. Note that, for Lunar Lander and Robot Pushing, the cost functions
used are not automatically-differentiable. To handle this challenge and illustrate how our acquisition
function can be used when the cost function is unknown, we apply unknown-cost PBGI and baseline
variants, where the costs are modeled using a second independent log-Gaussian process: details on
this unknown-cost PBGI variant, including its analytic form, are given in Appendix B.4.

From Figure 6, we see that the PBGI matches or outperforms baselines on Pest Control and Lunar
Lander, in both the varying-cost and uniform-cost settings. On the other hand, PBGI performs poorly
on Robot Pushing, where instead LogEI variants perform best and PBGI-D performs second-best;
the non-myopic BMSEI baseline also performs poorly. This mirrors behavior previously seen on
the Rosenbrock function, from which we suspect that a mismatch between prior and objective
multimodality may be at play here as well. Note also that unlike in the Bayesian regret experiments,
UCB’s performance is far from strongest. This may be in part because we tune UCB using the
schedule of Srinivas et al. [39], which is derived specifically for Bayesian regret, and may be
less-ideal for other settings. In comparison, PBGI-D works reasonably well on five of the six cases.

5 Conclusion

In this paper, we introduced a new acquisition function class for cost-aware Bayesian optimization,
the Pandora’s Box Gittins index, based on an unexplored connection between Bayesian optimization
and the Pandora’s Box problem from economics. We observed promising performance from two
variants of this acquisition function class on both cost-aware problems which are the focus of this
work, and, additionally, on classical uniform-cost problems. Performance gains tended to be largest
on higher-dimensional and multi-modal problems. Our work constitutes a first step toward integrating
ideas from Gittins index theory, including insights from generalizations of Pandora’s Box, and related
areas such as queueing theory, into Bayesian optimization.
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all other baselines. See Figure 14 for an alternative visualization using mean and standard error.

potential mismatch between the objective and the prior in terms of degree of multimodality, as this
can be counteracted in part by its decay behavior, particularly compared to PBGI.

4.3 Empirical objectives

Finally, we benchmark PBGI policies on three empirical global optimization problems motivated
by applied challenges: Pest Control where d = 25 [31], Lunar Lander where d = 12 [15], and
Robot Pushing where d = 14 [42]. Detailed descriptions of these problems and associated cost
functions are in Appendix C. Note that, for Lunar Lander and Robot Pushing, the cost functions
used are not automatically-differentiable. To handle this challenge and illustrate how our acquisition
function can be used when the cost function is unknown, we apply unknown-cost PBGI and baseline
variants, where the costs are modeled using a second independent log-Gaussian process: details on
this unknown-cost PBGI variant, including its analytic form, are given in Appendix B.4.

From Figure 6, we see that the PBGI matches or outperforms baselines on Pest Control and Lunar
Lander, in both the varying-cost and uniform-cost settings. On the other hand, PBGI performs poorly
on Robot Pushing, where instead LogEI variants perform best and PBGI-D performs second-best;
the non-myopic BMSEI baseline also performs poorly. This mirrors behavior previously seen on
the Rosenbrock function, from which we suspect that a mismatch between prior and objective
multimodality may be at play here as well. Note also that unlike in the Bayesian regret experiments,
UCB’s performance is far from strongest. This may be in part because we tune UCB using the
schedule of Srinivas et al. [39], which is derived specifically for Bayesian regret, and may be
less-ideal for other settings. In comparison, PBGI-D works reasonably well on five of the six cases.

5 Conclusion

In this paper, we introduced a new acquisition function class for cost-aware Bayesian optimization,
the Pandora’s Box Gittins index, based on an unexplored connection between Bayesian optimization
and the Pandora’s Box problem from economics. We observed promising performance from two
variants of this acquisition function class on both cost-aware problems which are the focus of this
work, and, additionally, on classical uniform-cost problems. Performance gains tended to be largest
on higher-dimensional and multi-modal problems. Our work constitutes a first step toward integrating
ideas from Gittins index theory, including insights from generalizations of Pandora’s Box, and related
areas such as queueing theory, into Bayesian optimization.
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variability. We see in both the varying-cost and uniform-cost settings that PBGI exhibits strong
performance on the Pest Control and Lunar Lander problems. On the Robot Pushing problem, LogEI
variants perform strongest, with PBGI-D performing second-strongest and matching or outperforming
all other baselines. See Figure 14 for an alternative visualization using mean and standard error.

potential mismatch between the objective and the prior in terms of degree of multimodality, as this
can be counteracted in part by its decay behavior, particularly compared to PBGI.

4.3 Empirical objectives

Finally, we benchmark PBGI policies on three empirical global optimization problems motivated
by applied challenges: Pest Control where d = 25 [31], Lunar Lander where d = 12 [15], and
Robot Pushing where d = 14 [42]. Detailed descriptions of these problems and associated cost
functions are in Appendix C. Note that, for Lunar Lander and Robot Pushing, the cost functions
used are not automatically-differentiable. To handle this challenge and illustrate how our acquisition
function can be used when the cost function is unknown, we apply unknown-cost PBGI and baseline
variants, where the costs are modeled using a second independent log-Gaussian process: details on
this unknown-cost PBGI variant, including its analytic form, are given in Appendix B.4.

From Figure 6, we see that the PBGI matches or outperforms baselines on Pest Control and Lunar
Lander, in both the varying-cost and uniform-cost settings. On the other hand, PBGI performs poorly
on Robot Pushing, where instead LogEI variants perform best and PBGI-D performs second-best;
the non-myopic BMSEI baseline also performs poorly. This mirrors behavior previously seen on
the Rosenbrock function, from which we suspect that a mismatch between prior and objective
multimodality may be at play here as well. Note also that unlike in the Bayesian regret experiments,
UCB’s performance is far from strongest. This may be in part because we tune UCB using the
schedule of Srinivas et al. [39], which is derived specifically for Bayesian regret, and may be
less-ideal for other settings. In comparison, PBGI-D works reasonably well on five of the six cases.

5 Conclusion

In this paper, we introduced a new acquisition function class for cost-aware Bayesian optimization,
the Pandora’s Box Gittins index, based on an unexplored connection between Bayesian optimization
and the Pandora’s Box problem from economics. We observed promising performance from two
variants of this acquisition function class on both cost-aware problems which are the focus of this
work, and, additionally, on classical uniform-cost problems. Performance gains tended to be largest
on higher-dimensional and multi-modal problems. Our work constitutes a first step toward integrating
ideas from Gittins index theory, including insights from generalizations of Pandora’s Box, and related
areas such as queueing theory, into Bayesian optimization.
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Figure 6: Empirical benchmark regret curves, shown using medians, as well as quartiles to show
variability. We see in both the varying-cost and uniform-cost settings that PBGI exhibits strong
performance on the Pest Control and Lunar Lander problems. On the Robot Pushing problem, LogEI
variants perform strongest, with PBGI-D performing second-strongest and matching or outperforming
all other baselines. See Figure 14 for an alternative visualization using mean and standard error.

potential mismatch between the objective and the prior in terms of degree of multimodality, as this
can be counteracted in part by its decay behavior, particularly compared to PBGI.

4.3 Empirical objectives

Finally, we benchmark PBGI policies on three empirical global optimization problems motivated
by applied challenges: Pest Control where d = 25 [31], Lunar Lander where d = 12 [15], and
Robot Pushing where d = 14 [42]. Detailed descriptions of these problems and associated cost
functions are in Appendix C. Note that, for Lunar Lander and Robot Pushing, the cost functions
used are not automatically-differentiable. To handle this challenge and illustrate how our acquisition
function can be used when the cost function is unknown, we apply unknown-cost PBGI and baseline
variants, where the costs are modeled using a second independent log-Gaussian process: details on
this unknown-cost PBGI variant, including its analytic form, are given in Appendix B.4.

From Figure 6, we see that the PBGI matches or outperforms baselines on Pest Control and Lunar
Lander, in both the varying-cost and uniform-cost settings. On the other hand, PBGI performs poorly
on Robot Pushing, where instead LogEI variants perform best and PBGI-D performs second-best;
the non-myopic BMSEI baseline also performs poorly. This mirrors behavior previously seen on
the Rosenbrock function, from which we suspect that a mismatch between prior and objective
multimodality may be at play here as well. Note also that unlike in the Bayesian regret experiments,
UCB’s performance is far from strongest. This may be in part because we tune UCB using the
schedule of Srinivas et al. [39], which is derived specifically for Bayesian regret, and may be
less-ideal for other settings. In comparison, PBGI-D works reasonably well on five of the six cases.

5 Conclusion

In this paper, we introduced a new acquisition function class for cost-aware Bayesian optimization,
the Pandora’s Box Gittins index, based on an unexplored connection between Bayesian optimization
and the Pandora’s Box problem from economics. We observed promising performance from two
variants of this acquisition function class on both cost-aware problems which are the focus of this
work, and, additionally, on classical uniform-cost problems. Performance gains tended to be largest
on higher-dimensional and multi-modal problems. Our work constitutes a first step toward integrating
ideas from Gittins index theory, including insights from generalizations of Pandora’s Box, and related
areas such as queueing theory, into Bayesian optimization.
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Pandora’s box problem

8

c2:Y2 c3:Y3 cn:Ync1:Y1

Decision process: 
• Open boxes one at a time 
• Stop by selecting open box

Goal: maximize
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E
ï
Yselected �
X

i opened

ci

ò

Each box: 
• Opening cost c 
• Hidden reward Y

c:Y

Which box to open?

Is it time to stop?

independent
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EI(Y, r) = E[(Y � r)+]

1:Y21:Y1

0   (50%) 
14   (50%)

0   (80%) 
18   (20%)

EI(Y1, 10) = 2 EI(Y2, 10) = 1.6

• Both boxes have EI(Yi, 10) > ci

• Box 1 has better EI
• Optimal action: open box 2!



Optimal policy: Gittins

10



Step 1: rate each box separately Step 2: act on box of best rating

Optimal policy: Gittins

10



Step 1: rate each box separately Step 2: act on box of best rating

Optimal policy: Gittins

10

c:Y



Step 1: rate each box separately Step 2: act on box of best rating

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)



Step 1: rate each box separately Step 2: act on box of best rating

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

higher is 
better



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

higher is 
better



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

g(c1:Y1) g(c2:Y2) g(c3:Y3) g(cn:Yn)…
higher is 

better



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

g(c1:Y1) g(c2:Y2) g(c3:Y3) g(cn:Yn)…

Gittins policy: if box of 
max Gittins index is… 
• closed: open it 
• open: select it

higher is 
better



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

g(c1:Y1) g(c2:Y2) g(c3:Y3) g(cn:Yn)…

Gittins policy: if box of 
max Gittins index is… 
• closed: open it 
• open: select it

higher is 
better

act on it



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

g(c1:Y1) g(c2:Y2) g(c3:Y3) g(cn:Yn)…

:r Gittins policy: if box of 
max Gittins index is… 
• closed: open it 
• open: select it

higher is 
better

act on it



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

g(c1:Y1) g(c2:Y2) g(c3:Y3) g(cn:Yn)…

:r g(:r) = r
Gittins policy: if box of 
max Gittins index is… 
• closed: open it 
• open: select it

higher is 
better

act on it



Step 1: rate each box separately Step 2: act on box of best rating

c2:Y2 c3:Y3 cn:Ync1:Y1 …

Optimal policy: Gittins

10

c:Y
Gittins index: 
g(c:Y)

g(c1:Y1) g(c2:Y2) g(c3:Y3) g(cn:Yn)…

:r g(:r) = r
Gittins policy: if box of 
max Gittins index is… 
• closed: open it 
• open: select it

higher is 
better

Theorem: [Weitzman, 1979] 
the Gittins policy is optimal

act on it
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Gittins index of a box

12

Key question: what to do in 1.5-box problem?

:rc:Y

1.5-box problem

vs.

Defn: g(c:Y) is solution r to
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EI(Y, r) = E[(Y � r)+] = c
profit: E[max{Y, r}] − c profit: r

When are 
these equal?

open c:Y
r

0 g(c:Y)

select :r
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Mean scheduling with unknown sizes

15

T = response time
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(in single-server queues)

P[T > t]

Laplace transform result:
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exponential 
holding cost
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select :r

E[cost(r)]

g(c:Y)

open c:Y

h(c:Y)
r

grab c:Y

Optimal open vs. grab choice 
depends on “context” r

Laura Doval

randomize for 
robustness to all r
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Lots of approaches, 
but also: just try it!


