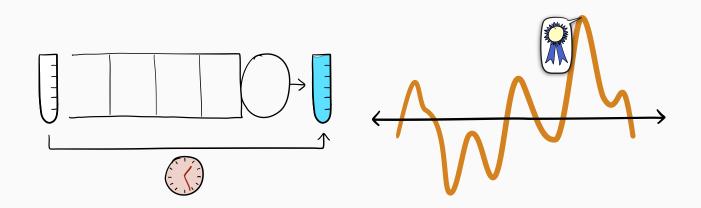
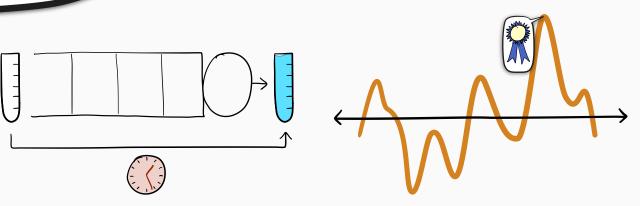
What problems does the **Gittins index** solve?

Ziv Scully *Cornell ORIE*



What problems does the Gittins index solve? Isn't this old news? [Gittins, 1979; Gittins, 1989]

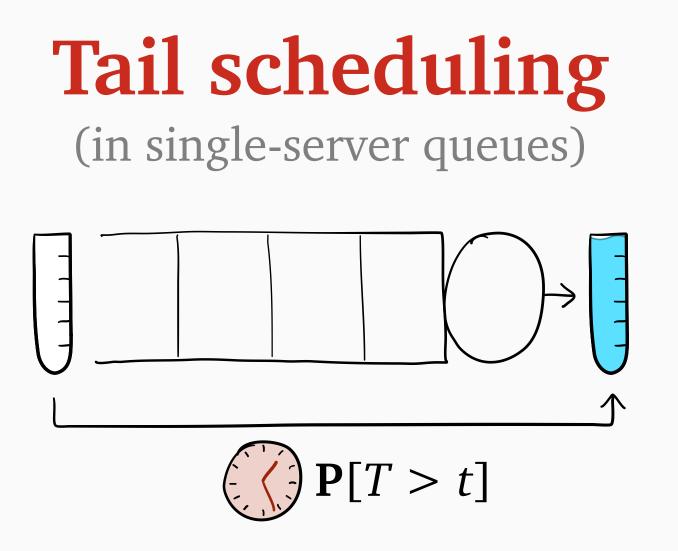
Ziv Scully *Cornell ORIE*



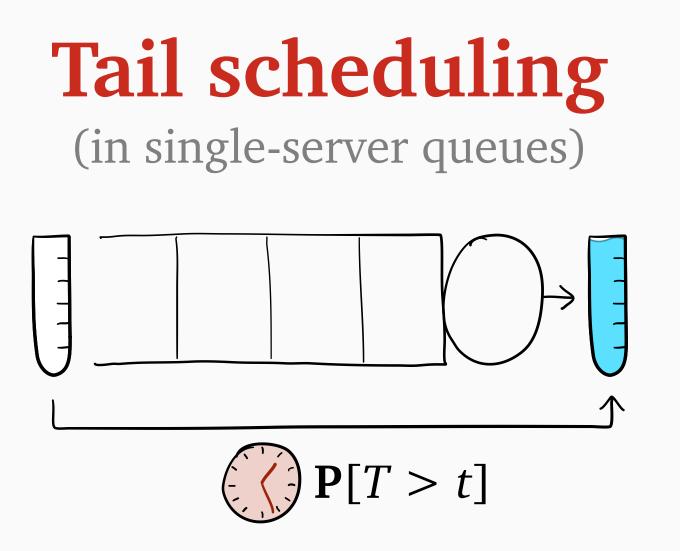
Tail scheduling

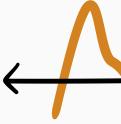
(in single-server queues)





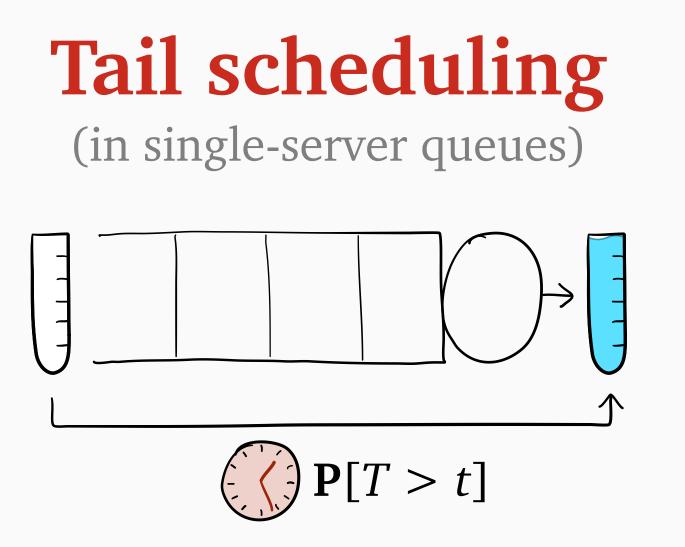
Goal: minimize probability of very long response time





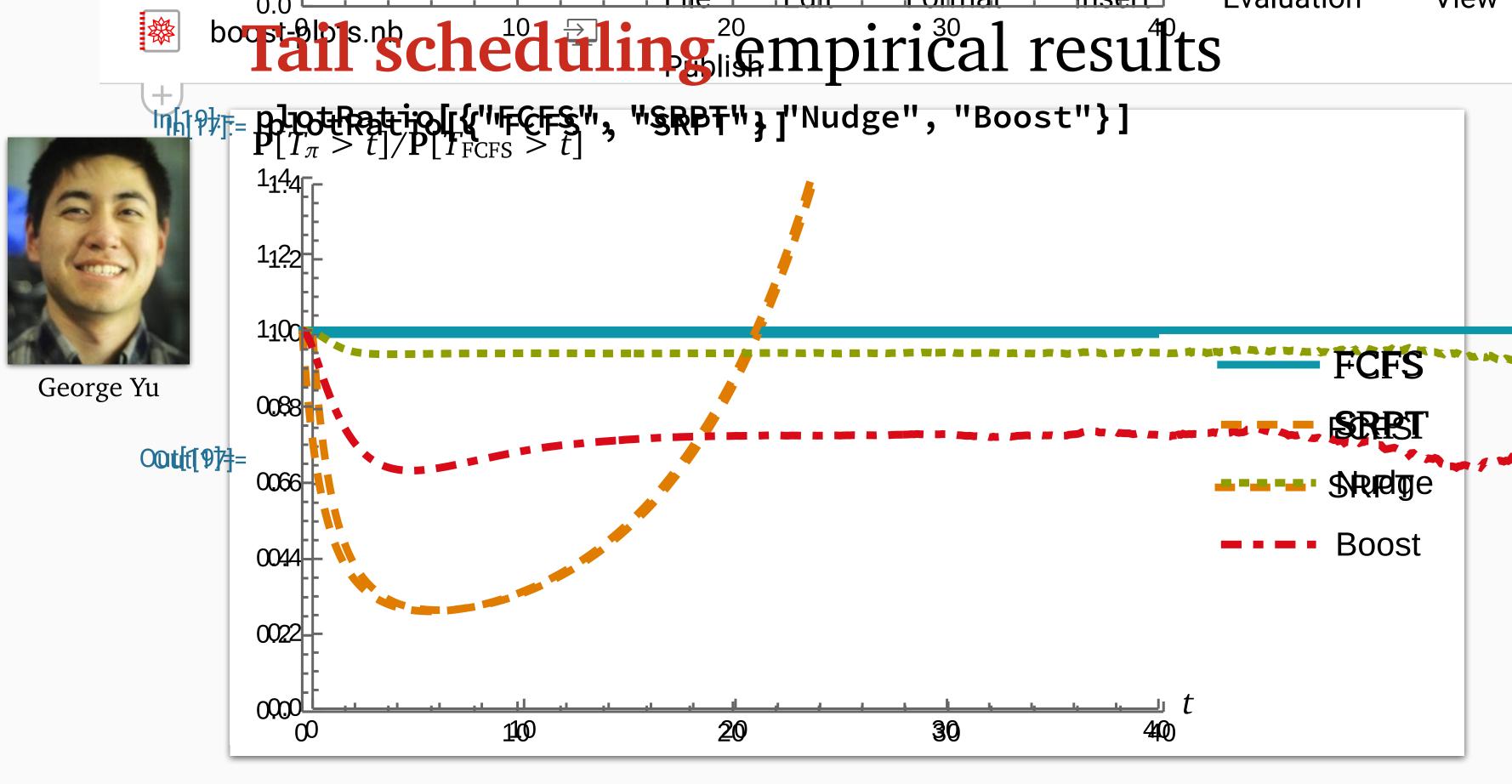
Goal: minimize probability of very long response time

BayesOpt (Bayesian optimization)

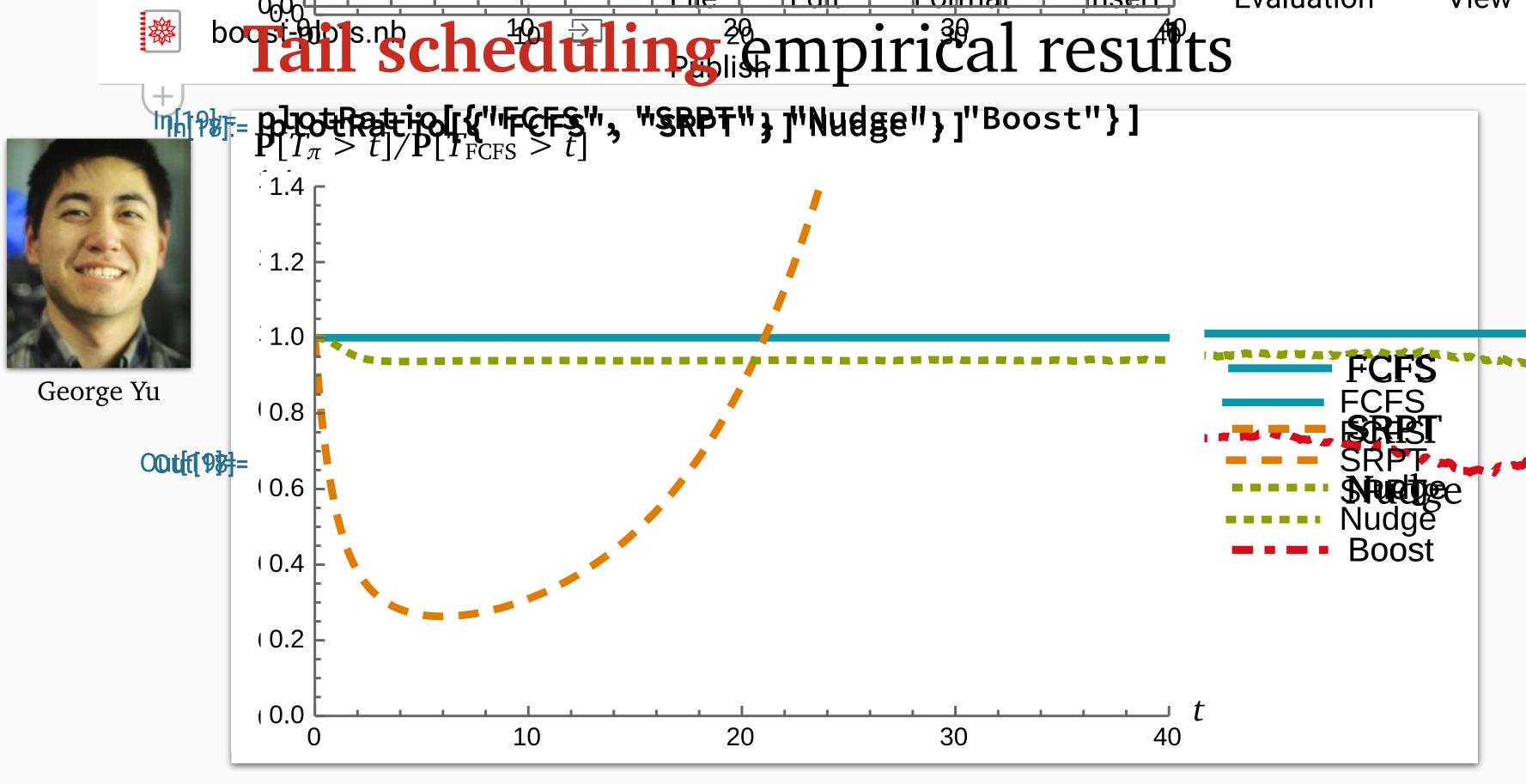


Goal: minimize probability of very long response time

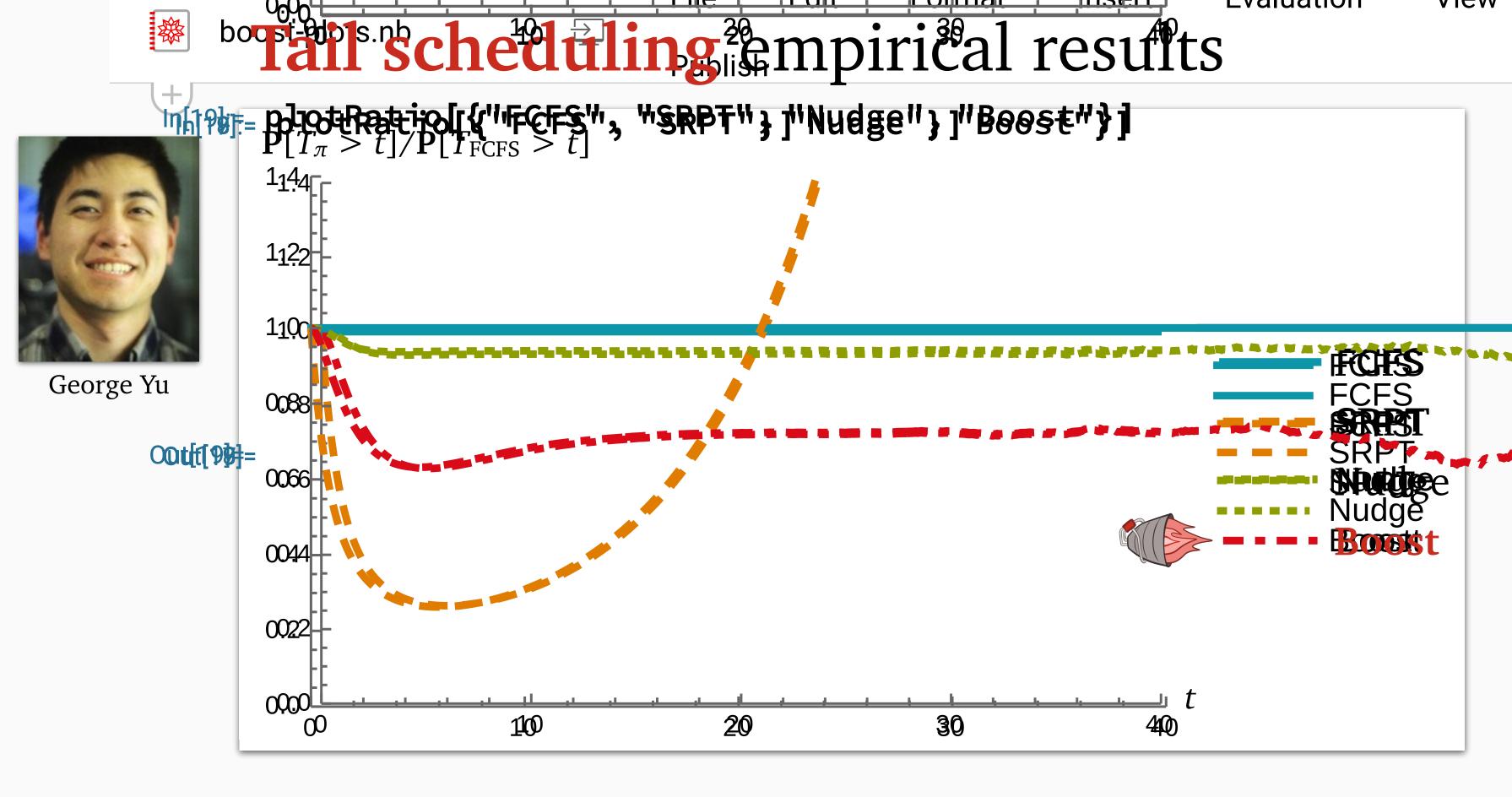
Goal: find large function value with few function evaluations



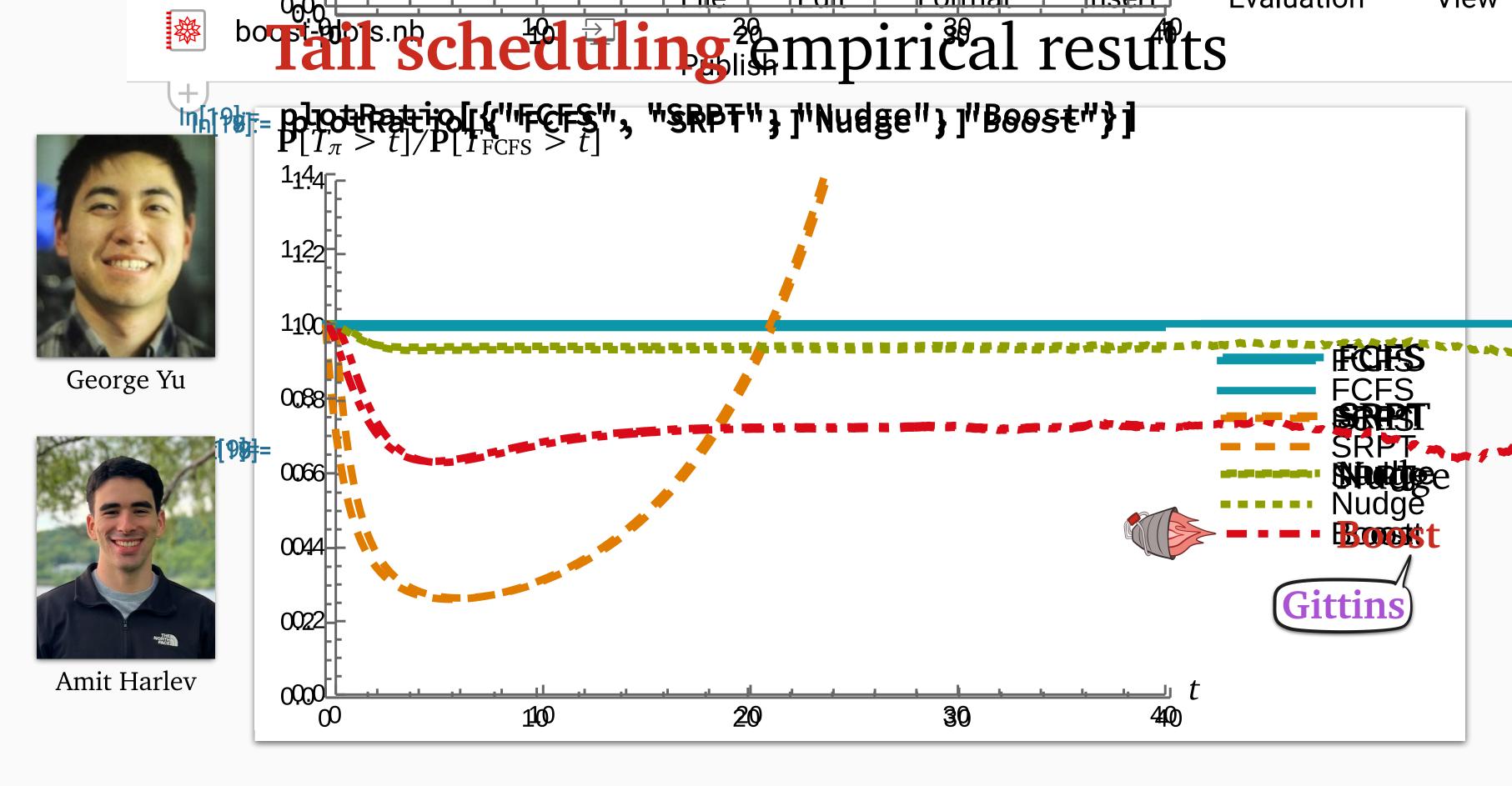
 $ld[\underline{M}] = plot[\underline{R} + ice[\underline{S}', F \cap \underline{S}', F \cap \underline{S}$



$|d[\underline{M}] = plot [Ration[s]'', for [SR'p, ''] RP[1]'b, ^'' Mu, dgg'', so that the set of the set$

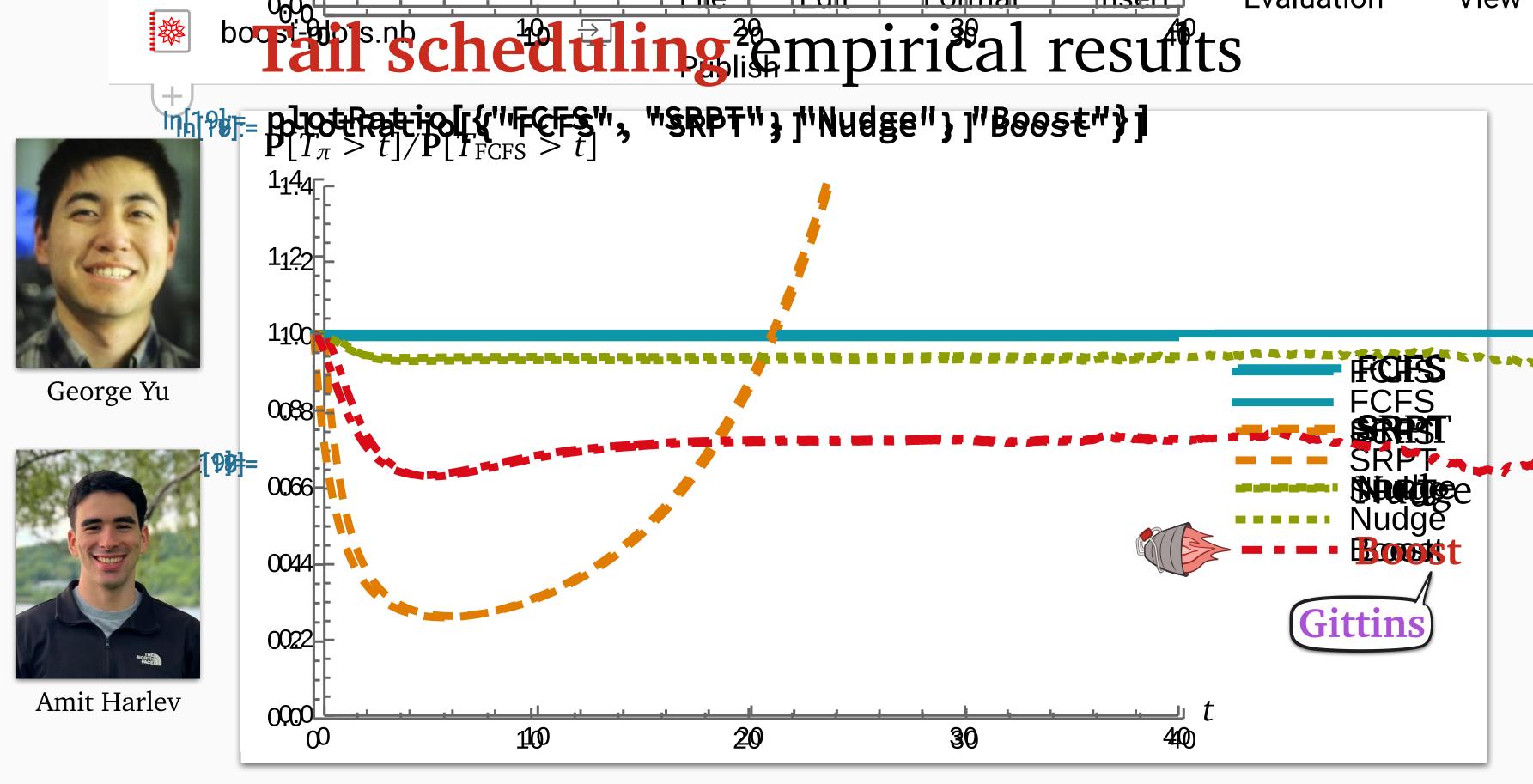


$\frac{1}{28} = \frac{1}{28} + \frac{1}{28}$



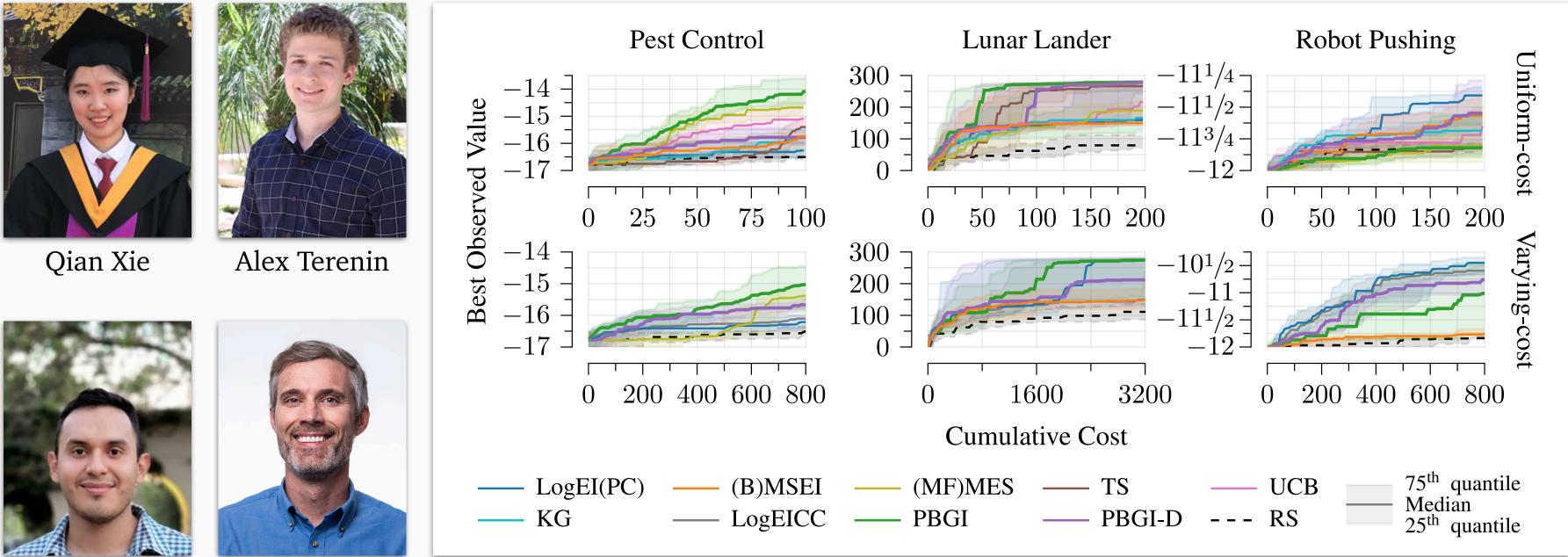
 $\frac{1}{28} = \frac{1}{28} + \frac{1}{28}$

 $1 \Lambda_{\alpha}$



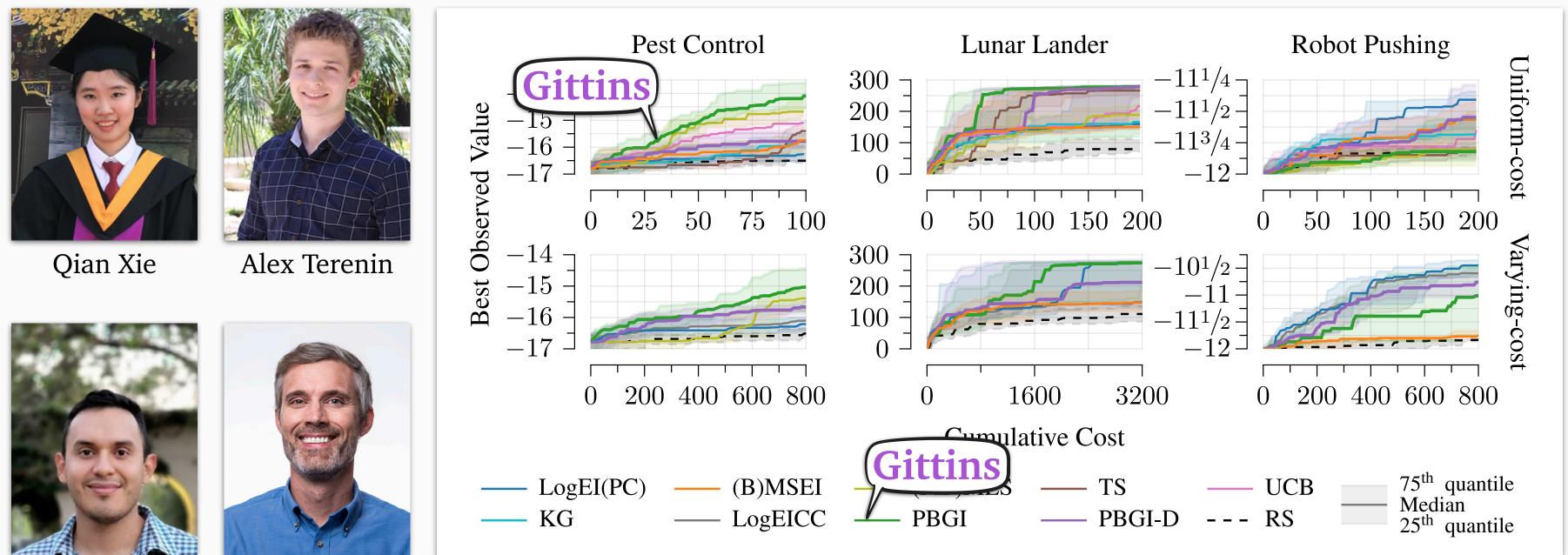
See our SIGMETRICK HORS FURSE, WERE AUGUNATION, See and State Hors of the second of th

1 1



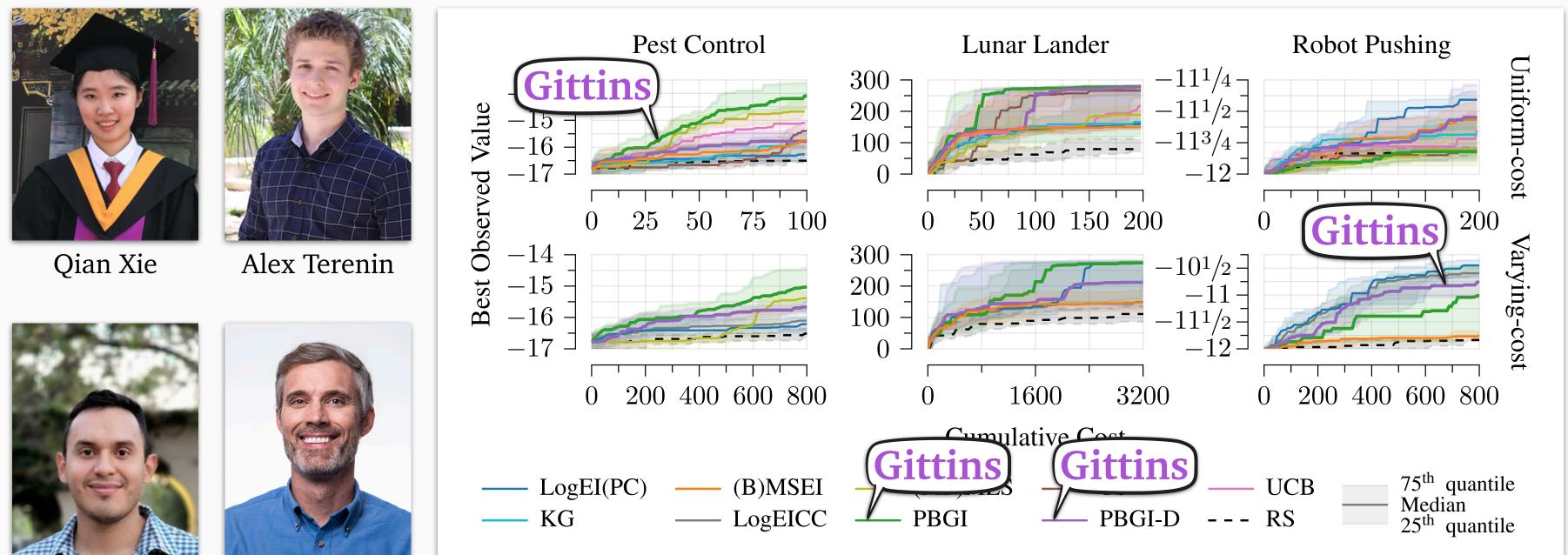
Raul Astudillo

Peter Frazier



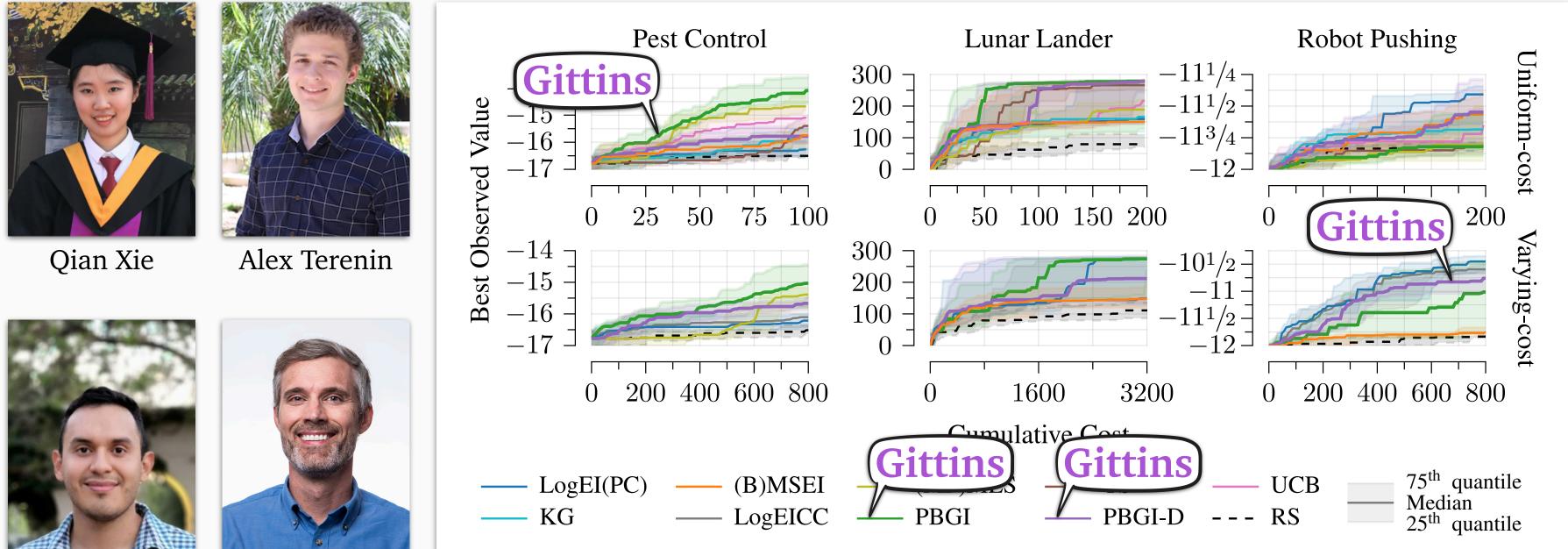
Raul Astudillo

Peter Frazier



Raul Astudillo

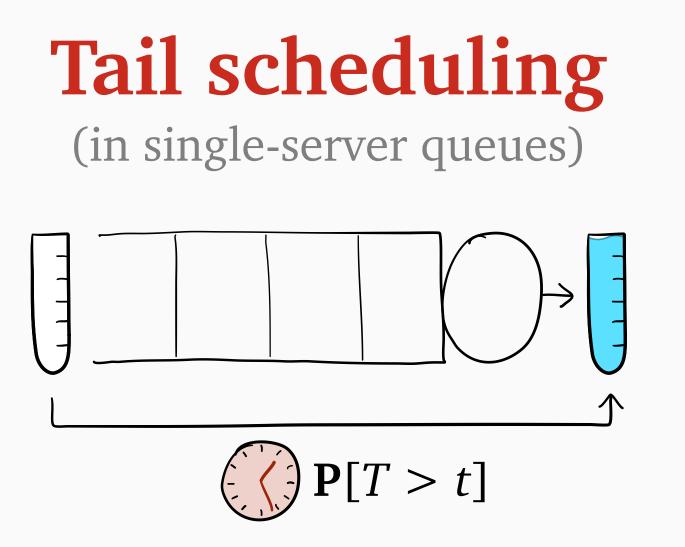
Peter Frazier



Raul Astudillo

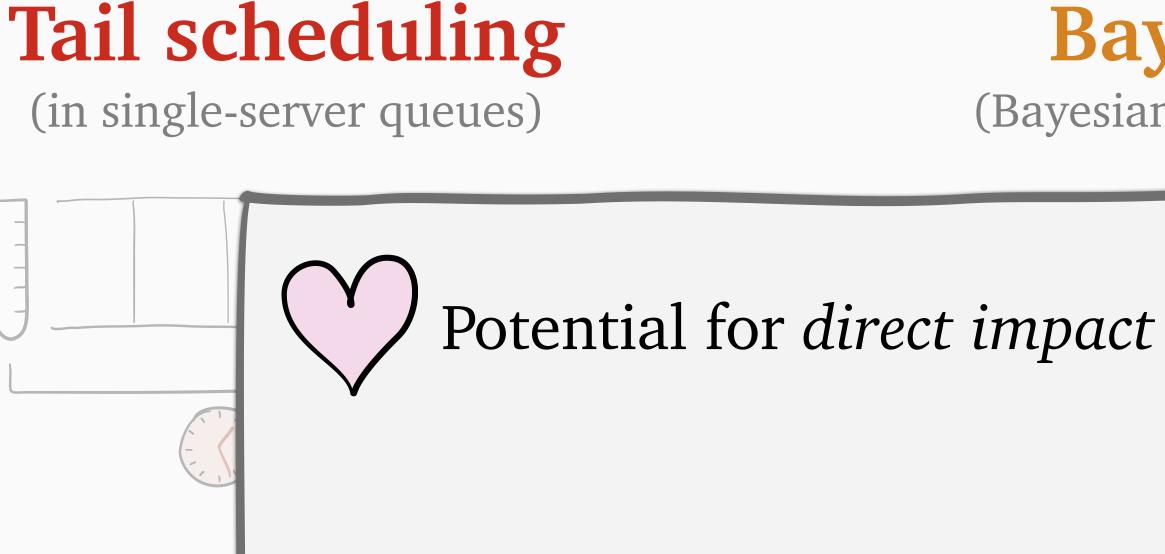
Peter Frazier

See our NeurIPS 2024 paper [Xie et al., 2024]



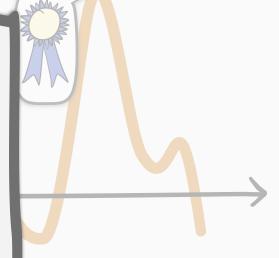
Goal: minimize probability of very long response time

Goal: find large function value with few function evaluations

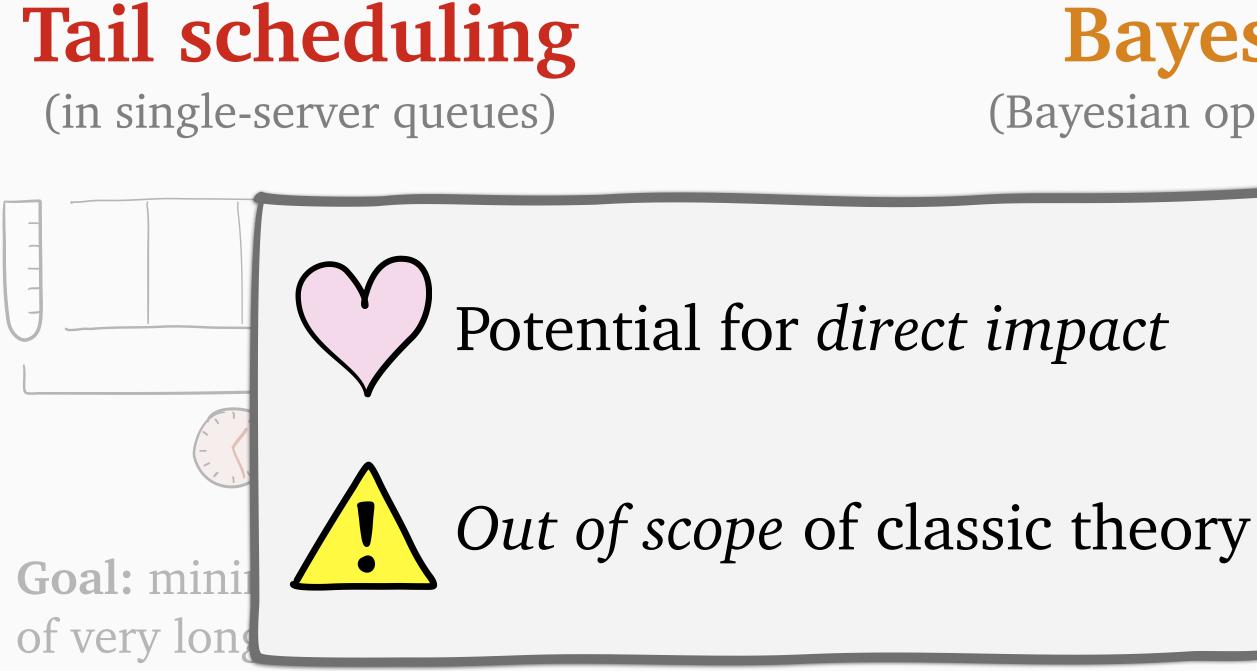


Goal: mini of very lon

BayesOpt (Bayesian optimization)



ction value evaluations



BayesOpt (Bayesian optimization)

This talk

This talk What is the Gittins index?

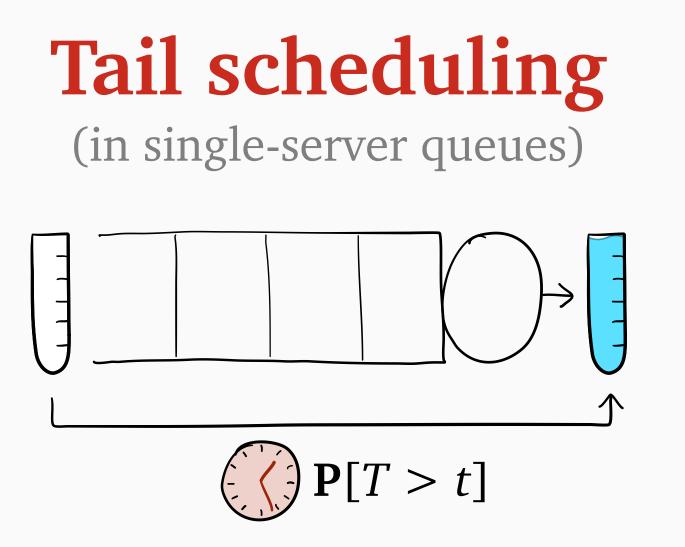
This talk What is the Gittins index? Why is Gittins optimal?

This talk

What is the **Gittins index**? Why is **Gittins** optimal? What is (and isn't) covered by classical Gittins theory?

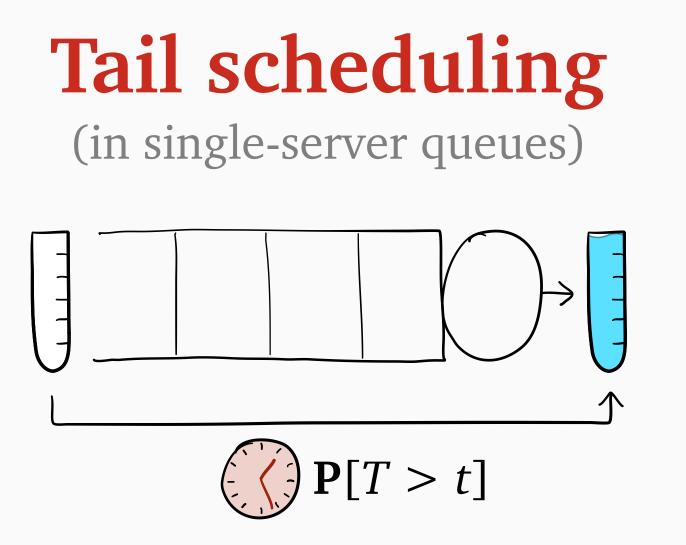
This talk

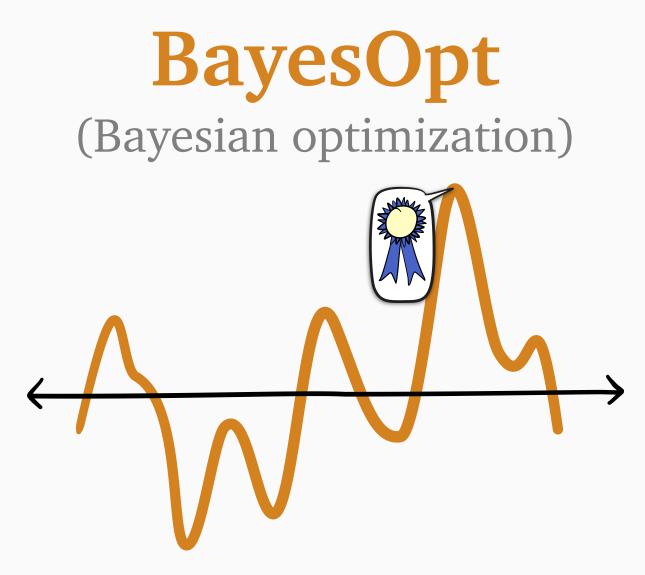
What is the **Gittins index**? Why is **Gittins** optimal? What is (and isn't) covered by classical **Gittins** theory? How might we apply **Gittins** *beyond* the classical theory?



Goal: minimize probability of very long response time

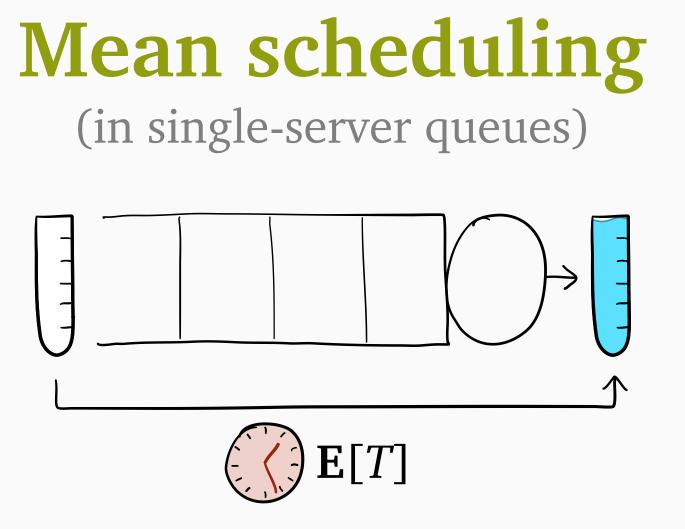
Goal: find large function value with few function evaluations

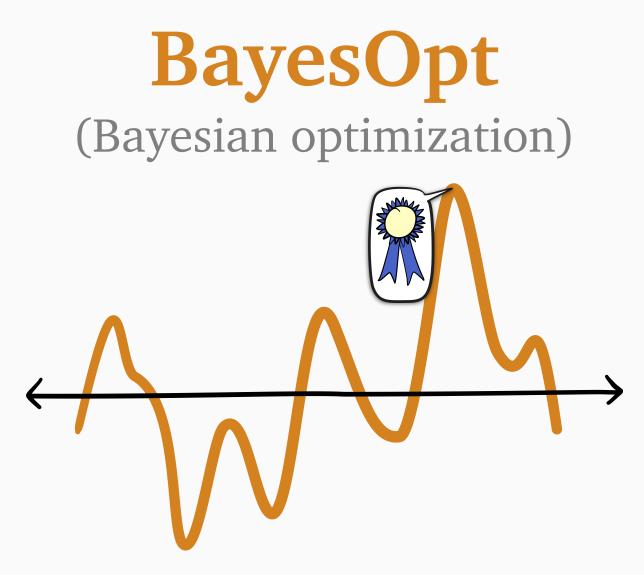




Goal: minimize probability of very long response time

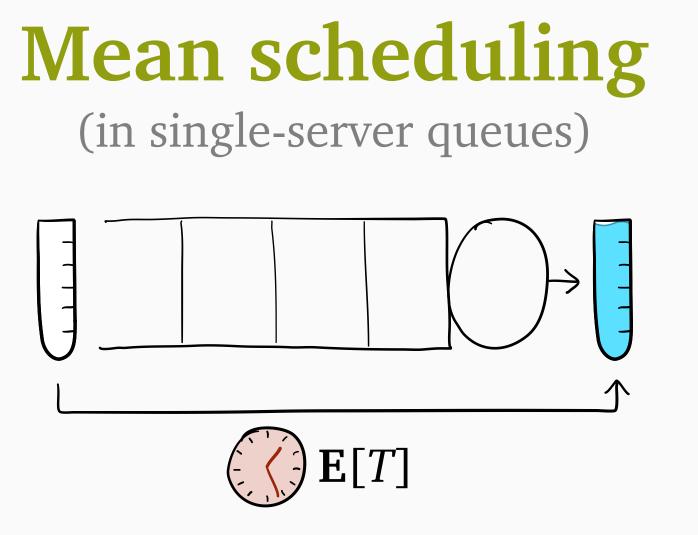
Goal: find large function value with few function evaluations

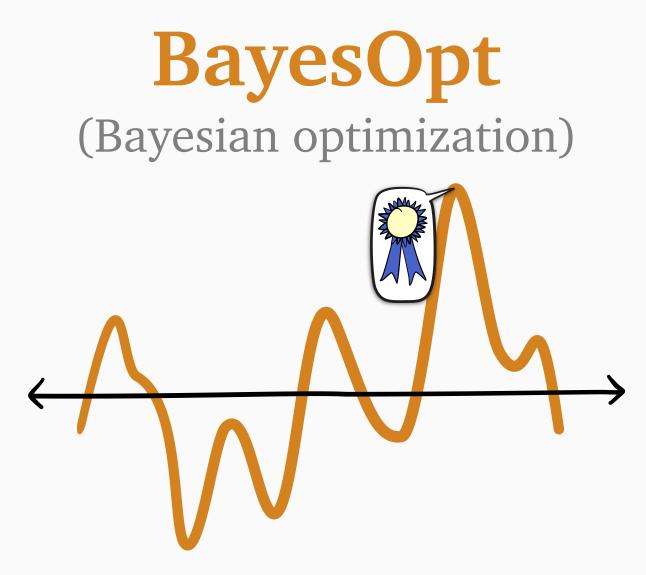




Goal: minimize probability of very long response time

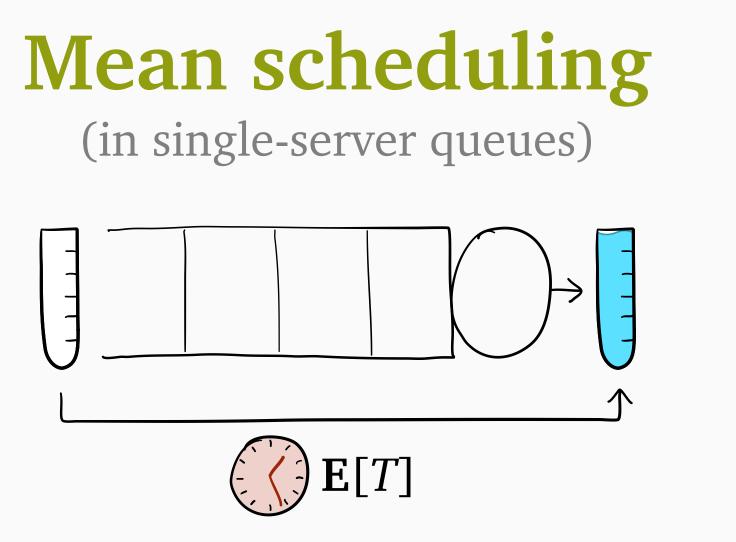
Goal: find large function value with few function evaluations

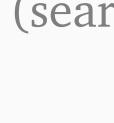


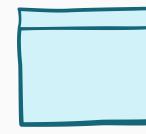


Goal: minimize mean of the response time distribution

Goal: find large function value with few function evaluations

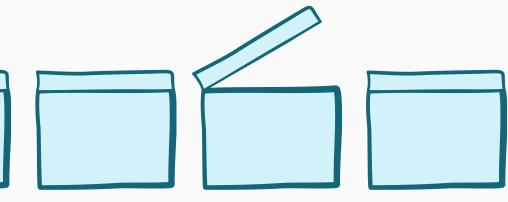




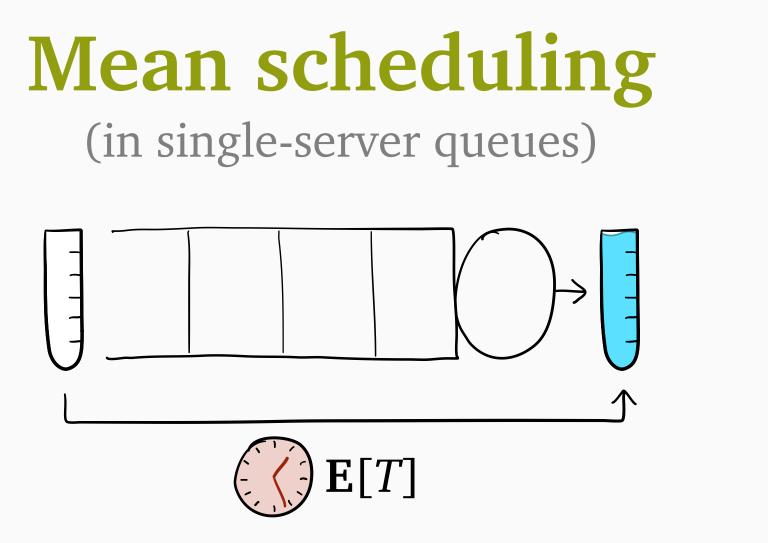


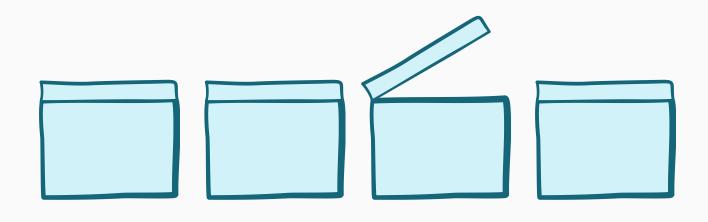
Goal: minimize mean of the response time distribution

Pandora's box (search for best alternative)



Goal: find large function value with few function evaluations

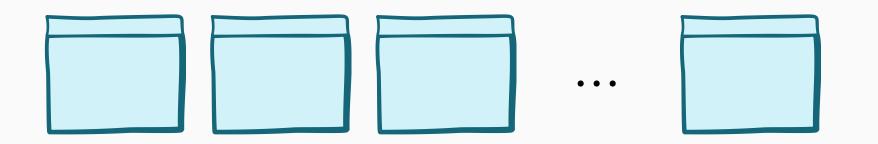


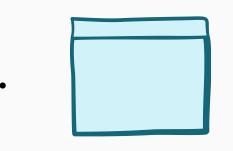


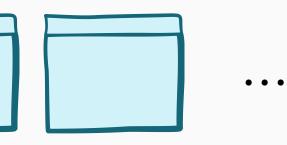
Goal: minimize mean of the response time distribution

Pandora's box (search for best alternative)

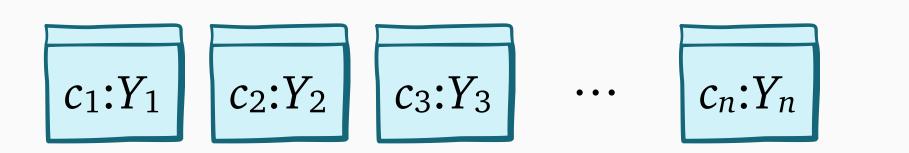
Goal: find box with large reward without opening too many





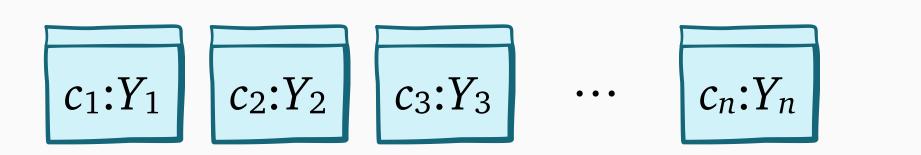


• Opening cost *c* • Hidden reward *Y*

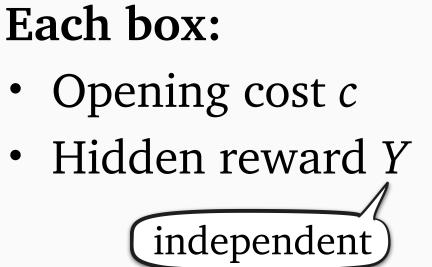


- Each box:

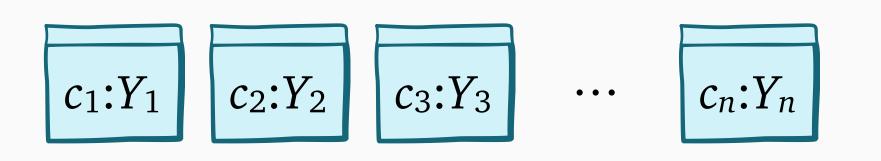
• Opening cost *c* • Hidden reward *Y*



- Each box:



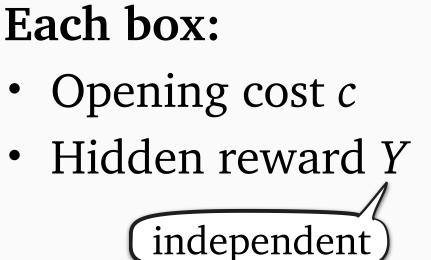
$$c$$
: Y



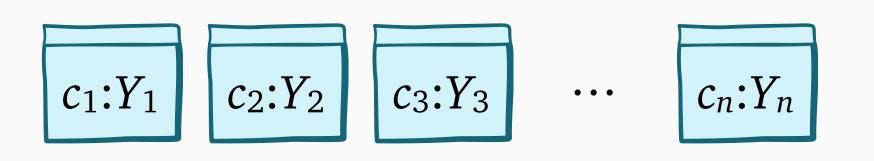
- Each box:

Decision process:

- Open boxes one at a time
- Stop by selecting open box



$$c$$
: Y

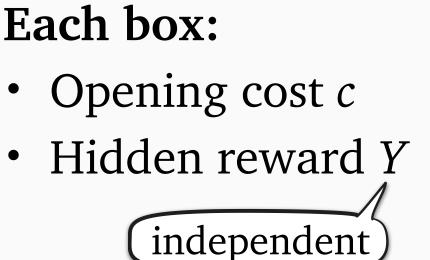


- Each box:

Decision process:

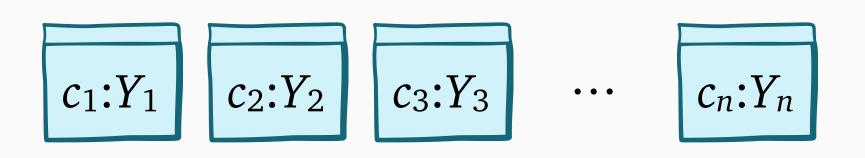
- Open boxes one at a time
- Stop by selecting open box

Goal: maximize
$$\mathbf{E}\left[Y_{\text{selected}} - \sum_{i \text{ opened}} c_i\right]$$



$$c$$
: Y

Pandora's box problem

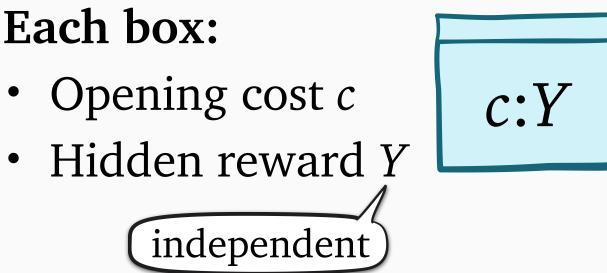


Decision process:

- Open boxes one at a time
- Stop by selecting open box

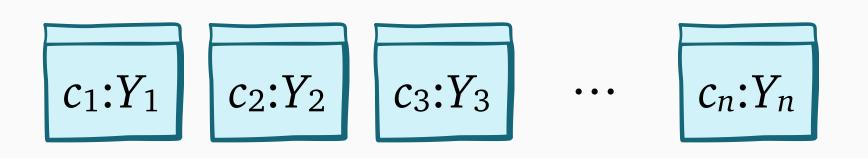
Goal: maximize
$$\mathbf{E}\left[Y_{\text{selected}} - \sum_{i \text{ opened}} c_i\right]$$

Each box:



Which box to open?

Pandora's box problem

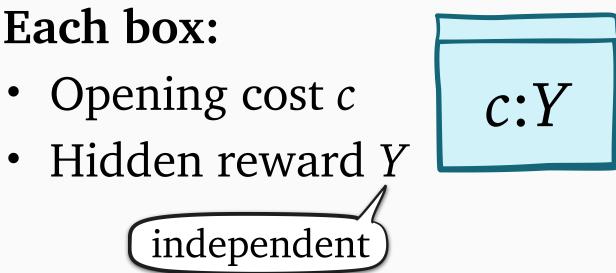


- Each box:

Decision process:

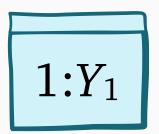
- Open boxes one at a time
- Stop by selecting open box

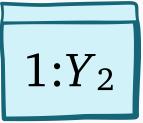
Goal: maximize
$$\mathbf{E}\left[Y_{\text{selected}} - \sum_{i \text{ opened}} c_i\right]$$

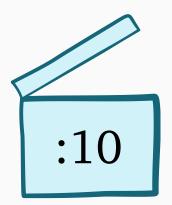


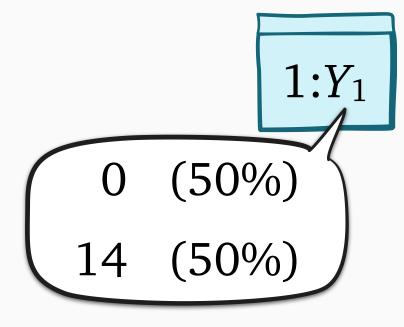
Which box to open?

Is it time to stop?

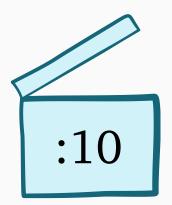


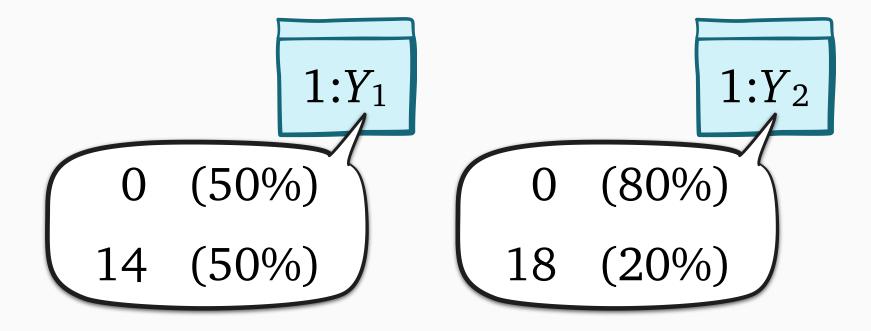


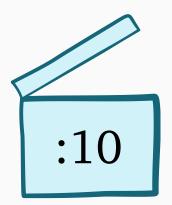


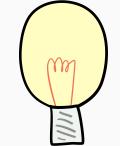


 $1:Y_{2}$



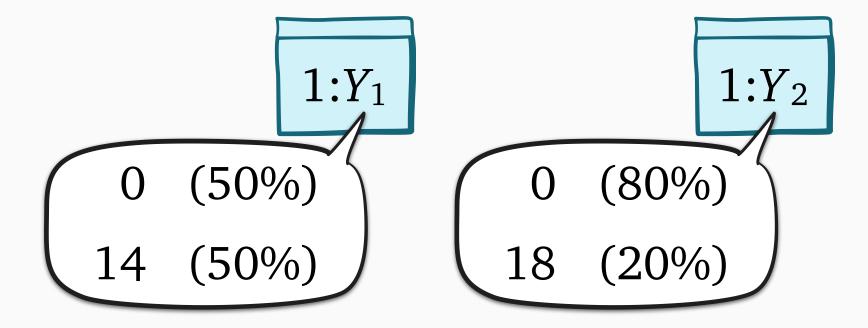




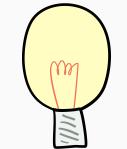


Expected improvement of *Y* over *r*:

 $\mathrm{EI}(Y,r) = \mathbf{E}[(Y-r)^+]$

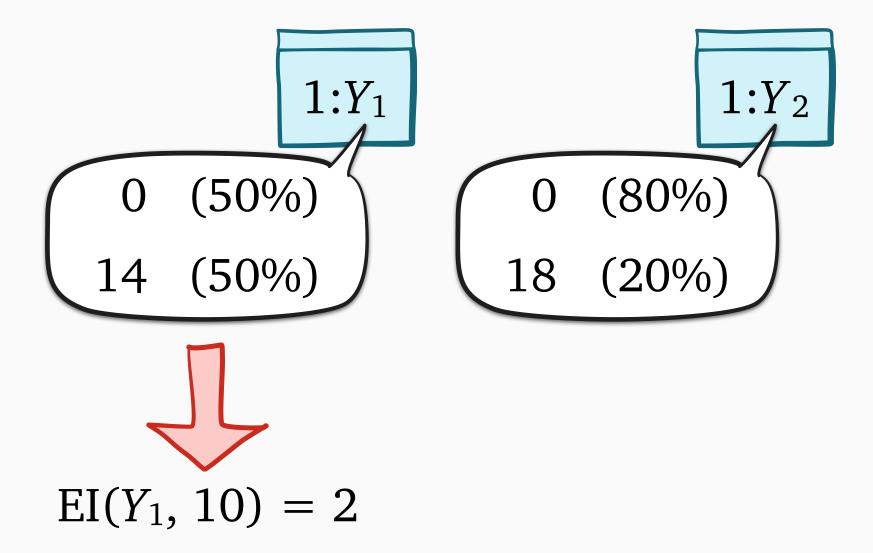


:10

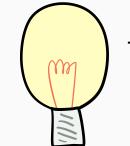


Expected improvement of *Y* over *r*:

 $EI(Y,r) = E[(Y-r)^+]$

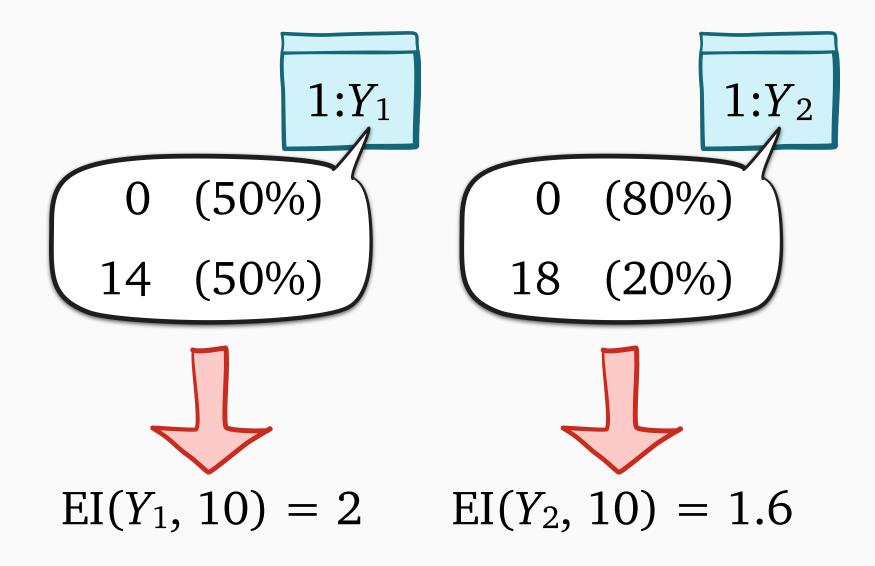


:10

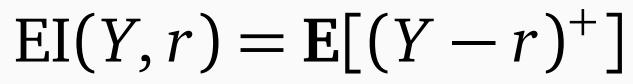


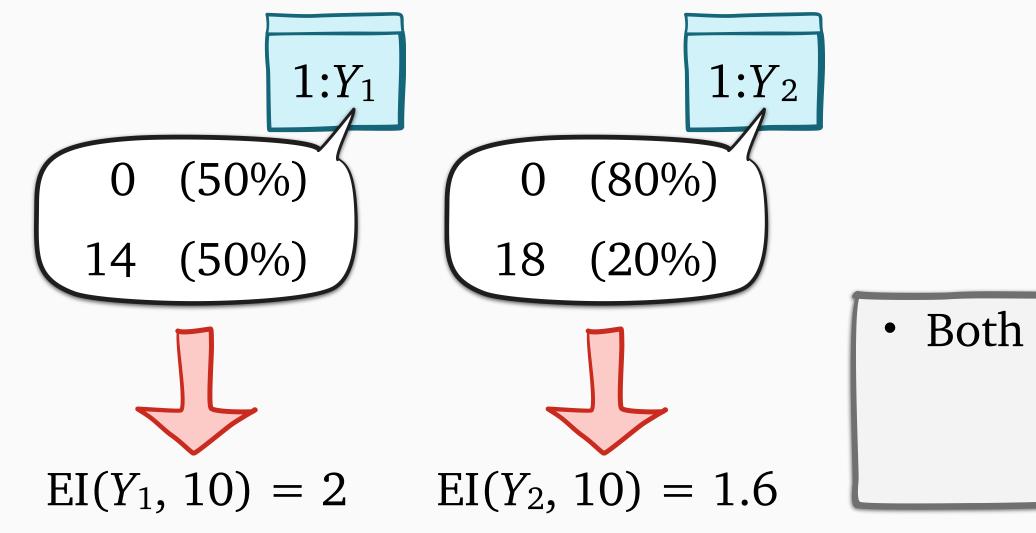
Expected improvement of *Y* over *r*:

 $EI(Y,r) = E[(Y-r)^+]$



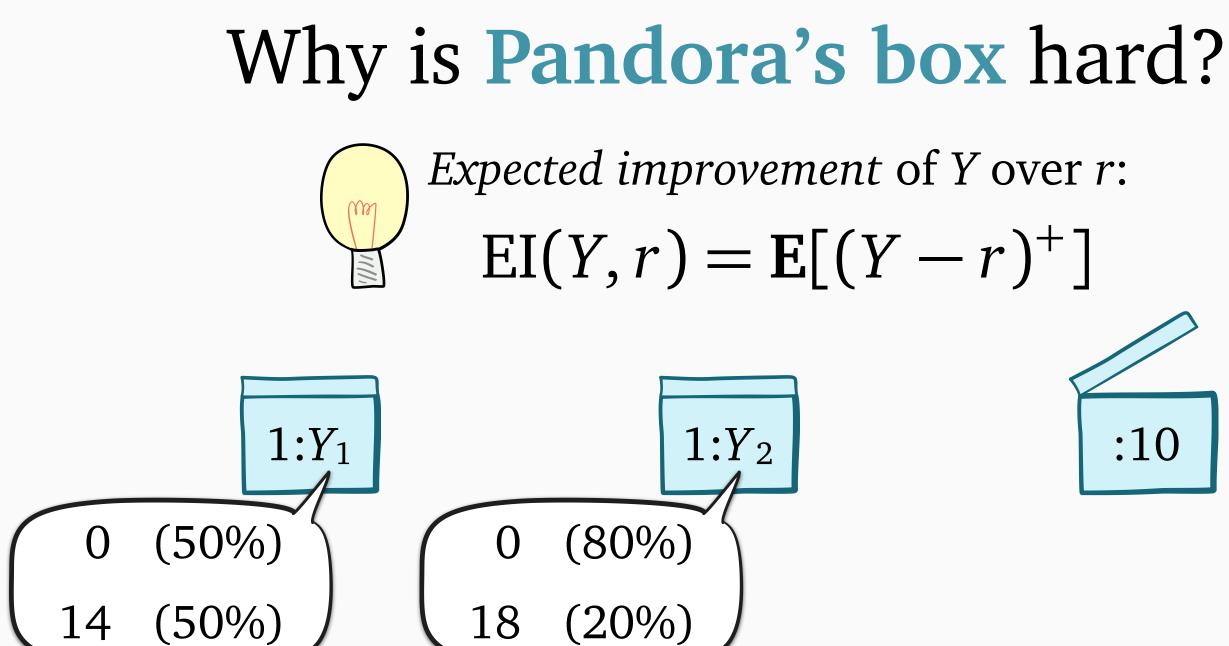
:10





:10

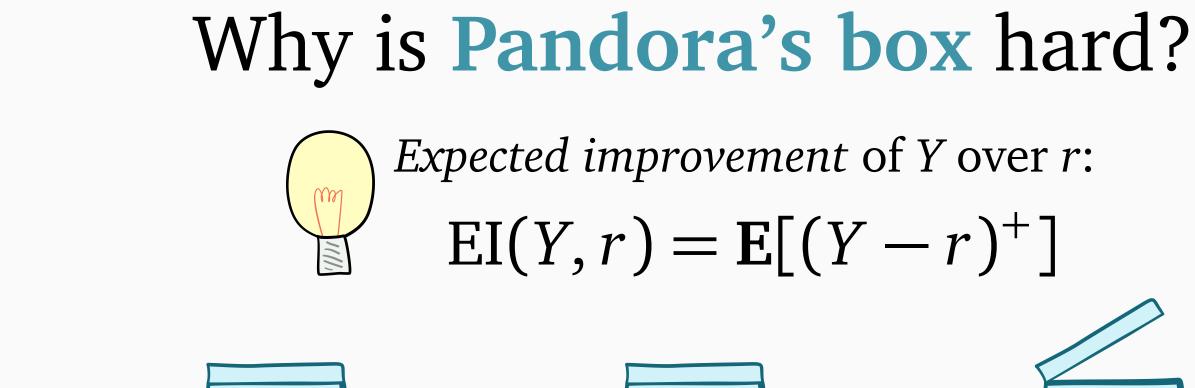
Both boxes have $EI(Y_i, 10) > c_i$

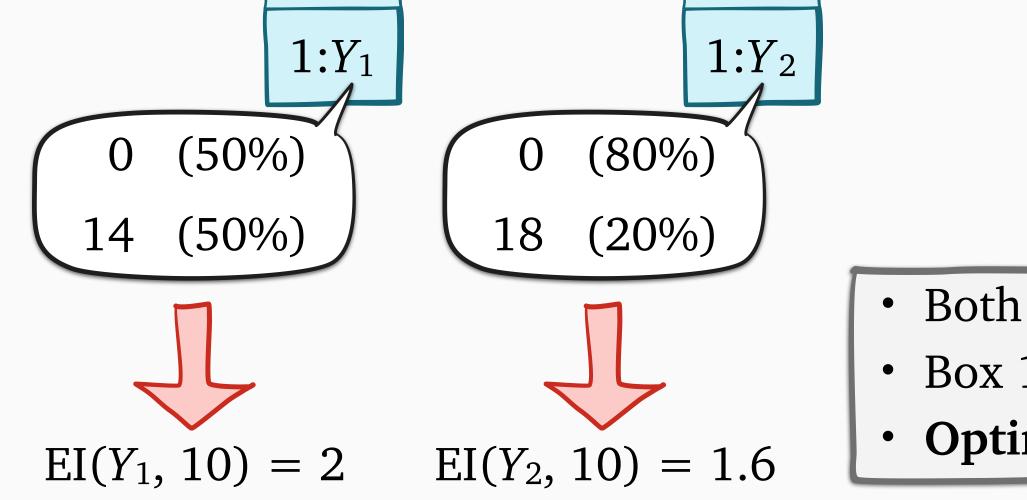


 $EI(Y_2, 10) = 1.6$ $EI(Y_1, 10) = 2$

:10

• Both boxes have $EI(Y_i, 10) > c_i$ Box 1 has better EI



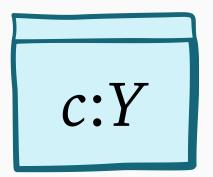


:10

• Both boxes have $EI(Y_i, 10) > c_i$ Box 1 has better EI **Optimal action:** *open box 2!*

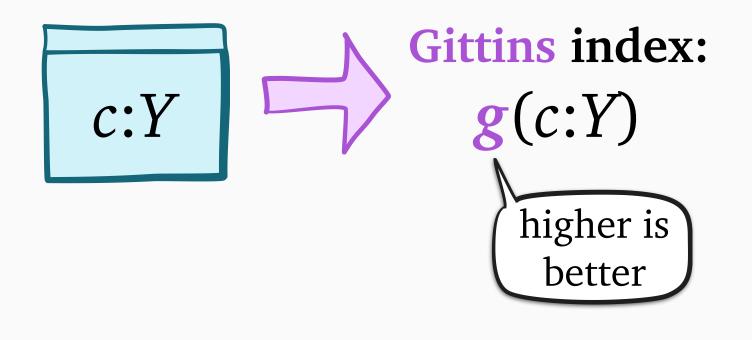
Step 1: *rate* each box separately

Step 1: *rate* each box separately

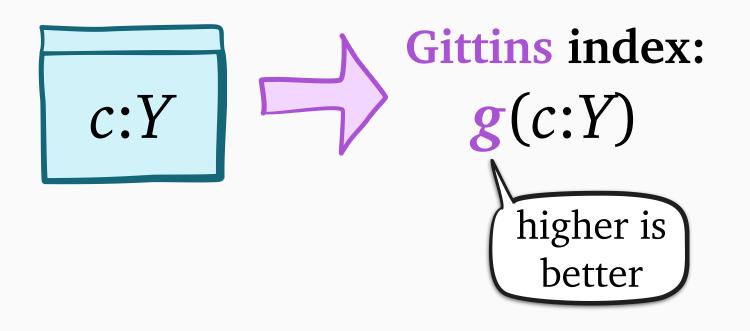


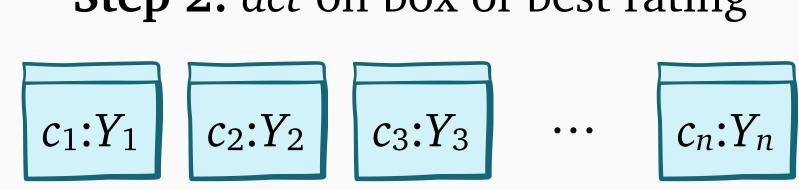
Step 1: *rate* each box separately

Step 1: *rate* each box separately

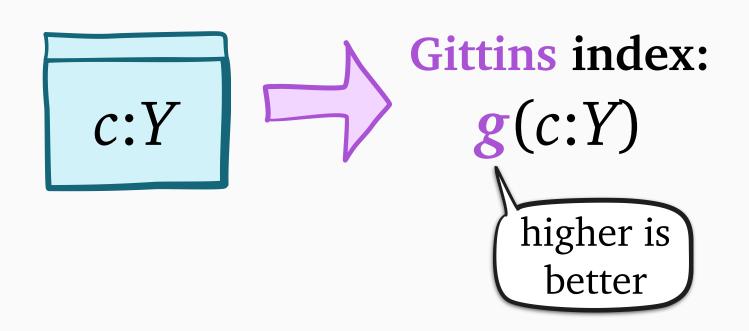


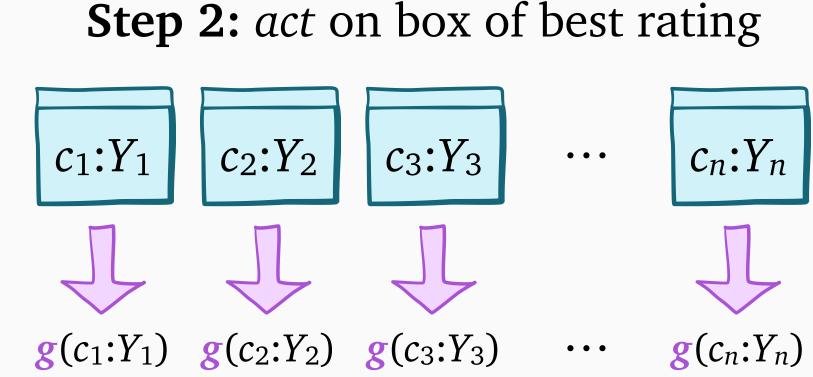
Step 1: *rate* each box separately



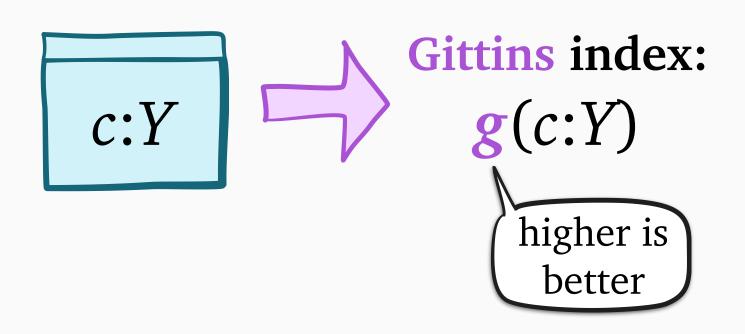


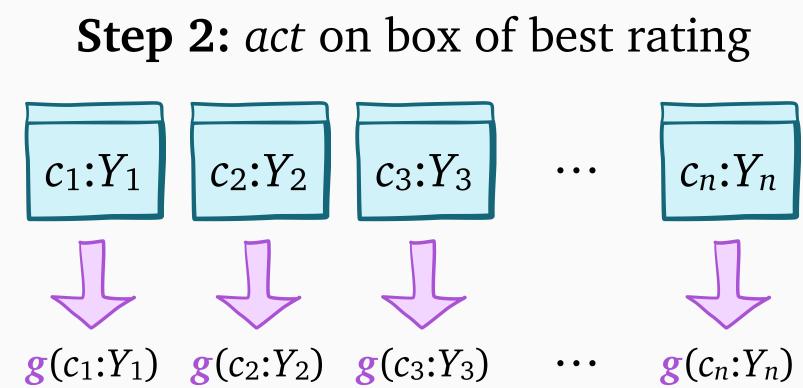
Step 1: *rate* each box separately



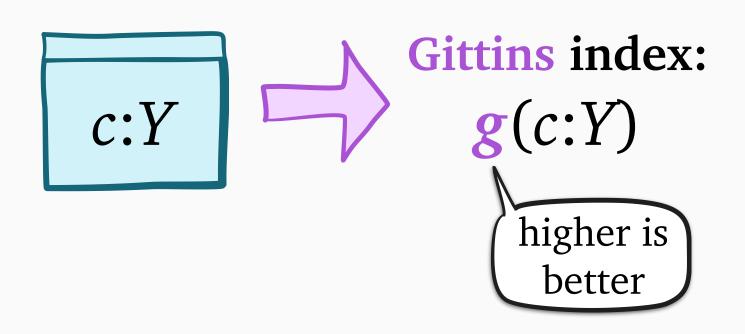


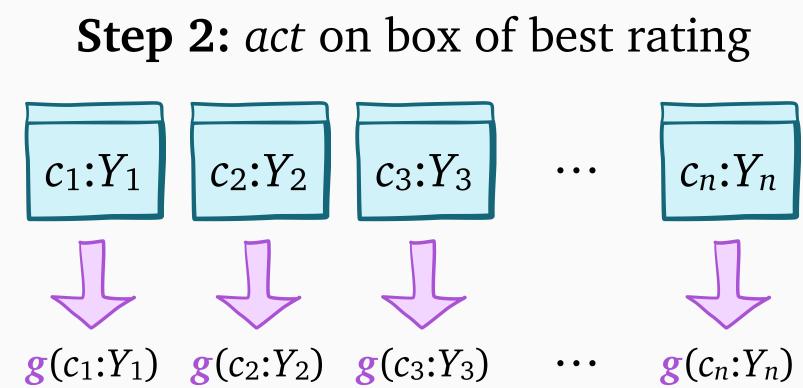
Step 1: *rate* each box separately



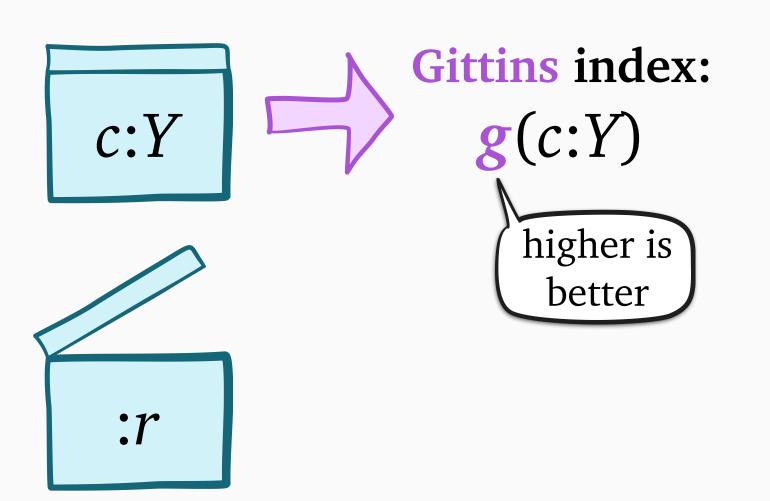


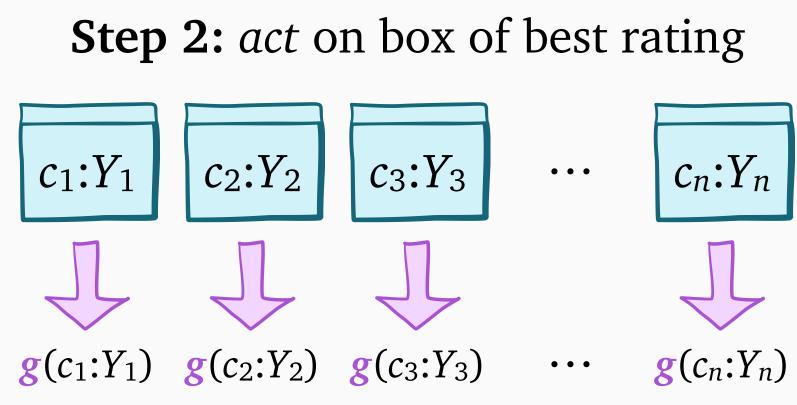
Step 1: *rate* each box separately



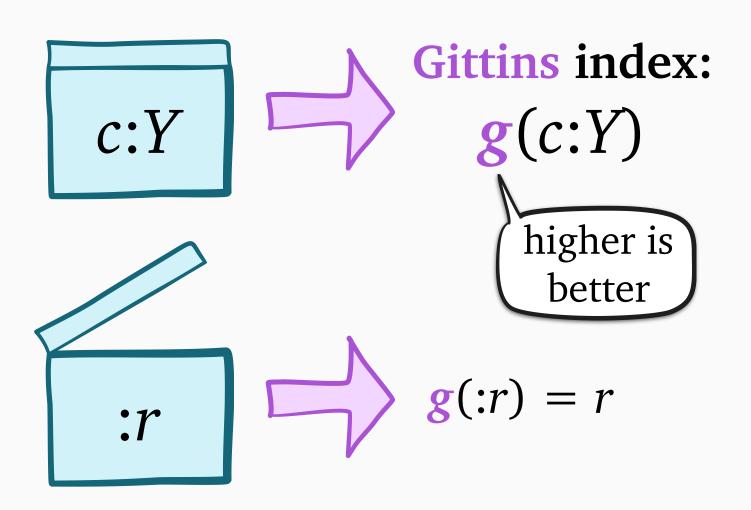


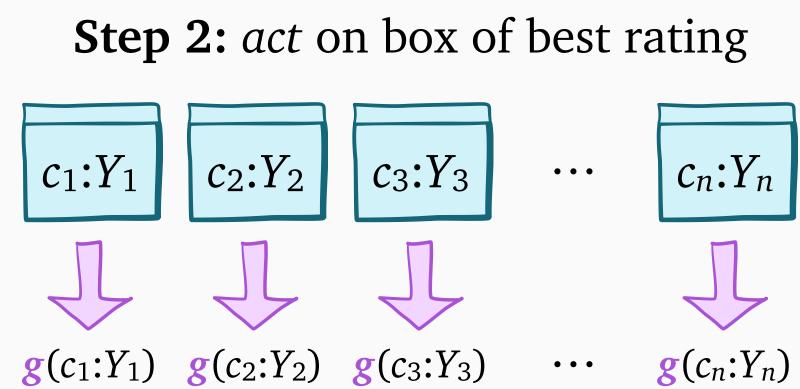
Step 1: *rate* each box separately



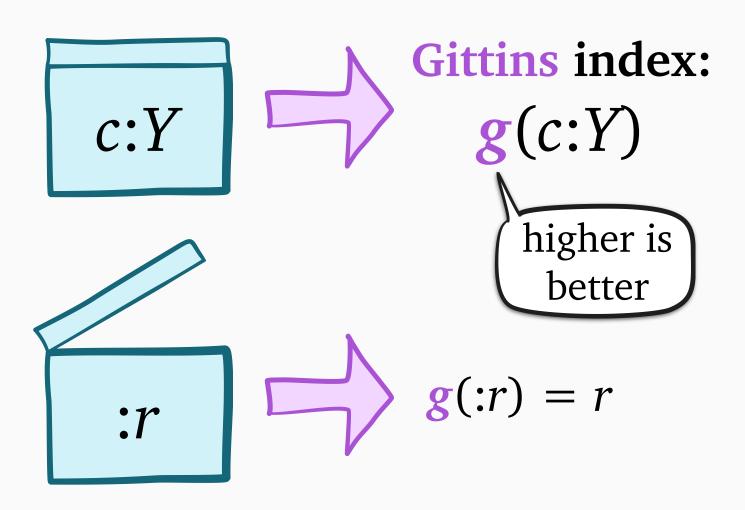


Step 1: *rate* each box separately

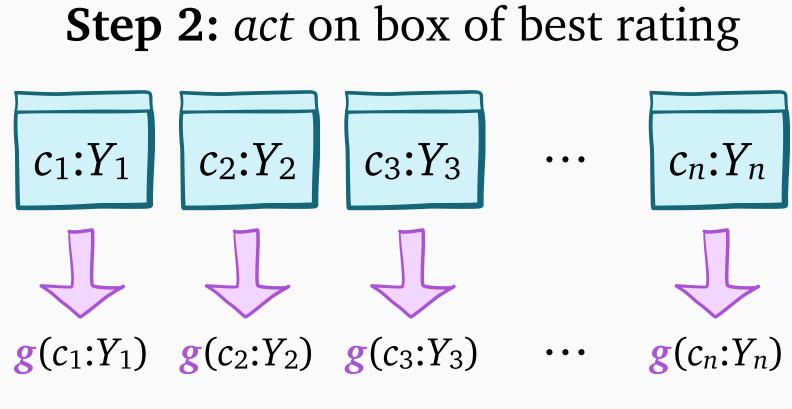


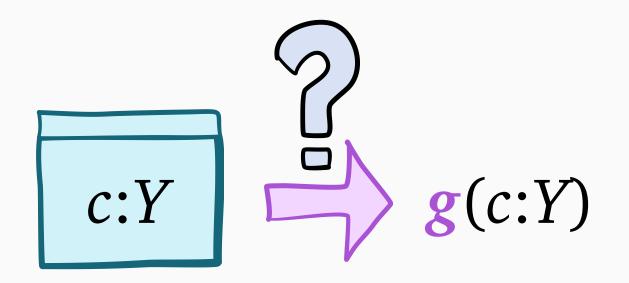


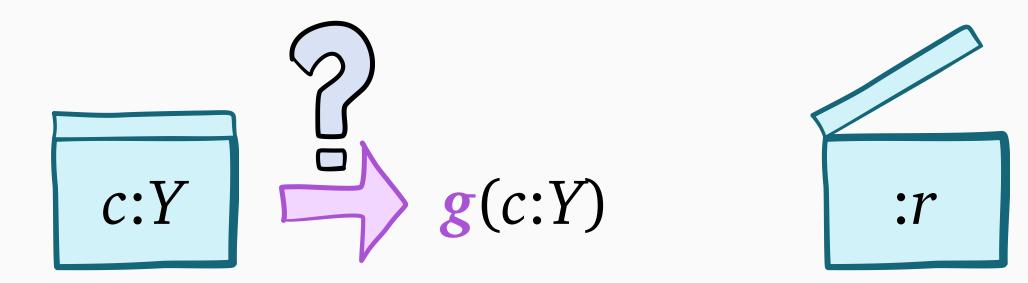
Step 1: *rate* each box separately



Theorem: [Weitzman, 1979] the Gittins policy is optimal

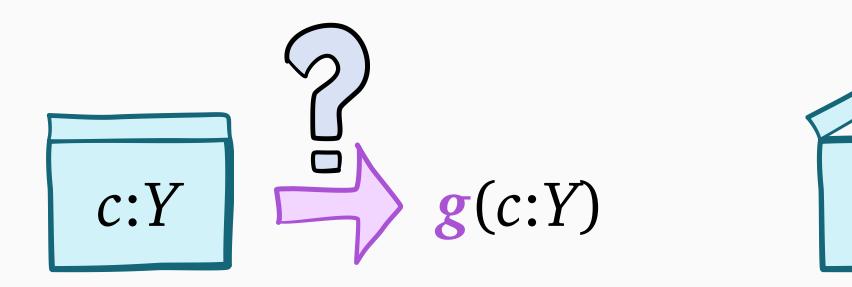




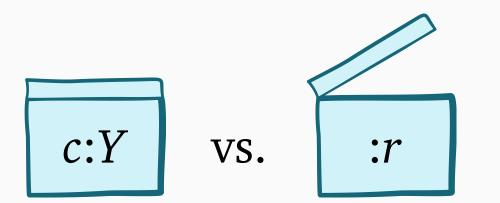


r = r

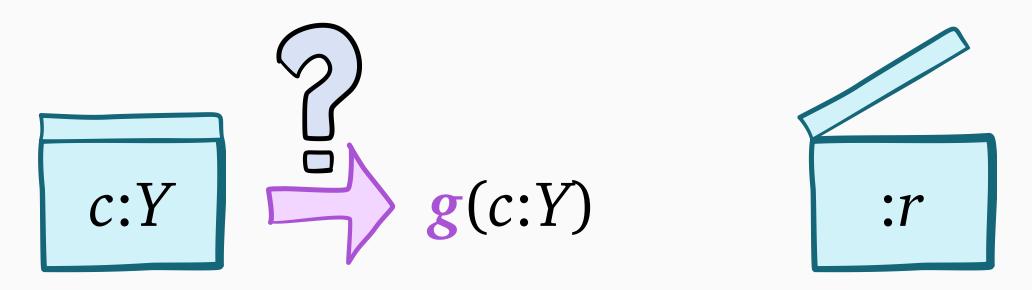
:r

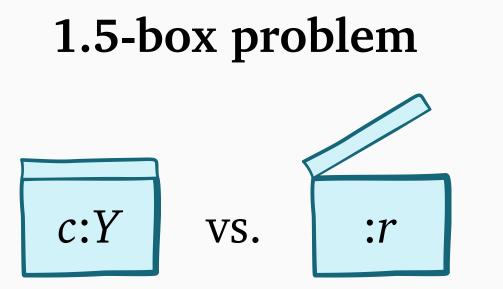


1.5-box problem



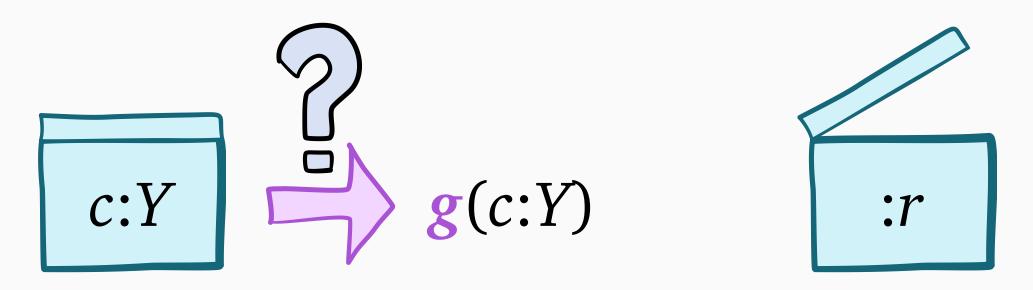
$\mathbf{g}(:r) = r$

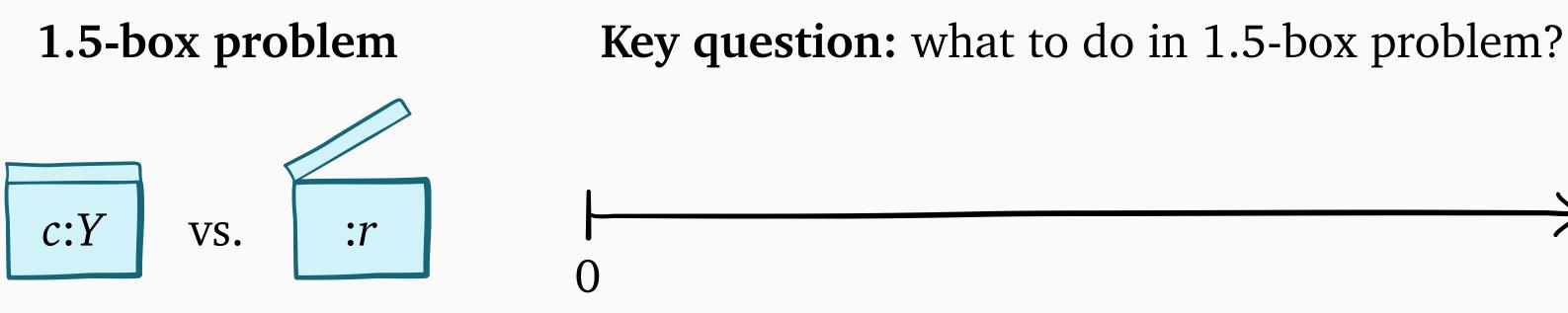




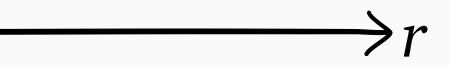
Key question: what to do in 1.5-box problem?

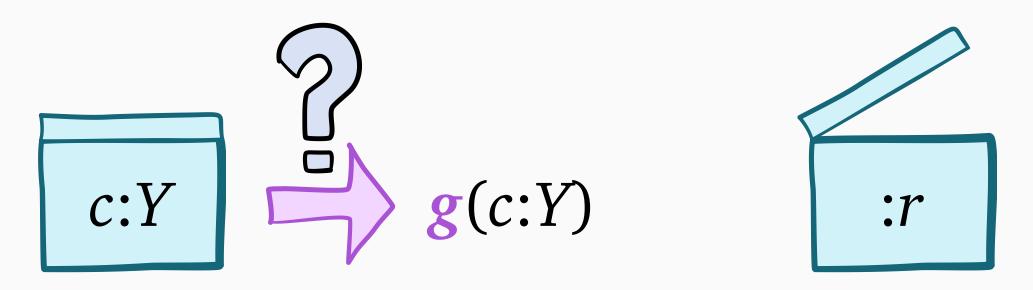
g(:r) = r

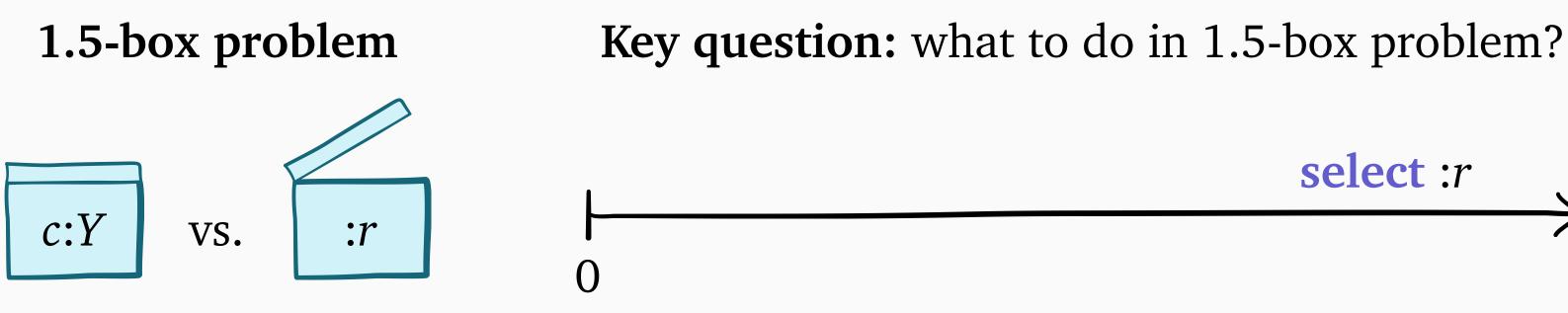




g(:r) = r

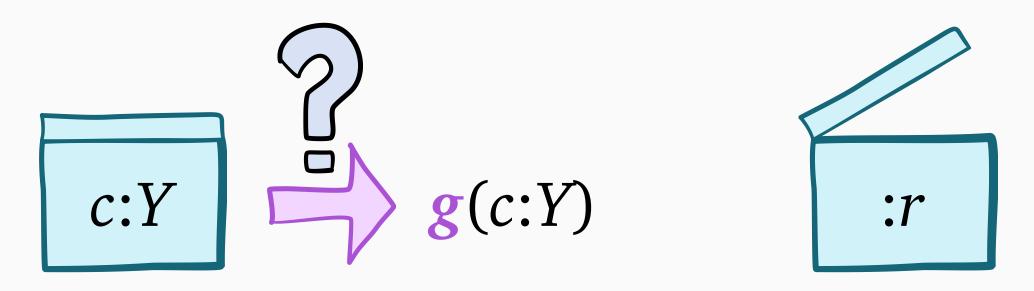


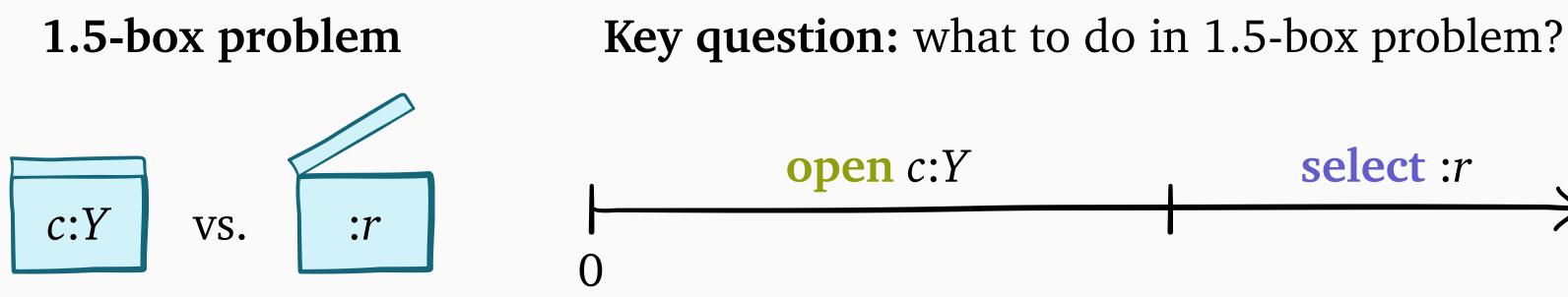




$\mathbf{g}(:r) = r$

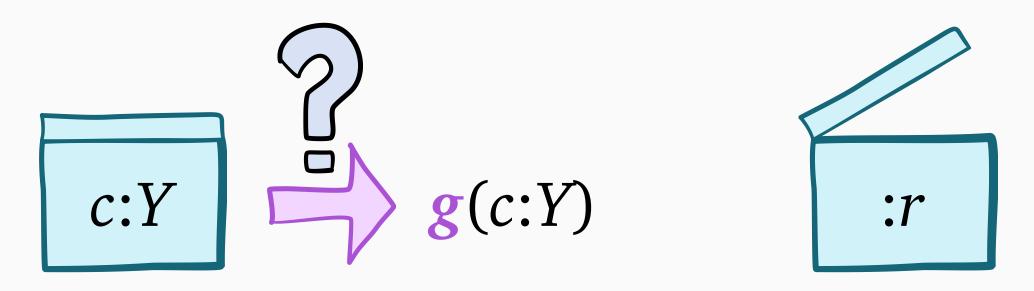
select :r

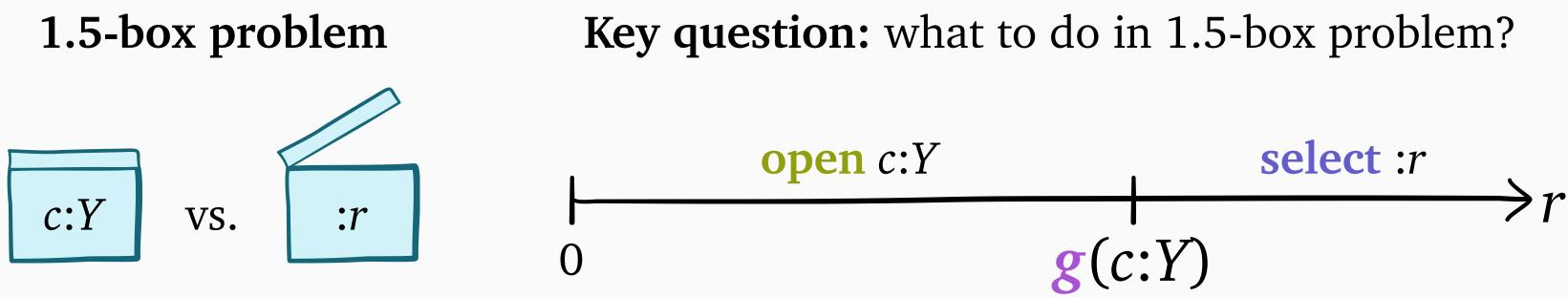




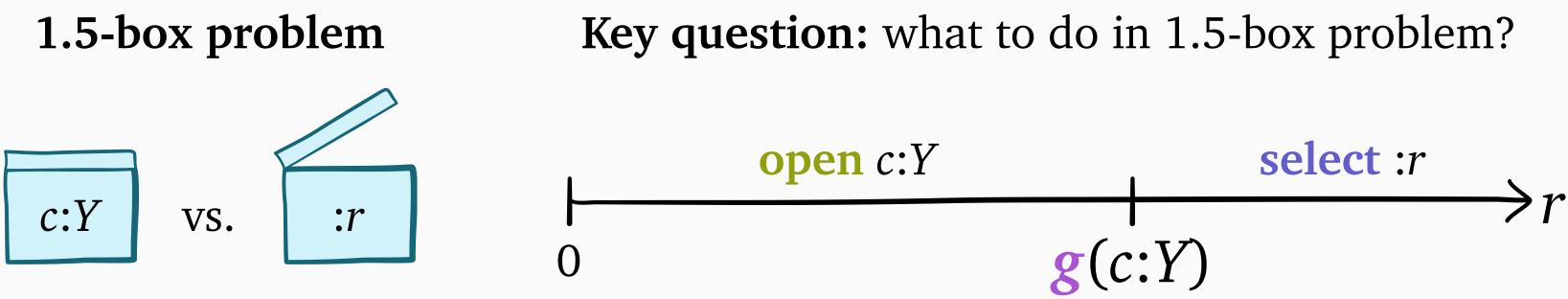
$\mathbf{g}(:r) = r$

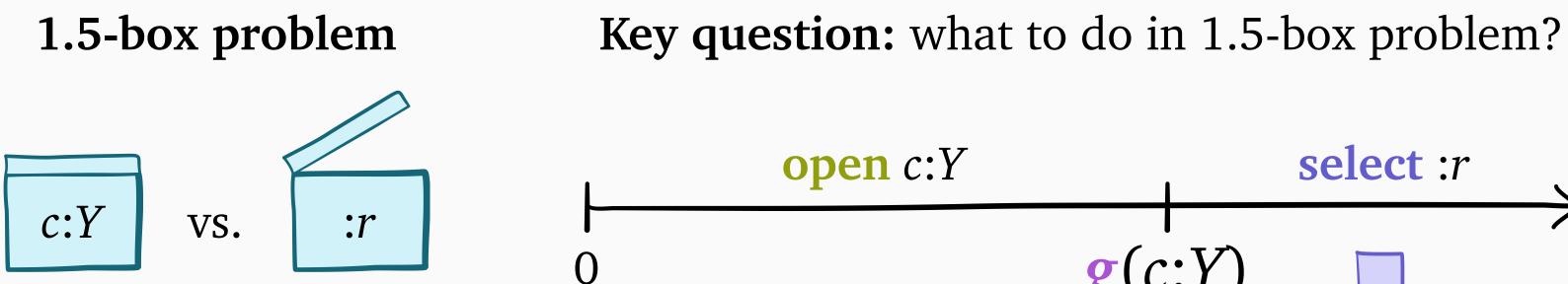
select :r

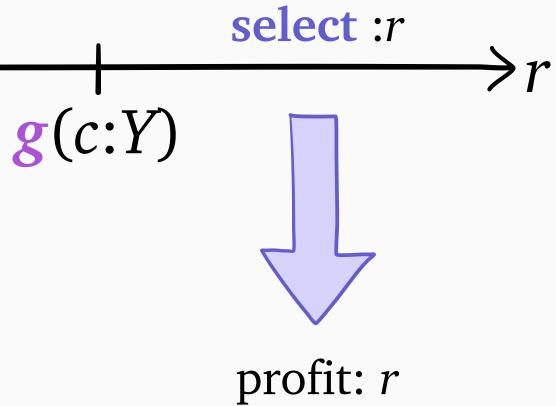


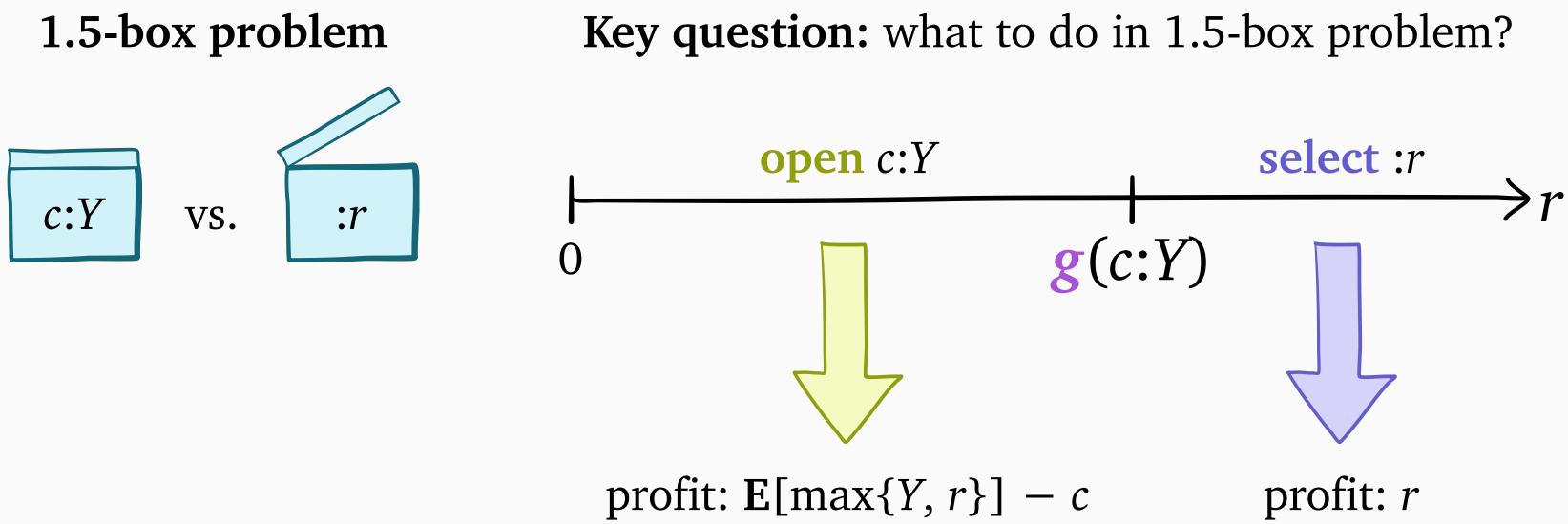


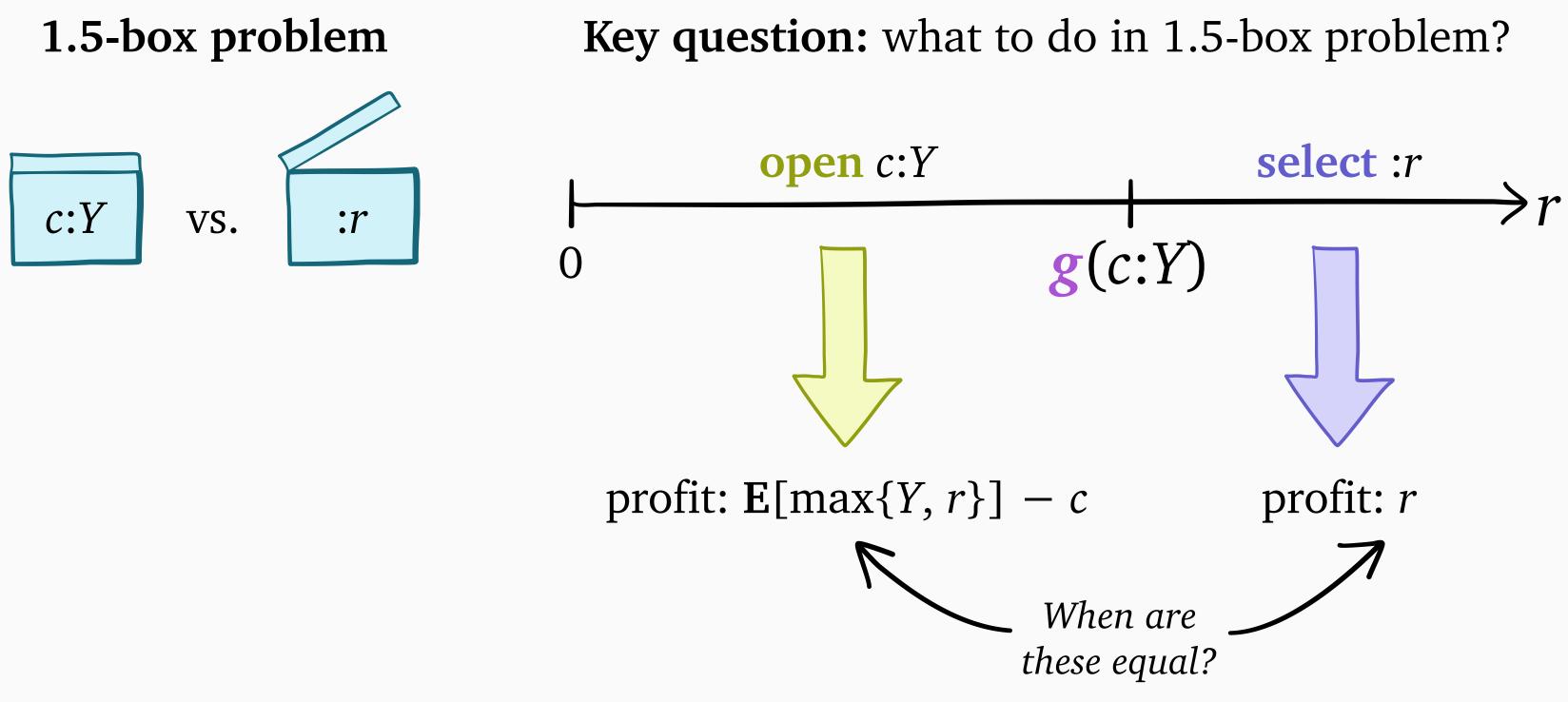
g(:*r*) = *r*



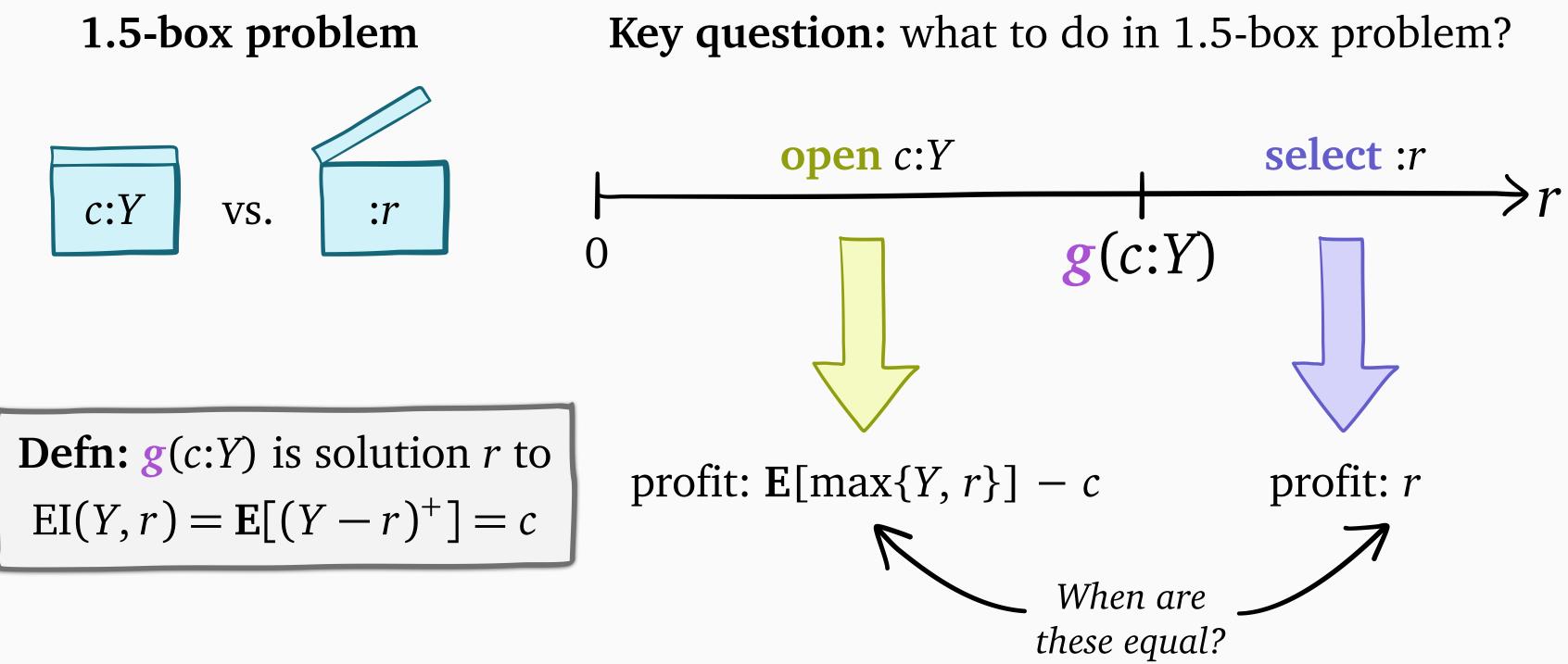


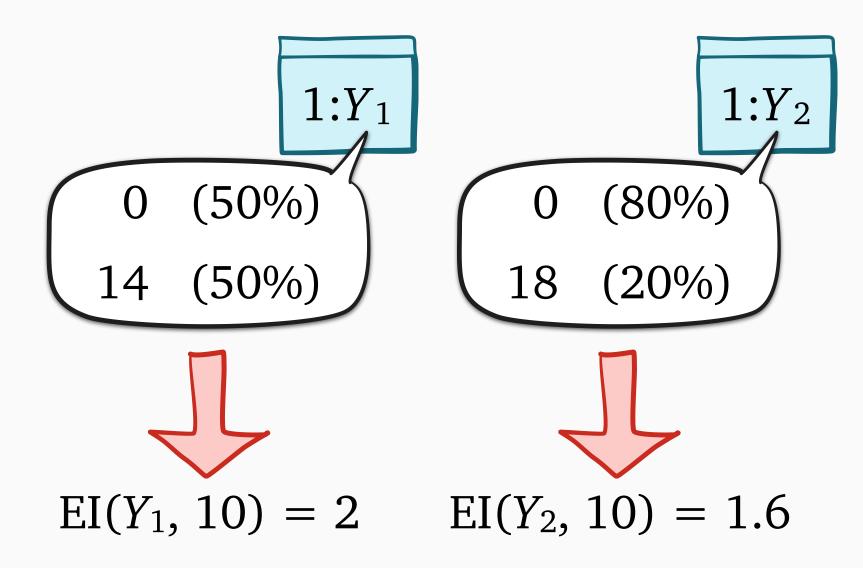


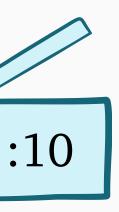


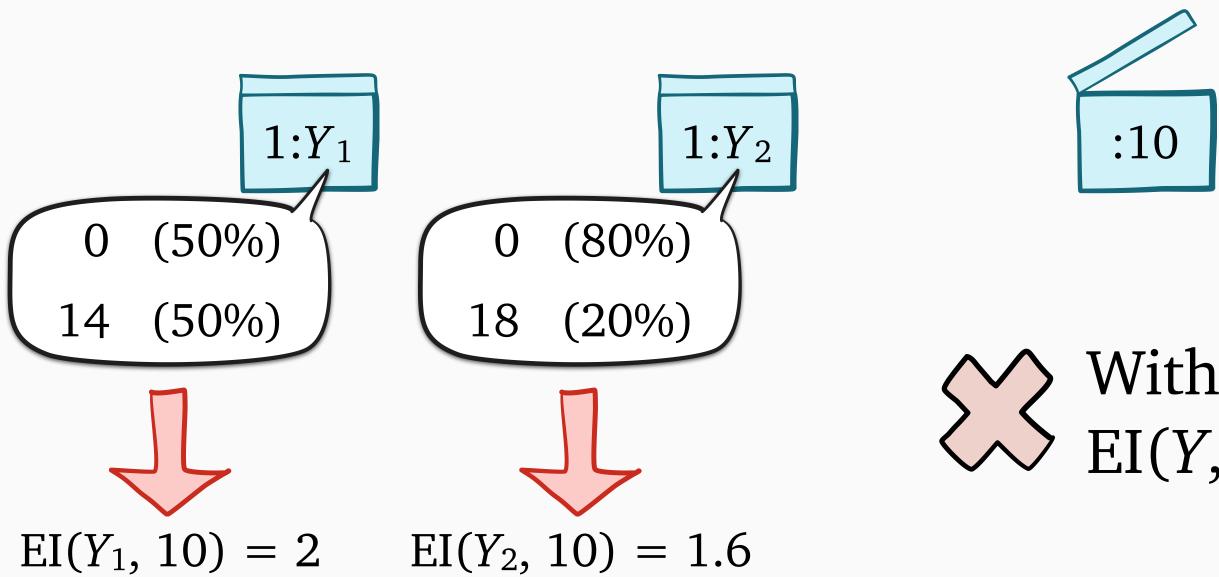


Gittins index of a box

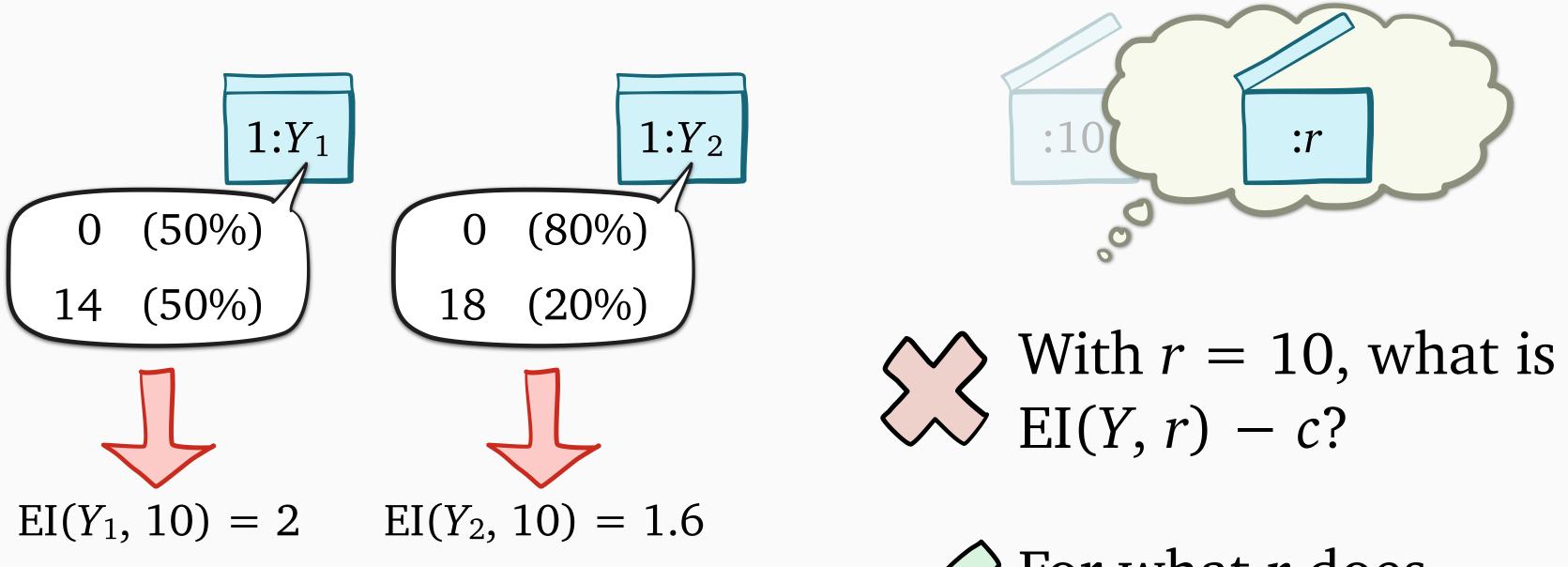




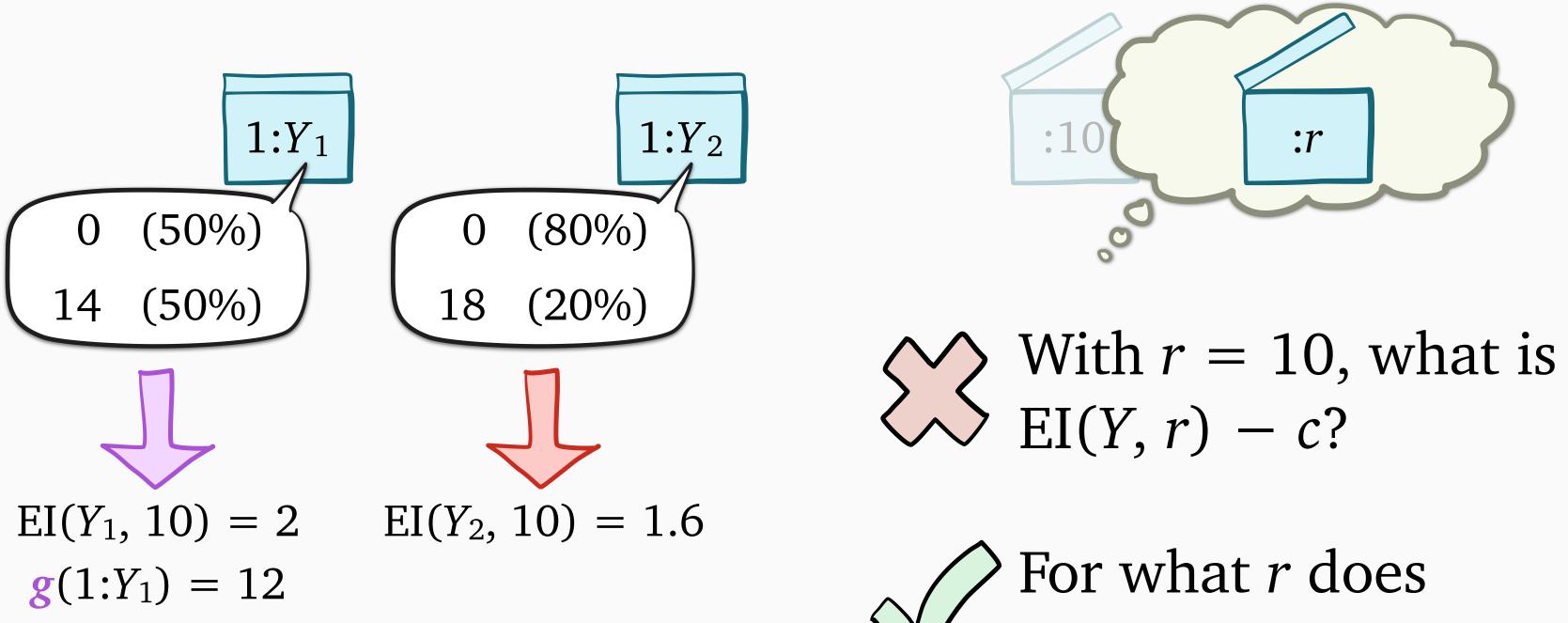




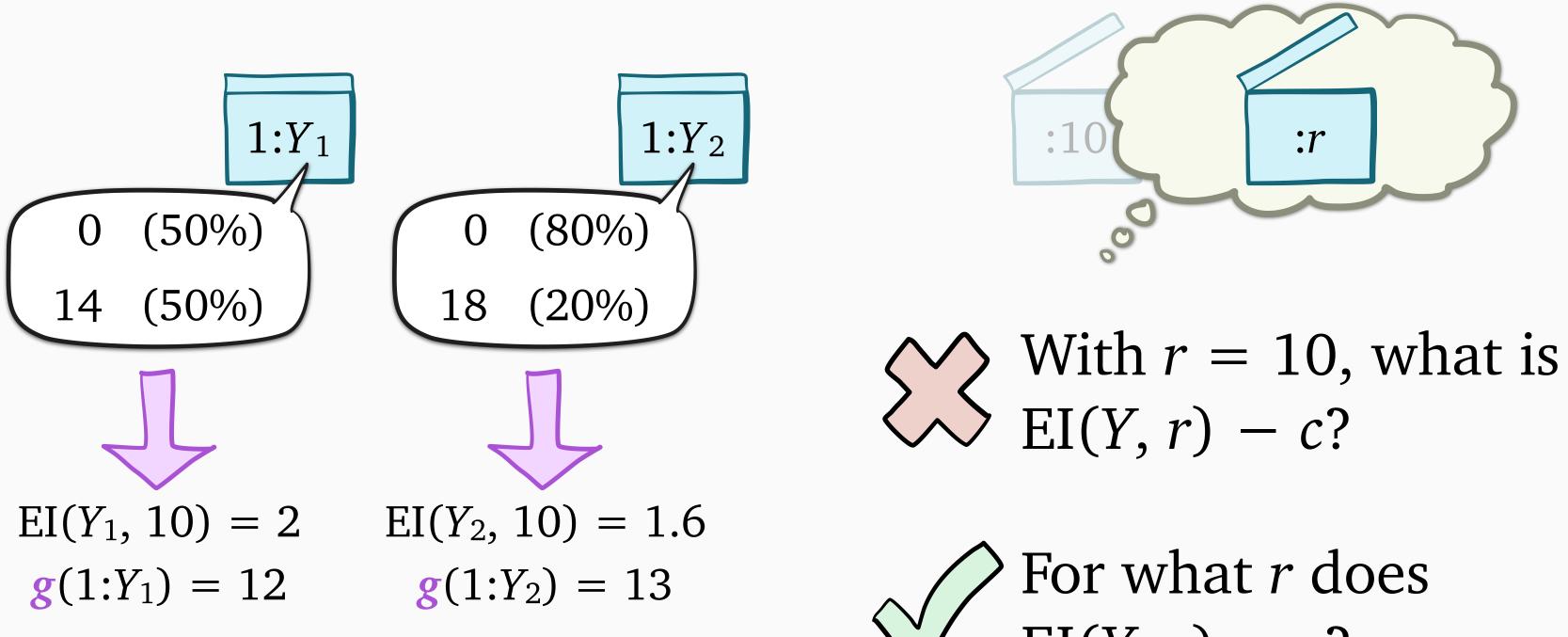
With r = 10, what is EI(*Y*, *r*) - *c*?



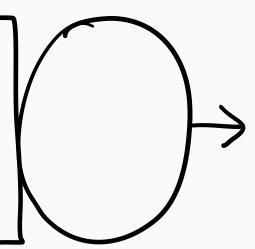
For what *r* does $\mathrm{EI}(Y, r) = c?$

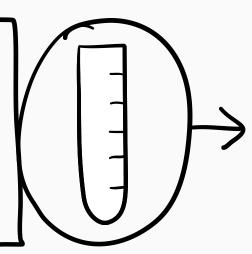


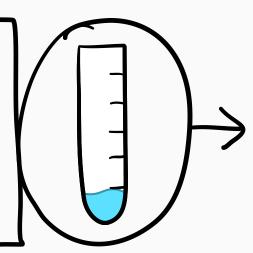
 $\mathrm{EI}(Y, r) = c?$

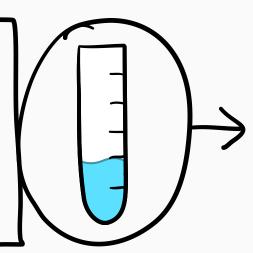


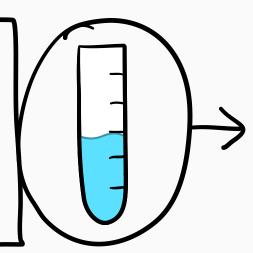
 $\mathrm{EI}(Y, r) = c?$

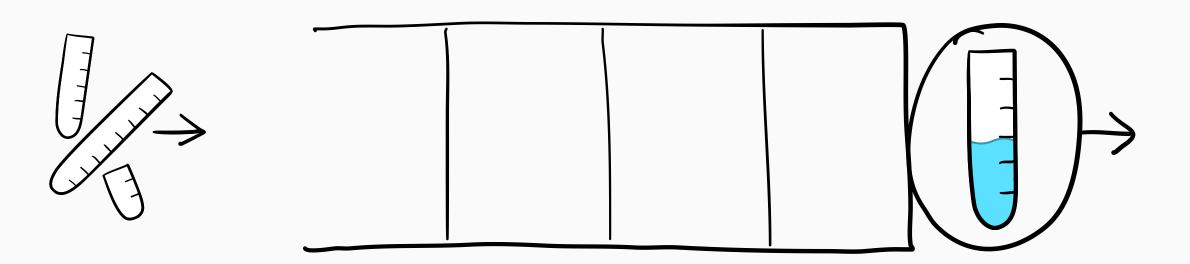


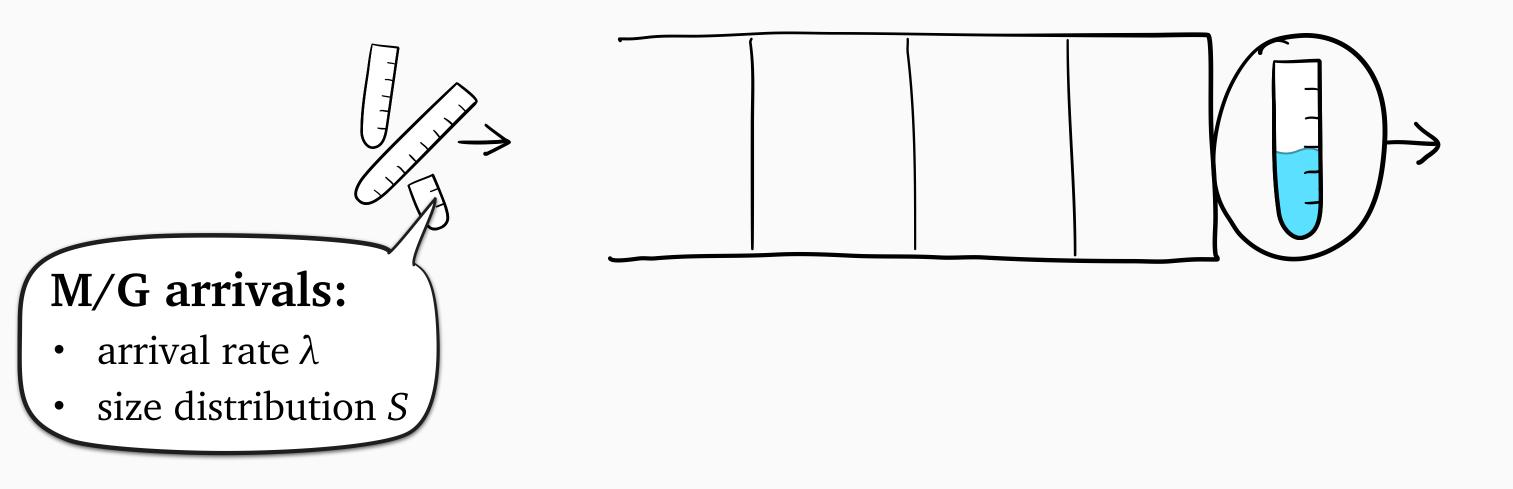


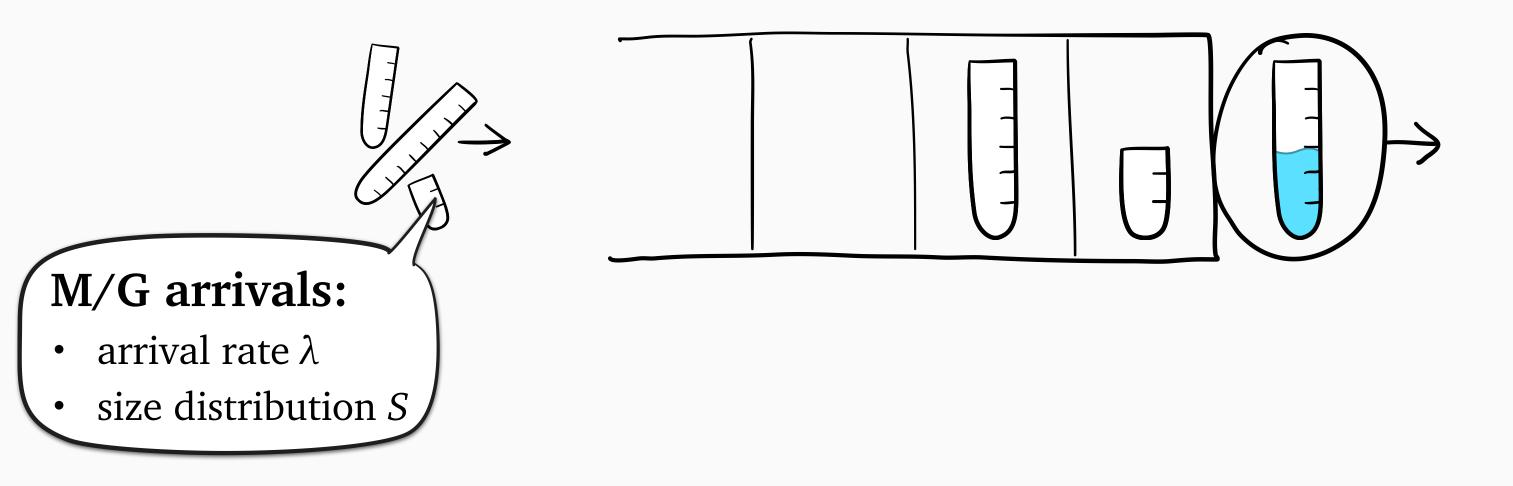


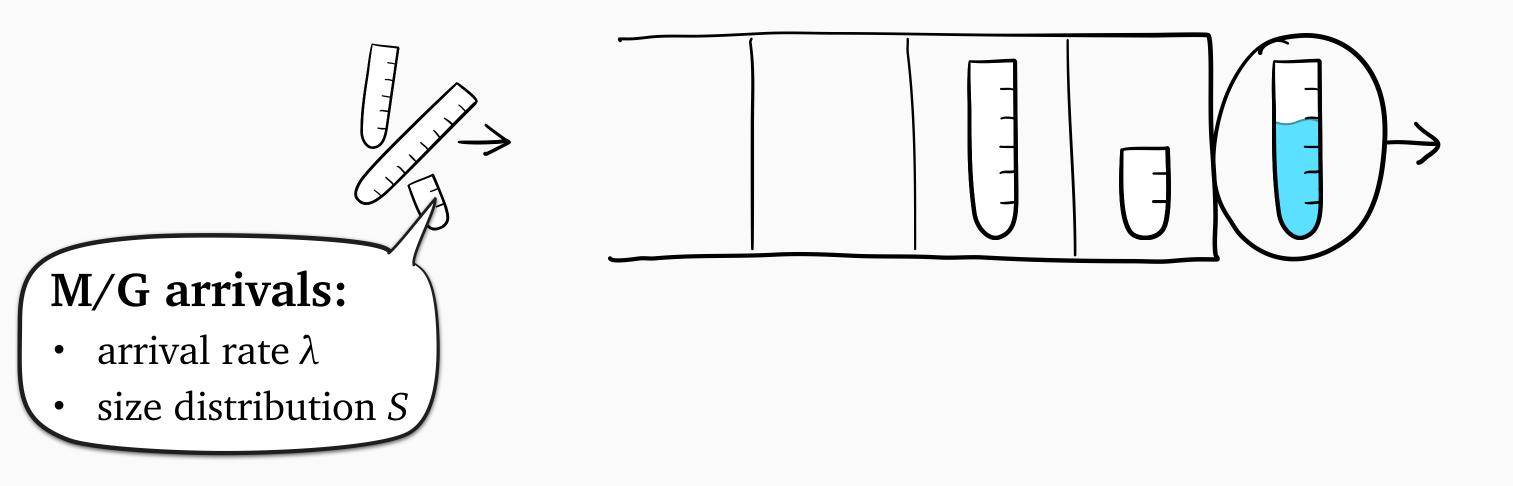


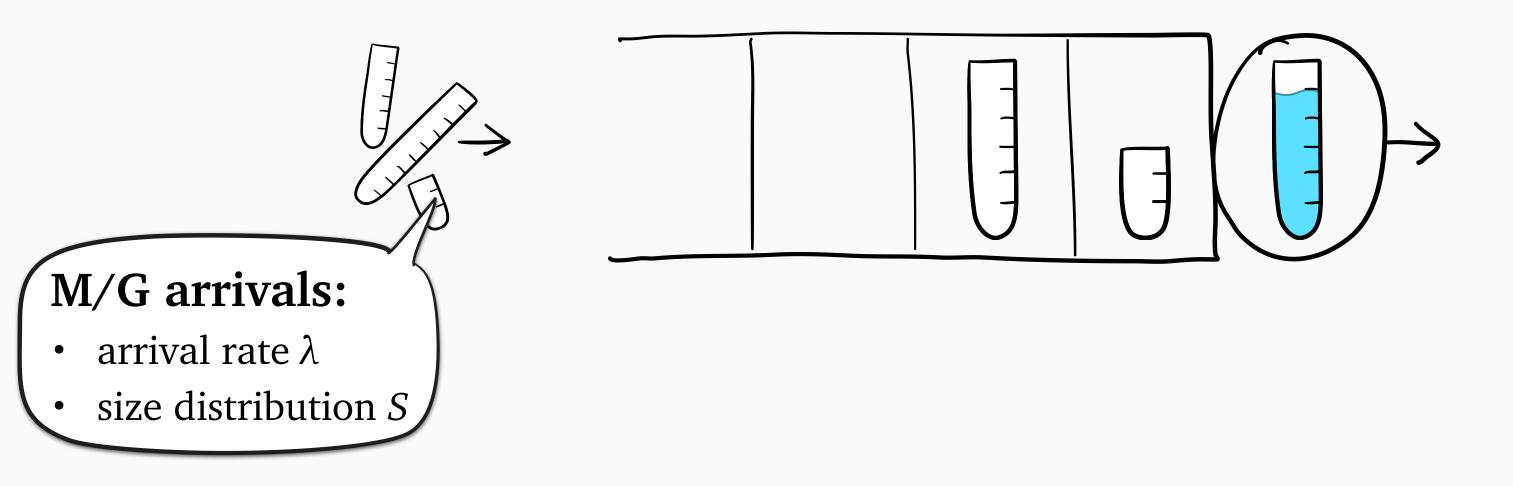


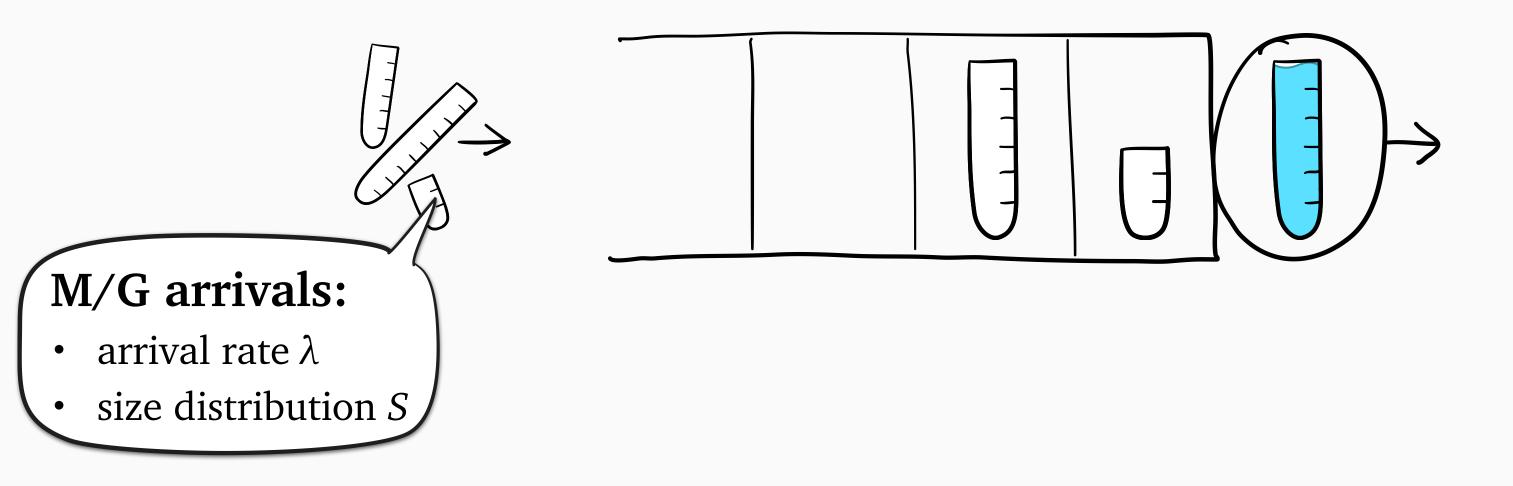


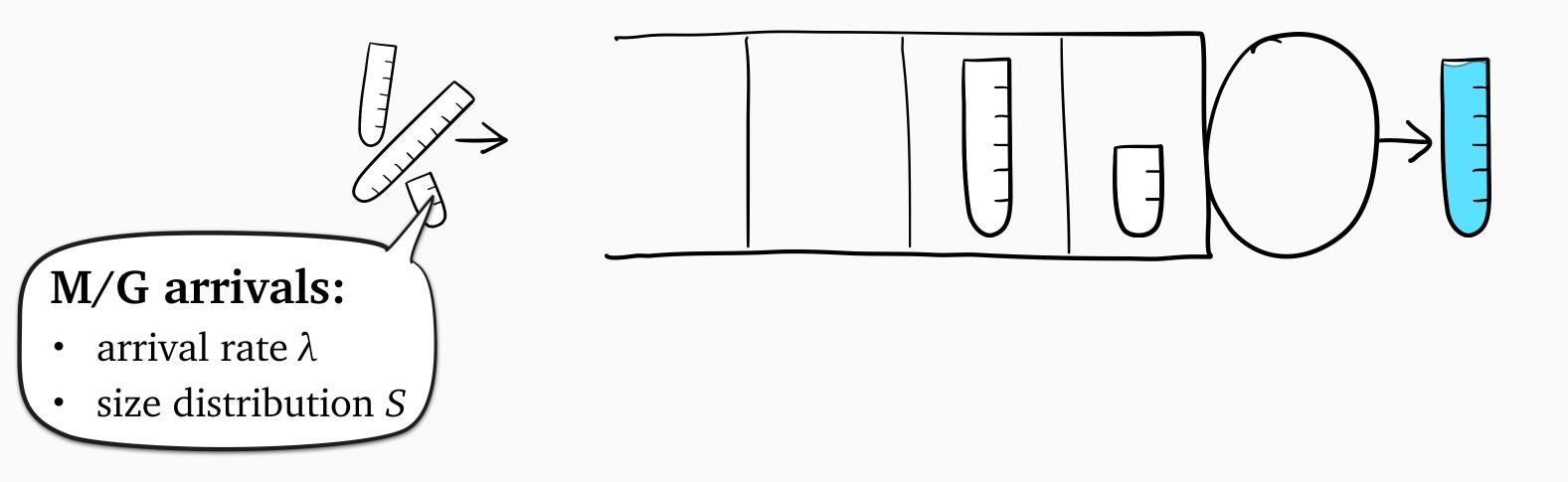


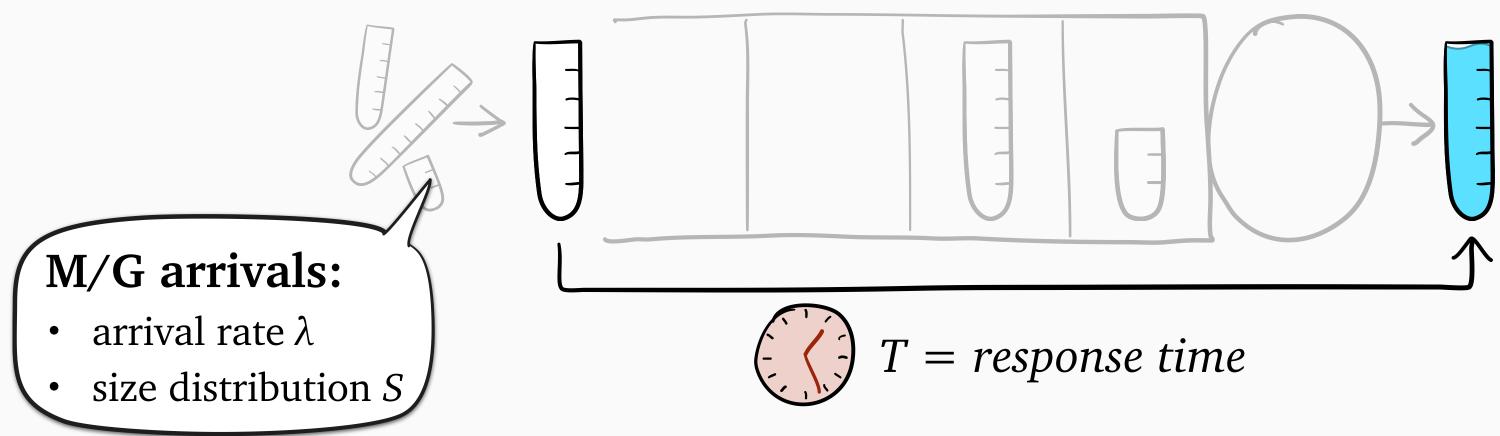


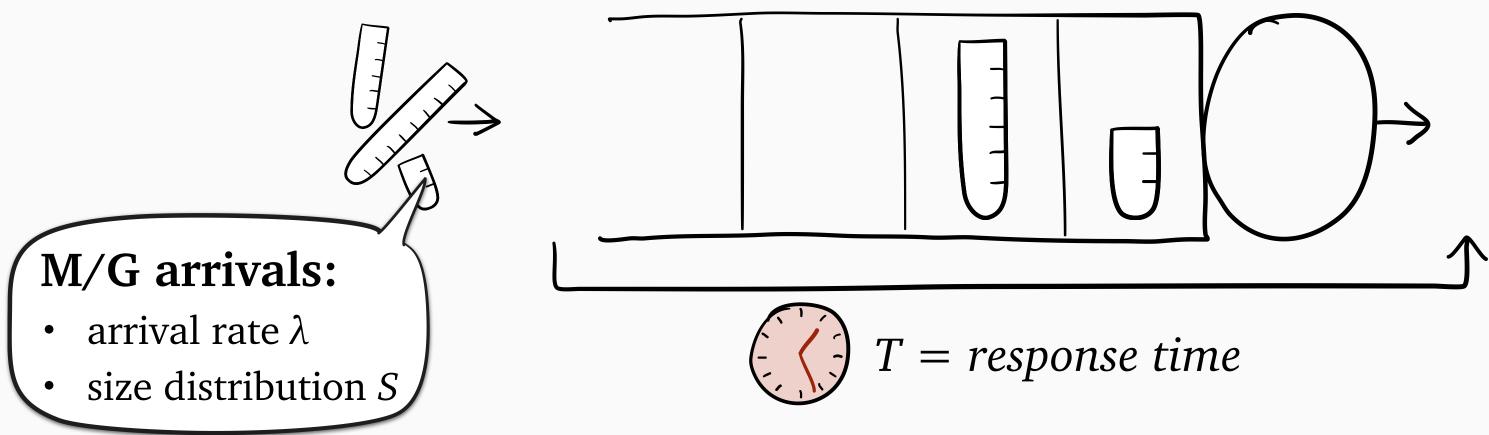


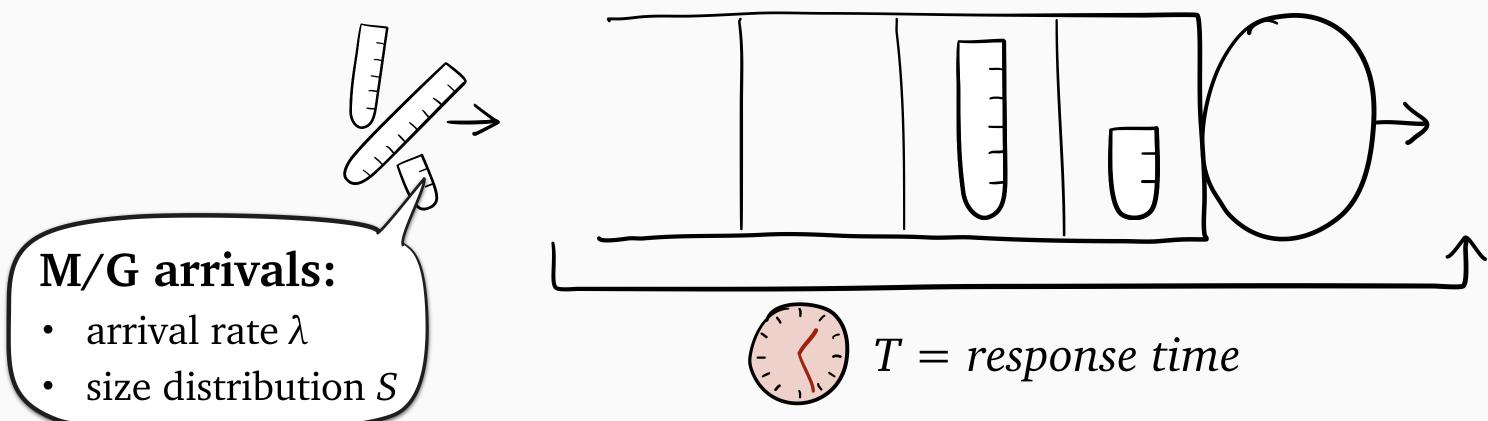


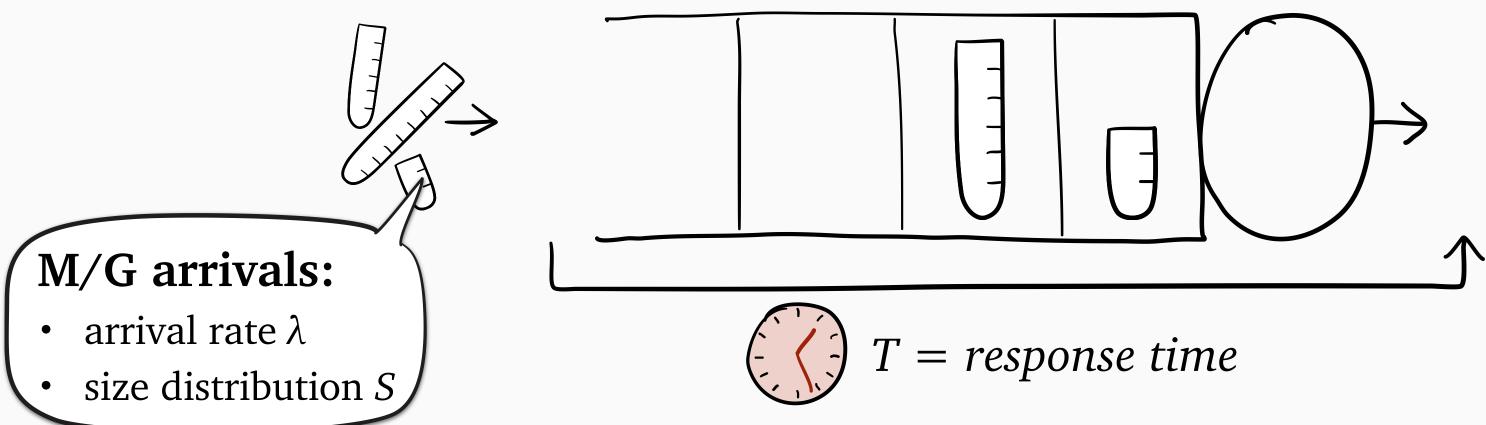


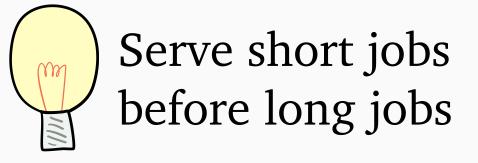


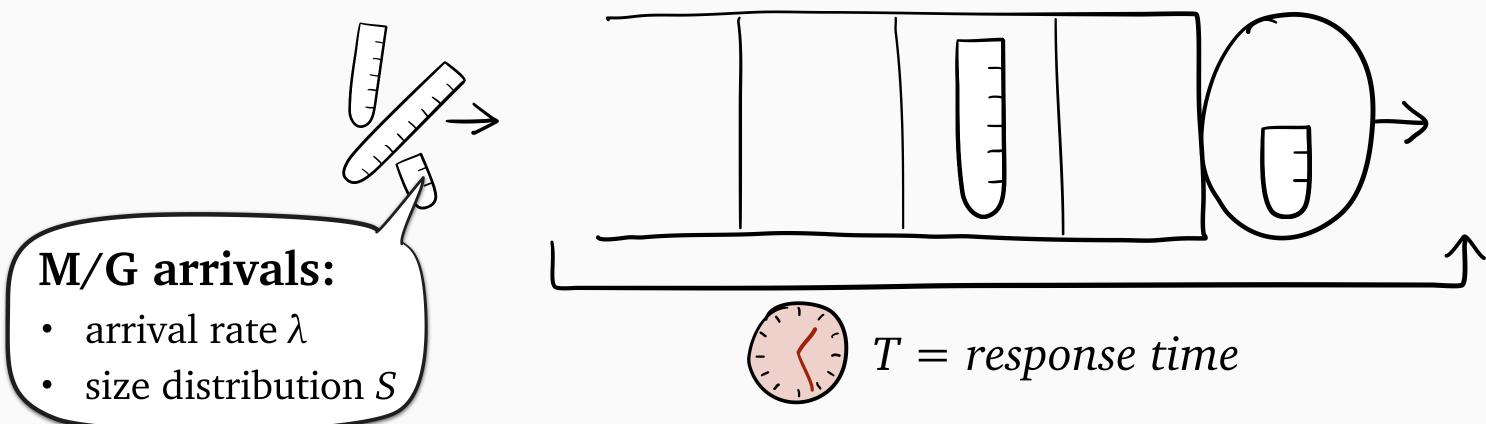


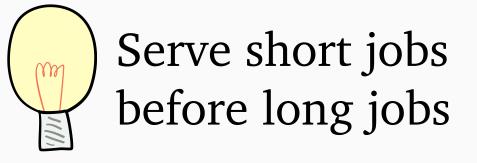


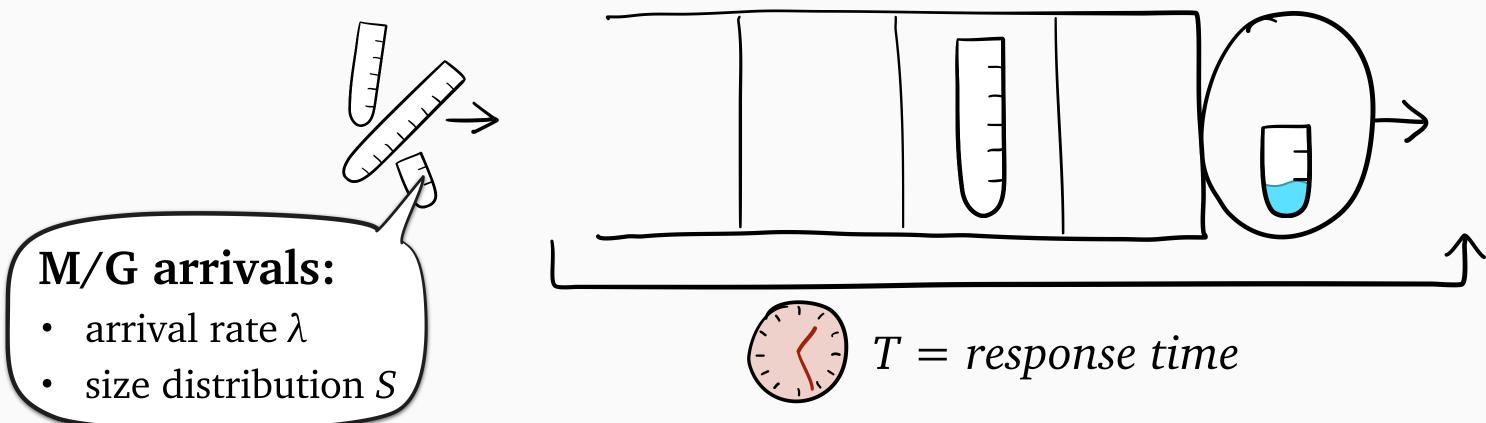


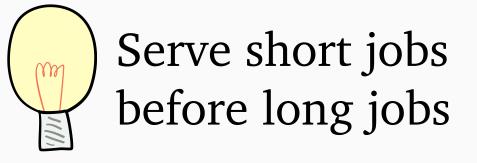


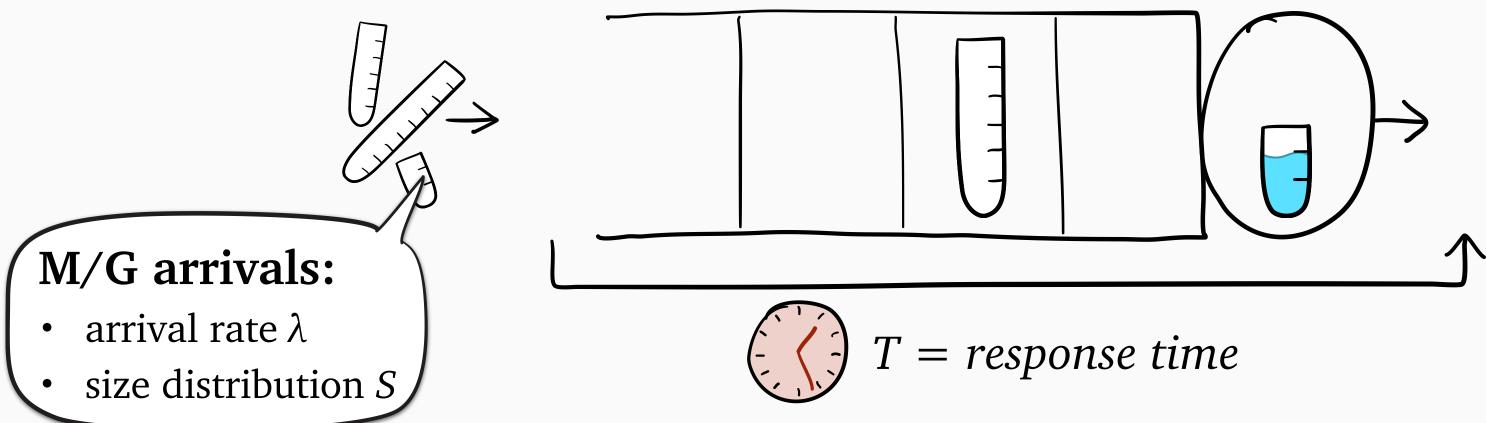


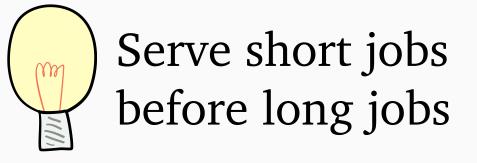


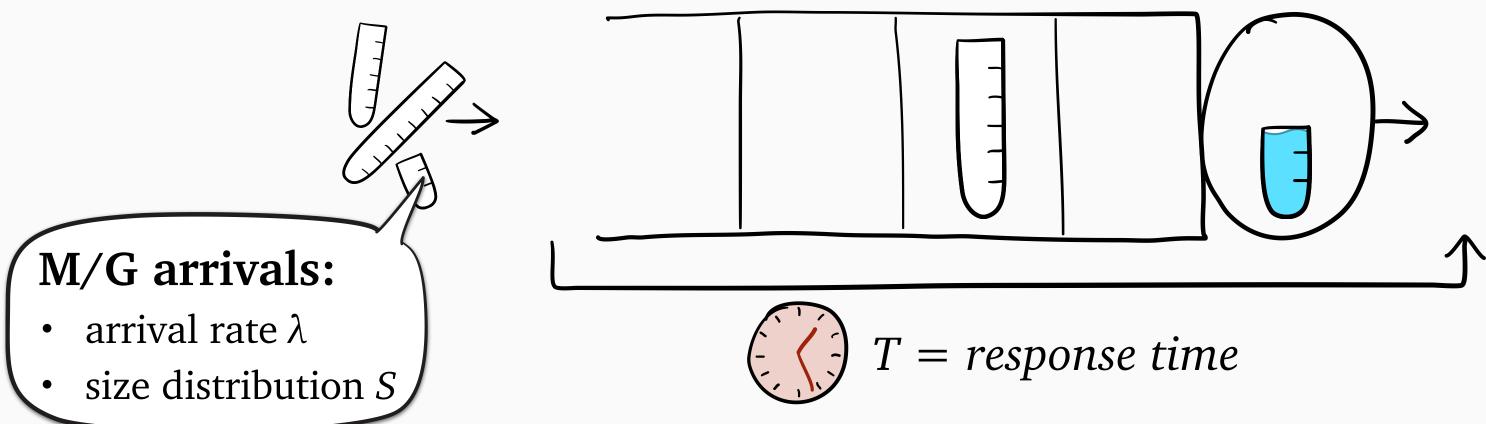


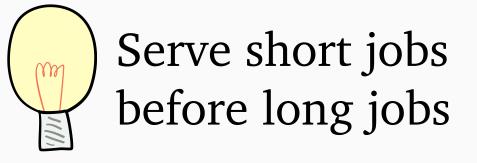


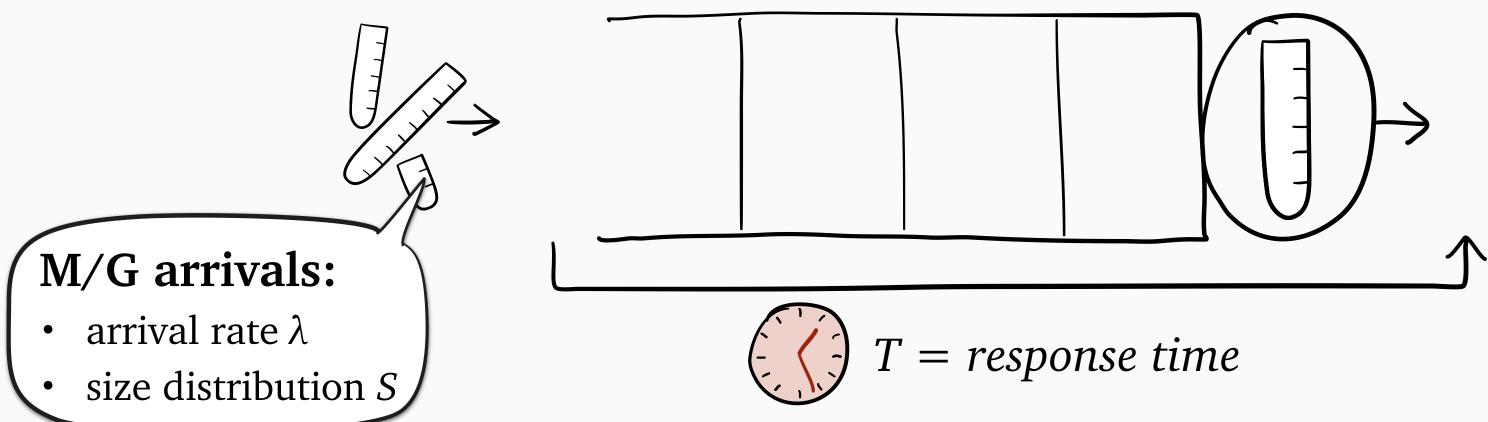


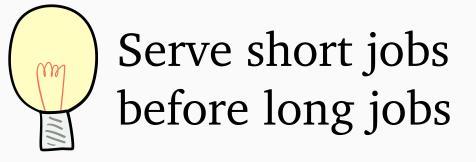


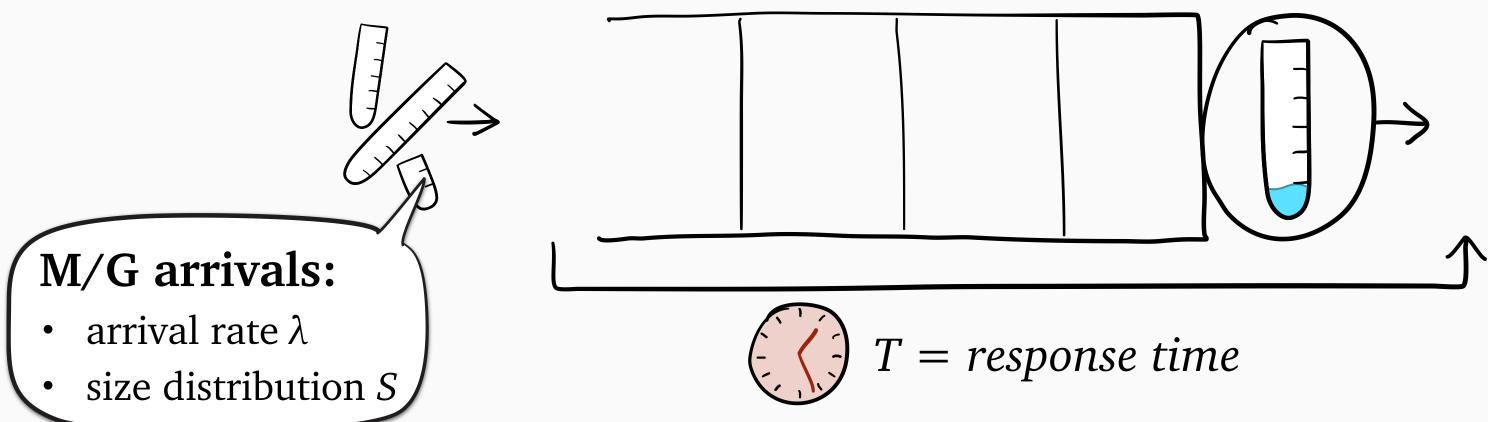


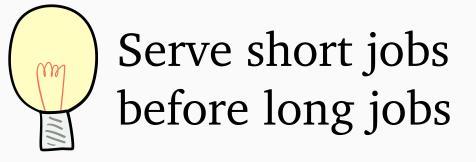


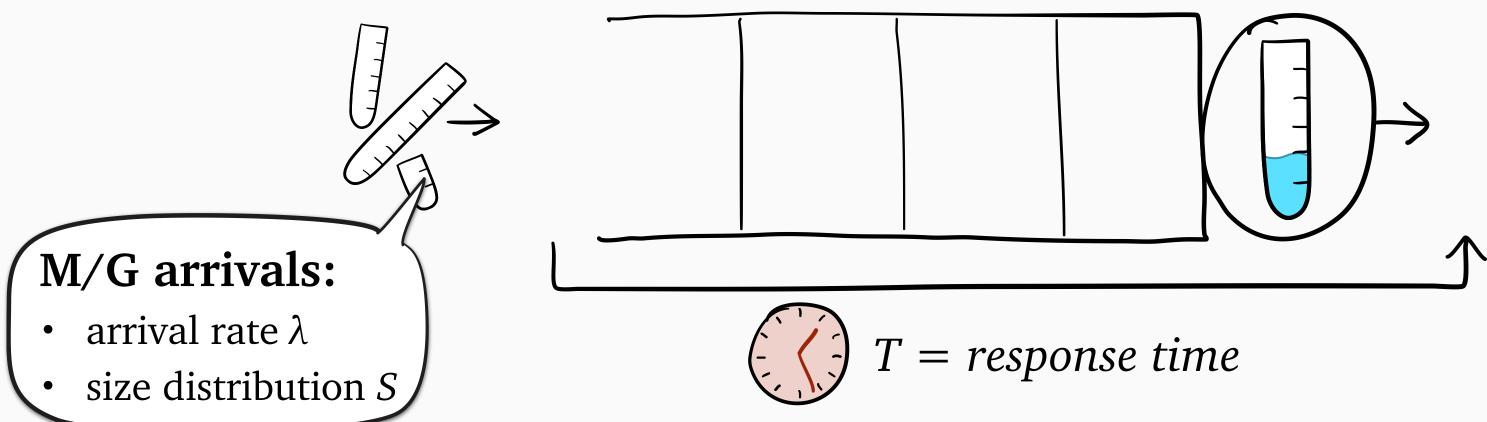


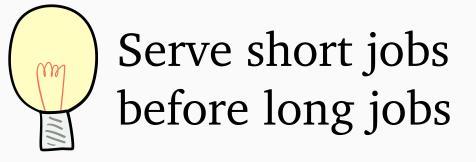


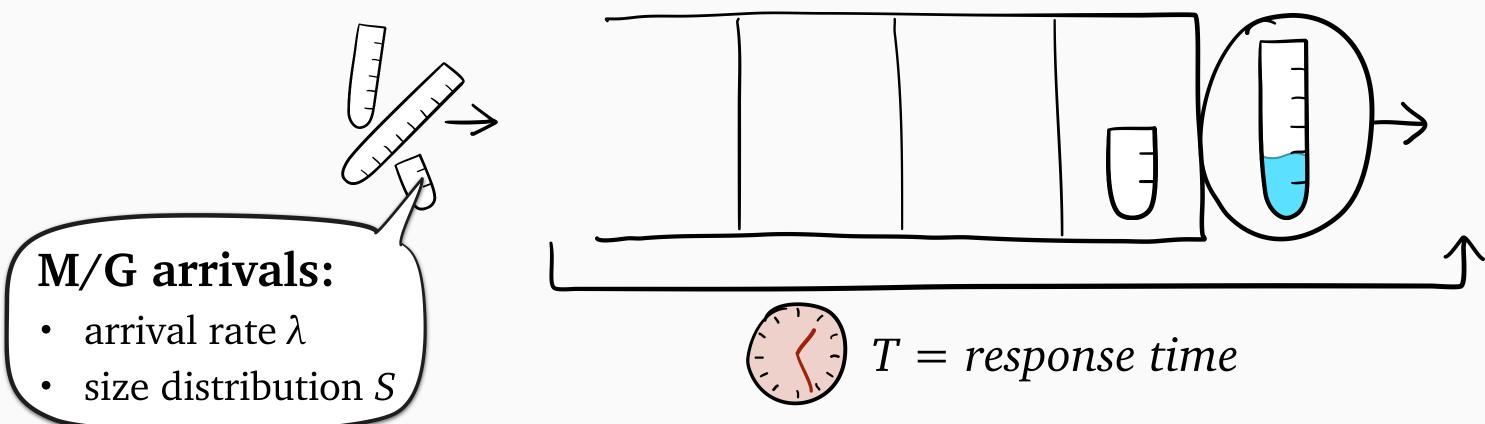


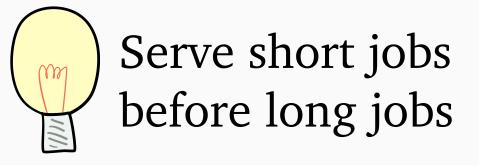


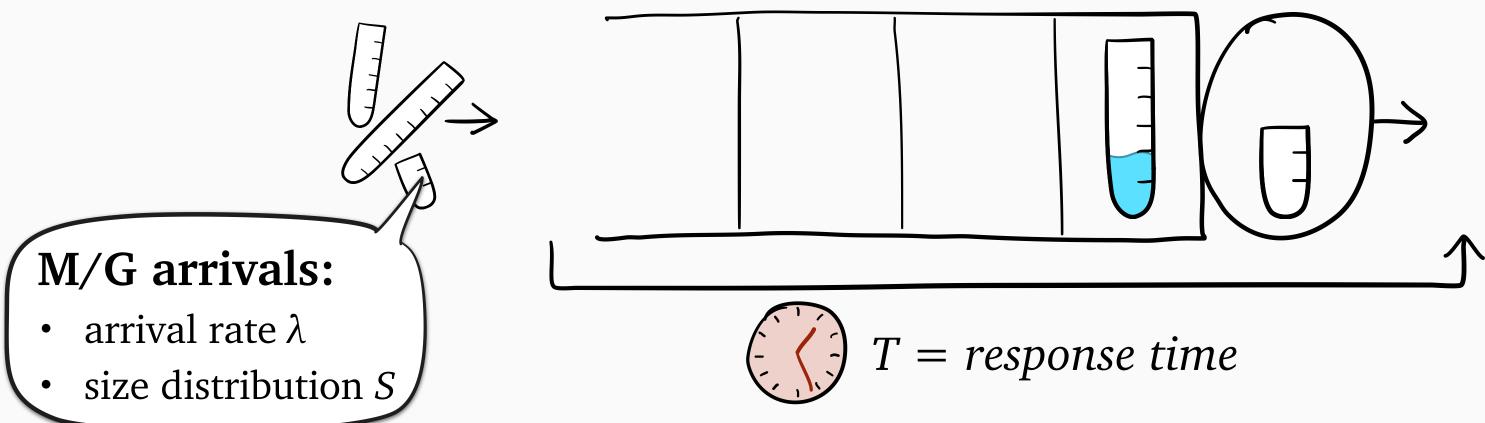


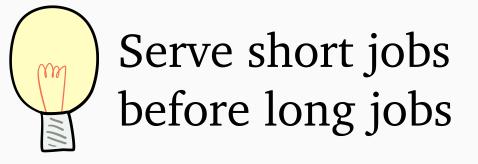


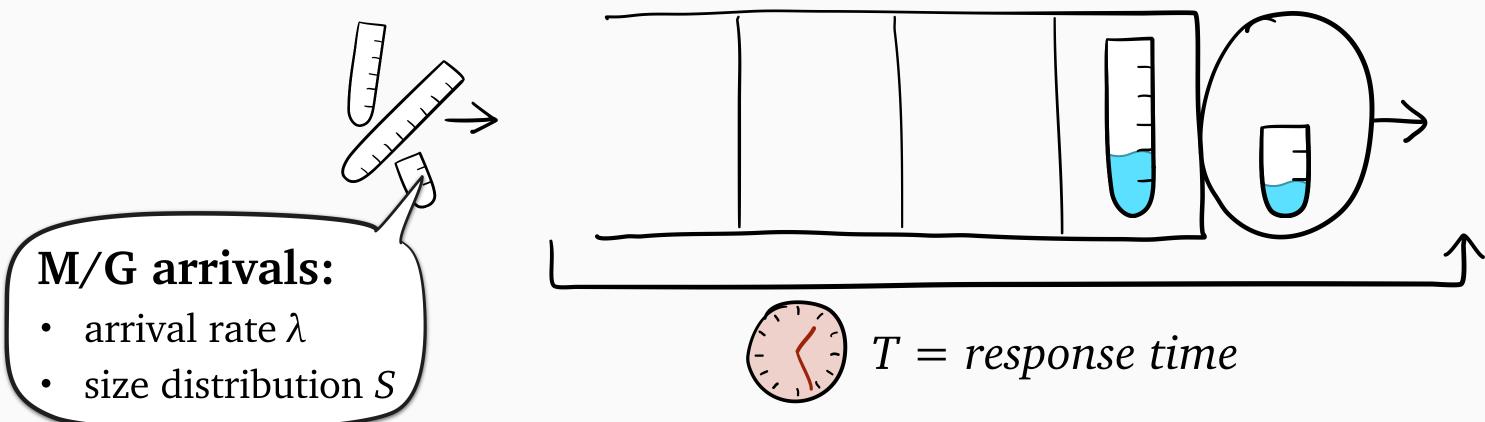


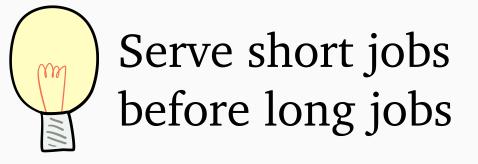


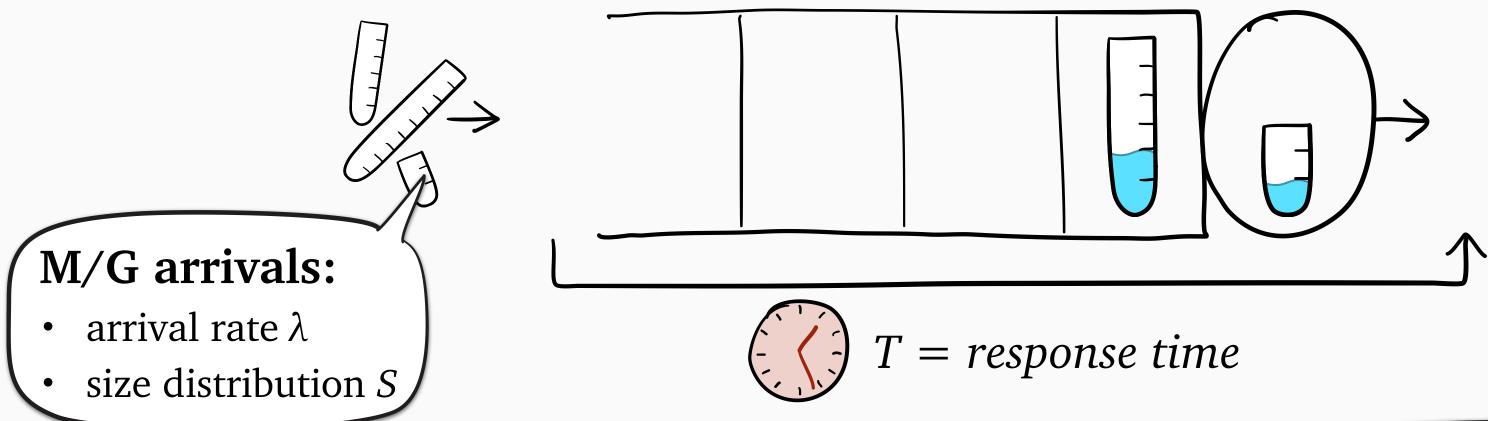


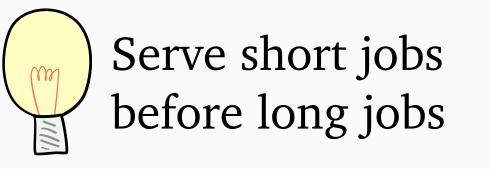


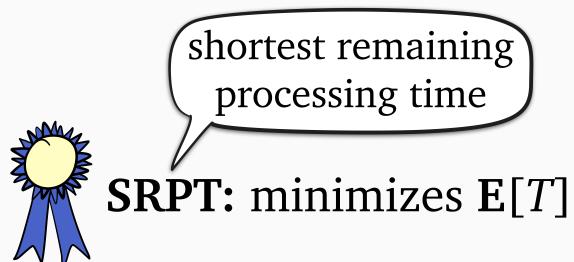




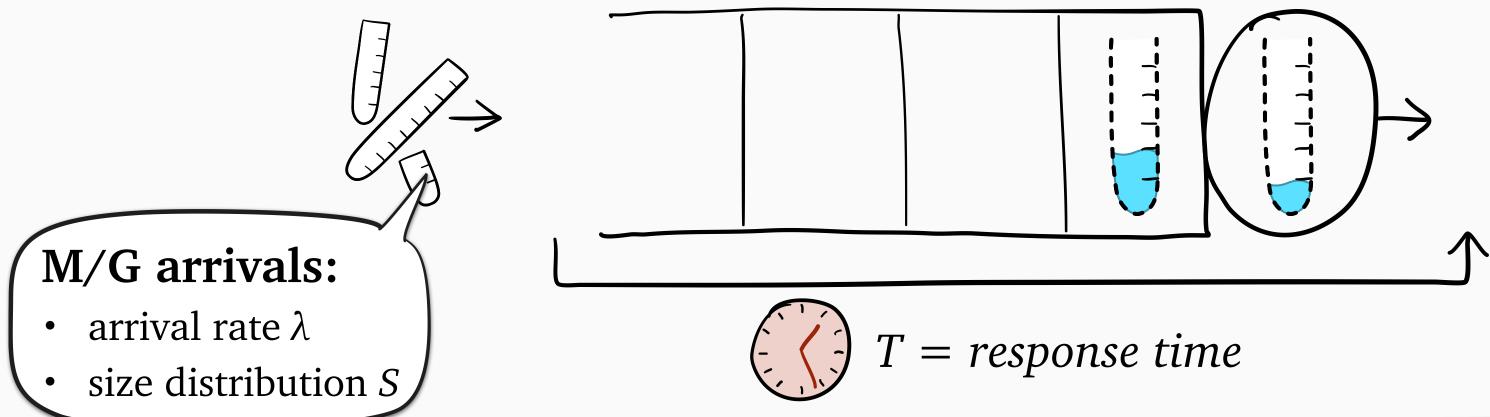


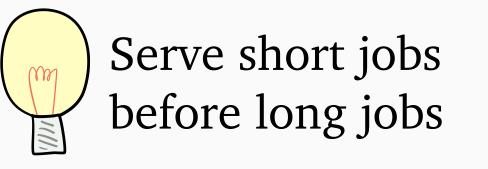


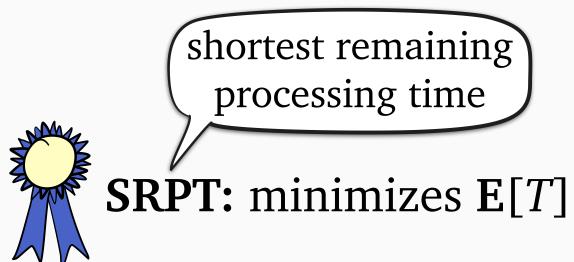




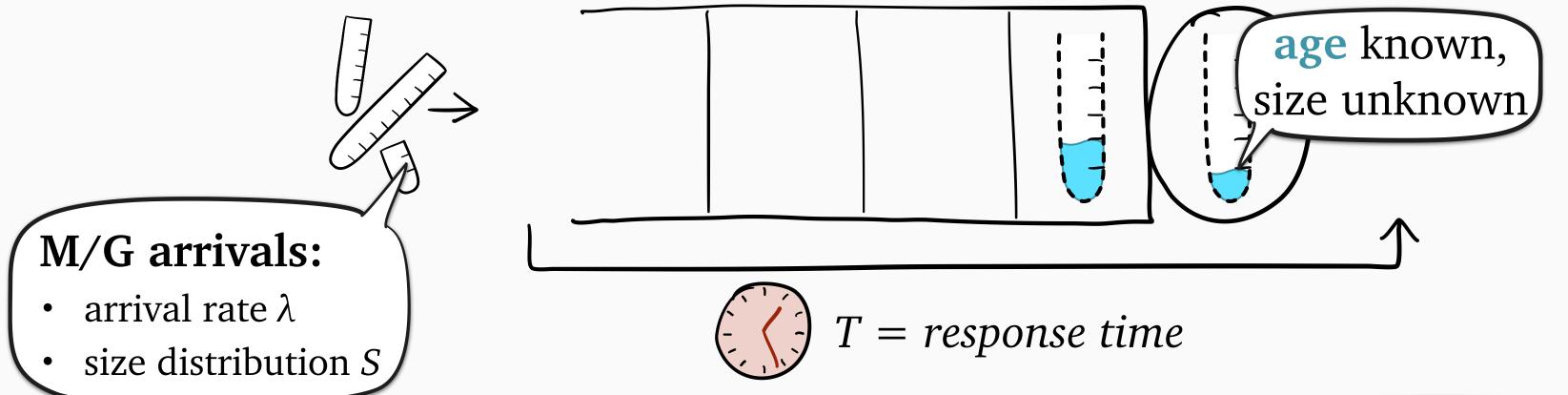
Mean scheduling with unknown sizes

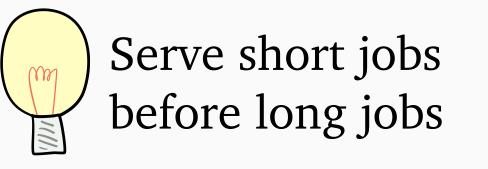


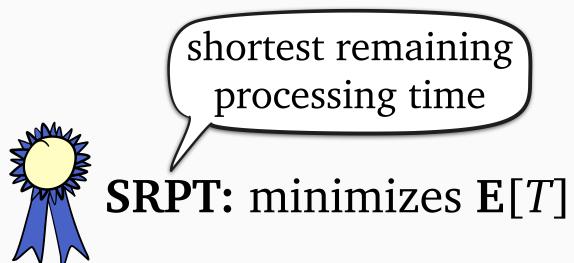




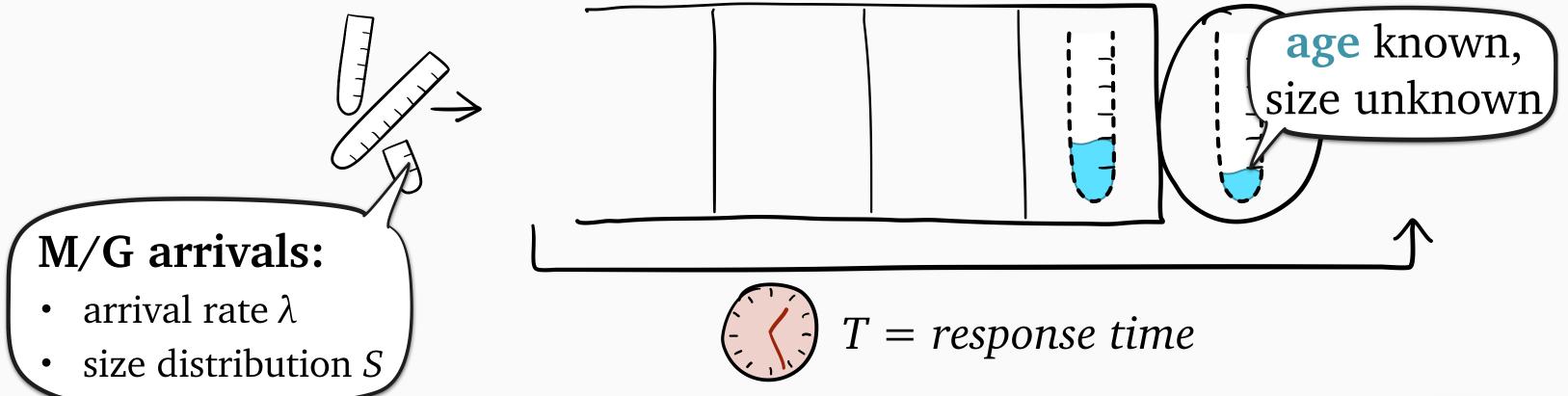
Mean scheduling with unknown sizes

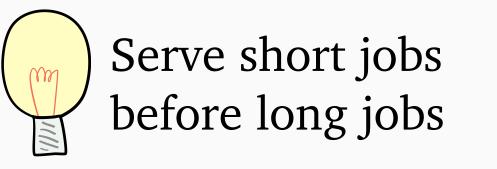






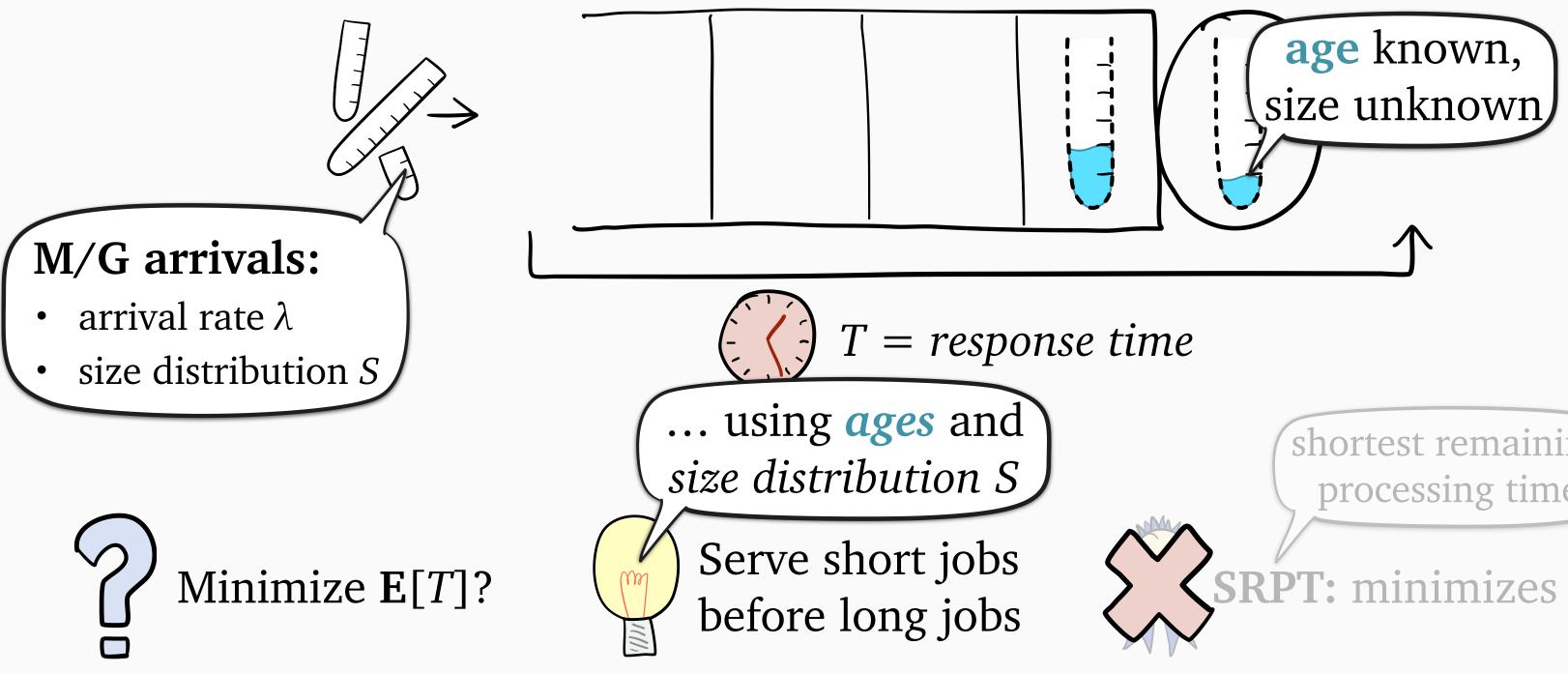
Mean scheduling with unknown sizes





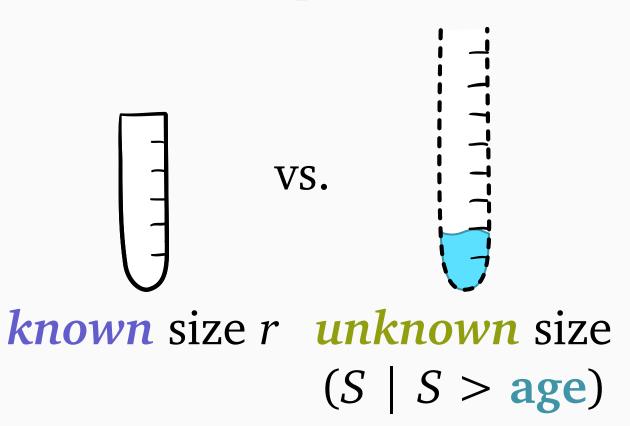
shortest remaining processing time **SRPT:** minimizes **E**[*T*]

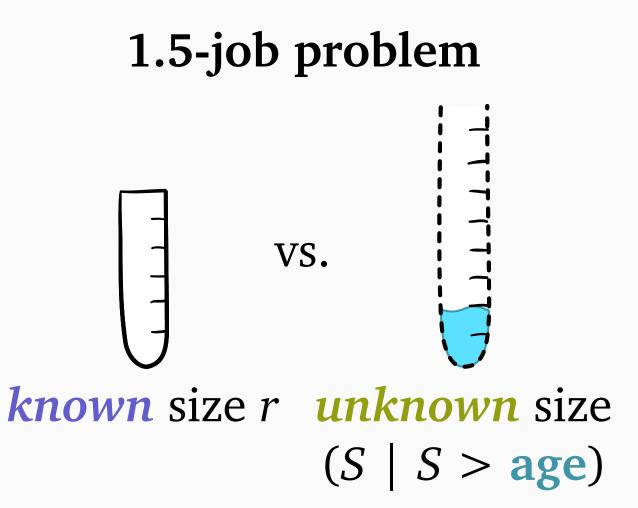
Mean scheduling with unknown sizes



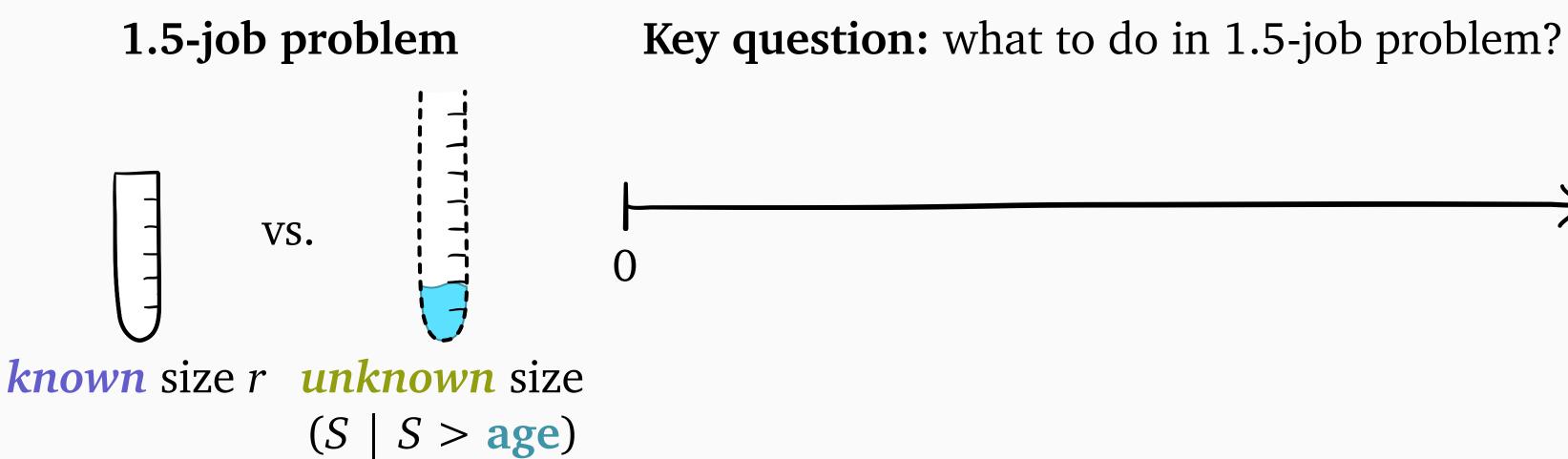
shortest remaining processing time **SRPT:** minimizes **E**[*T*]

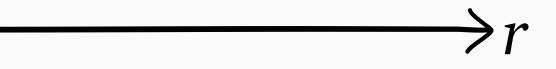
1.5-job problem

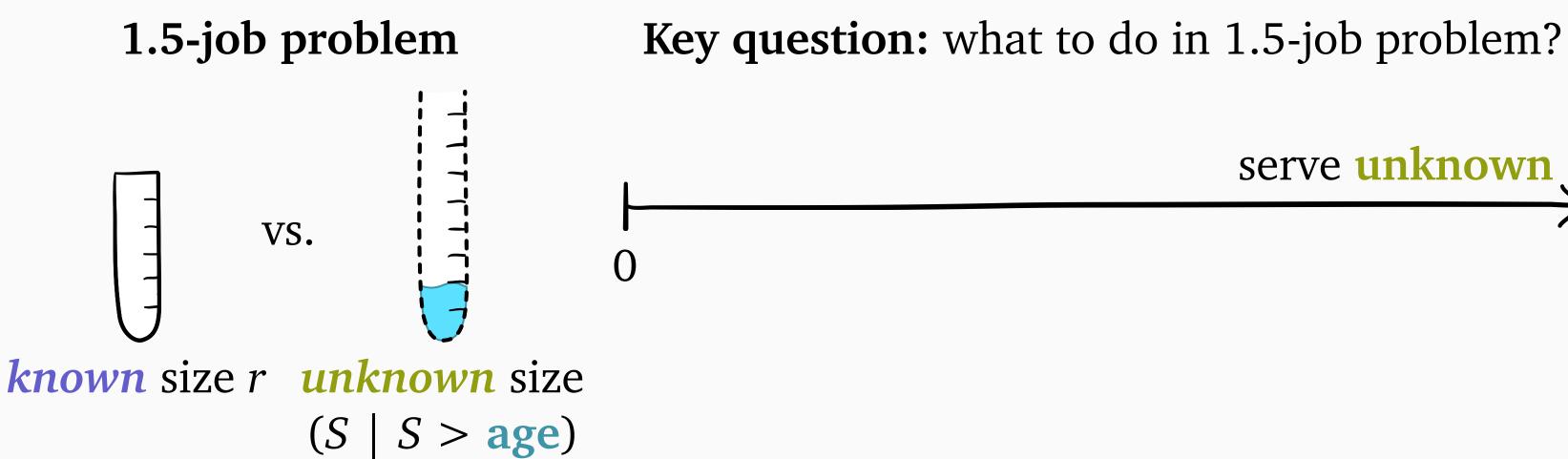


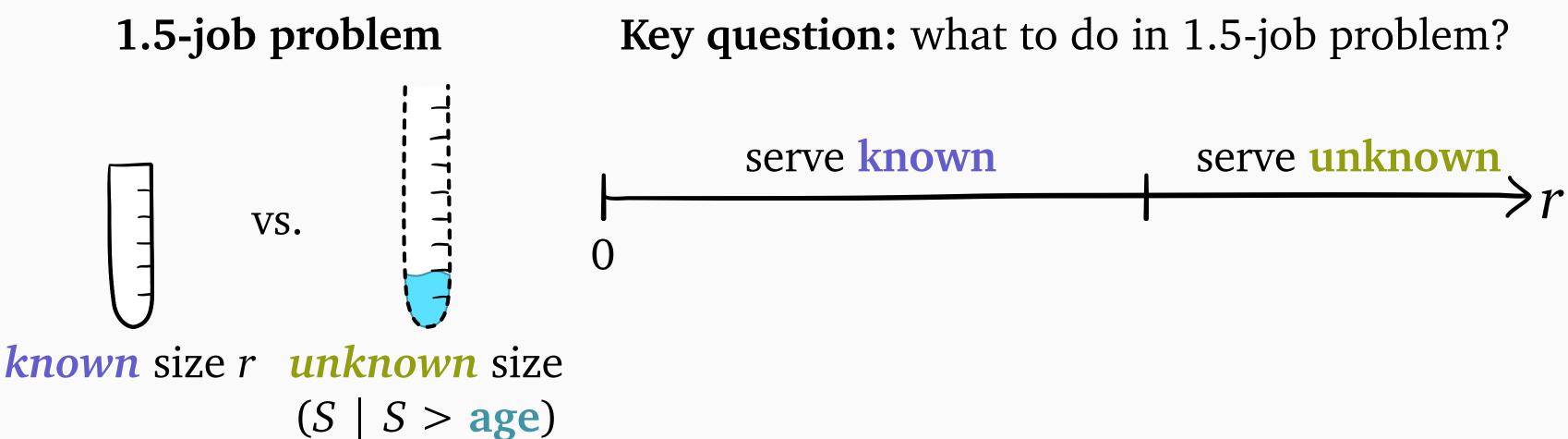


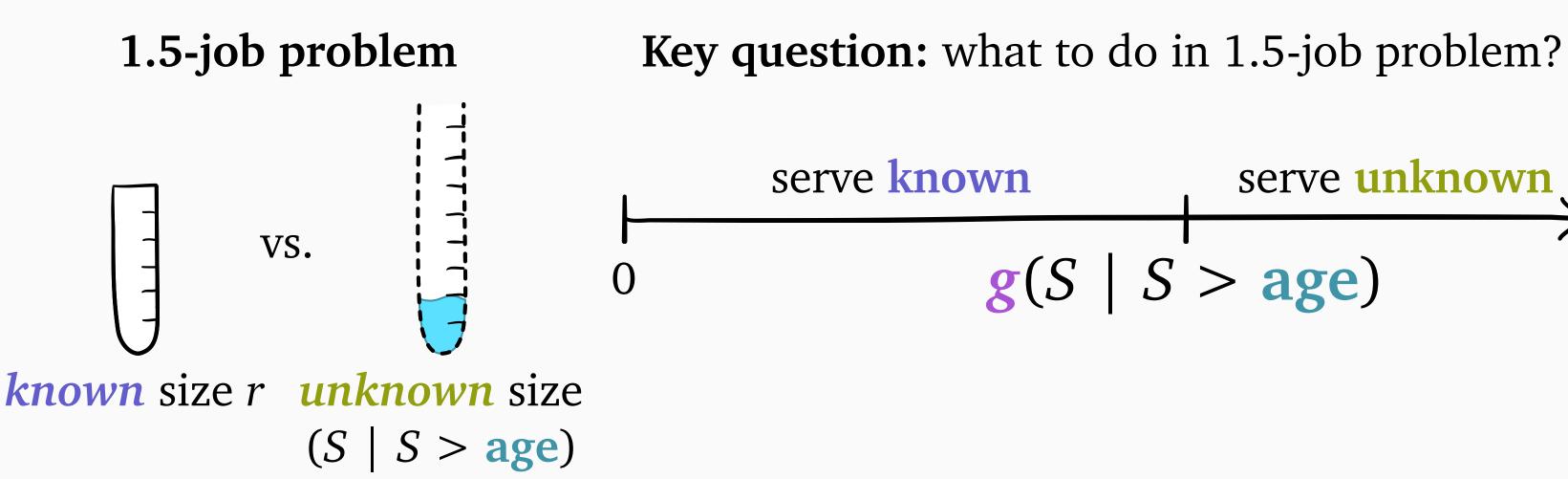
Key question: what to do in 1.5-job problem?



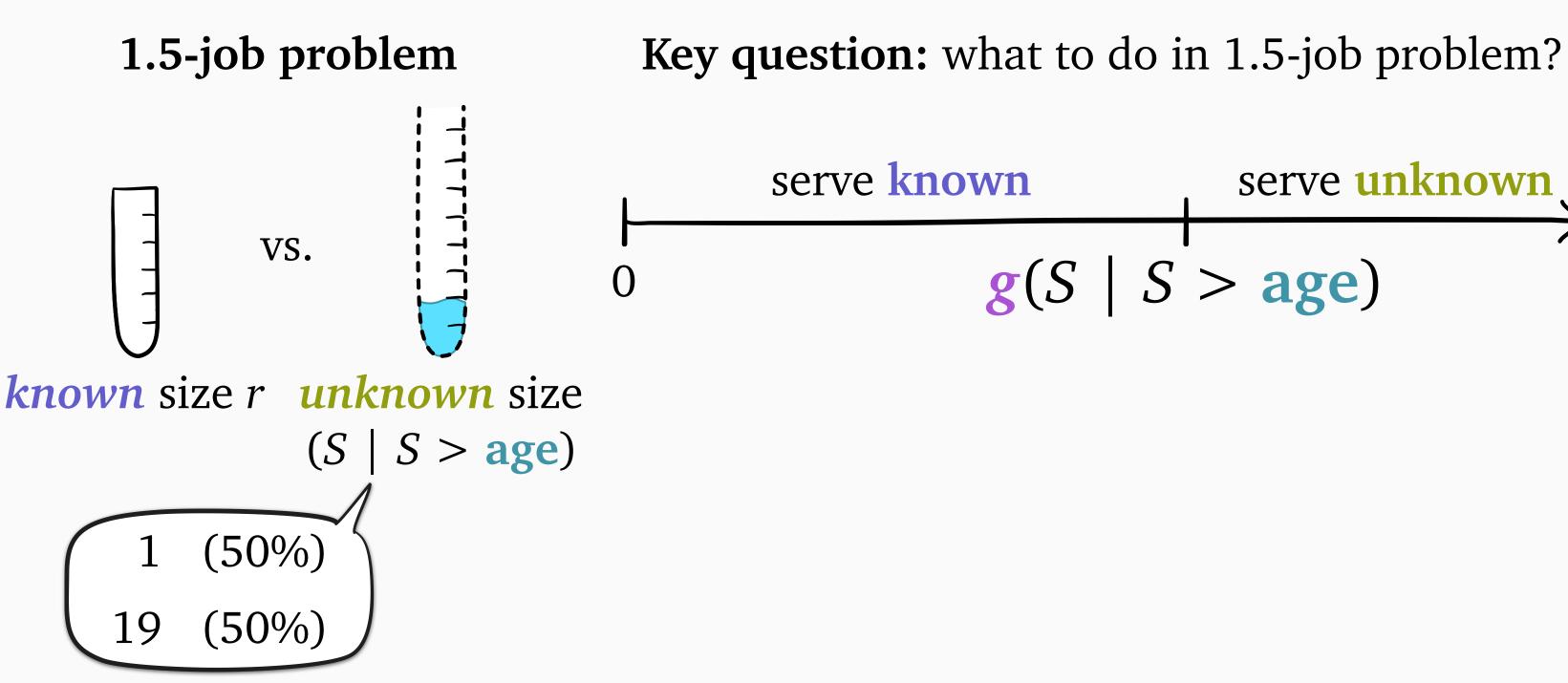




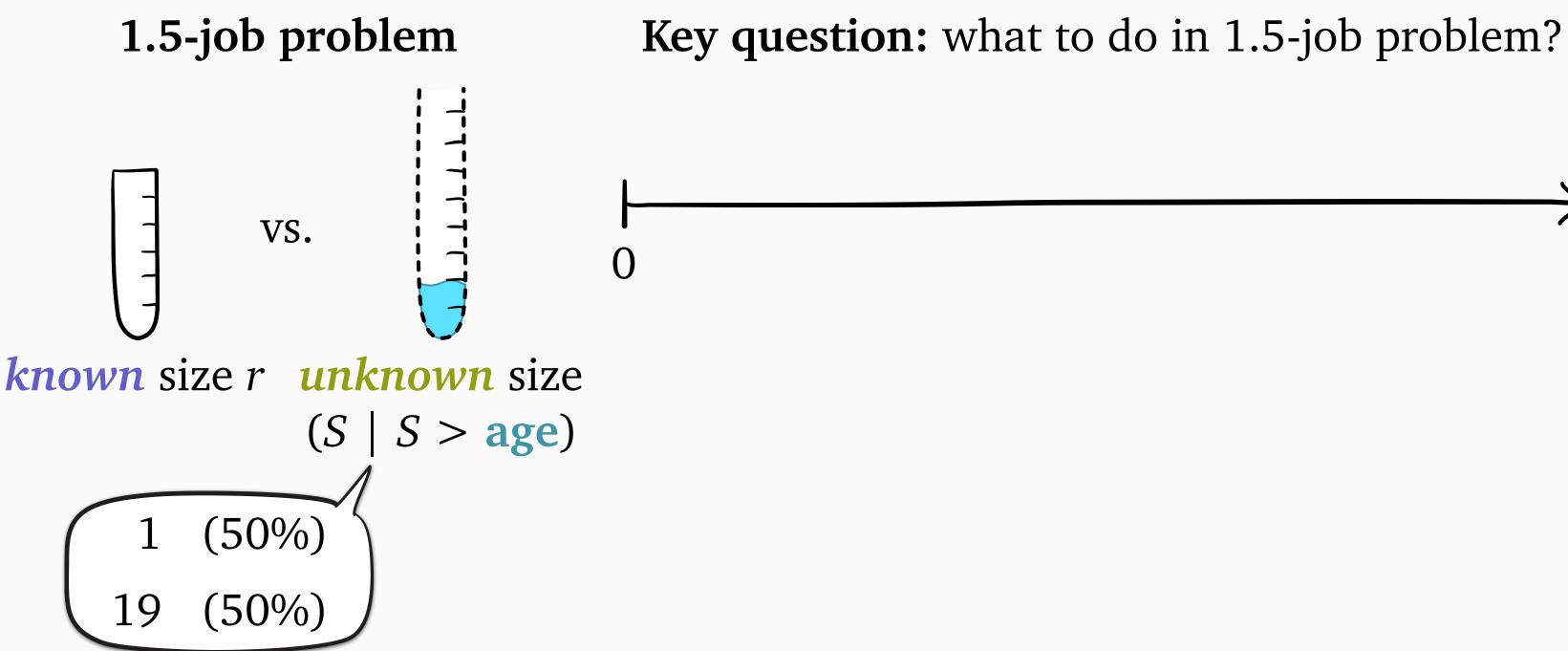


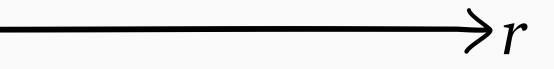


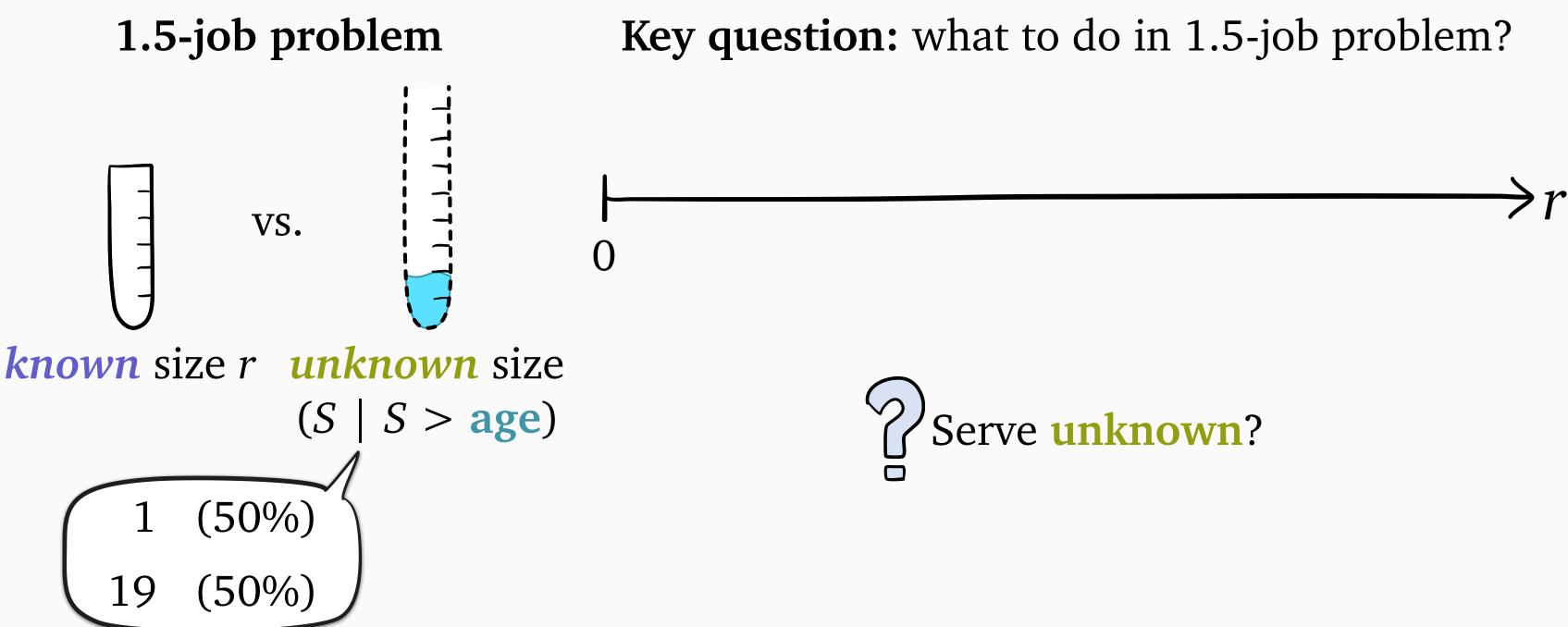
serve unknown $g(S \mid S > age)$

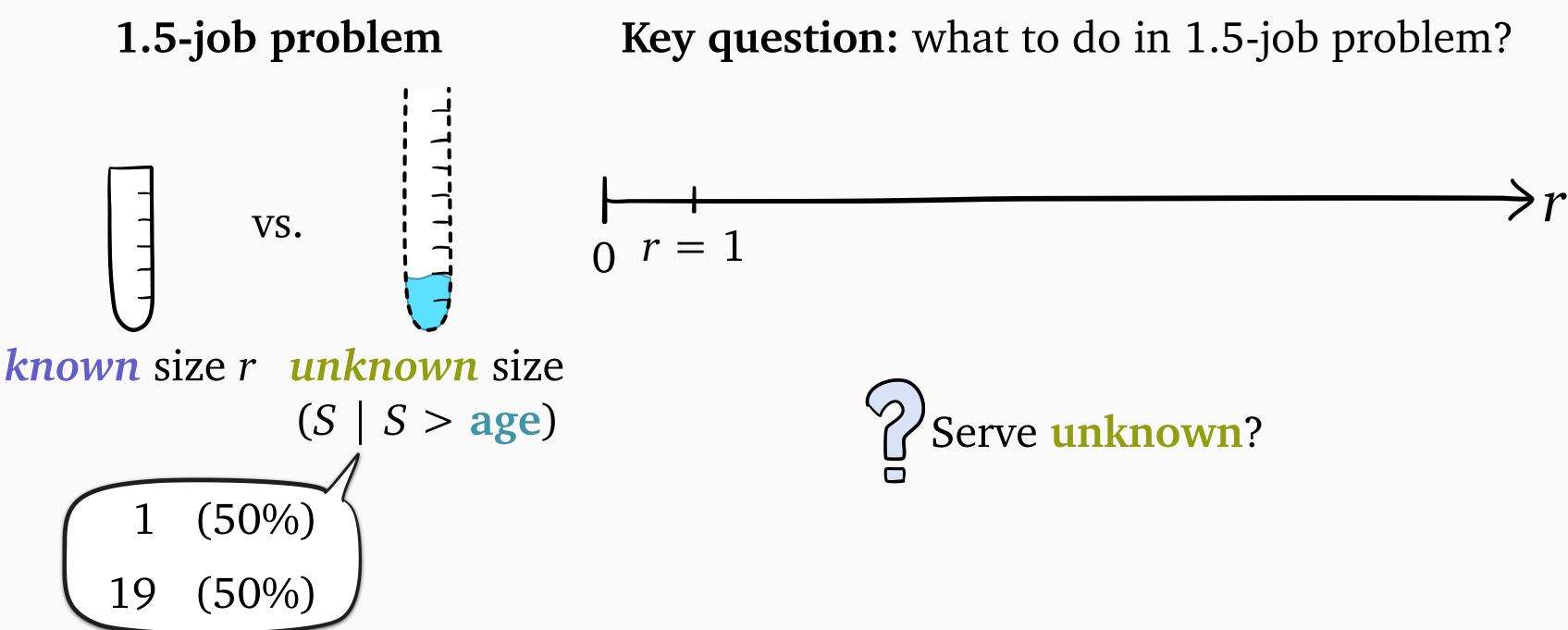


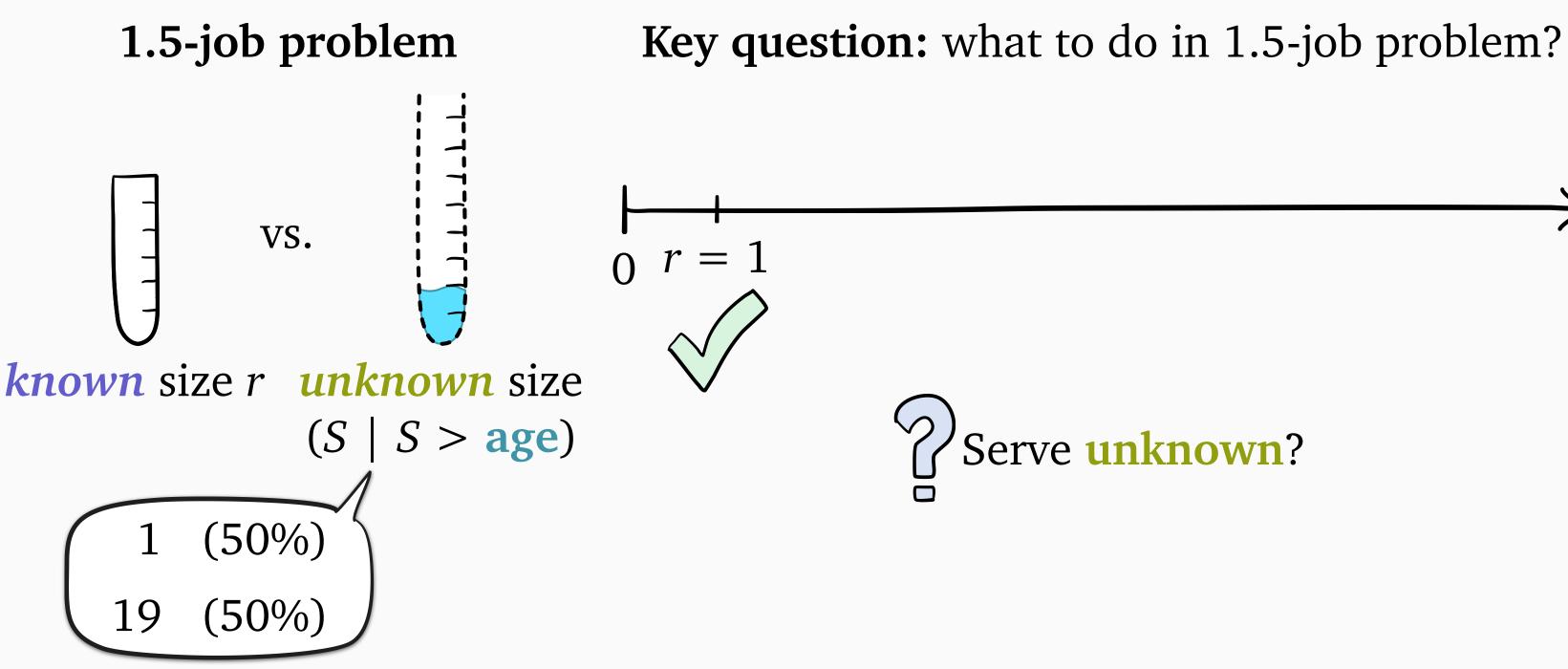
serve unknown $g(S \mid S > age)$

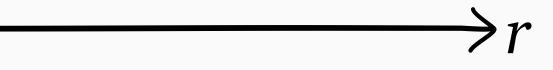




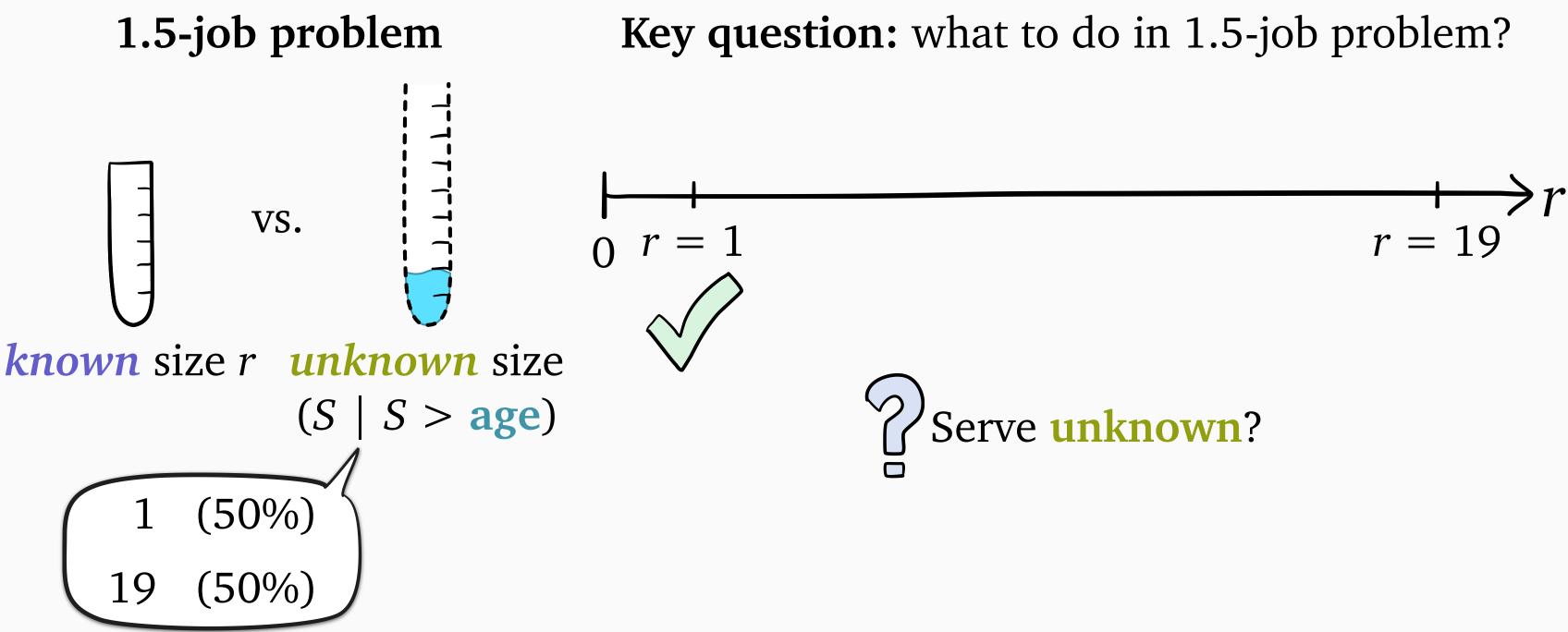


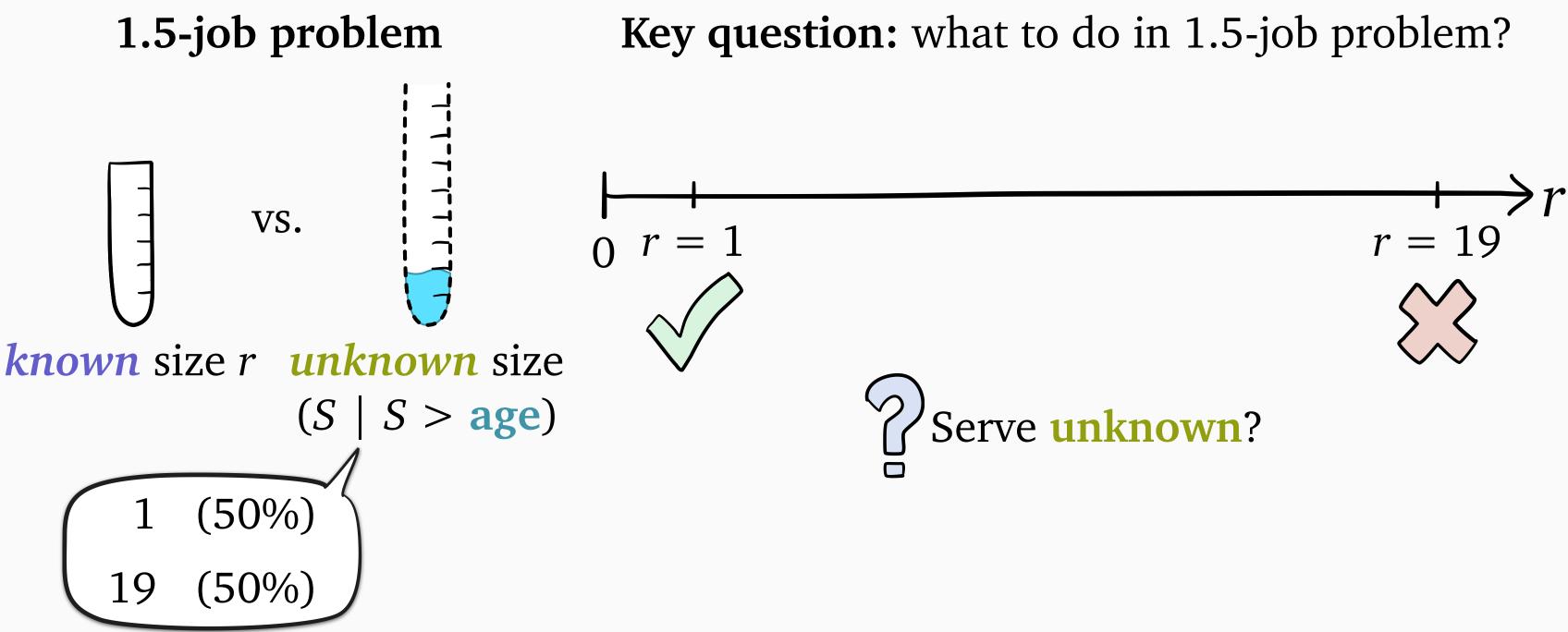


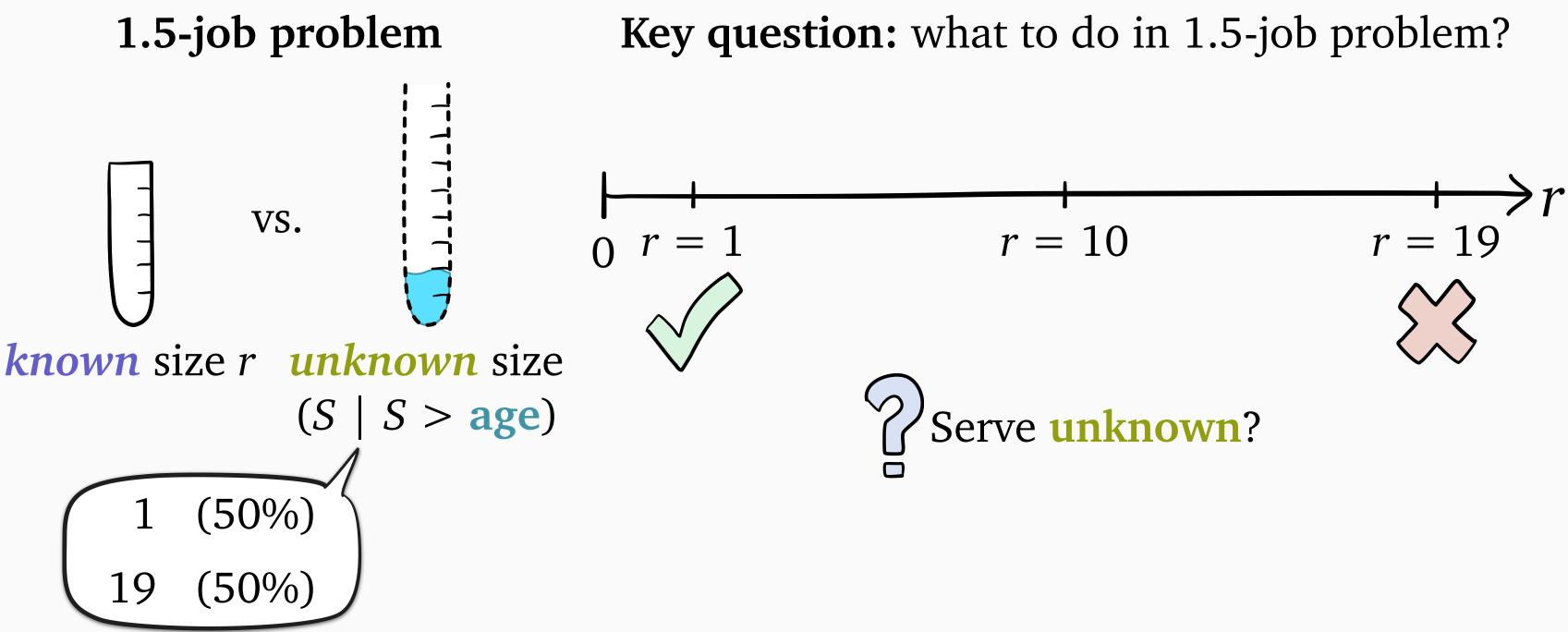


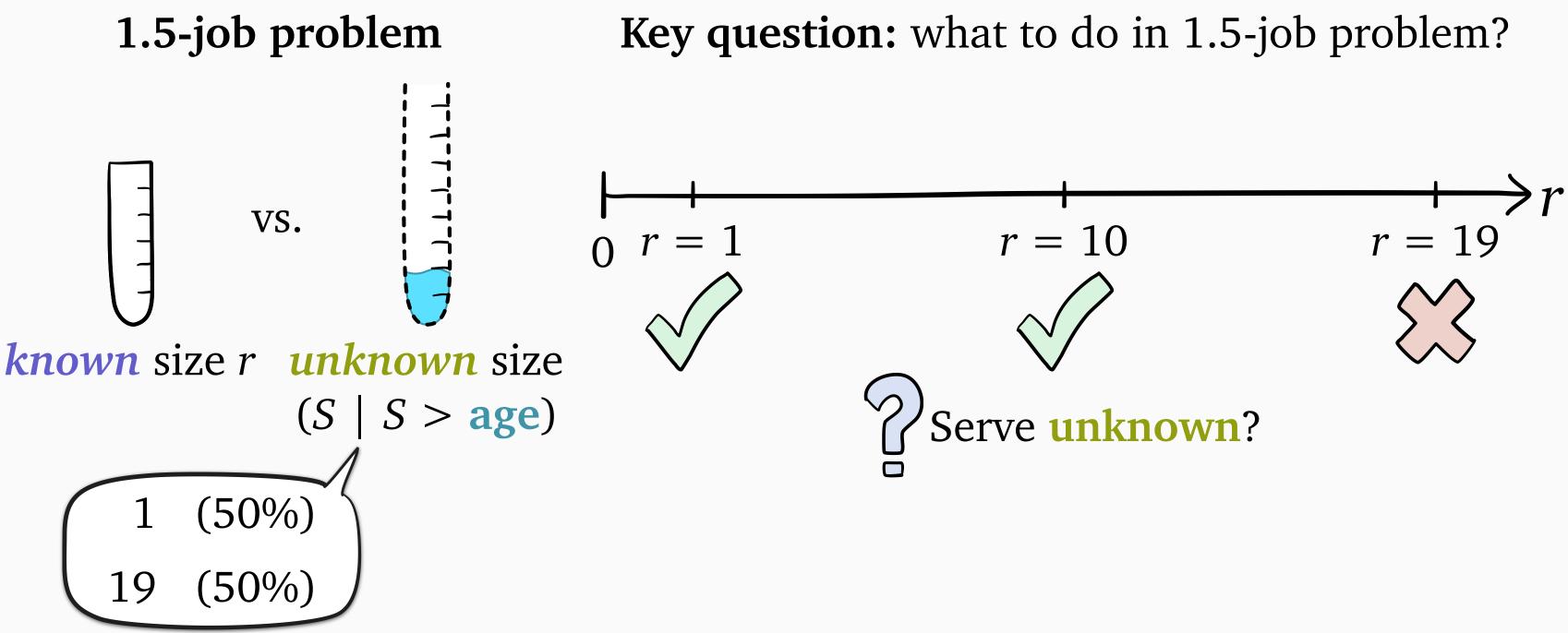


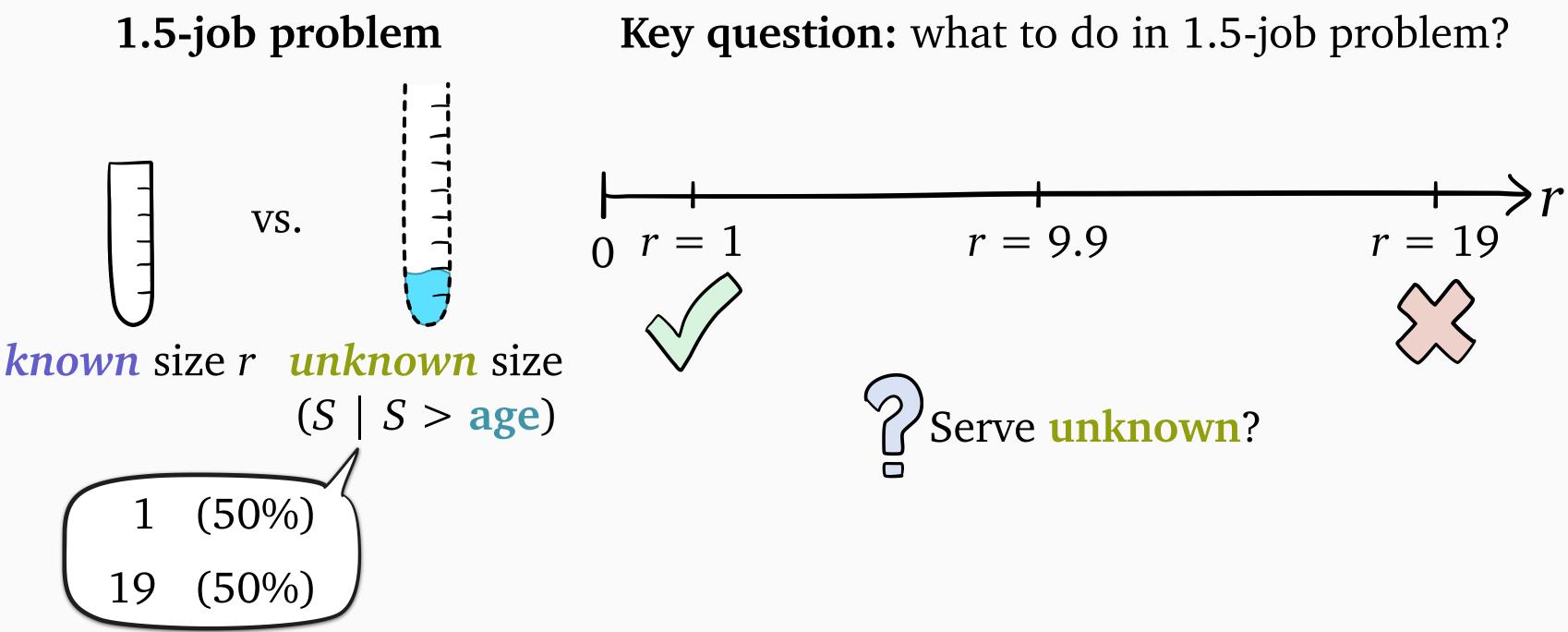
Serve unknown?

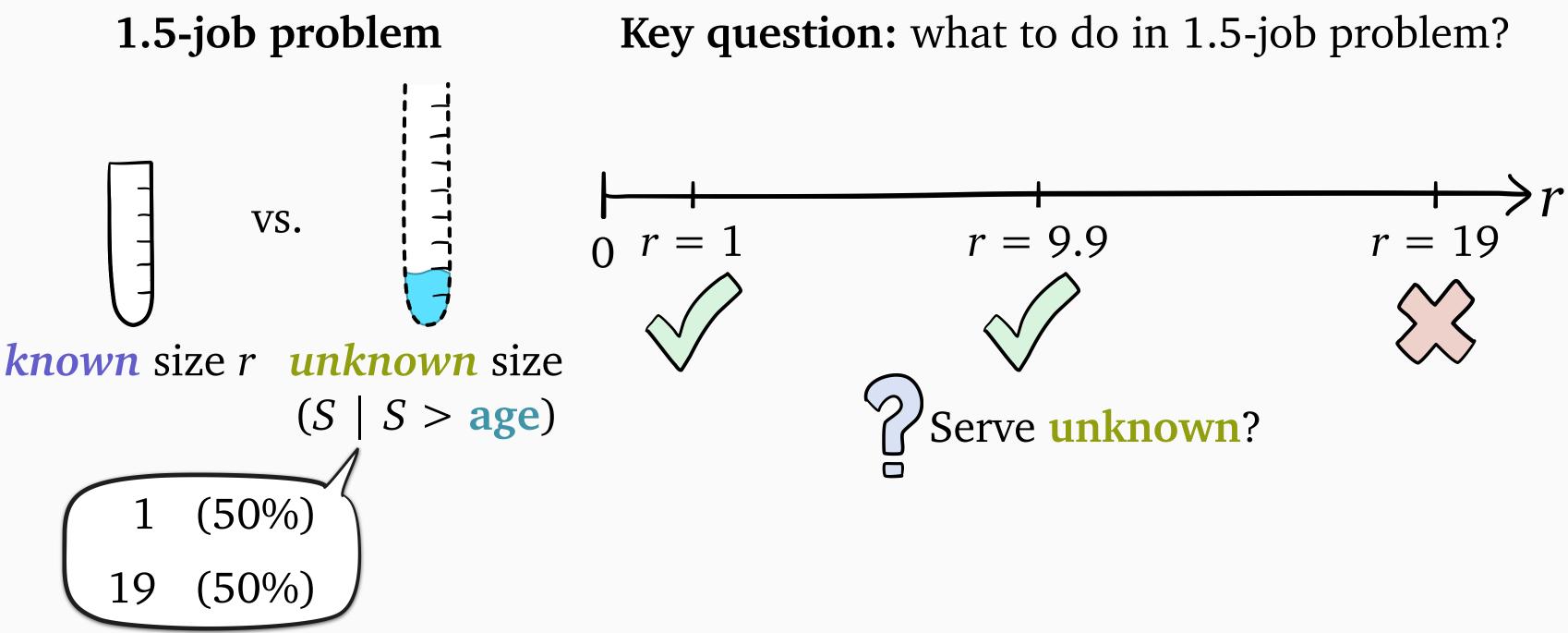


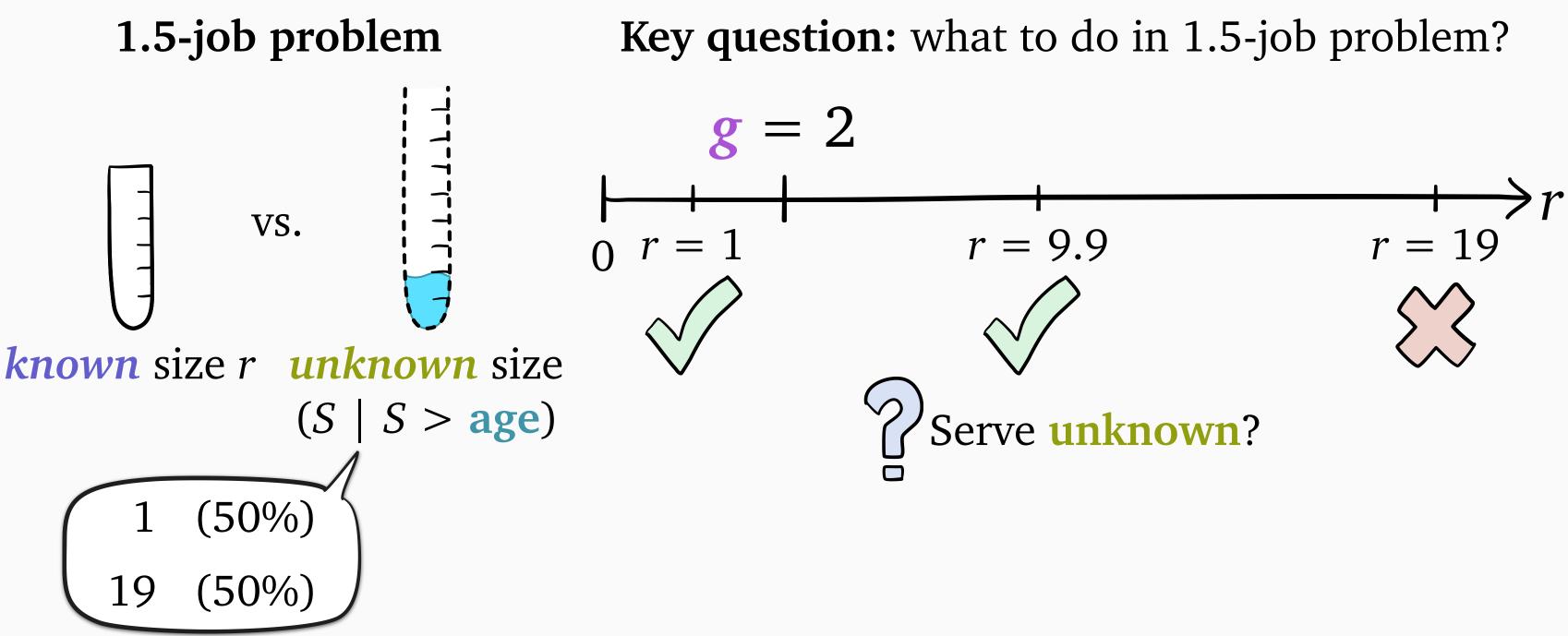


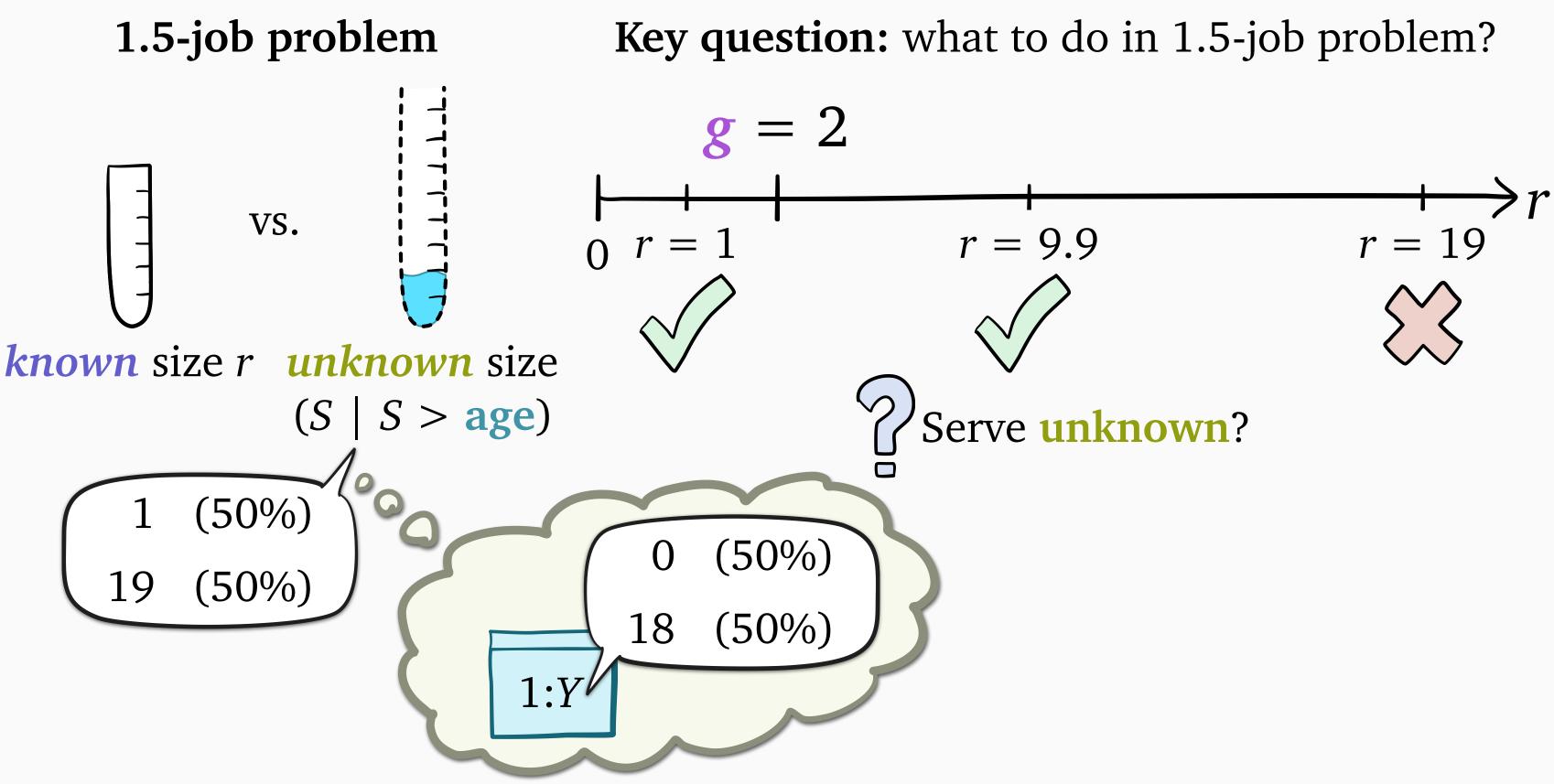


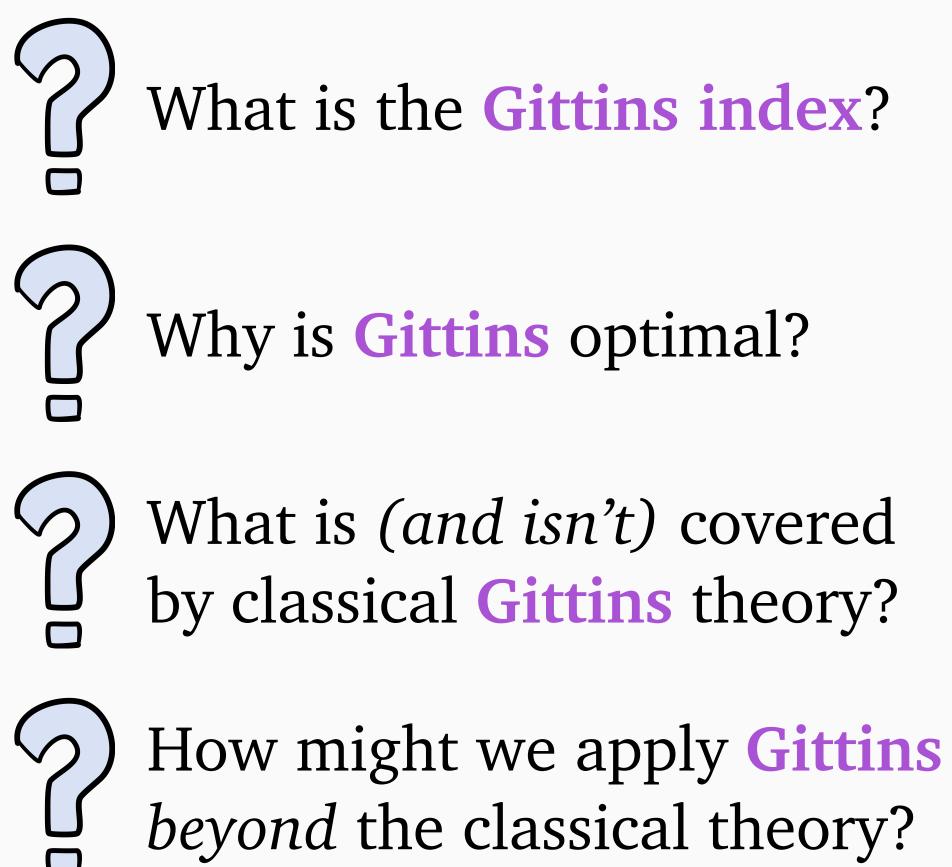


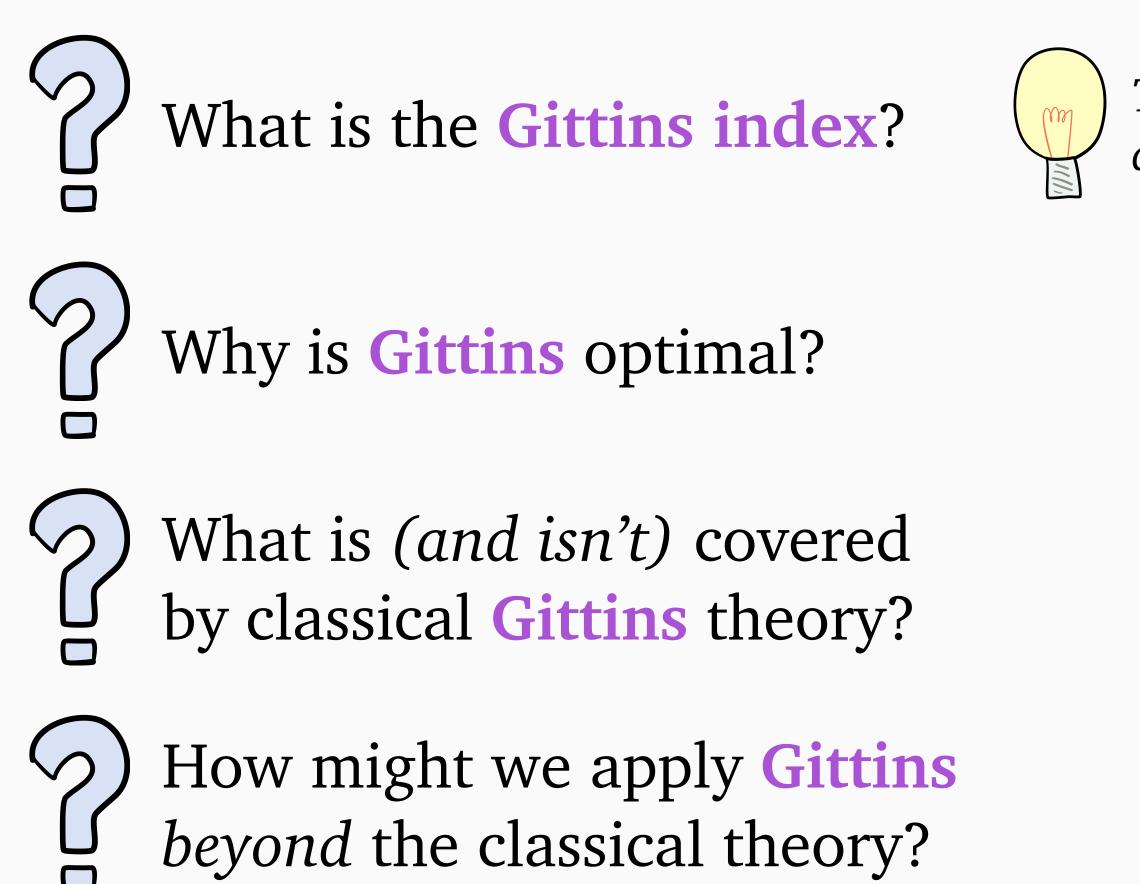




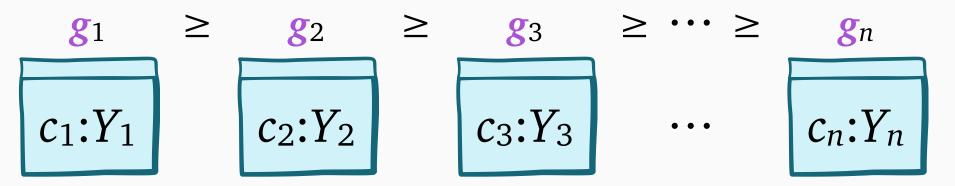


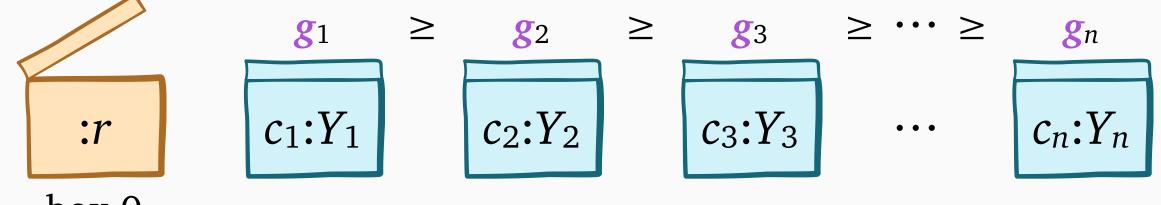






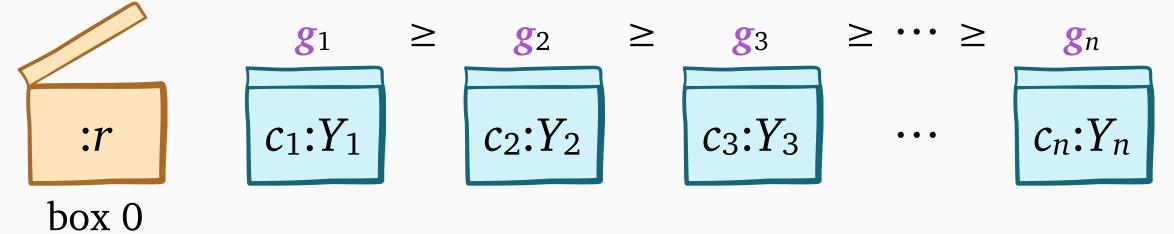
The deterministic action that dominates a stochastic action





box 0

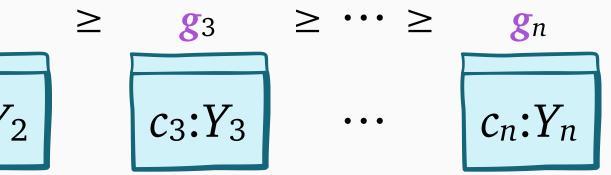
Approach: start at $r = \infty$, then decrease to r = 0



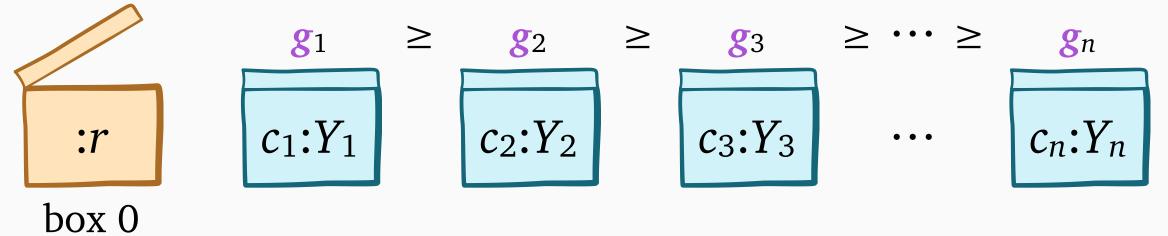
Approach: start at $r = \infty$, then decrease to r = 0

 \geq **g**1 **g**2 $c_2:Y_2$ $c_1:Y_1$:r

box 0

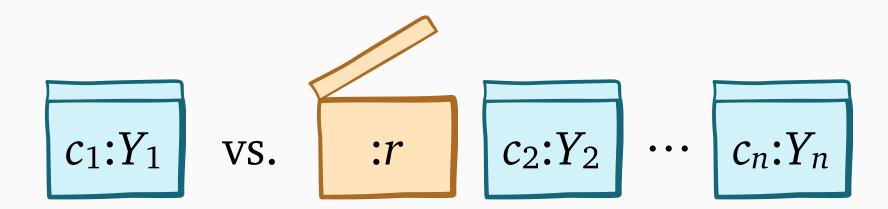


Approach: start at $r = \infty$, then decrease to r = 0

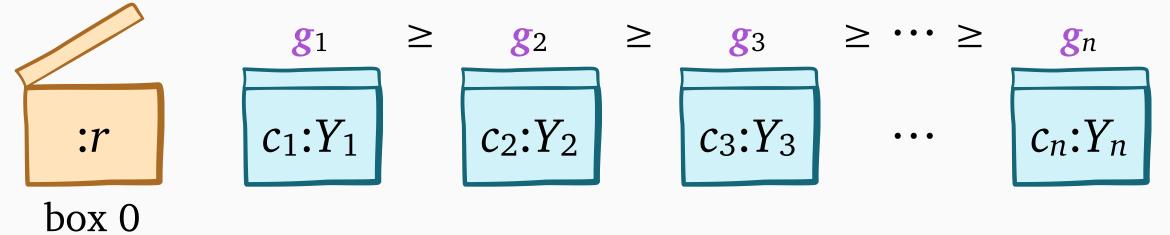


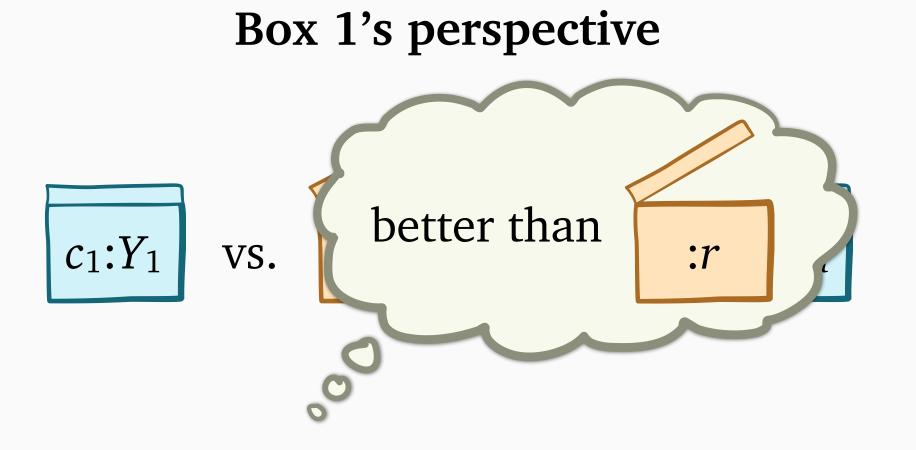
• $r \geq g_1$:

Box 1's perspective

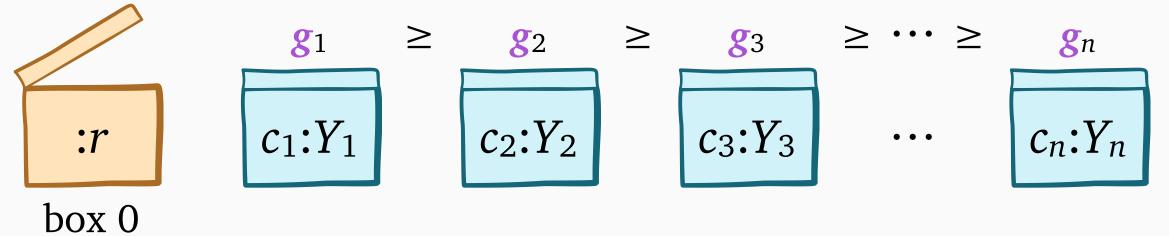


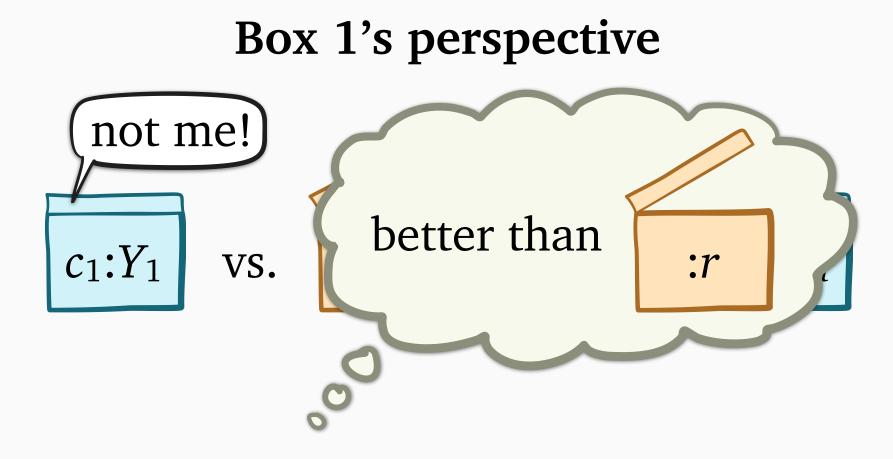
Approach: start at $r = \infty$, then decrease to r = 0



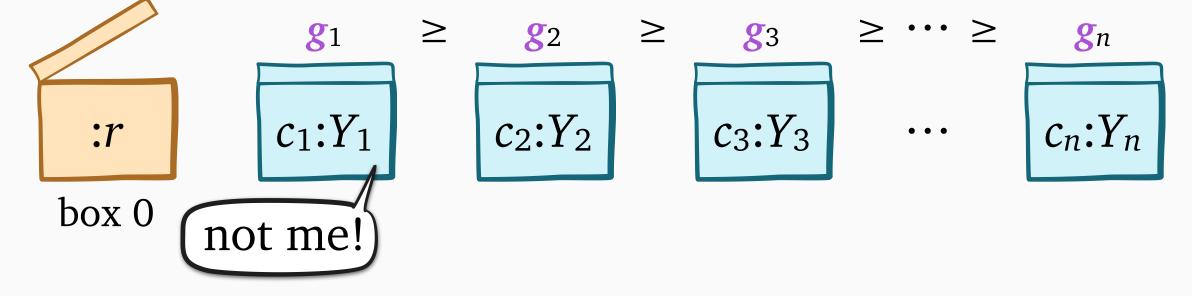


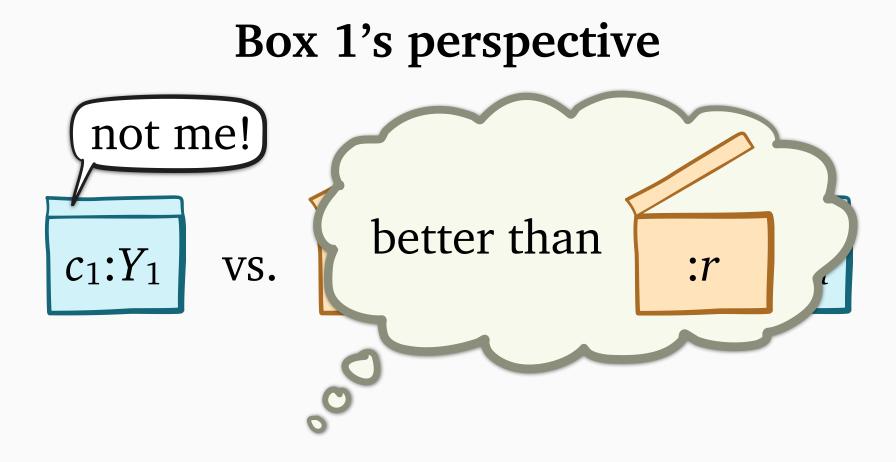
Approach: start at $r = \infty$, then decrease to r = 0





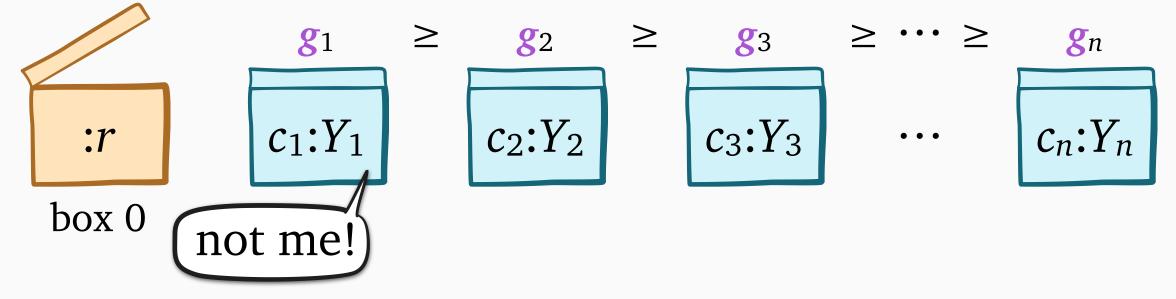
Approach: start at $r = \infty$, then decrease to r = 0

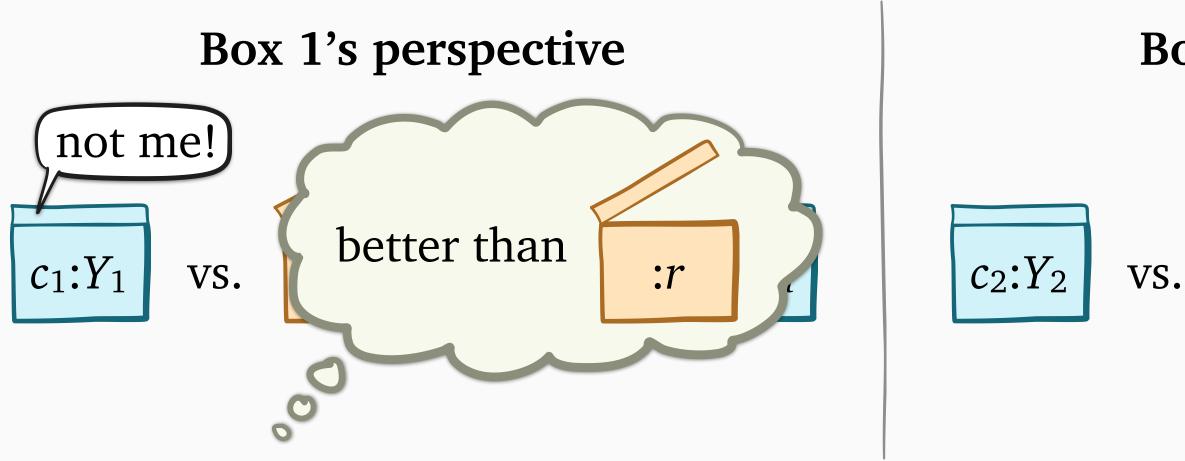




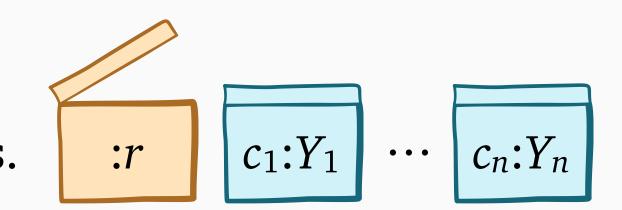
Approach: start at $r = \infty$, then decrease to r = 0

• $r \geq g_1$:

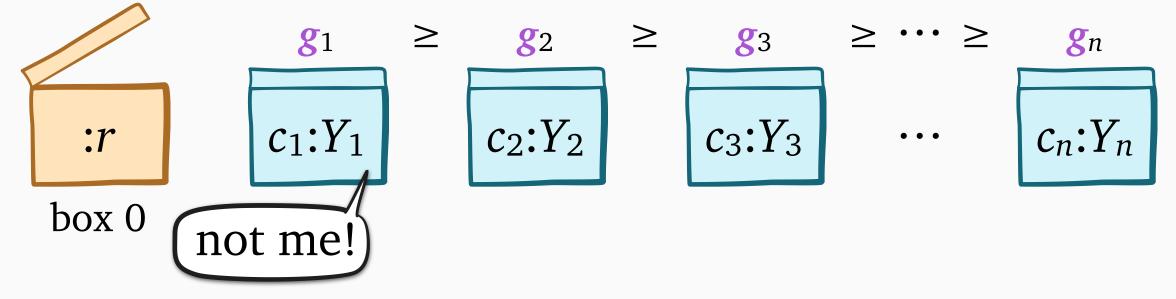


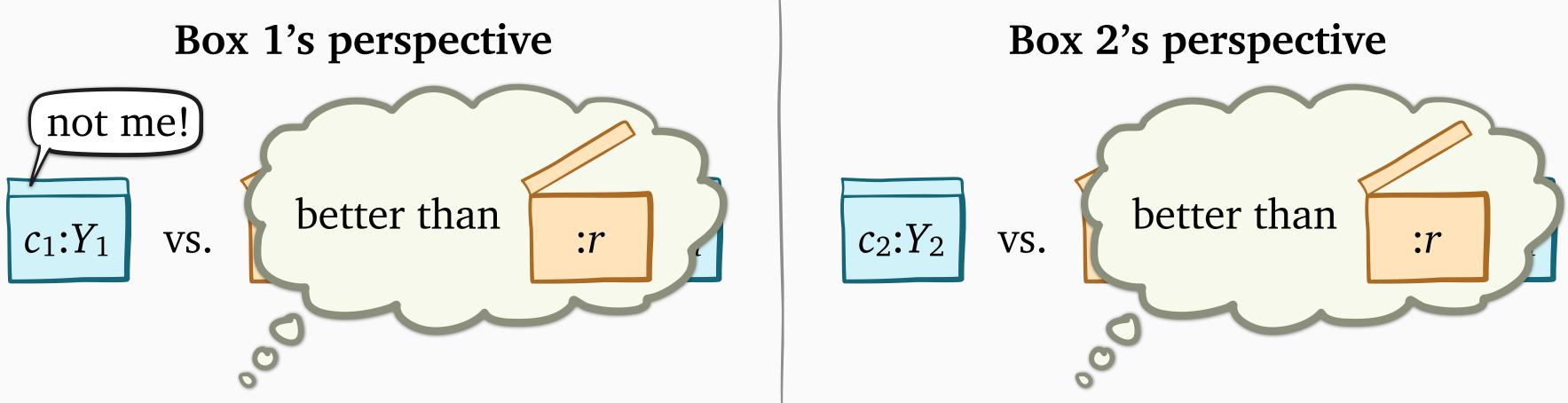


Box 2's perspective

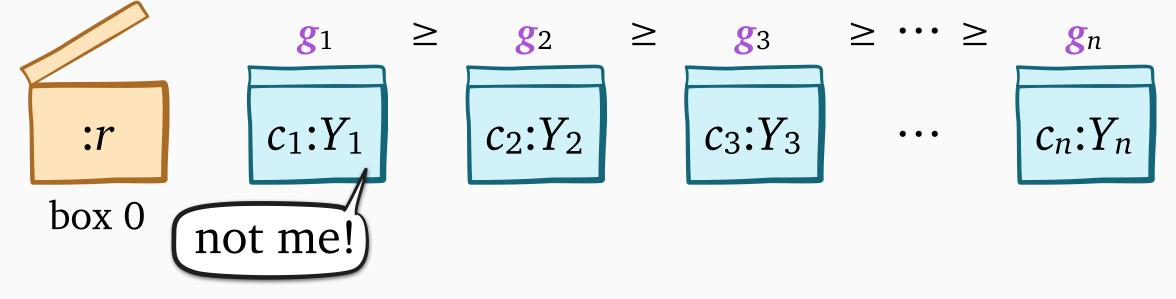


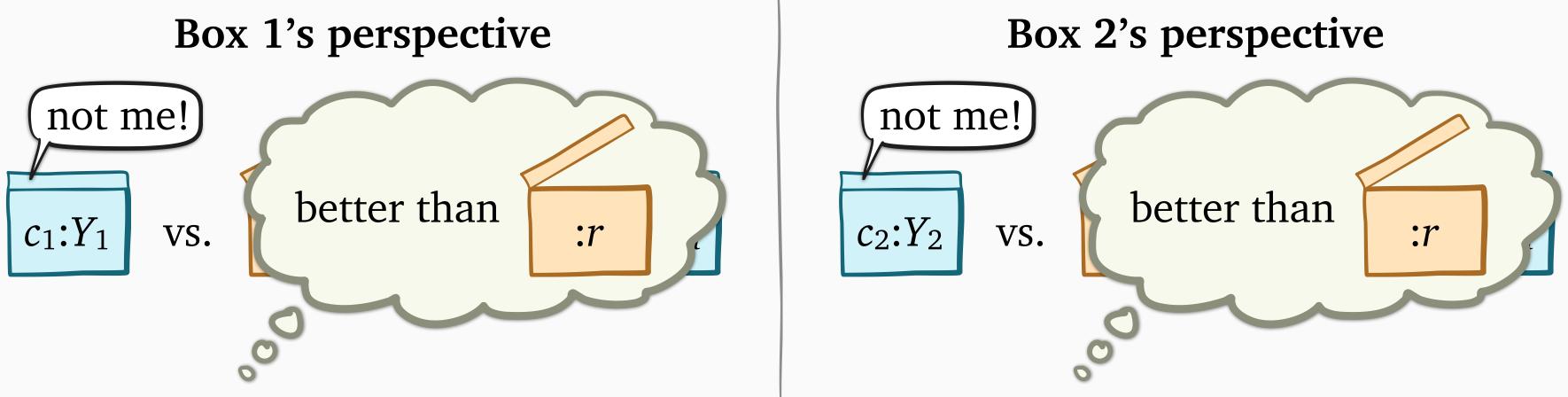
Approach: start at $r = \infty$, then decrease to r = 0



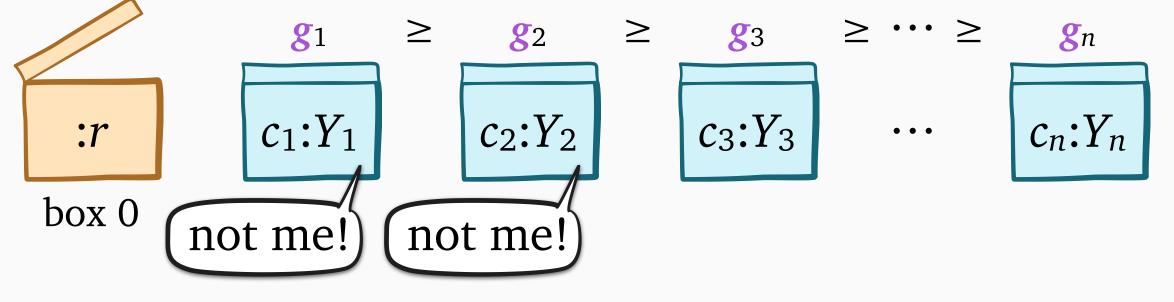


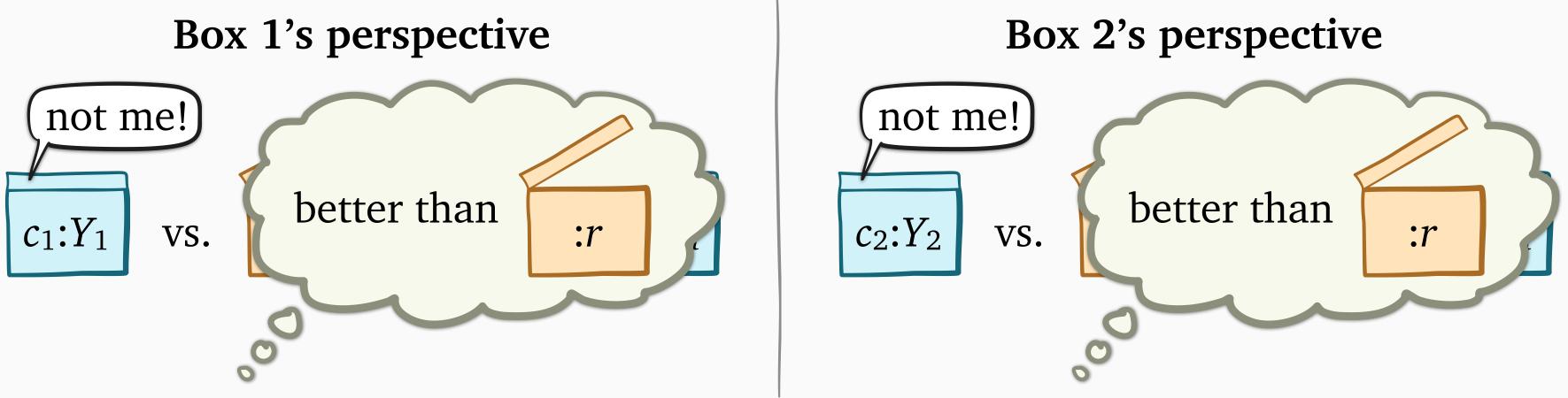
Approach: start at $r = \infty$, then decrease to r = 0



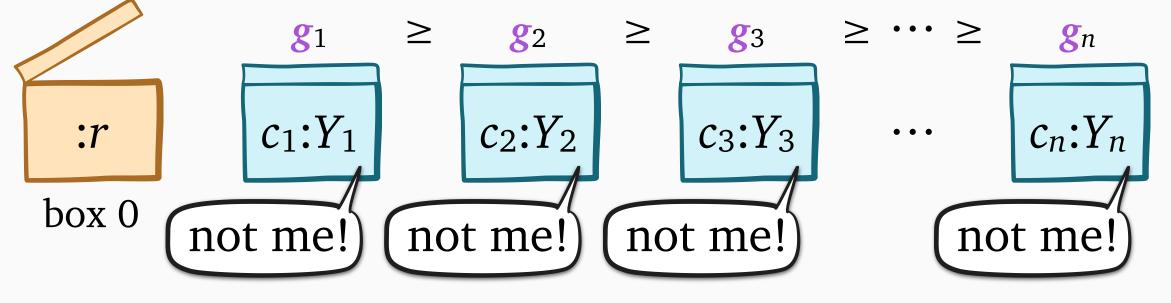


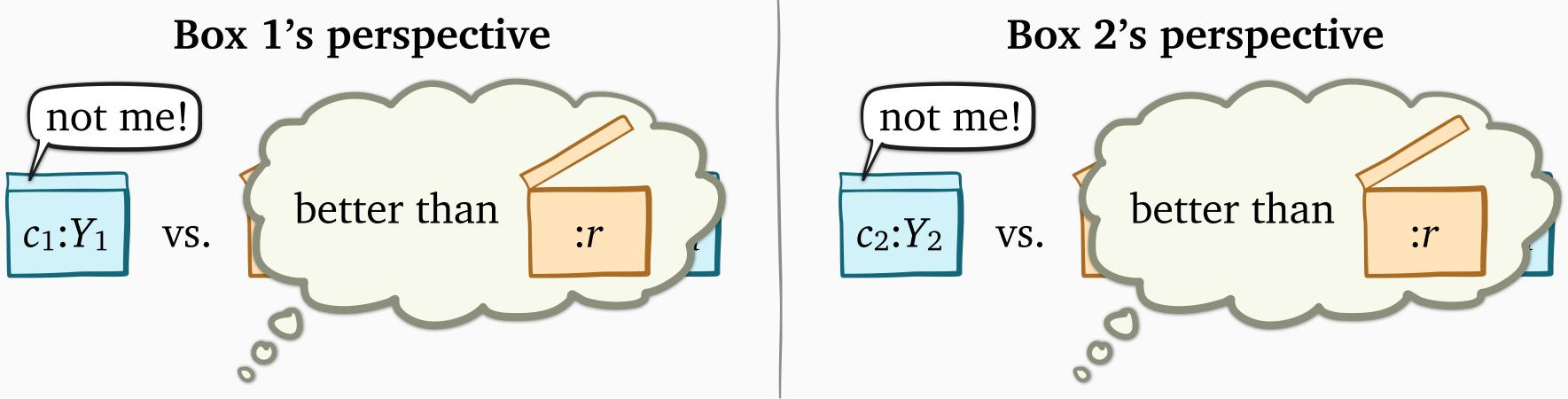
Approach: start at $r = \infty$, then decrease to r = 0

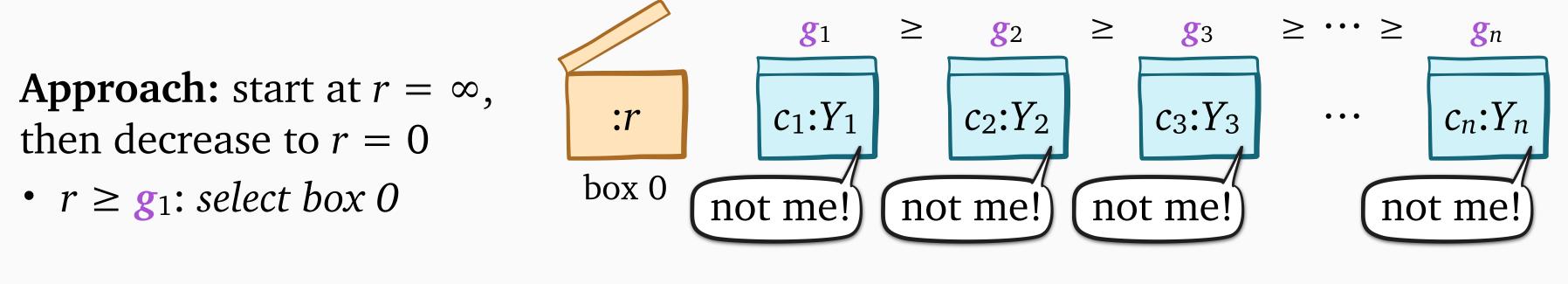


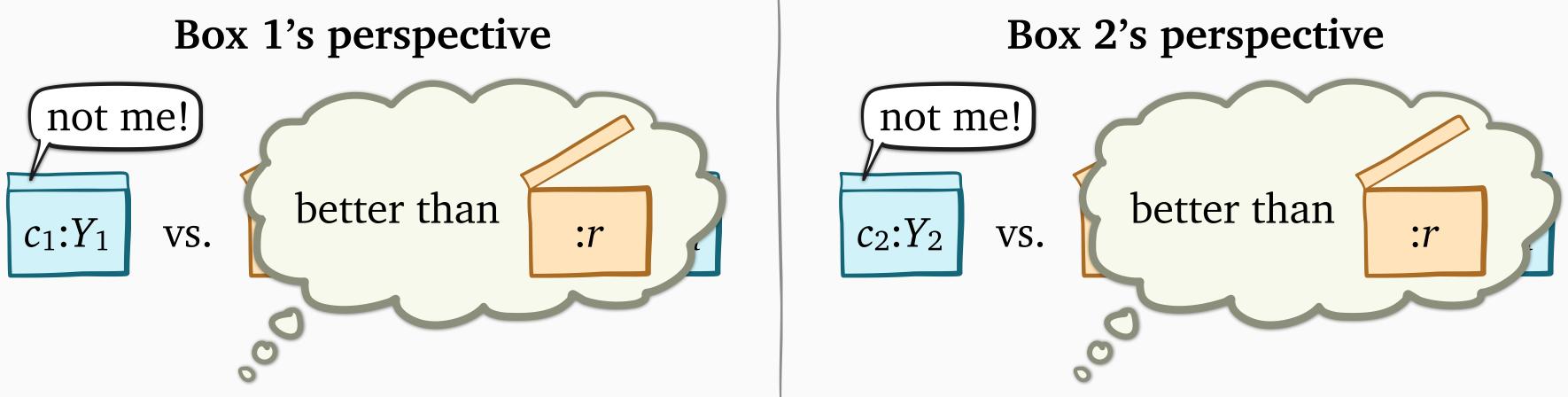


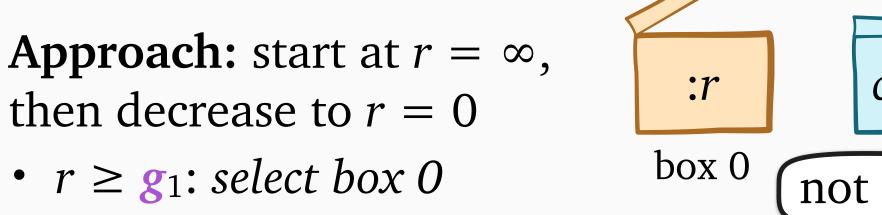
Approach: start at $r = \infty$, then decrease to r = 0



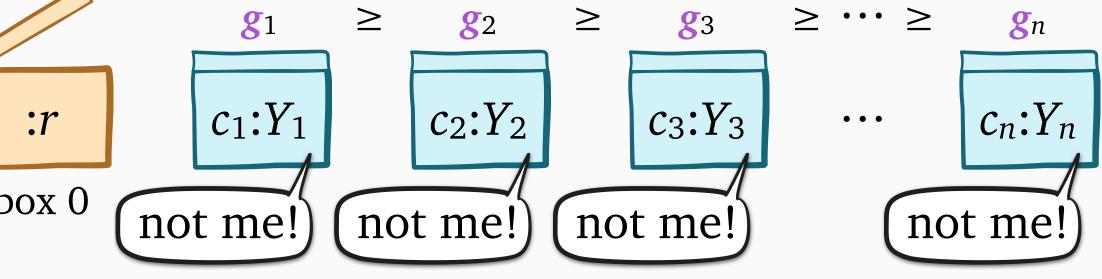


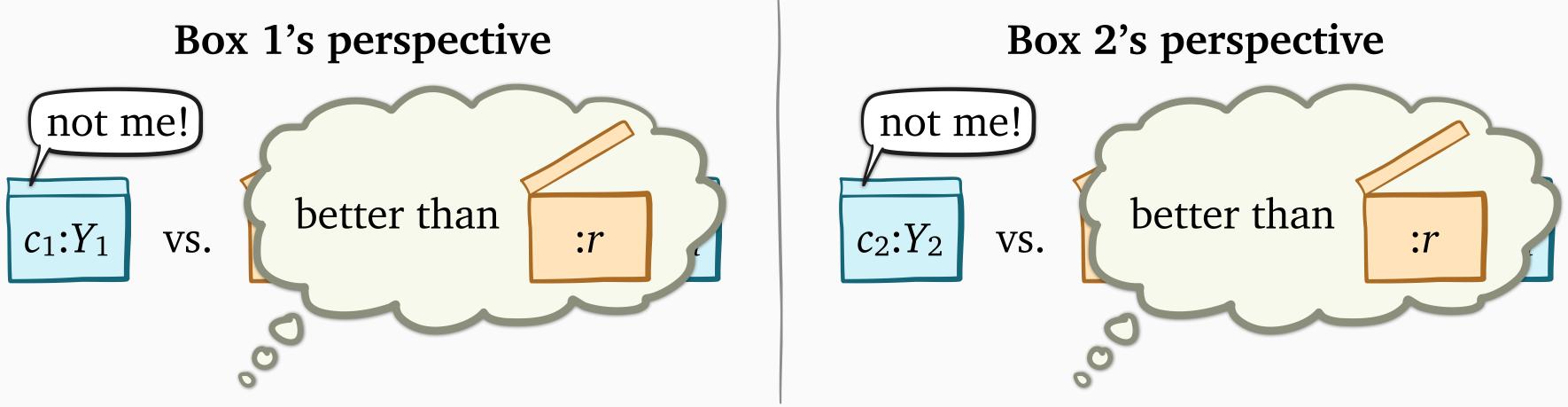






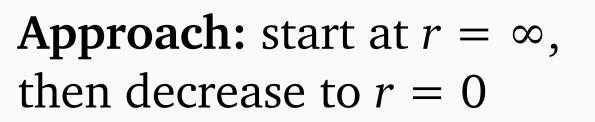
• $r = g_1$:



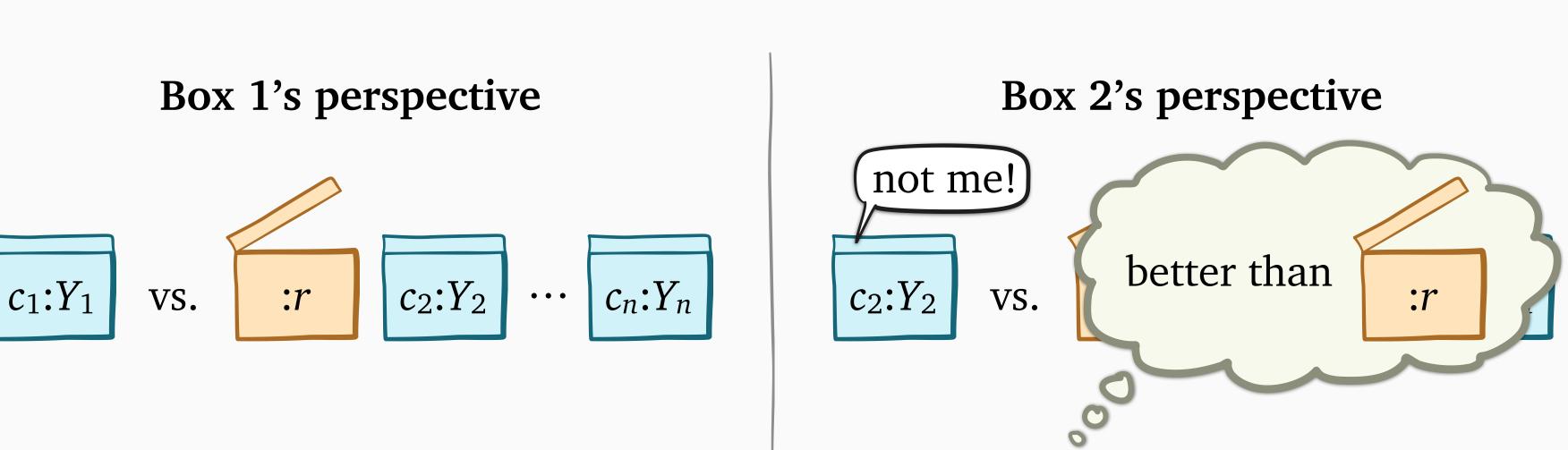


:r

box 0



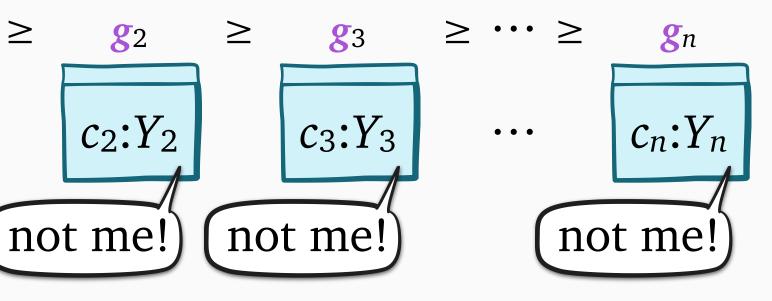
- $r \geq g_1$: select box 0
- $r = g_1$:

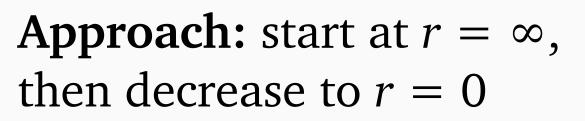


g1

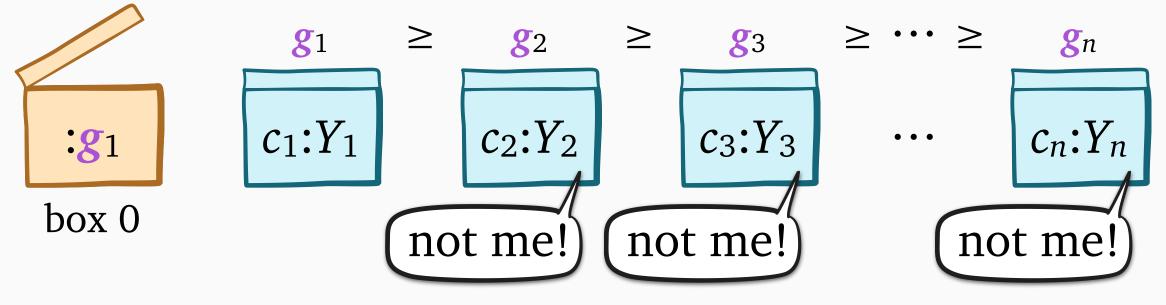
 $c_1:Y_1$

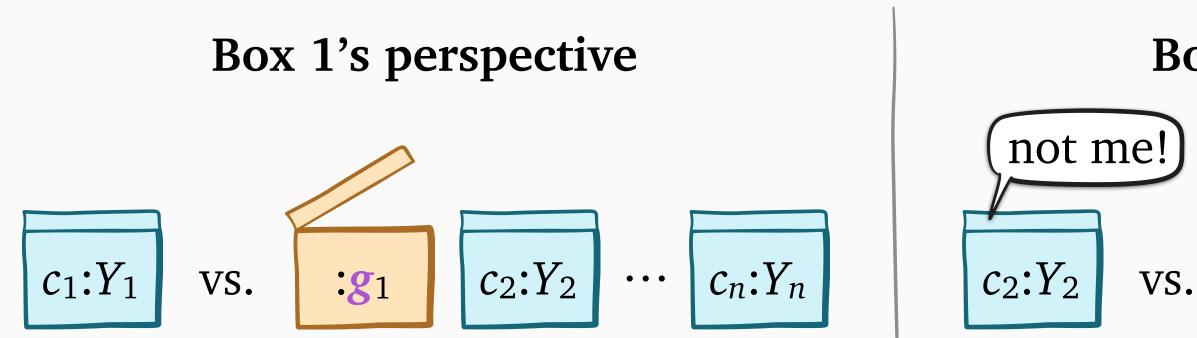
 \geq

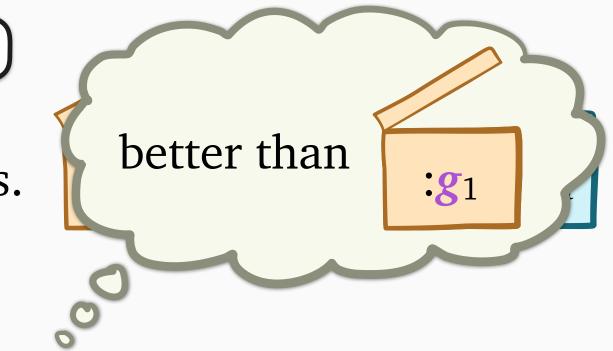


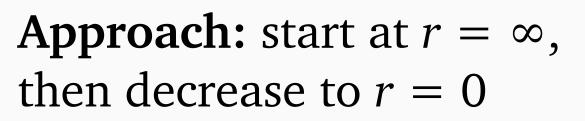


- $r \geq g_1$: select box 0
- $r = g_1$:

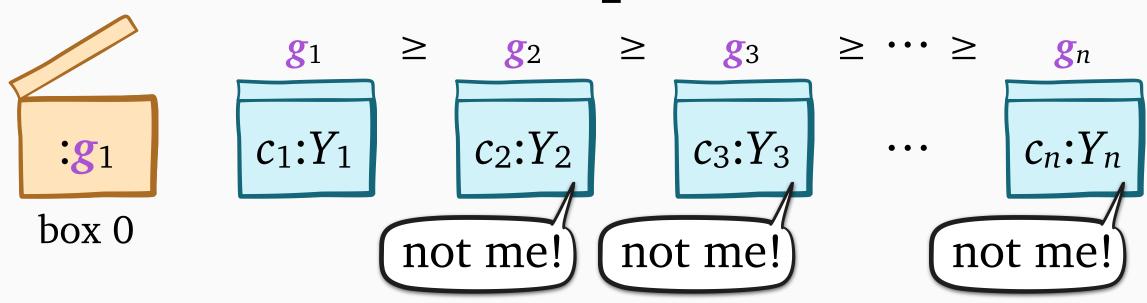


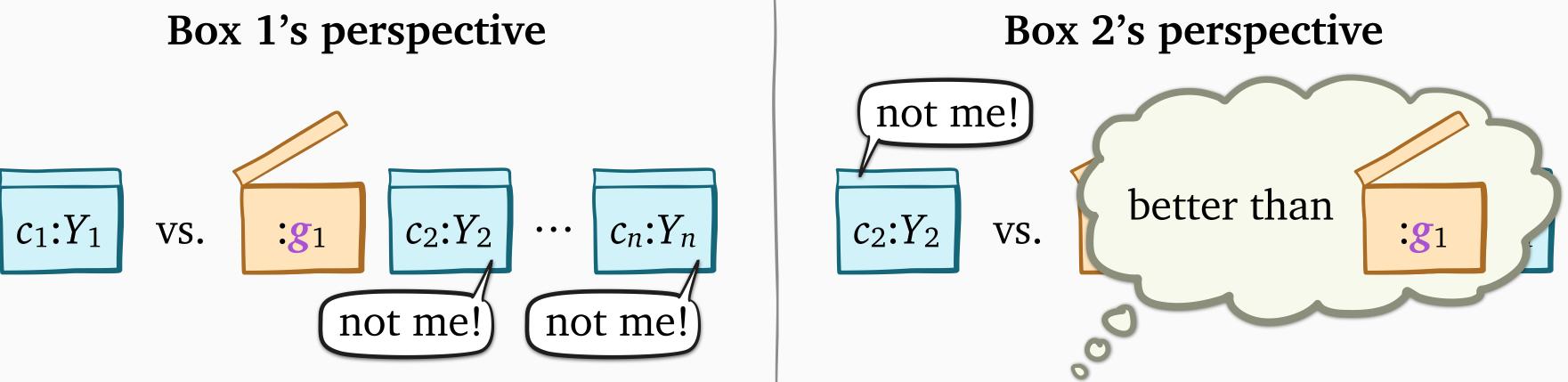






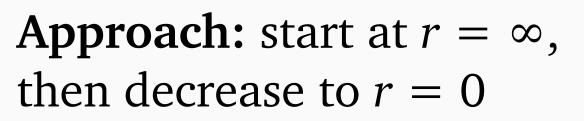
- $r \geq g_1$: select box 0
- $r = g_1$:



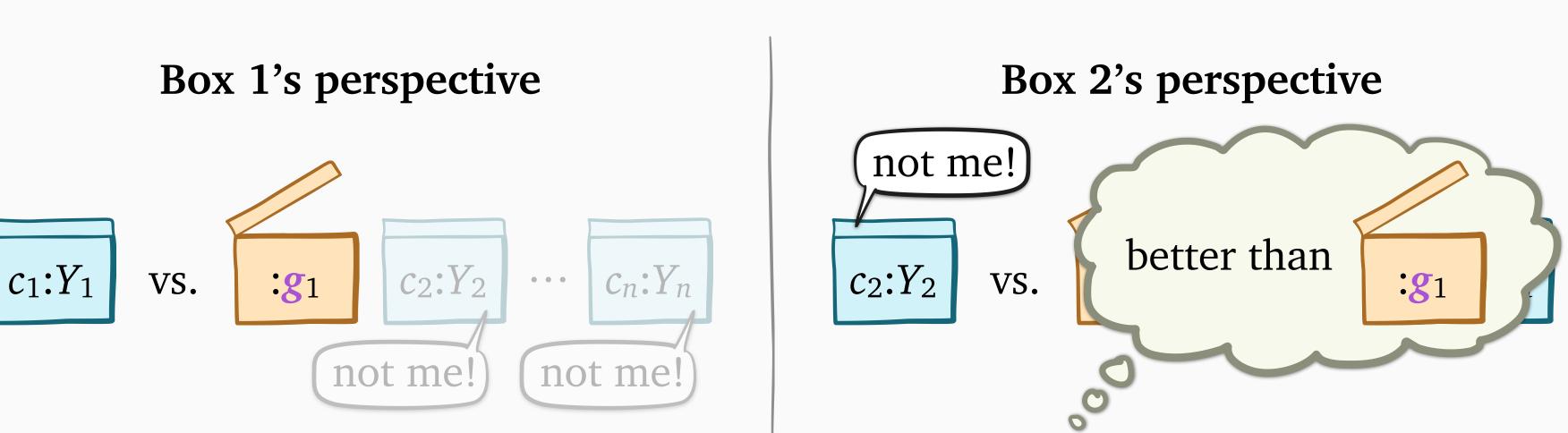


:g₁

box 0



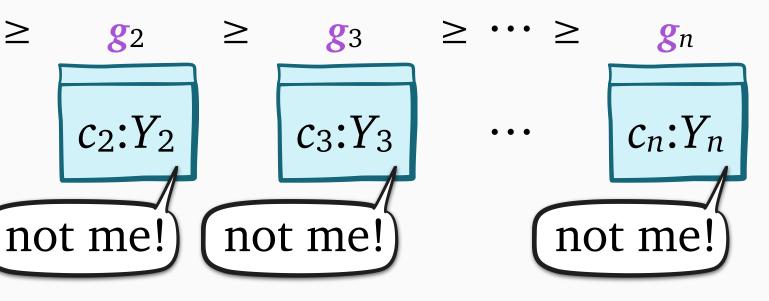
- $r \geq g_1$: select box 0
- $r = g_1$:



g1

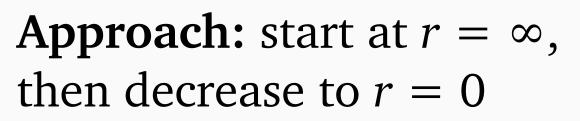
 $c_1:Y_1$

 \geq



:g₁

box 0



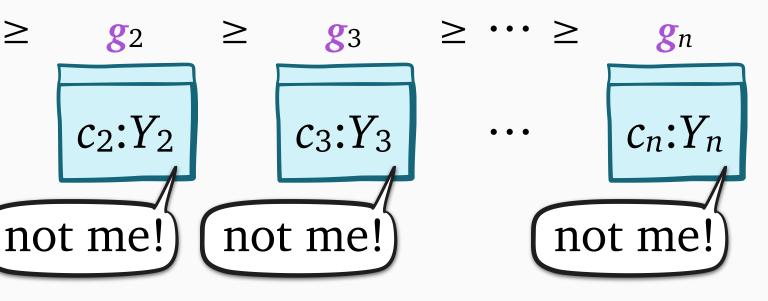
- $r \geq g_1$: select box 0
- $r = g_1$:

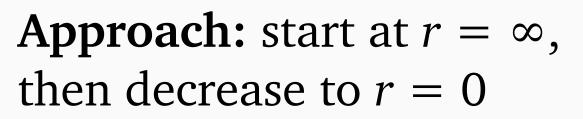


g1

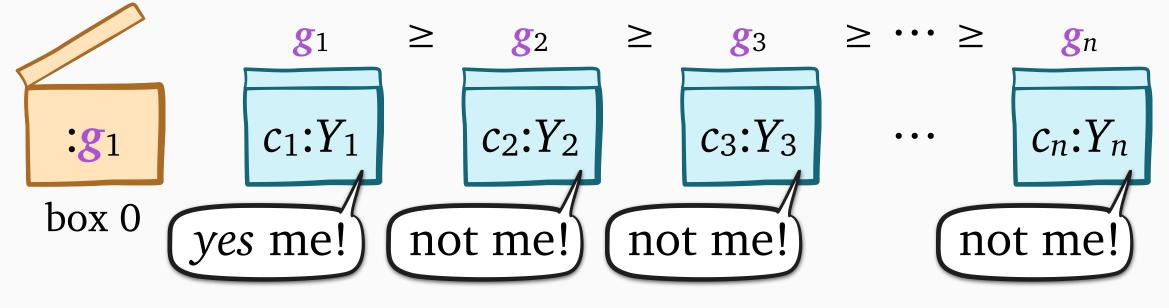
 $c_1:Y_1$

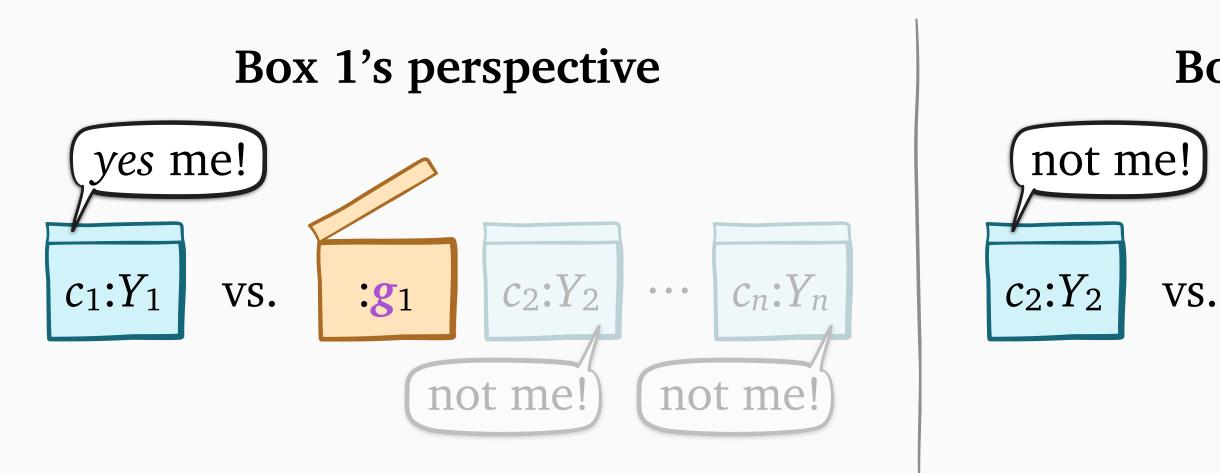
 \geq

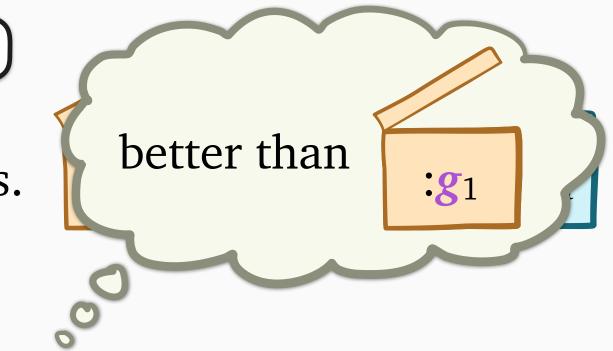




- $r \geq g_1$: select box 0
- $r = g_1$:

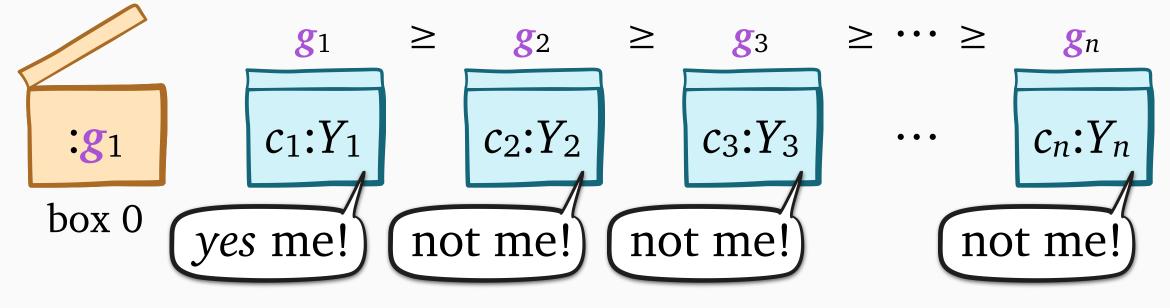


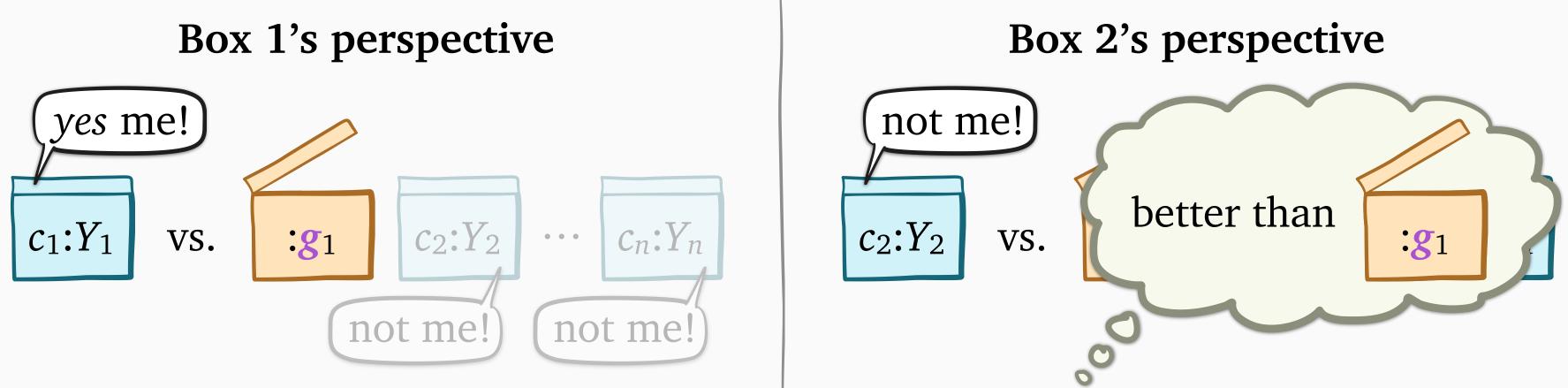


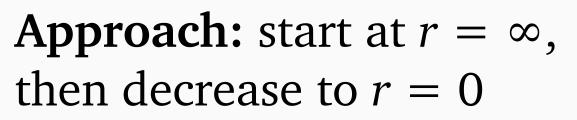


Approach: start at $r = \infty$, then decrease to r = 0

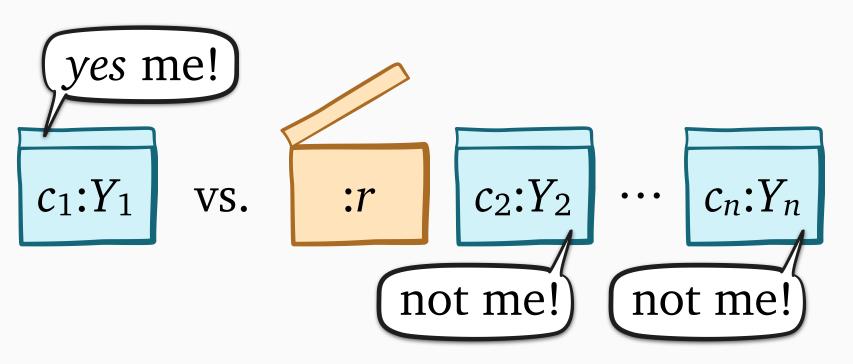
- $r \geq g_1$: select box 0
- $r = g_1$: open box 1

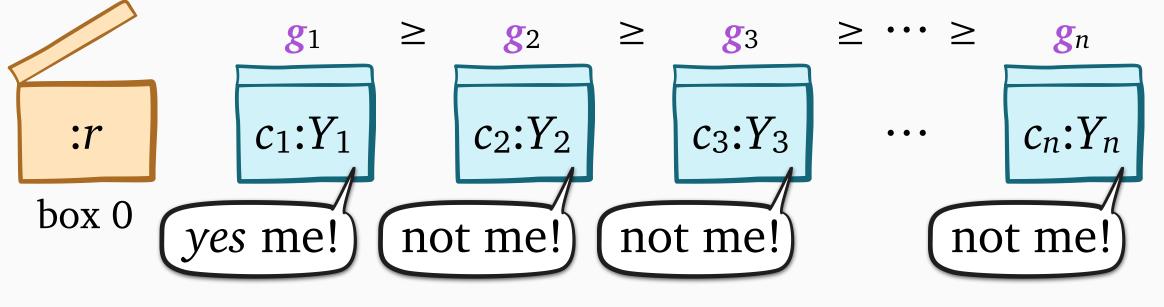


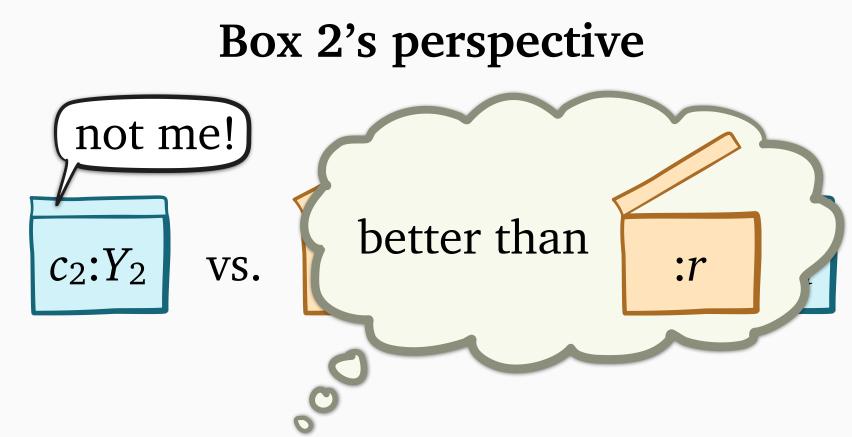


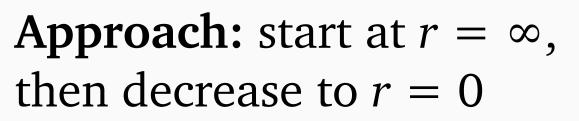


- $r \geq g_1$: select box 0
- $r = g_1$: open box 1
- $r < g_1$:

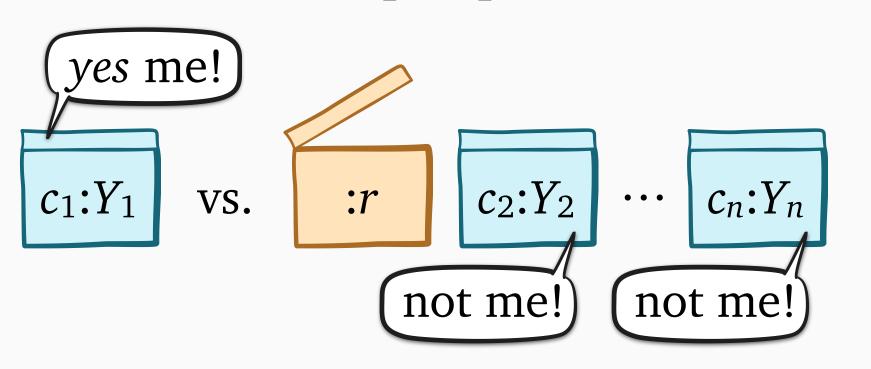


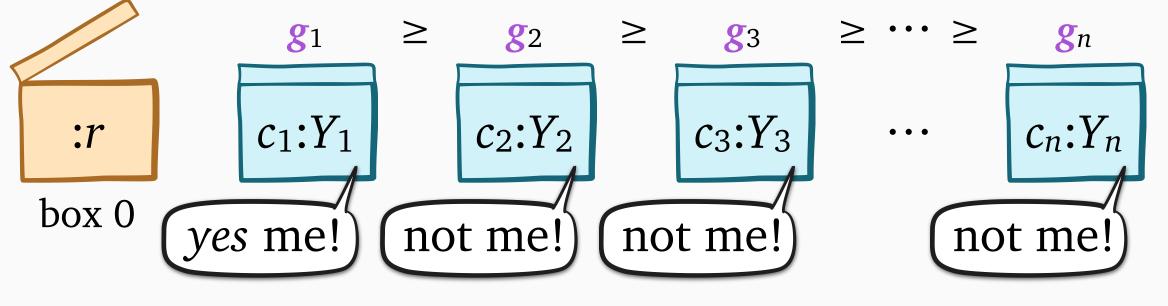


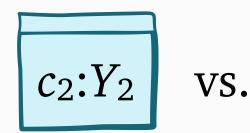


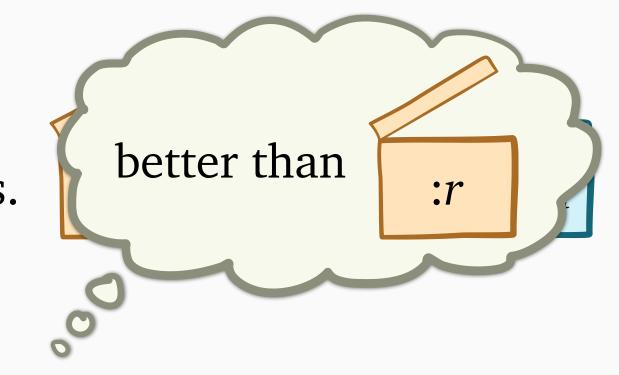


- $r \geq g_1$: select box 0
- $r = g_1$: open box 1
- $r < g_1$:





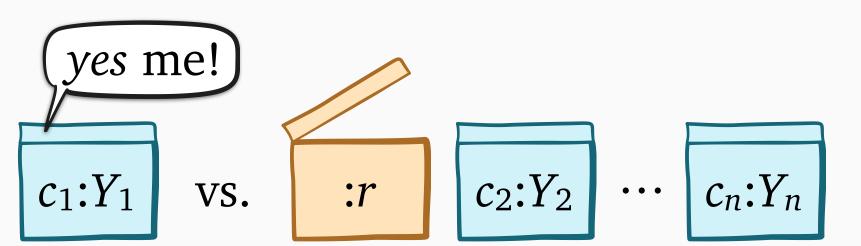


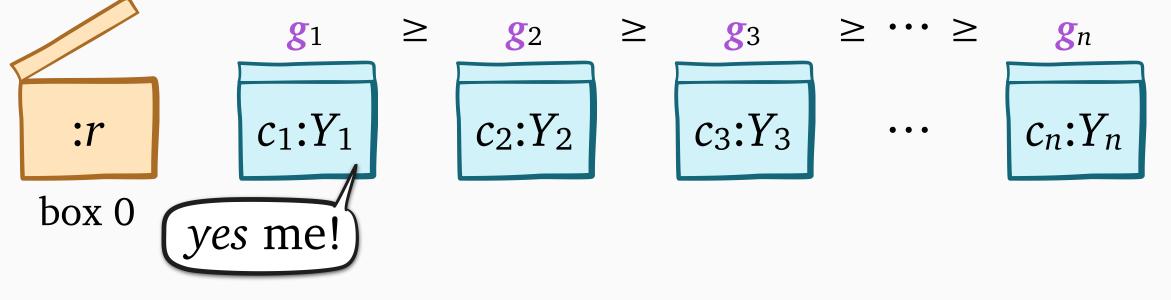


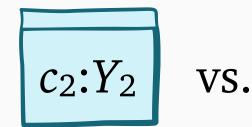
Approach: start at $r = \infty$, then decrease to r = 0

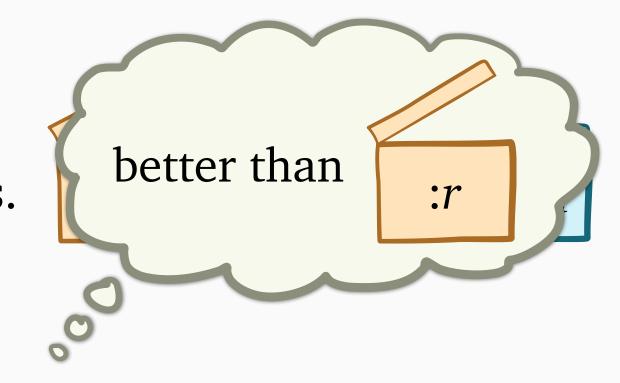
- $r \ge g_1$: select box 0
- $r = g_1$: open box 1
- $r < g_1$:

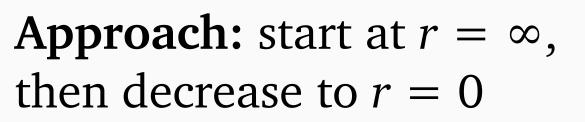
Box 1's perspective



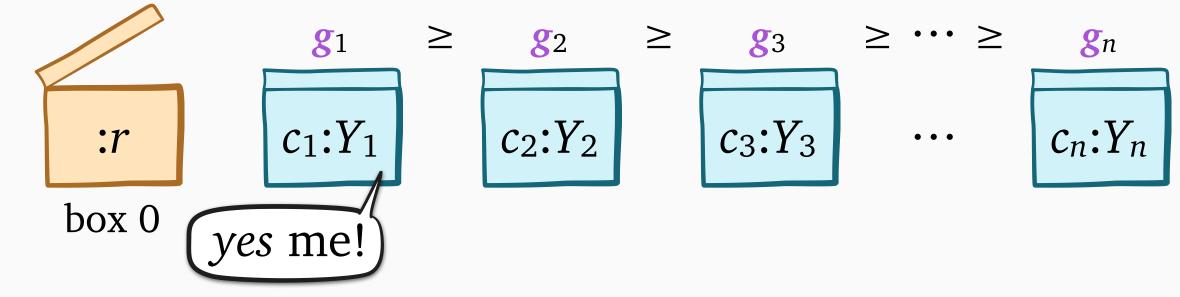


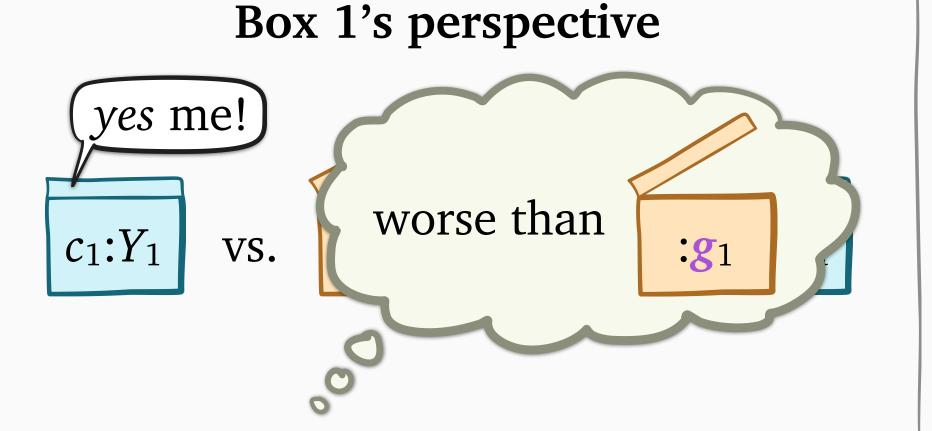


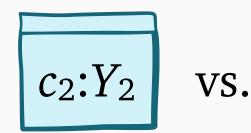


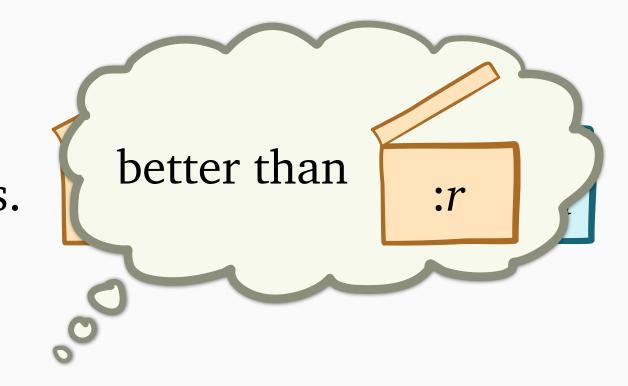


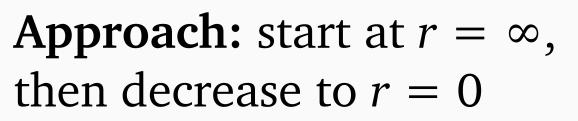
- $r \ge g_1$: select box 0
- $r = g_1$: open box 1
- $r < g_1$:







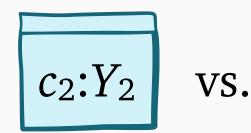


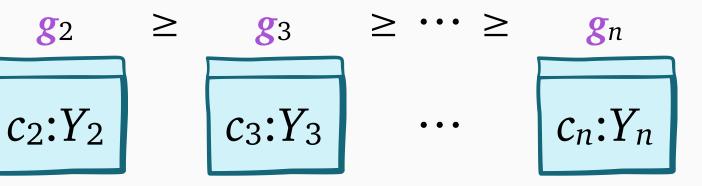


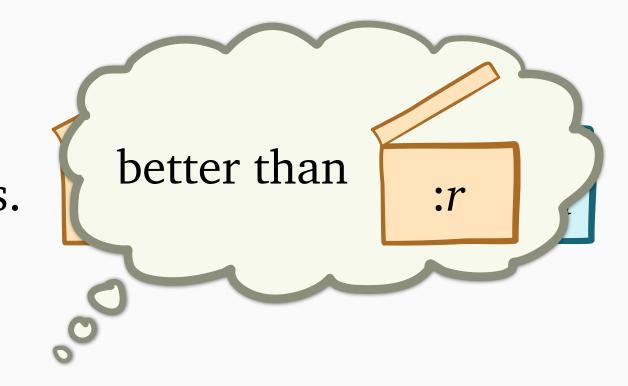
- $r \ge g_1$: select box 0
- $r = g_1$: open box 1
- $r < g_1$: open box 1

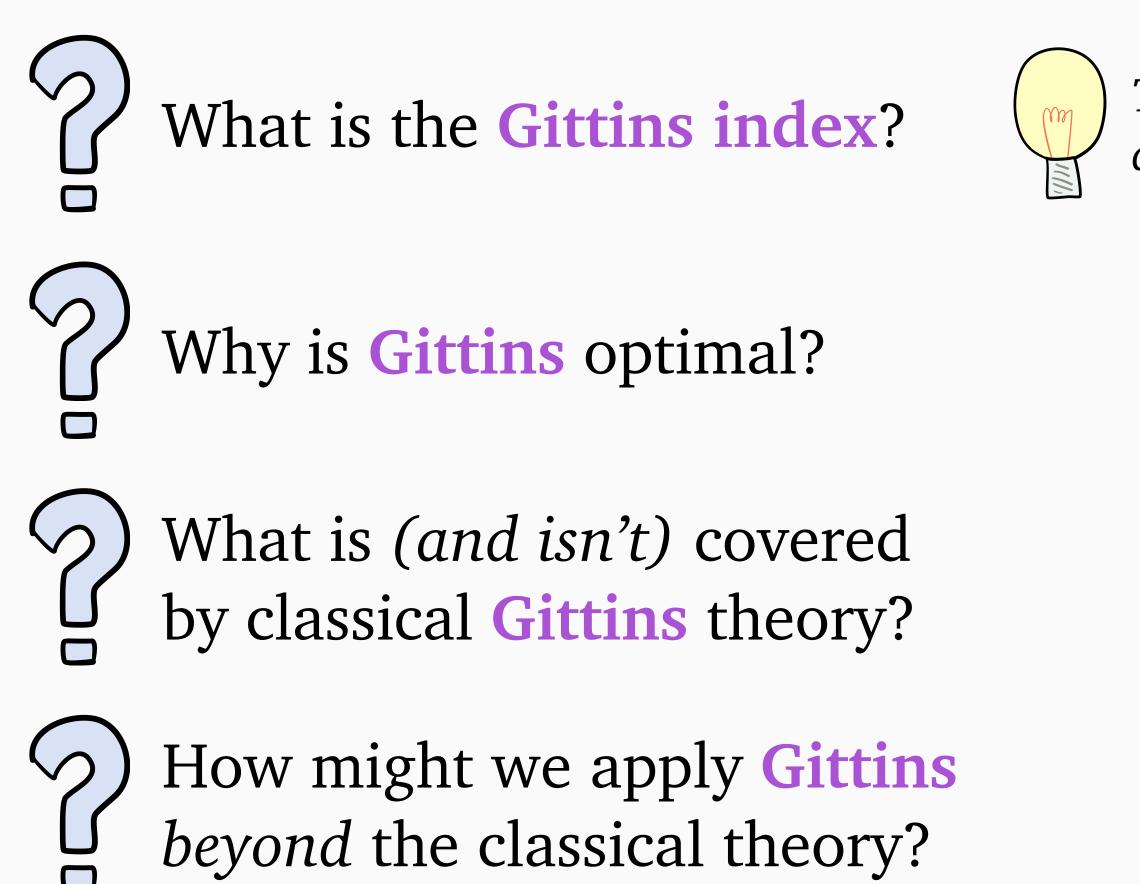
g1 \geq $c_1:Y_1$:r box 0 yes me!

Box 1's perspective

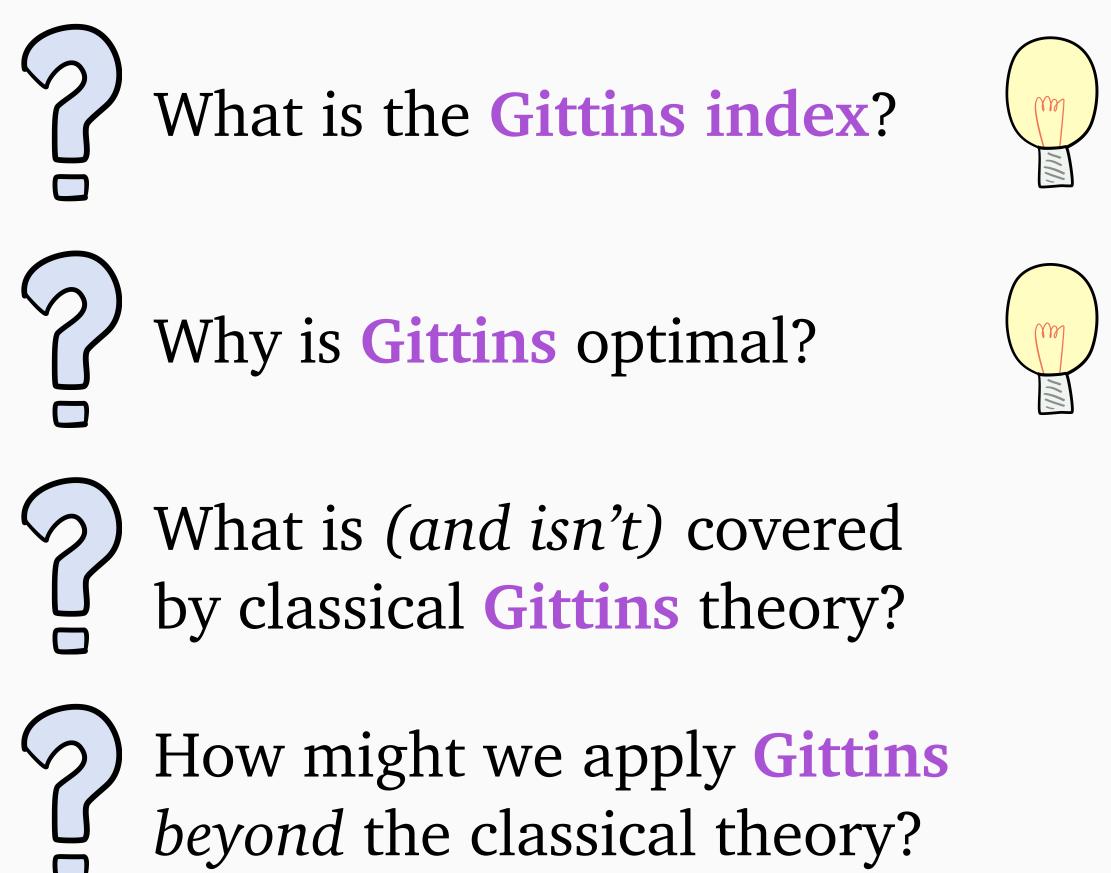








The deterministic action that dominates a stochastic action



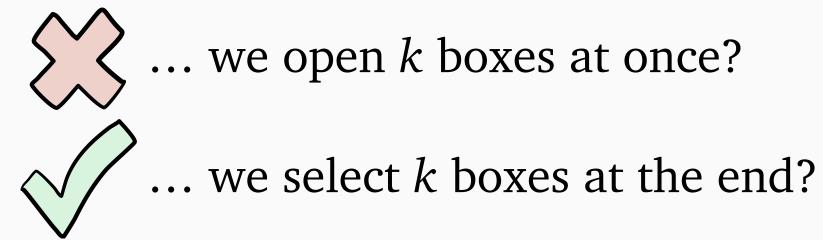
The deterministic action that dominates a stochastic action

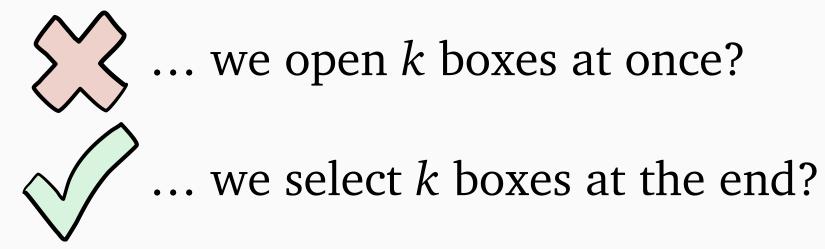
1.5-action problem faithfully abstracts full problem

20

... we open *k* boxes at once?

... we select *k* boxes at the end?





... we select a *spanning tree* of boxes at the end?

... we open *k* boxes at once? ... we select *k* boxes at the end? . . .

we select a *spanning tree* of boxes at the end? [Singla, 2018; Gupta et al., 2019]

... we open *k* boxes at once?

... we select *k* boxes at the end?

• • • [Singla, 2018; Gupta et al., 2019]

... we can open at most *n* boxes?

we select a *spanning tree* of boxes at the end?

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

we can open at most *n* boxes?

we select a *spanning tree* of boxes at the end?

... we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

we can open at most *n* boxes?

we select a *spanning tree* of boxes at the end?

... we can open at most *n* boxes *in expectation*?

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

we can open at most *n* boxes?

we select a *spanning tree* of boxes at the end?

we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

... we can open at most *n* boxes?

... we can select a closed box?

- we select a *spanning tree* of boxes at the end?
- we can open at most *n* boxes *in expectation*? [Aminian, Manshadi, & Niazadeh, 2025]

we open *k* boxes at once?

... we select *k* boxes at the end?

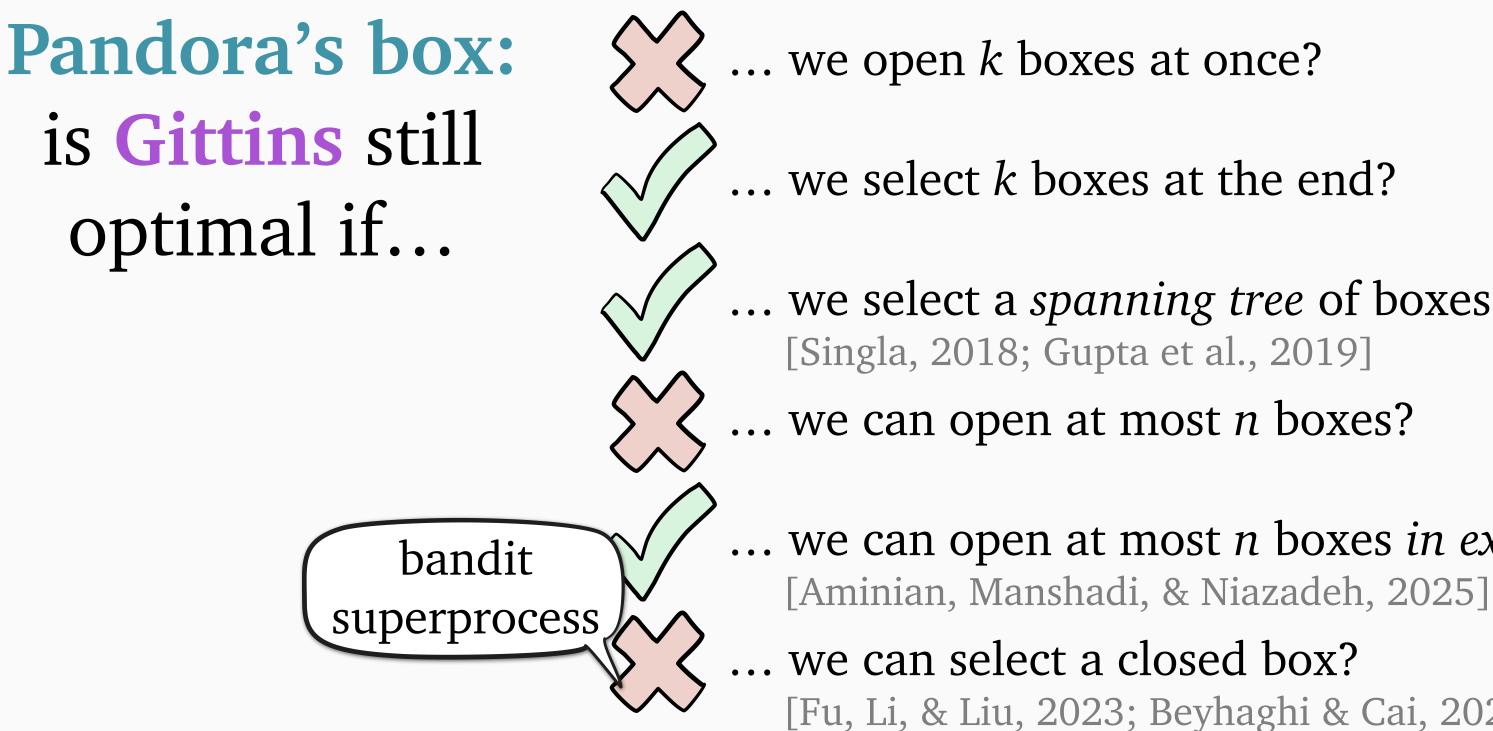
[Singla, 2018; Gupta et al., 2019]

... we can open at most *n* boxes?

we can select a closed box?

- we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes *in expectation*? [Aminian, Manshadi, & Niazadeh, 2025]

 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]



- we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation?

 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]

bandit

superprocess

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

... we can open at most *n* boxes?

... we can select a closed box?

- we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]
 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
- ... there are correlations between box values?

bandit

superprocess

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

... we can open at most *n* boxes?

... we can select a closed box?

[Gergatsouli & Tzamos, 2023]

- we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]

 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
 - there are correlations between box values?

bandit

superprocess

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

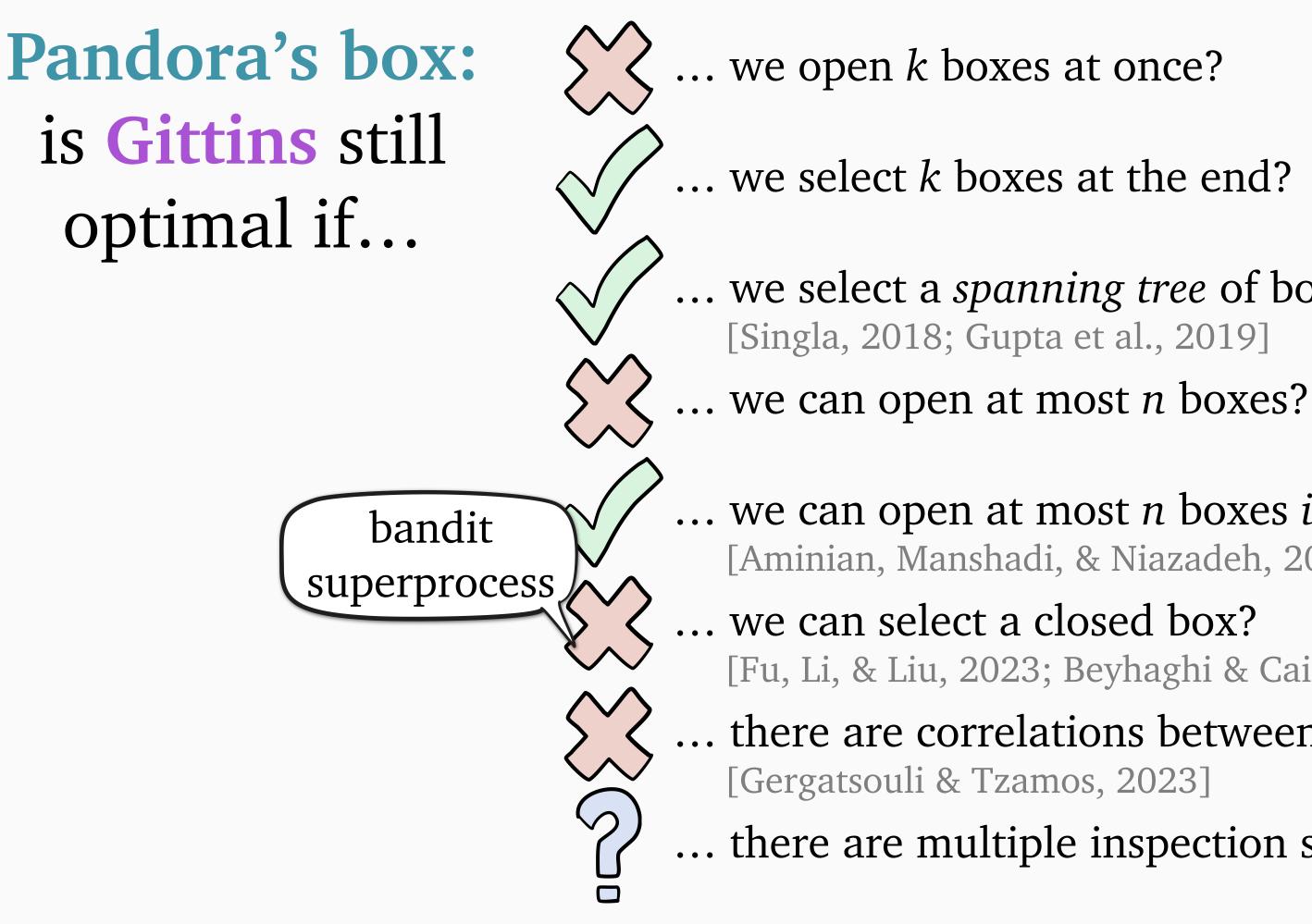
... we can open at most *n* boxes?

we can select a closed box?

[Gergatsouli & Tzamos, 2023]

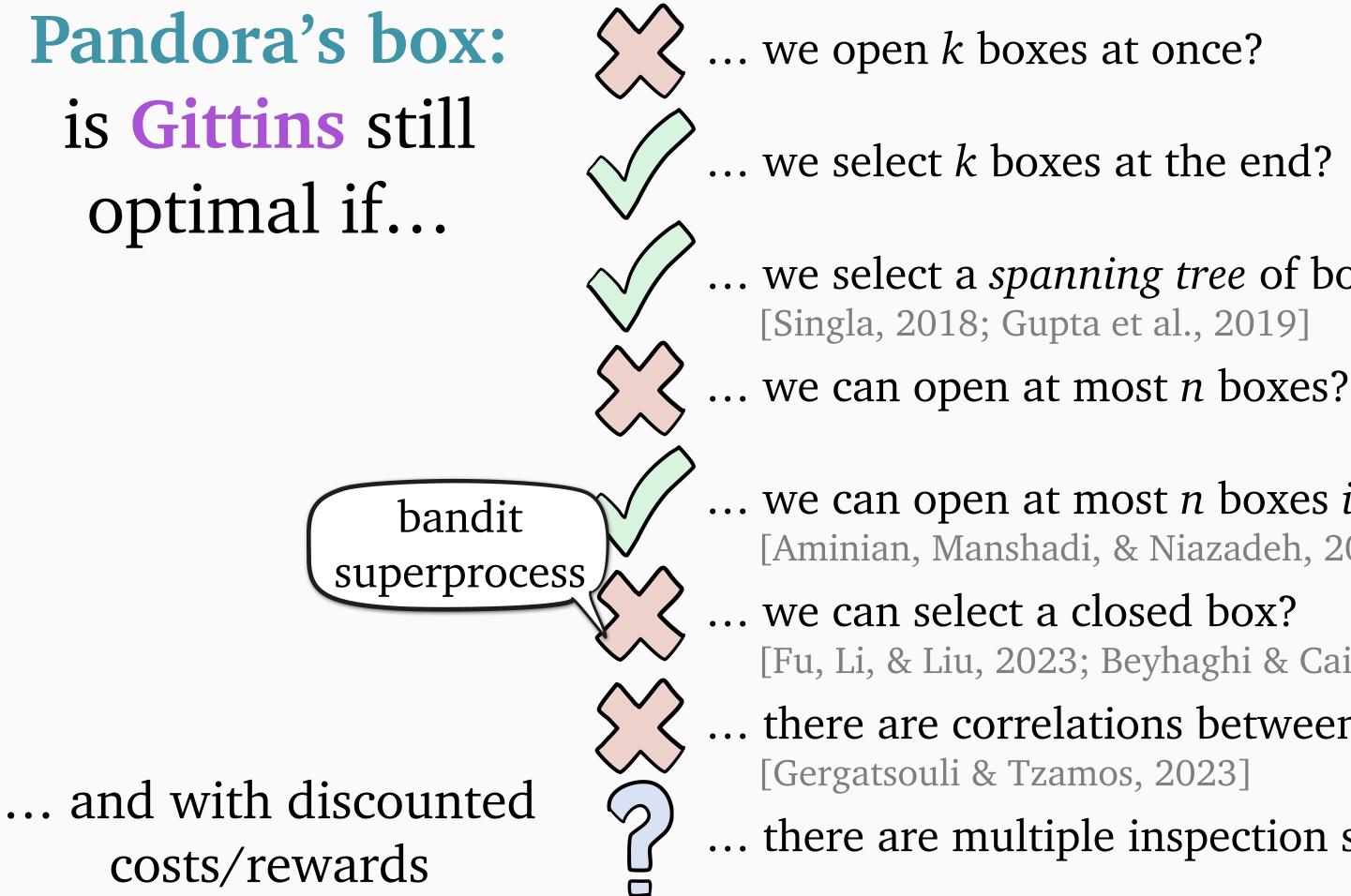
- we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]

 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
 - there are correlations between box values?
- ... there are multiple inspection steps?



- ... we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]

 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
- ... there are correlations between box values?
- ... there are multiple inspection steps?

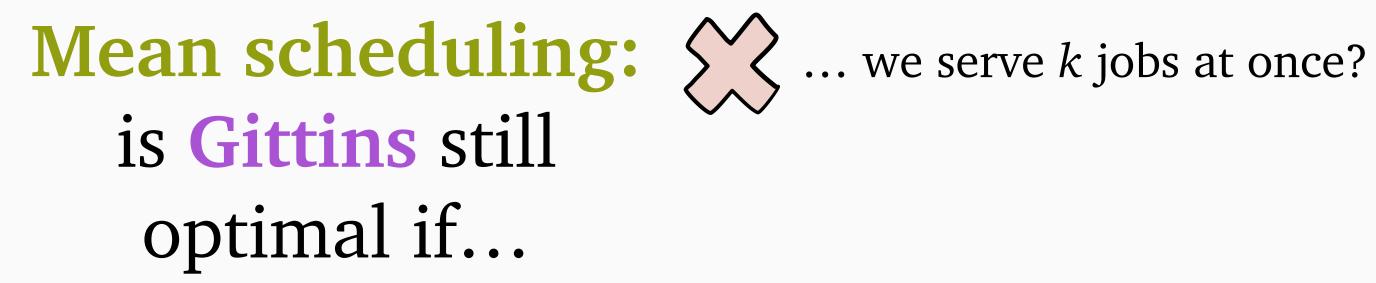


- ... we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]

 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
- ... there are correlations between box values?
- ... there are multiple inspection steps?

Mean scheduling: is Gittins still optimal if...

... we serve *k* jobs at once?



Mean scheduling: \bigotimes ... we serve *k* jobs at once? is Gittins still optimal if...



... jobs arrive over time (arbitrary)

Mean scheduling: \bigotimes ... we serve *k* jobs at once? is **Gittins** still ... jobs arrive over time (arbitrary) optimal if...

 $\sum \dots$ we serve *k* jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

... we serve *k* jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

... we serve *k* jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

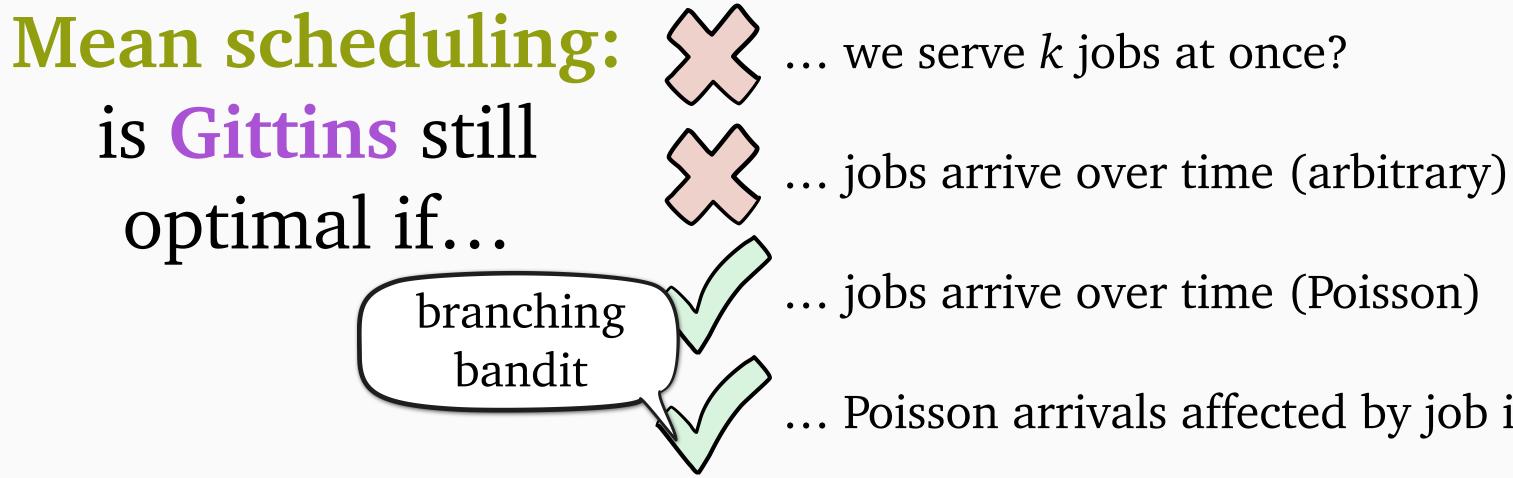
... Poisson arrivals affected by job in service?

... we serve *k* jobs at once?

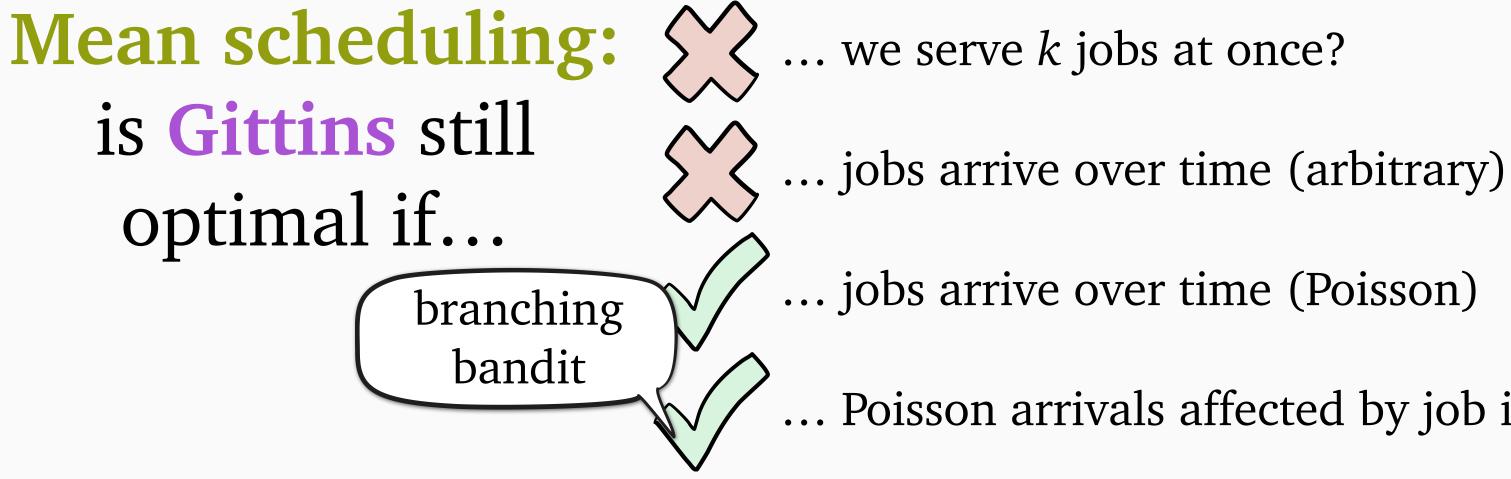
... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

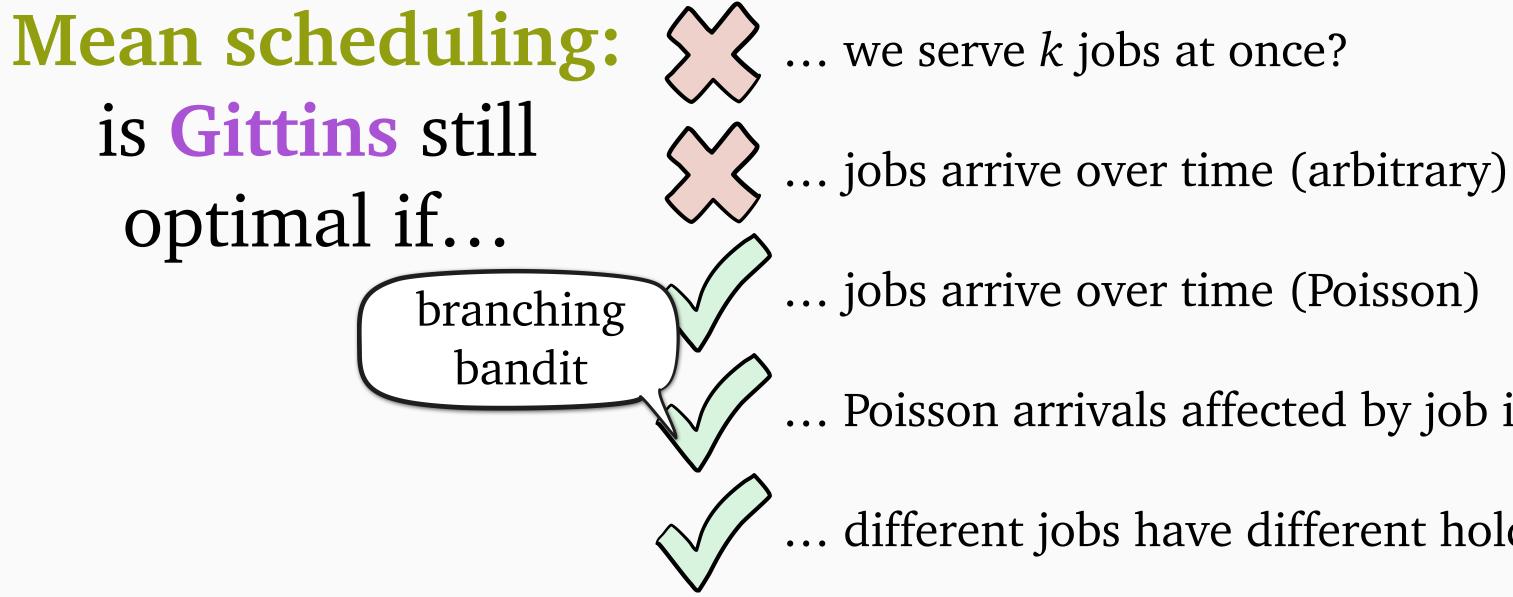
... Poisson arrivals affected by job in service?



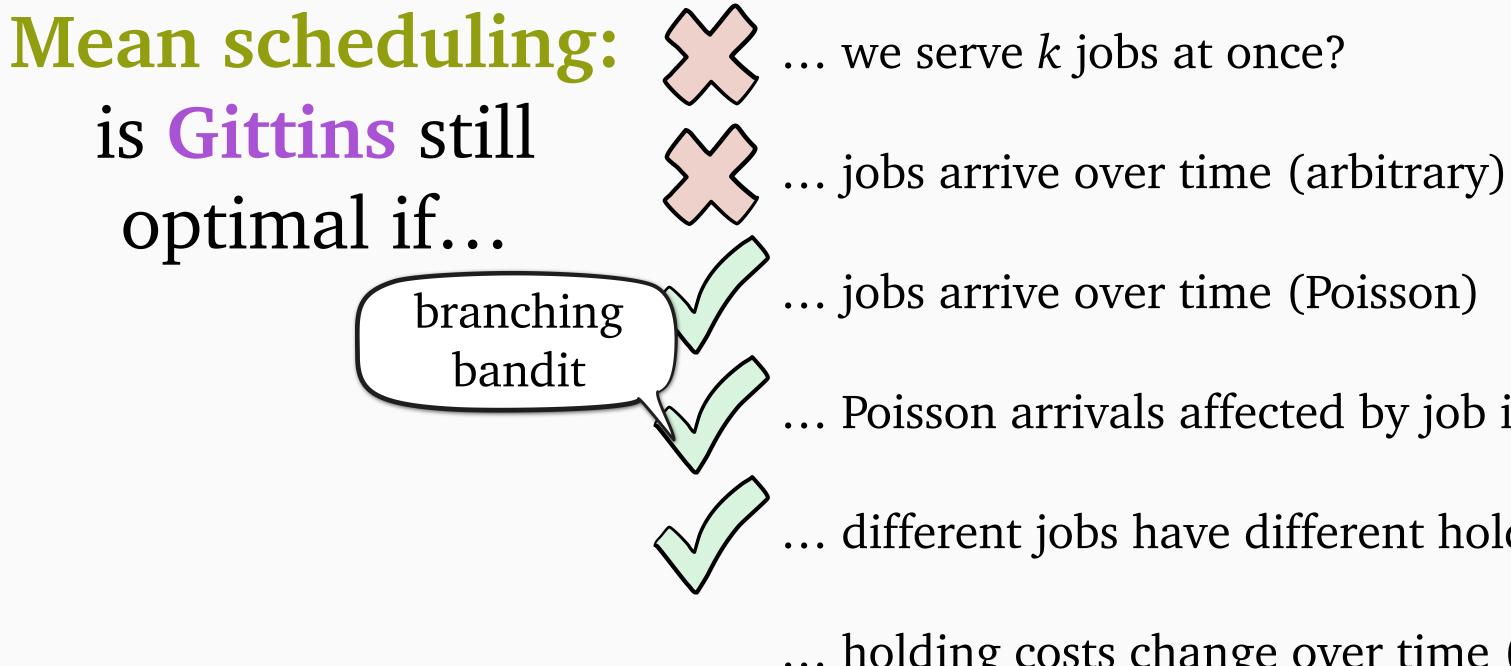
... Poisson arrivals affected by job in service?



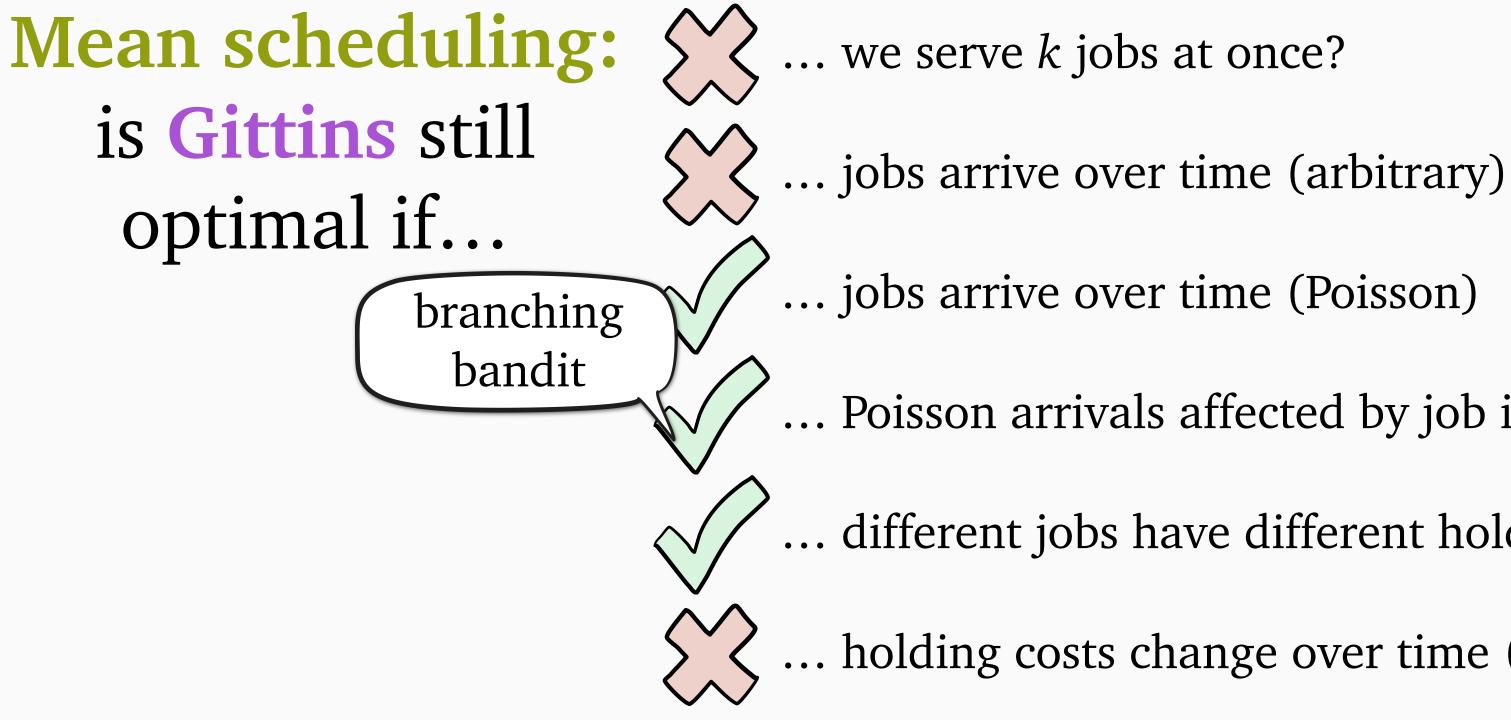
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?



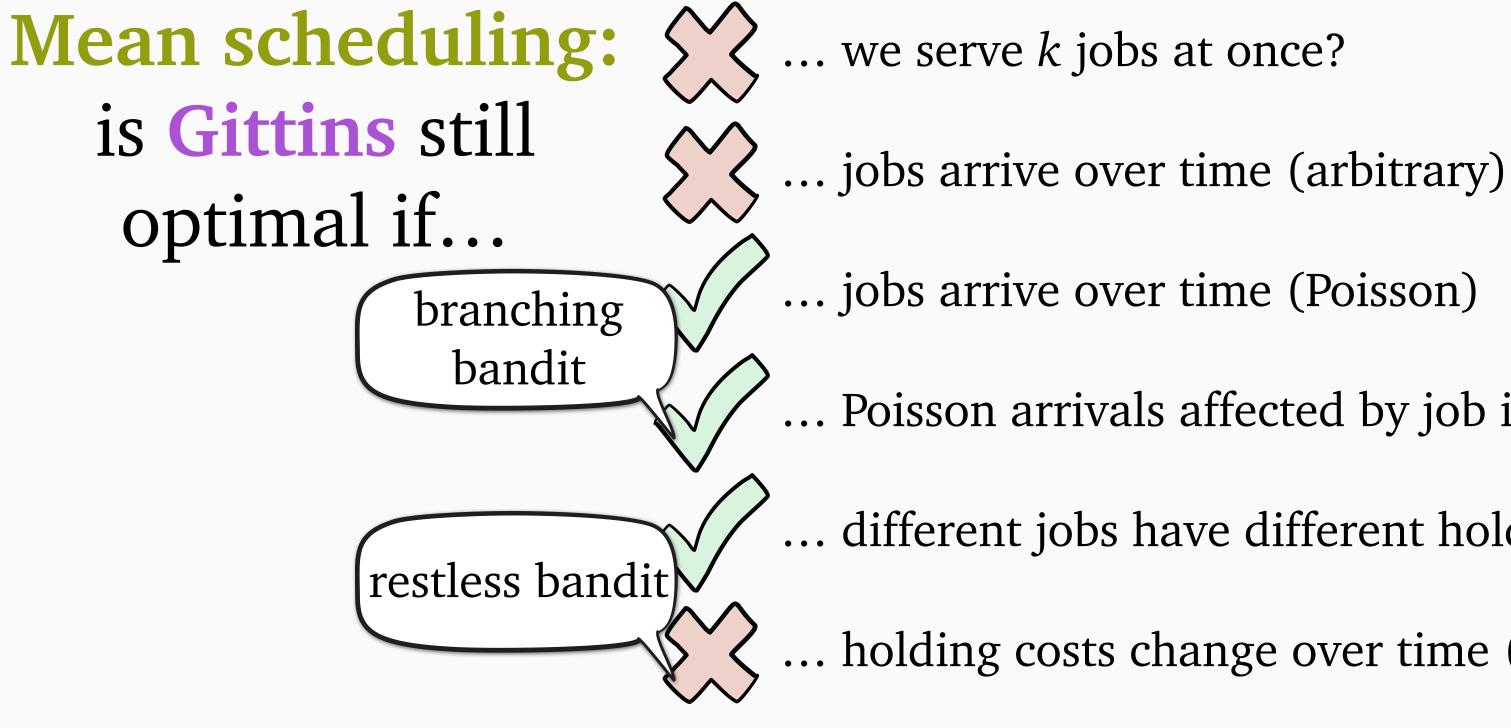
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?



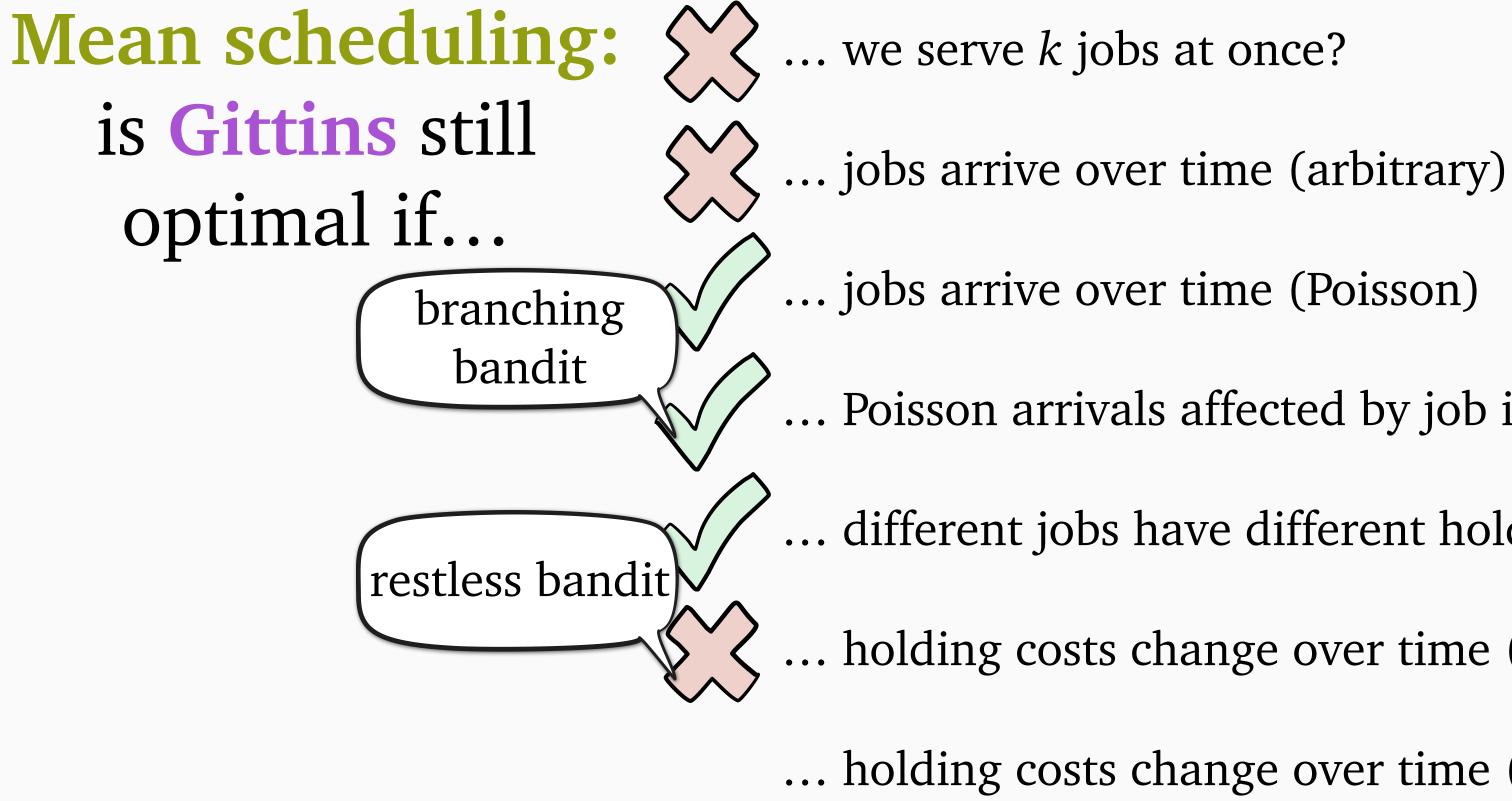
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?



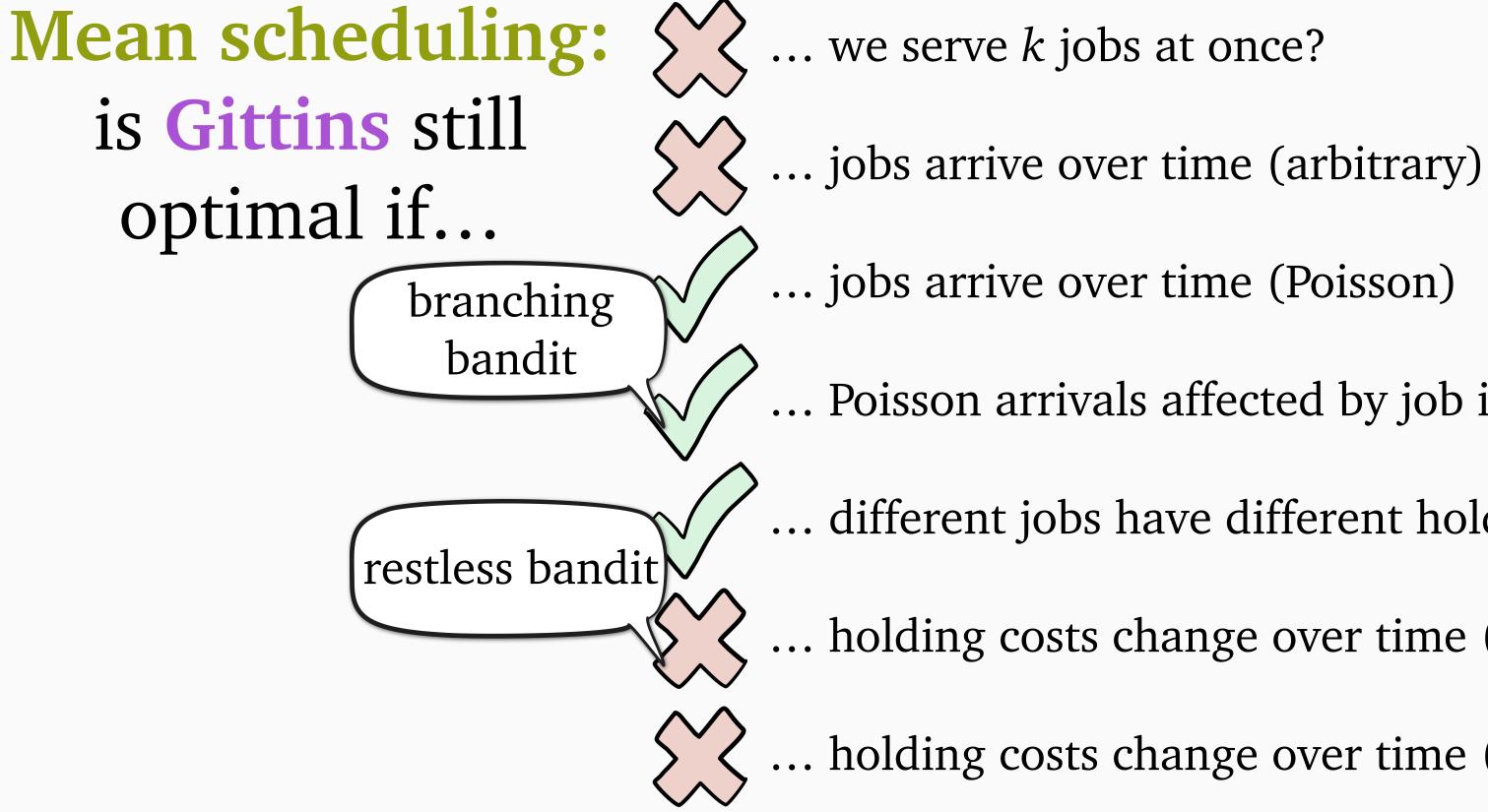
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?



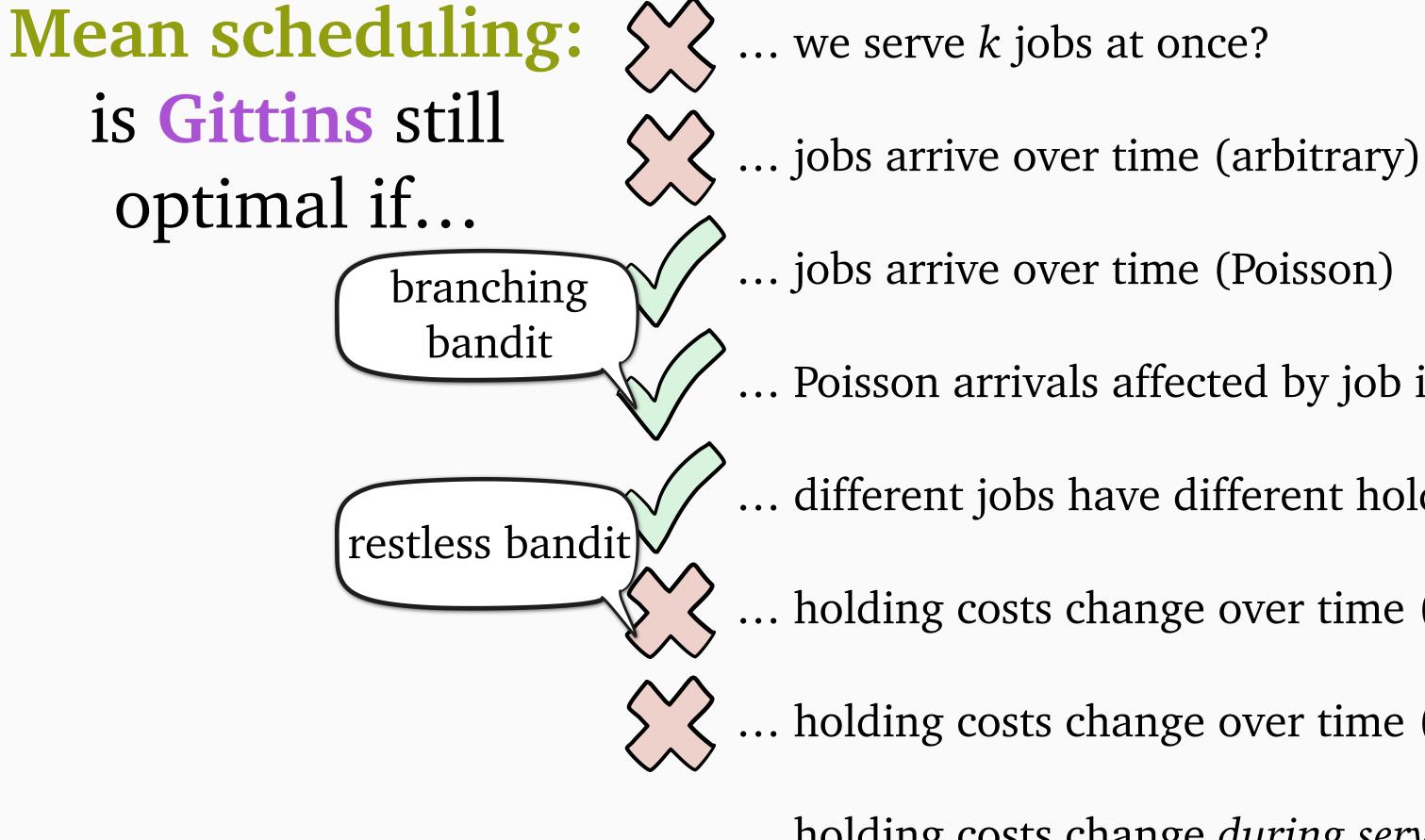
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?



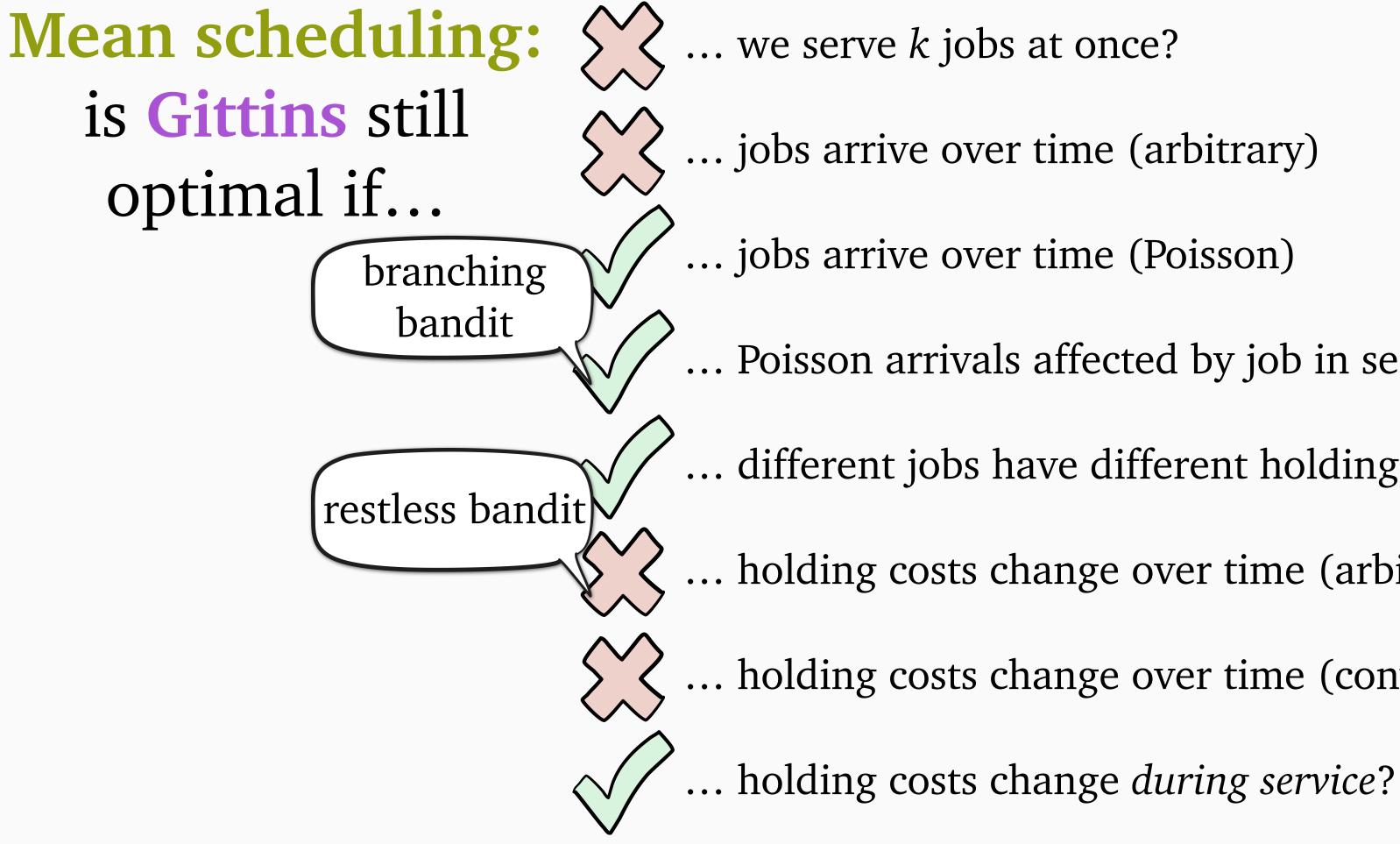
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?



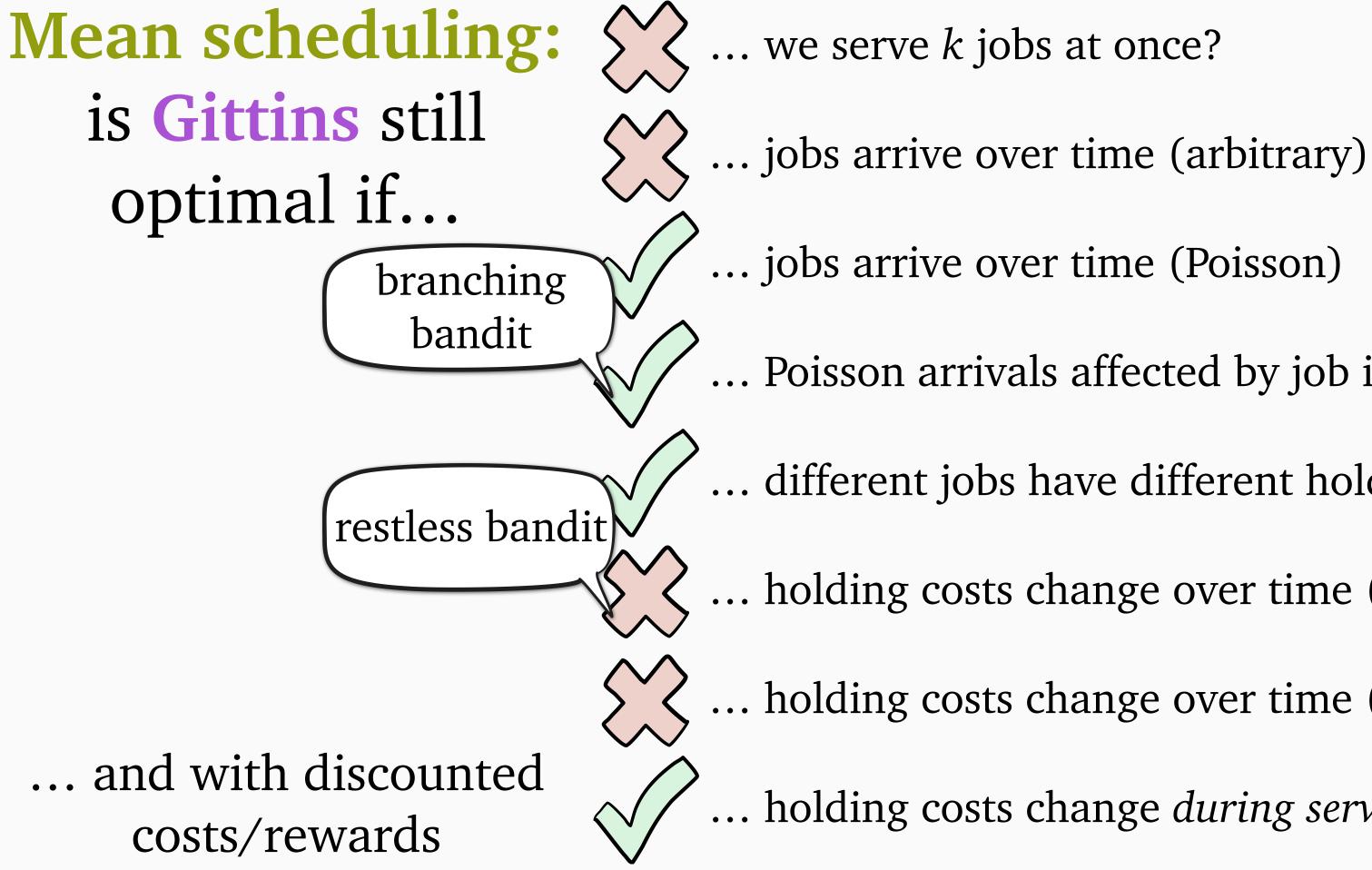
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?



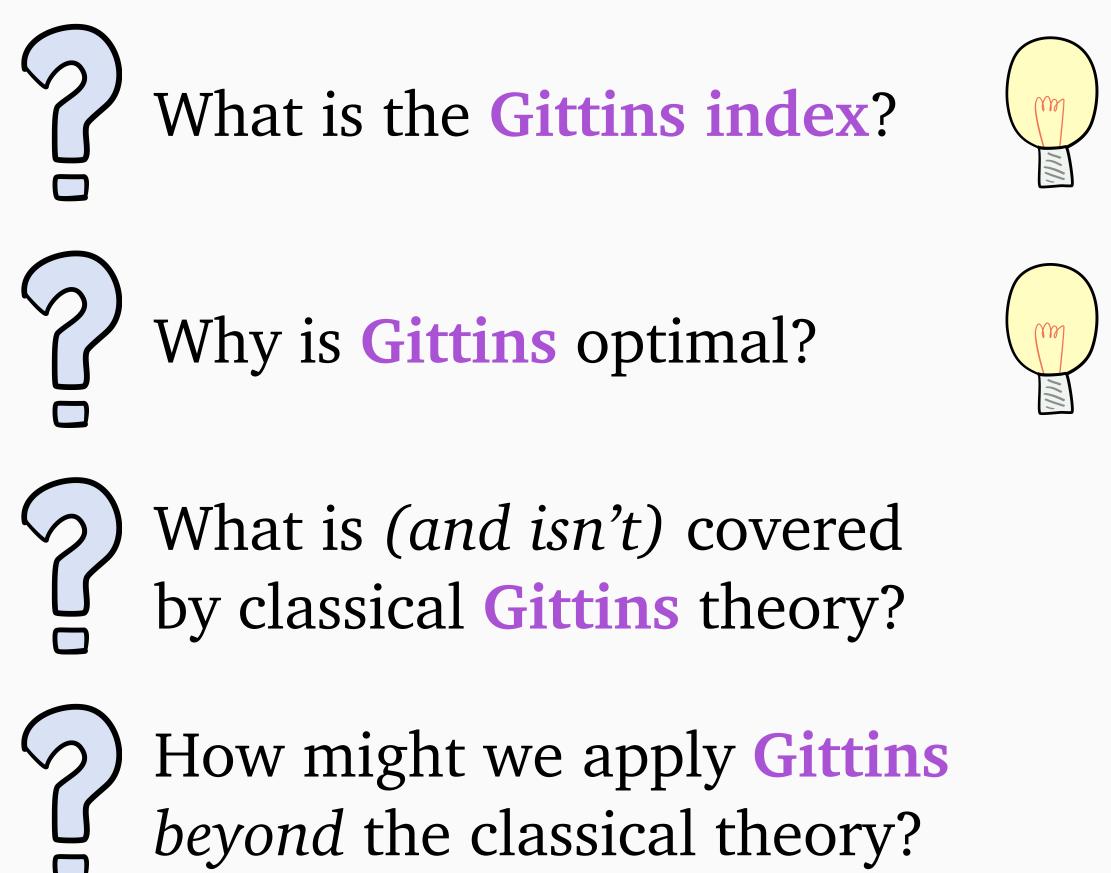
- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?
- ... holding costs change *during service*?



- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?

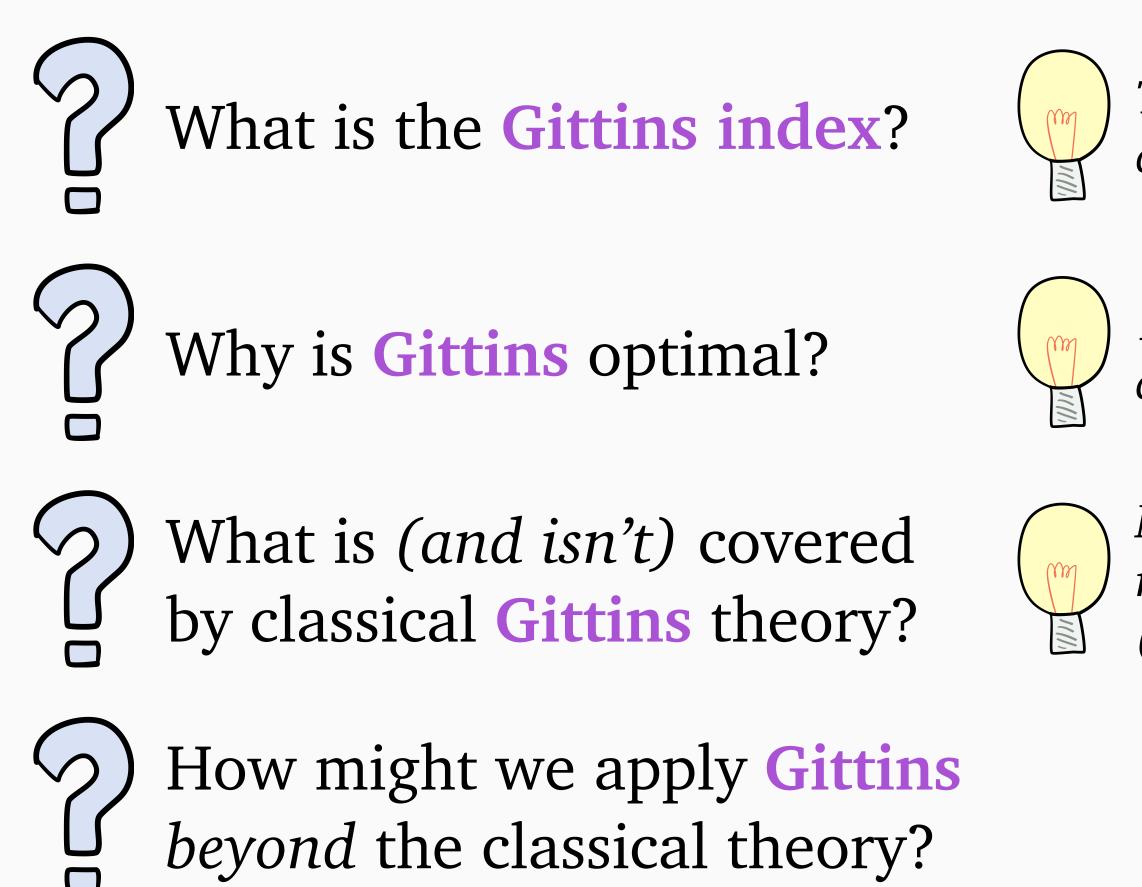


- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?
- ... holding costs change during service?



The deterministic action that dominates a stochastic action

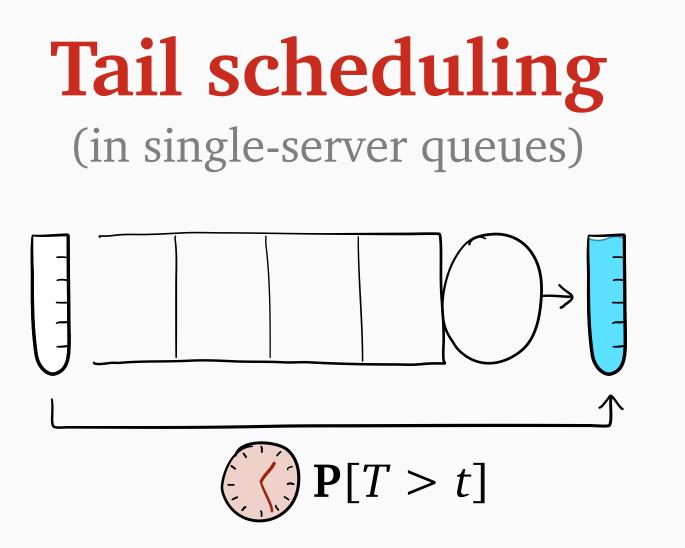
1.5-action problem faithfully abstracts full problem



The deterministic action that dominates a stochastic action

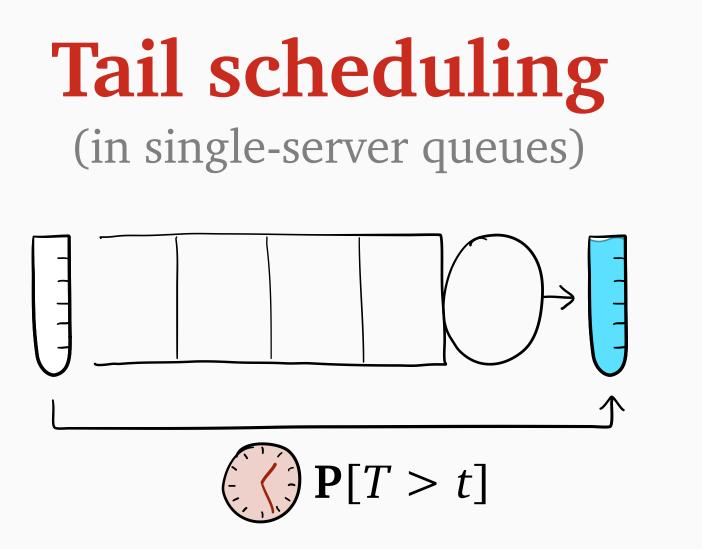
1.5-action problem faithfully abstracts full problem

Need independent Markov reward/cost processes (possibly with branching)



Goal: minimize probability of very long response time

Goal: find large function value with few function evaluations

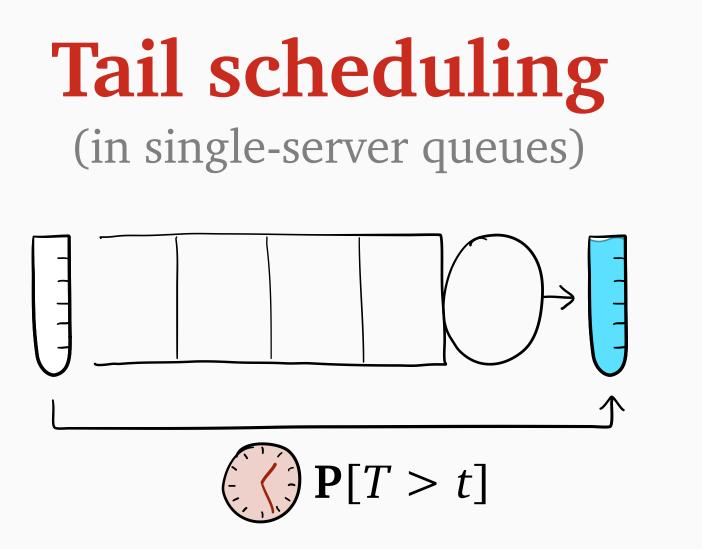


Goal: minimize probability of very long response time

Goal: find large function value with few function evaluations

BayesOpt (Bayesian optimization)

Just try it!

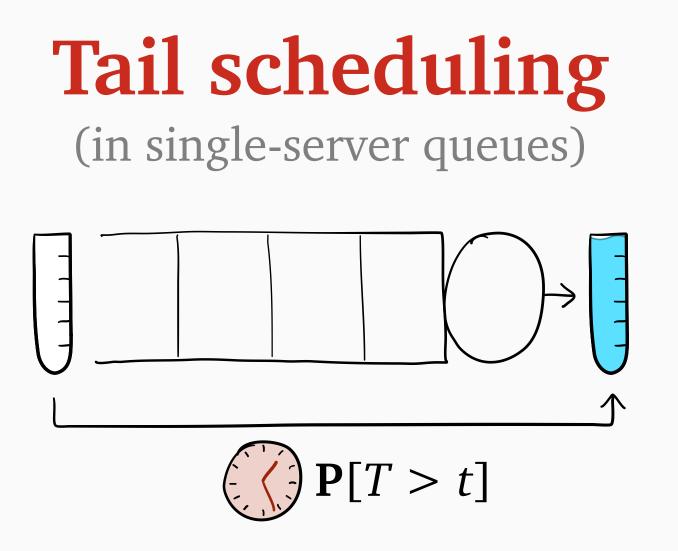


Goal: minimize probability of very long response time

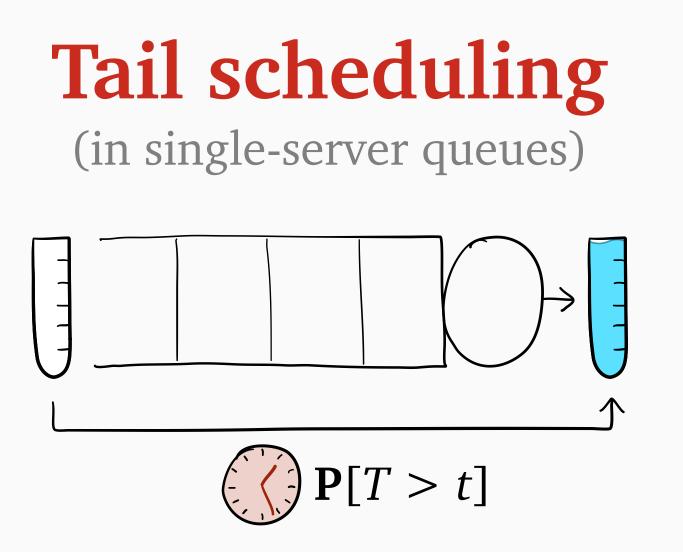
Goal: find large function value with few function evaluations

BayesOpt (Bayesian optimization)

Just try it!

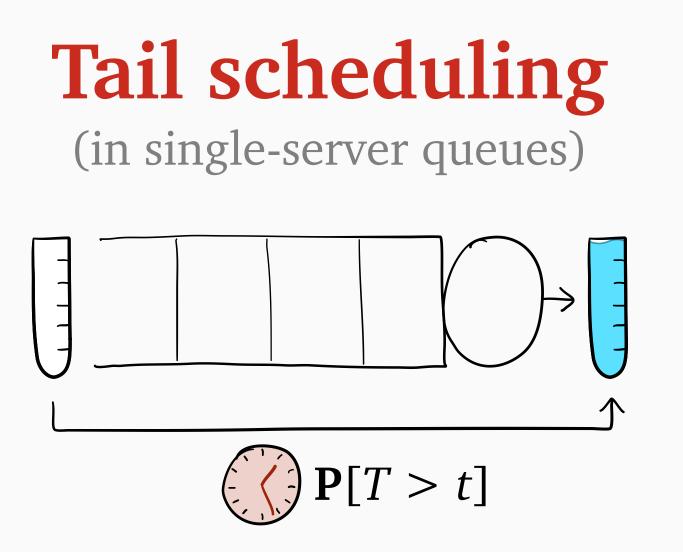


Goal: minimize probability of very long response time



Goal: minimize probability of very long response time

Laplace transform result: $\mathbf{P}[T > t] \sim C e^{-\gamma t}$ $\mathbf{E}[e^{(\gamma-\varepsilon)T}] \sim \frac{\gamma C}{2}$



Goal: minimize probability of very long response time

Laplace transform result: $\mathbf{P}[T > t] \sim C e^{-\gamma t}$ $\mathbf{E}[e^{(\gamma-\varepsilon)T}] \sim \frac{\gamma C}{2}$ exponential holding cost

... we serve *k* jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

... holding costs change during service?

... and with discounted costs/rewards

- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?

George Yu

Amit Harlev

or inflated! ... and with discounted costs/rewards

... we serve *k* jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?
- ... holding costs change over time (convex)?
- ... holding costs change *during service*?

George Yu

Amit Harlev

or inflated! ... and with discounted costs/rewards

... we serve *k* jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

... holding costs ch

- ... Poisson arrivals affected by job in service?
- ... different jobs have different holding costs?
- ... holding costs change over time (arbitrary)?

Pandora's box: is Gittins still optimal if...

we open *k* boxes at once?

... we select *k* boxes at the end?

[Singla, 2018; Gupta et al., 2019]

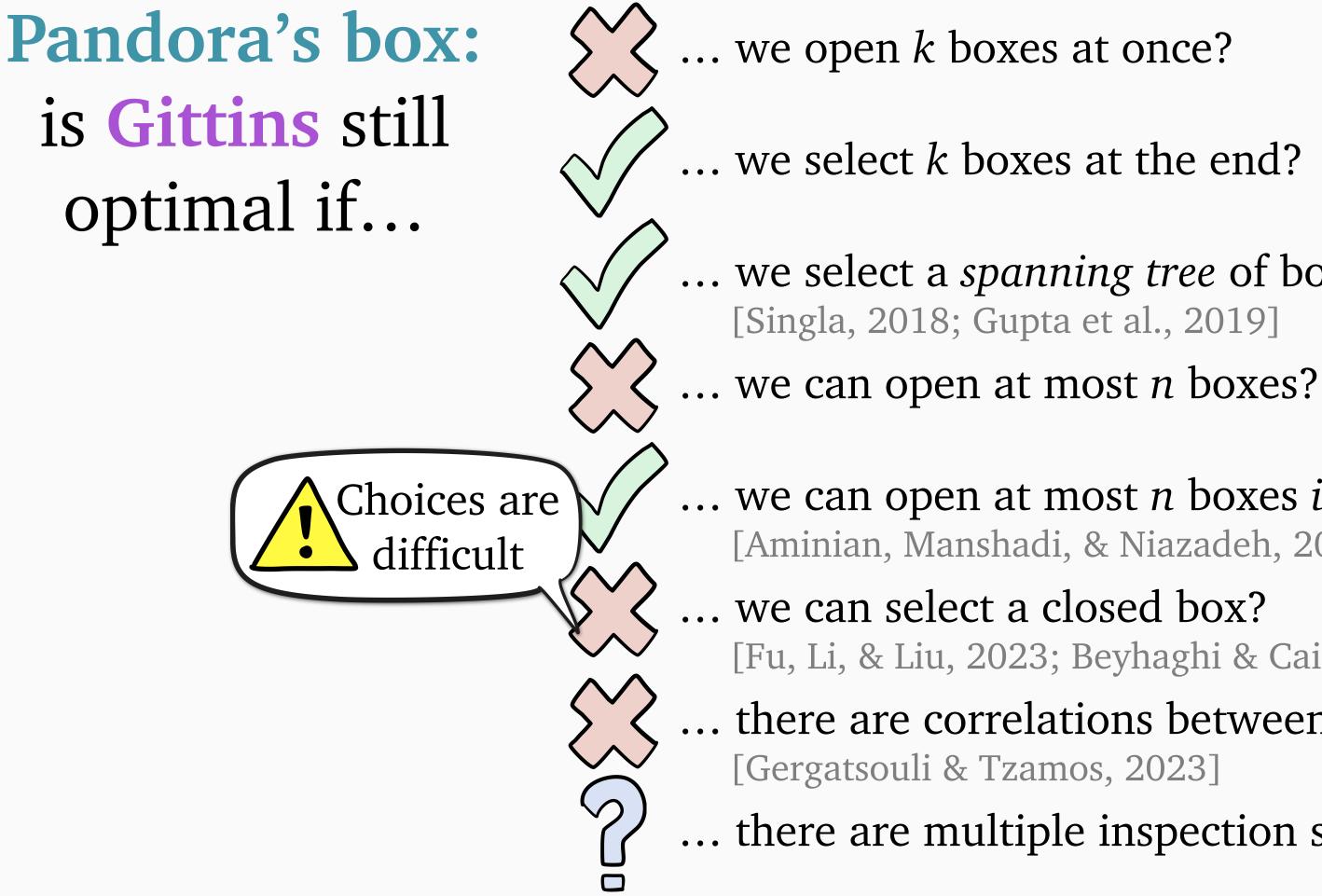
... we can open at most *n* boxes?

... we can select a closed box?

[Gergatsouli & Tzamos, 2023]

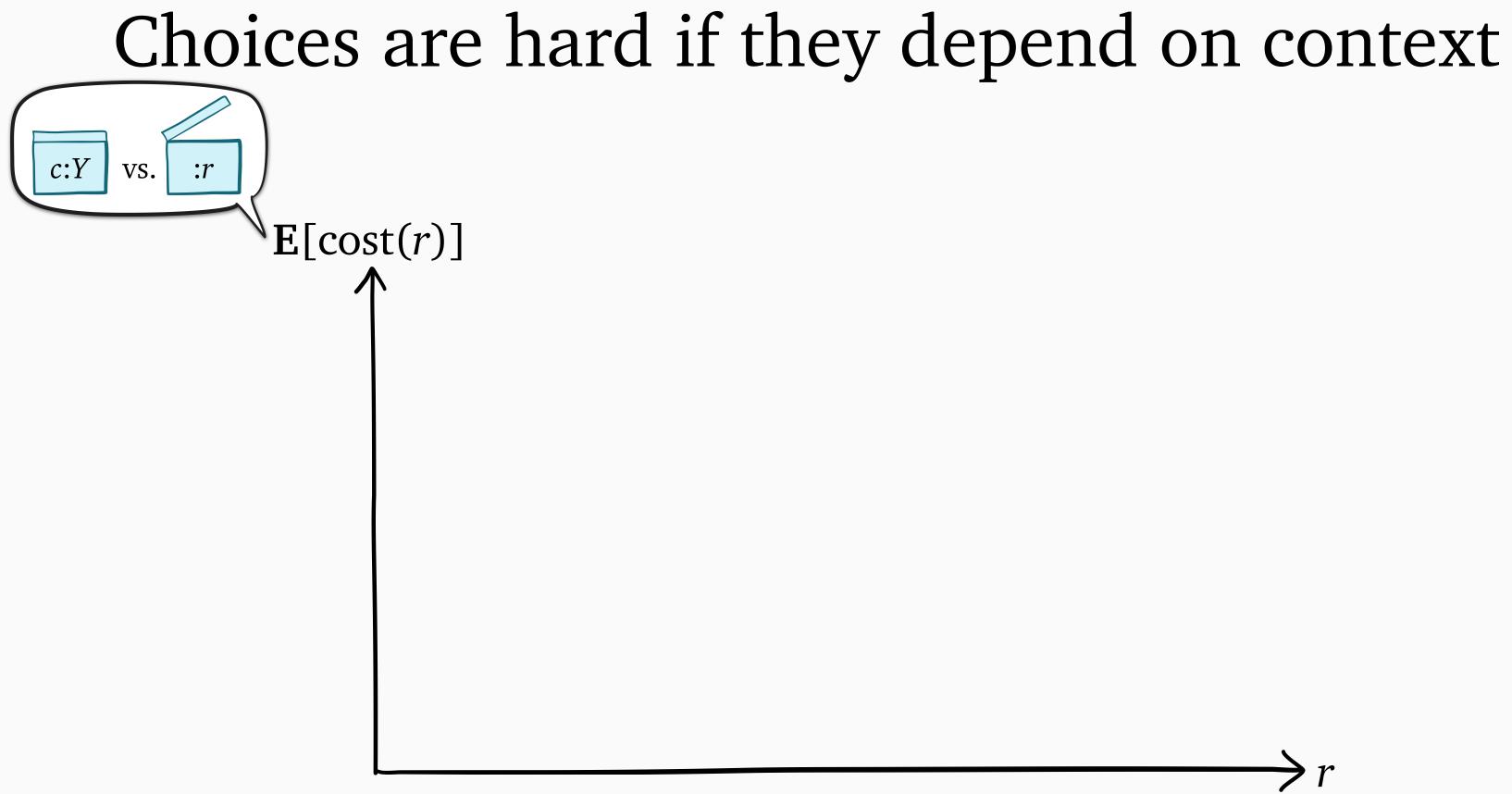
- ... we select a *spanning tree* of boxes at the end?

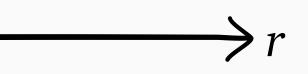
 - we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]
 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
- ... there are correlations between box values?
- ... there are multiple inspection steps?

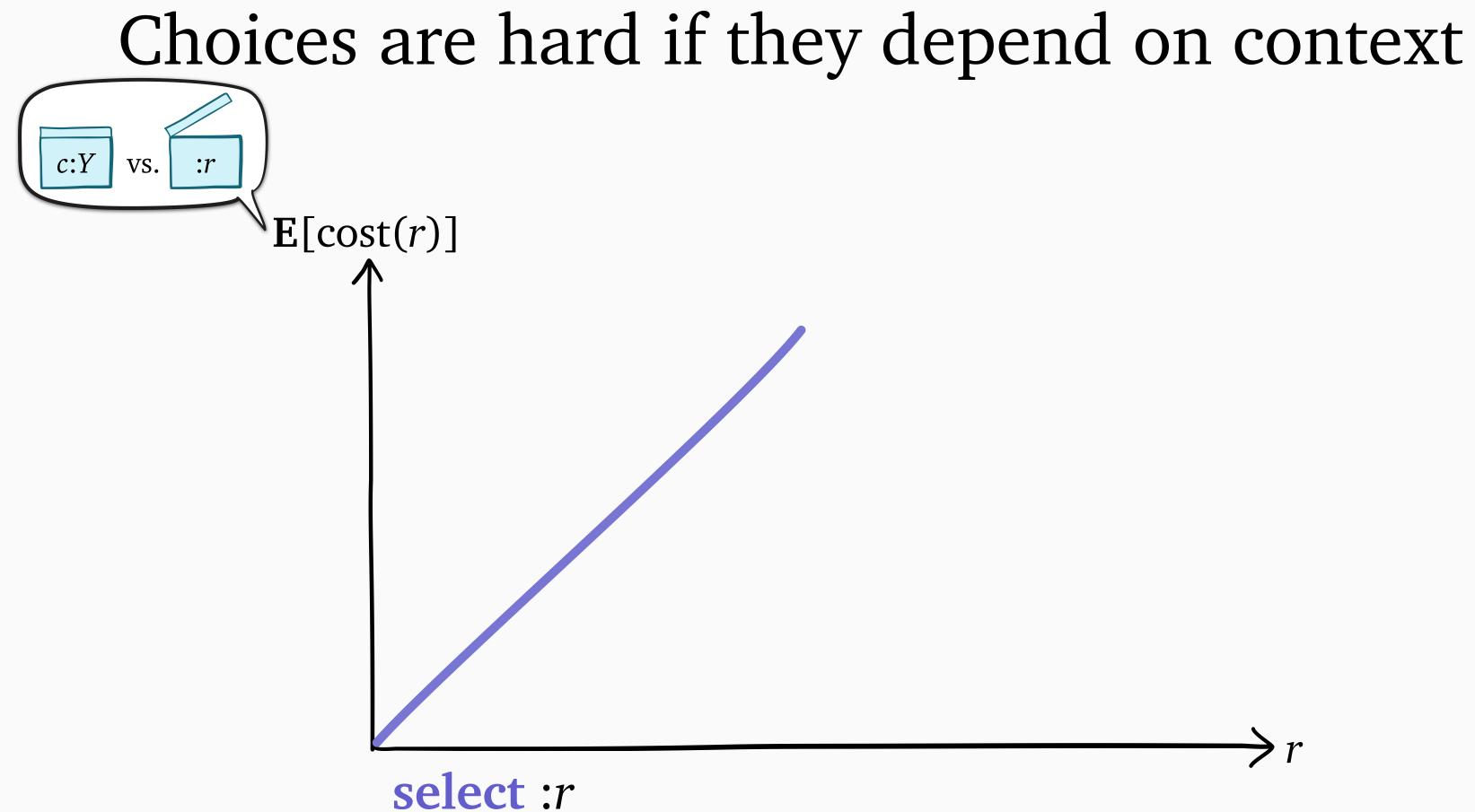


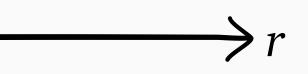
- ... we select a *spanning tree* of boxes at the end?
- ... we can open at most *n* boxes in expectation? [Aminian, Manshadi, & Niazadeh, 2025]

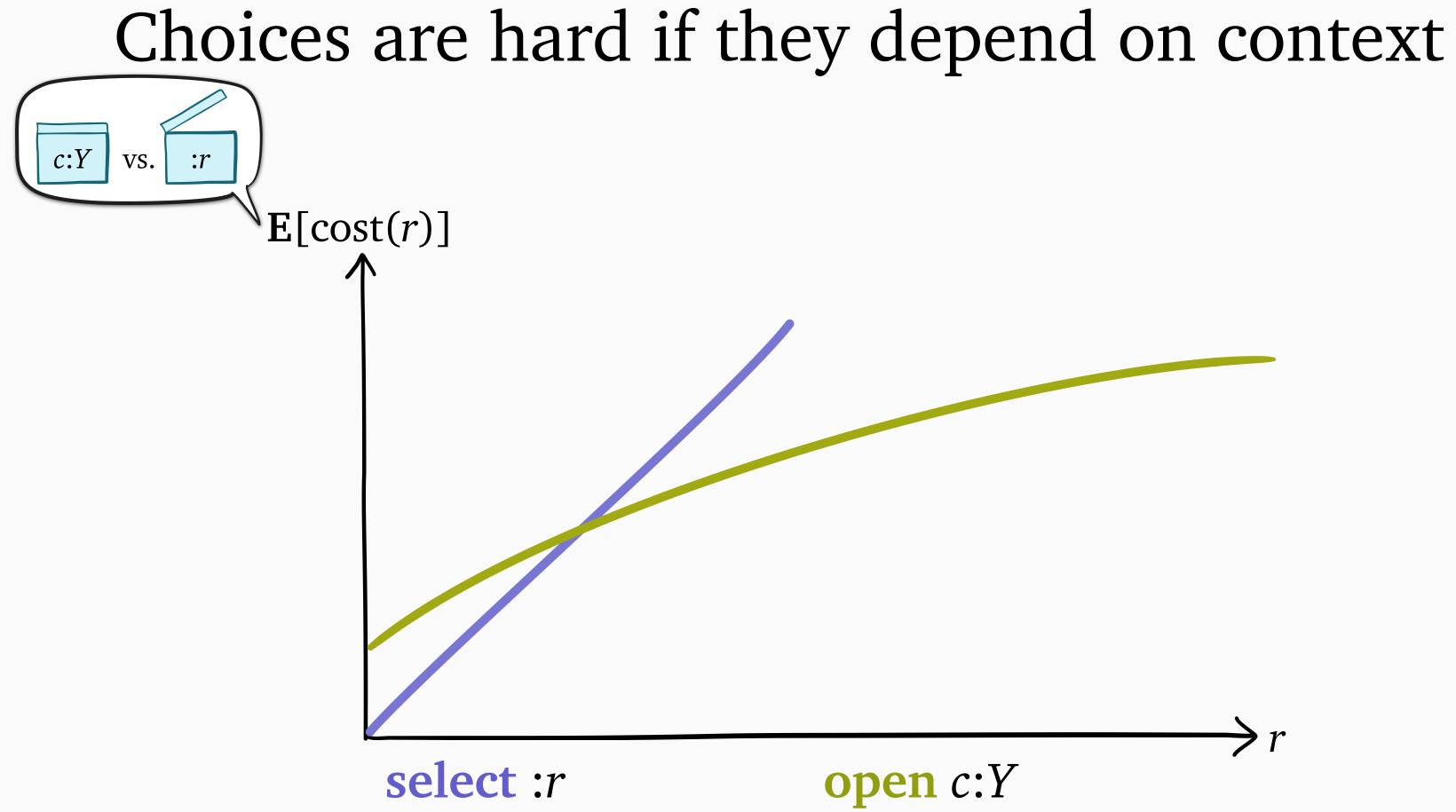
 - [Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]
- ... there are correlations between box values?
- ... there are multiple inspection steps?

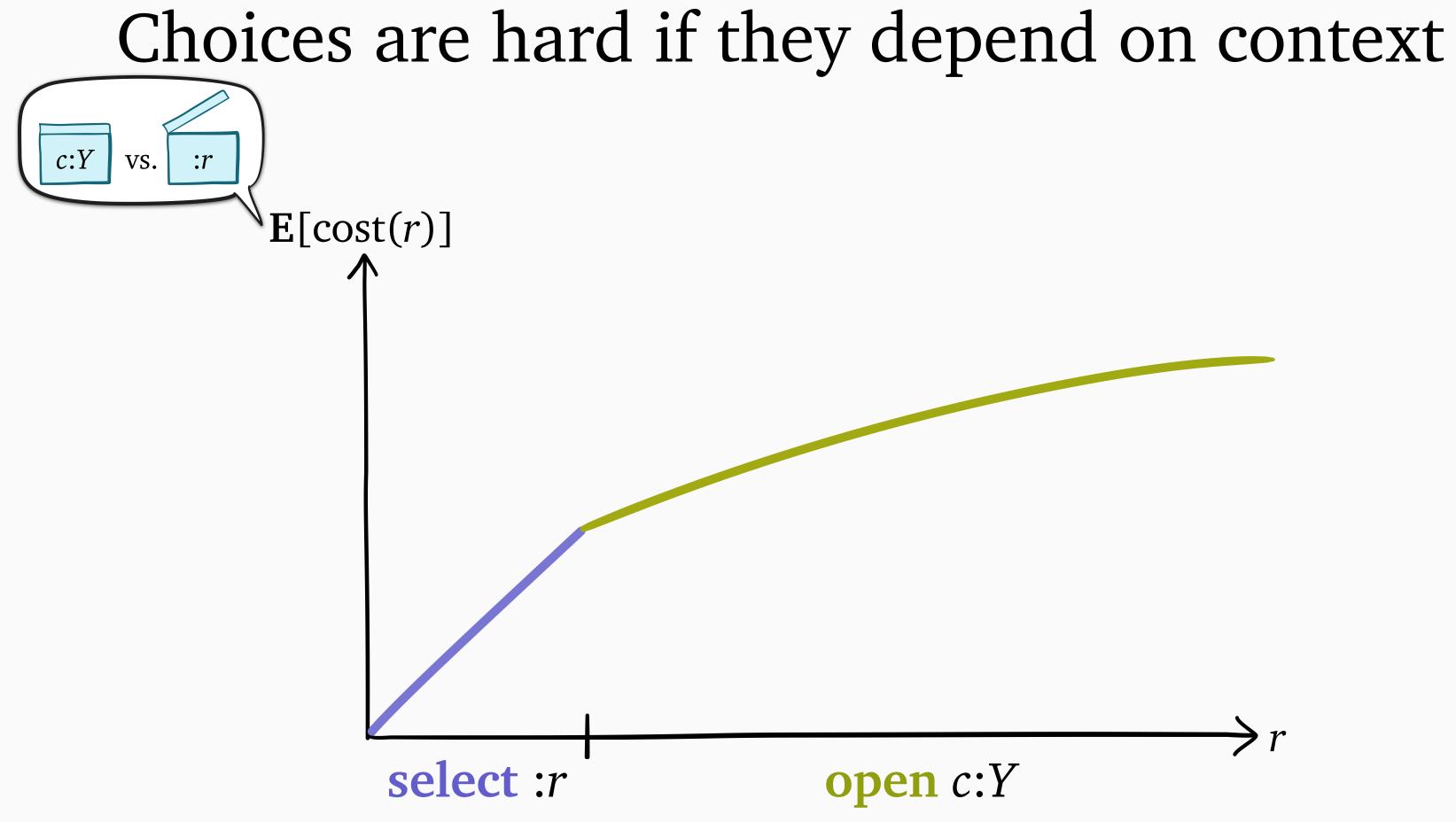


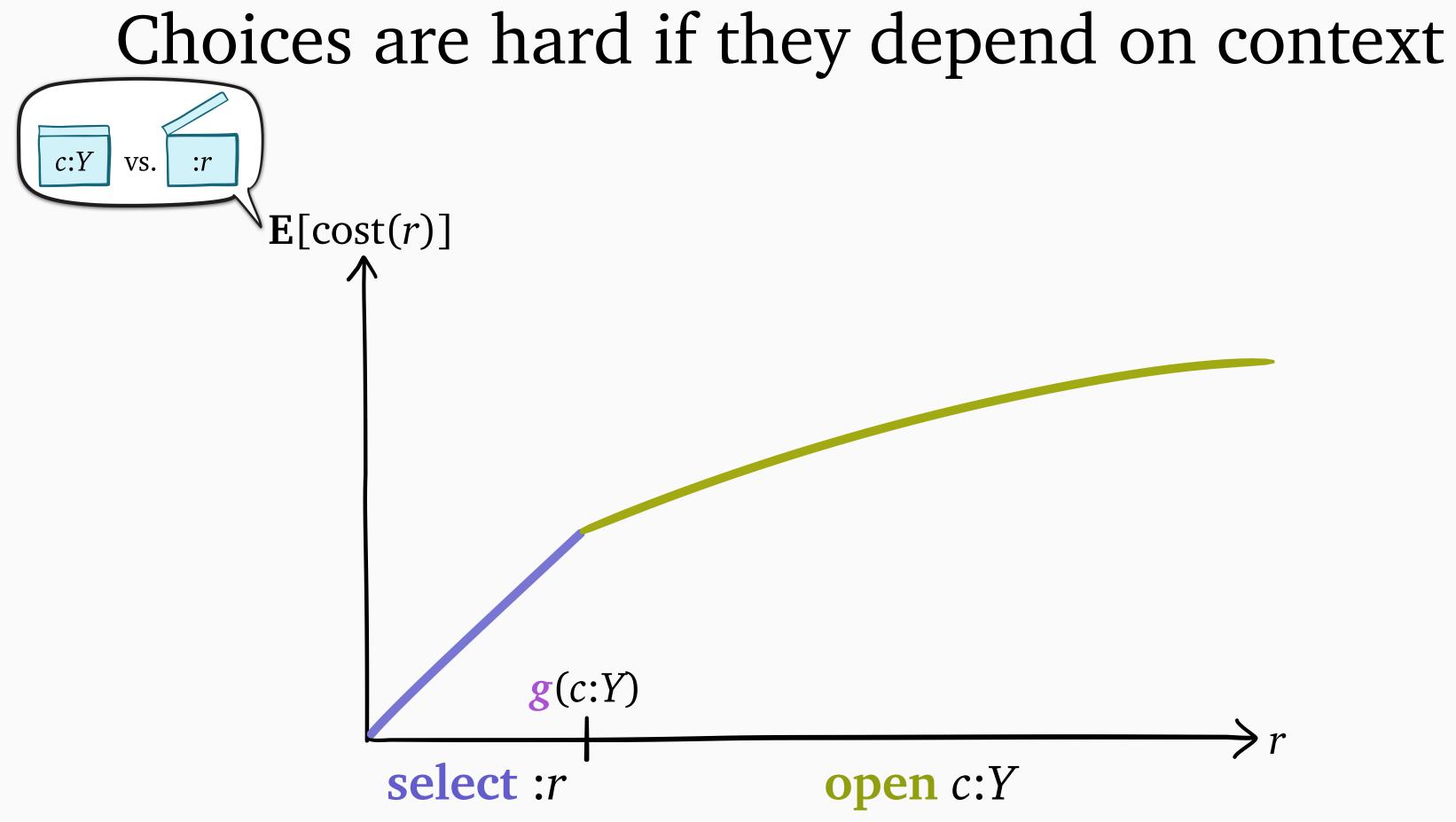


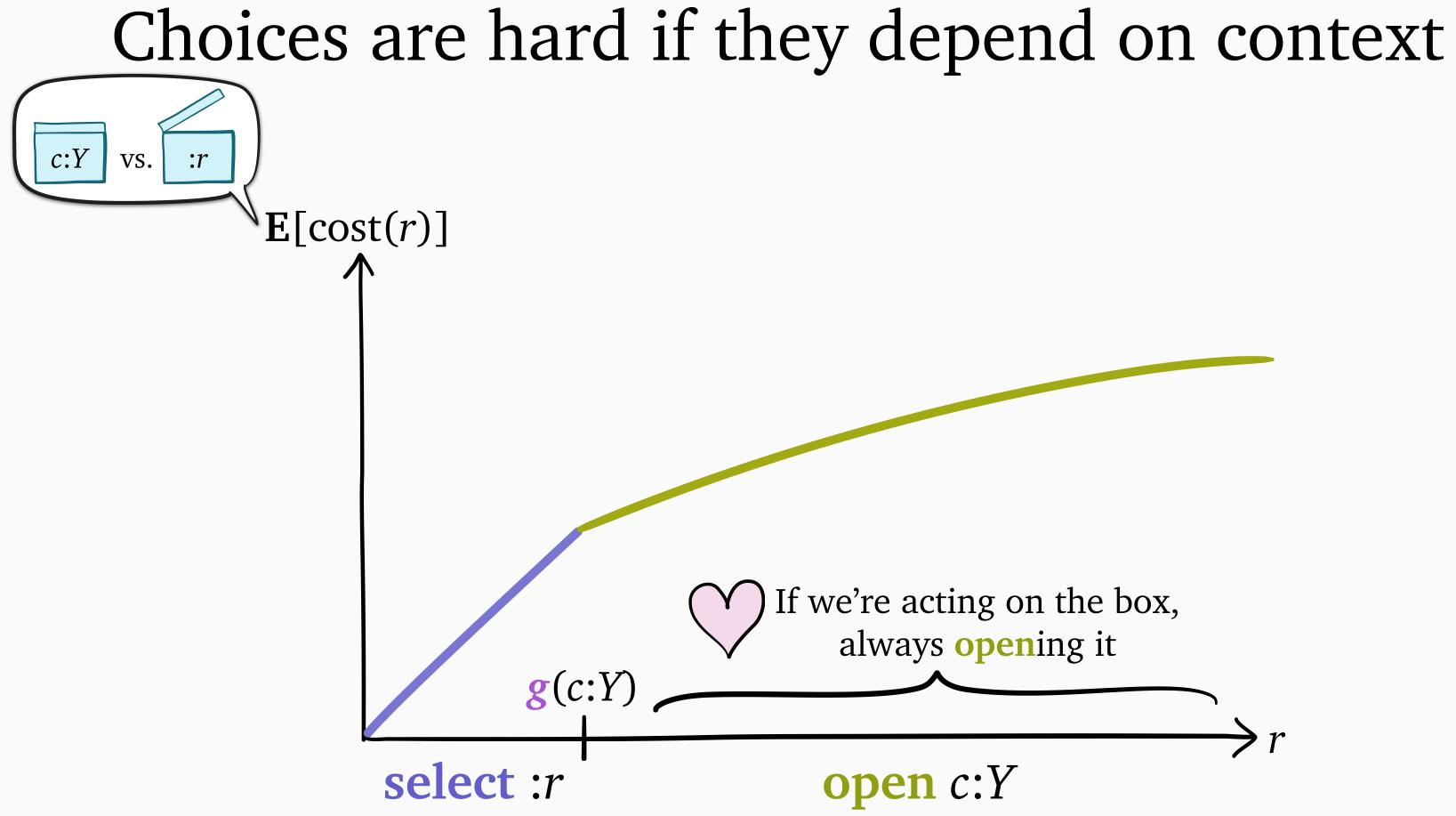


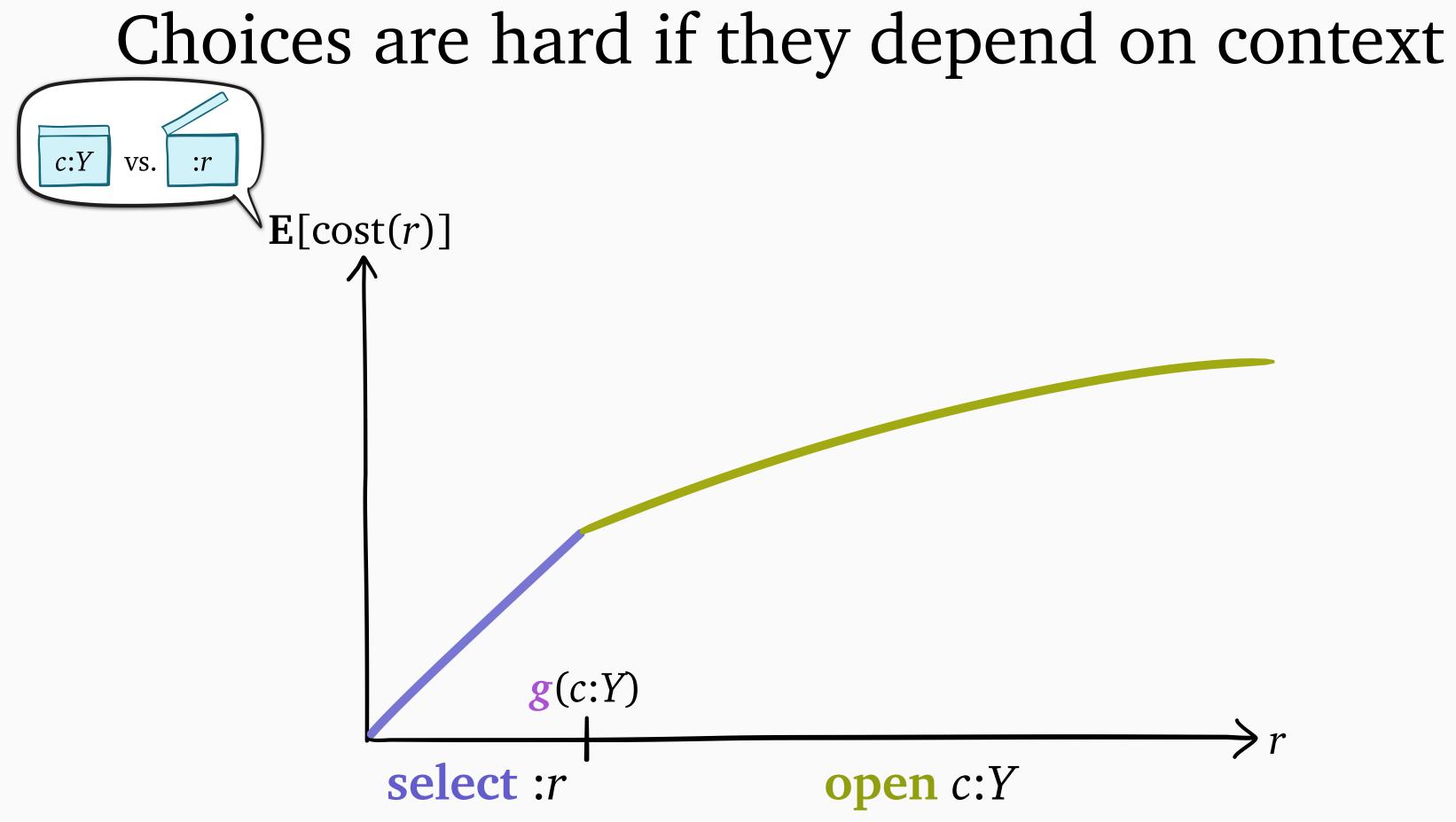


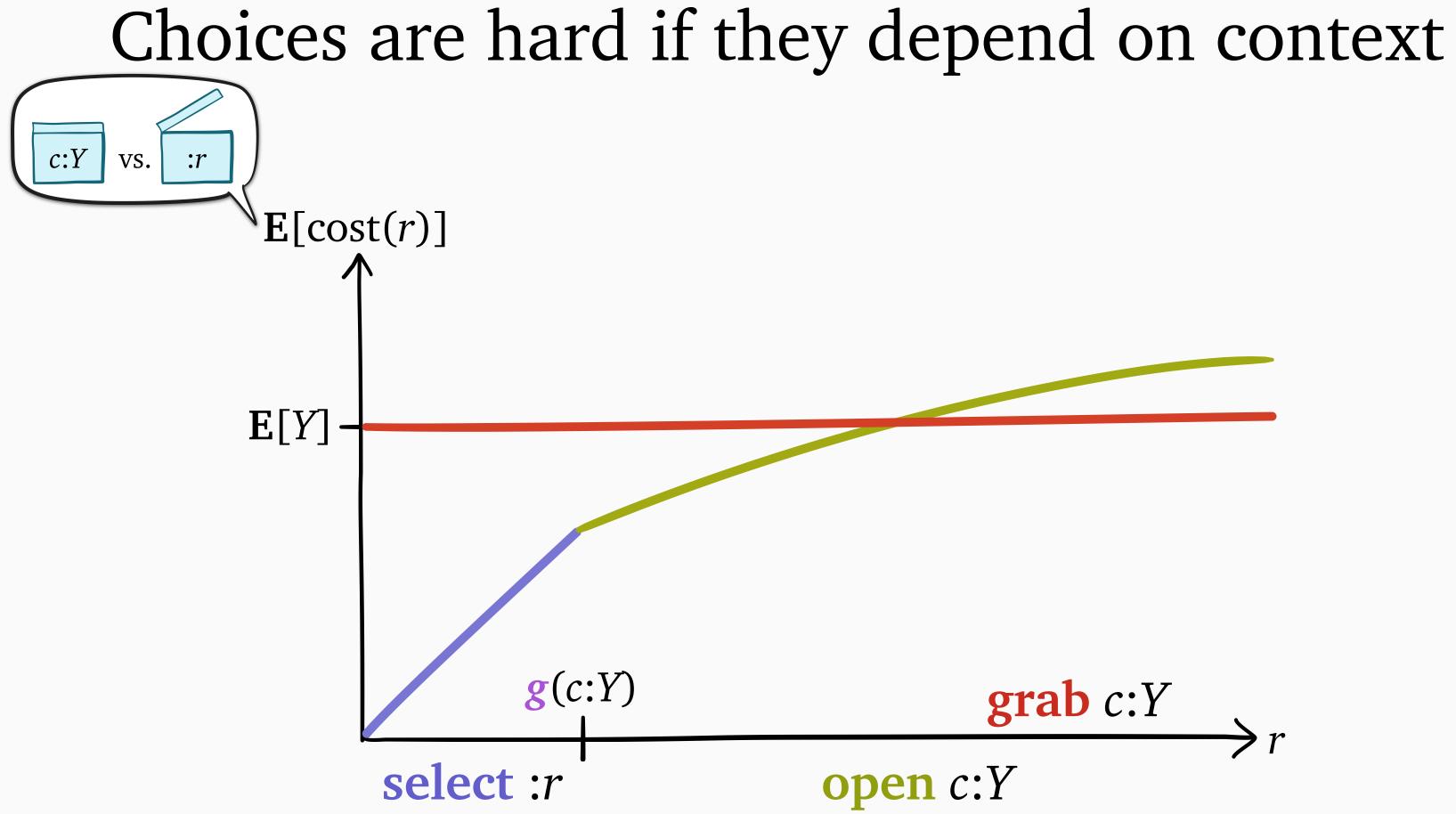


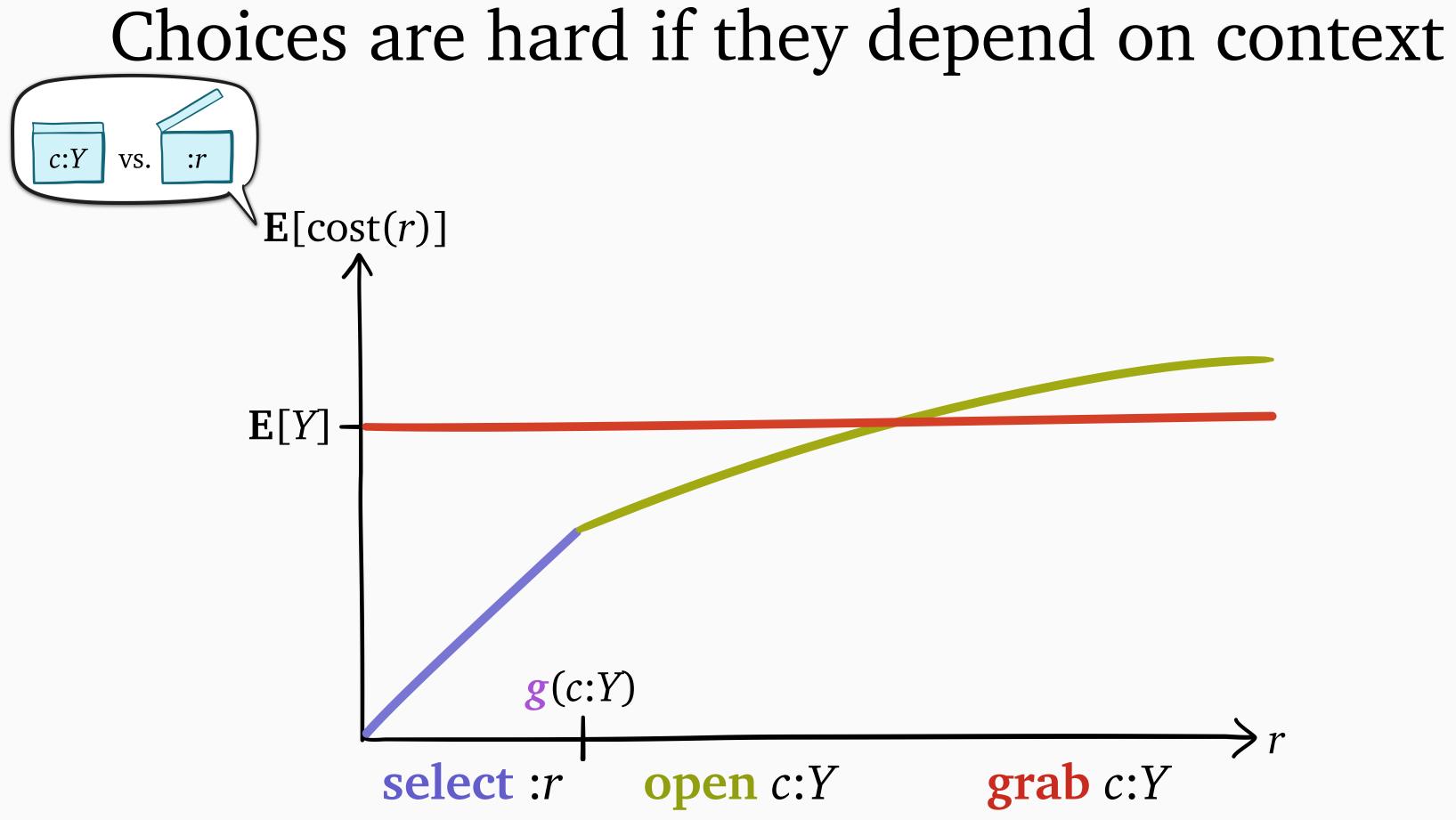


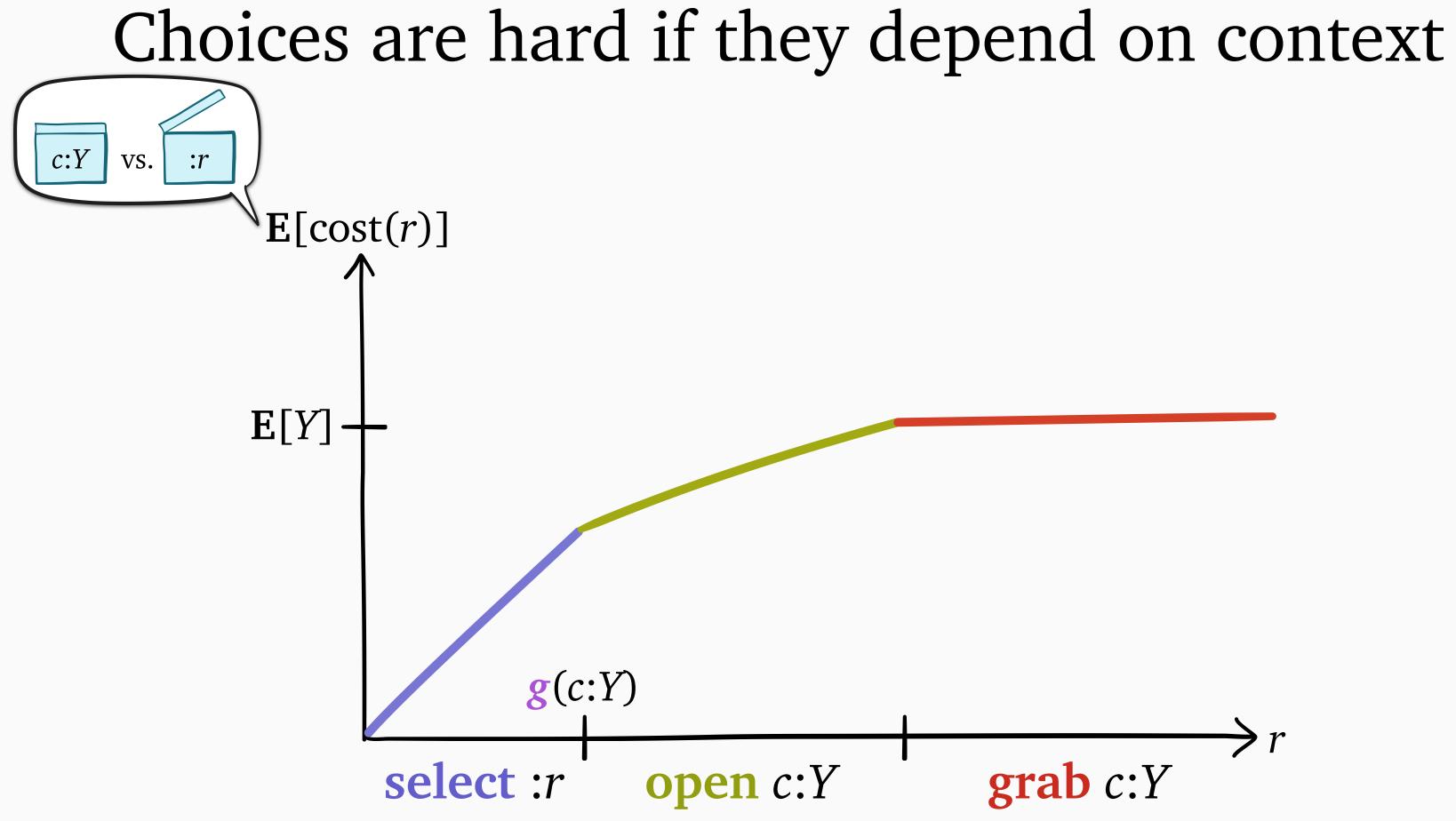




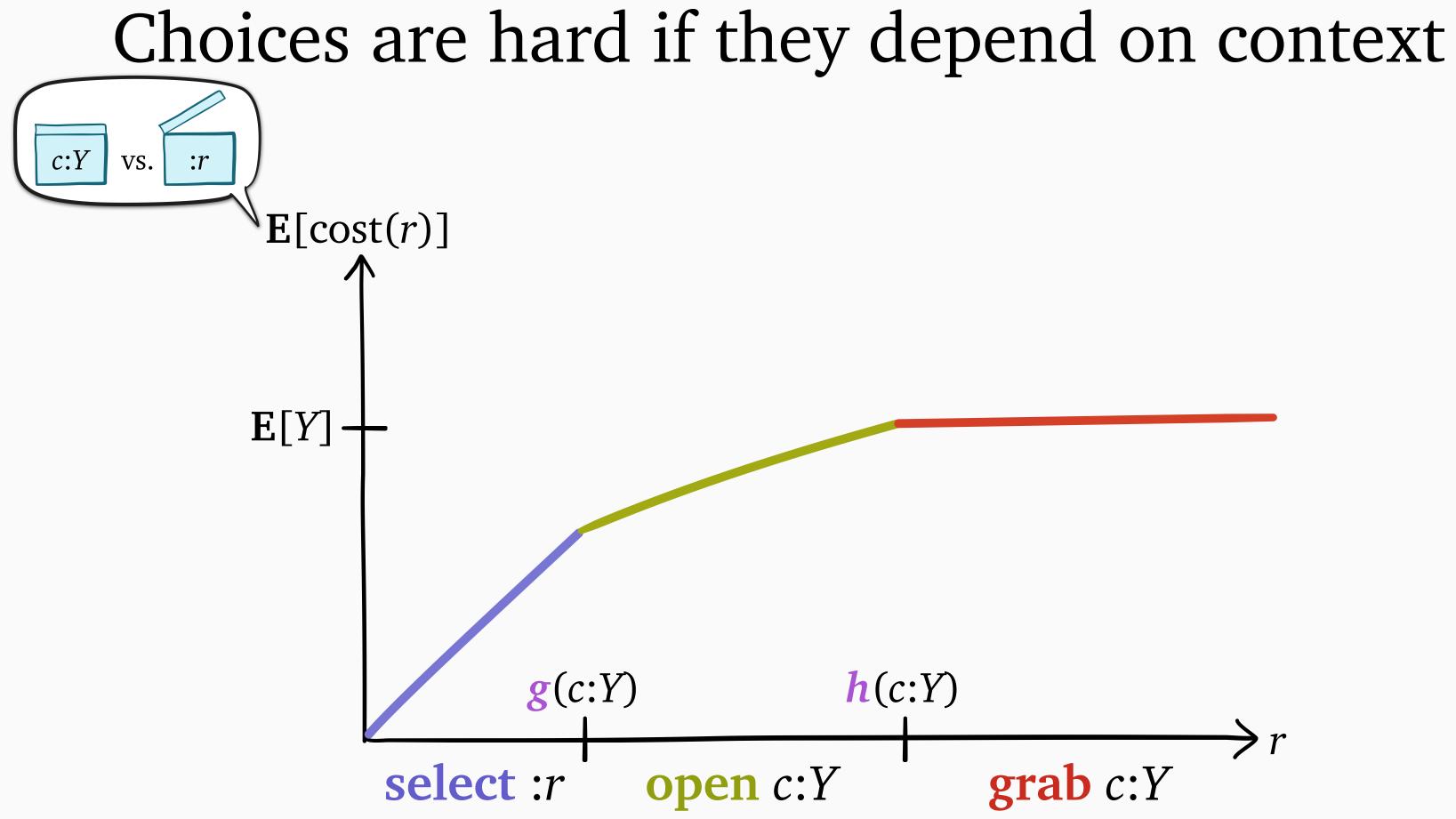




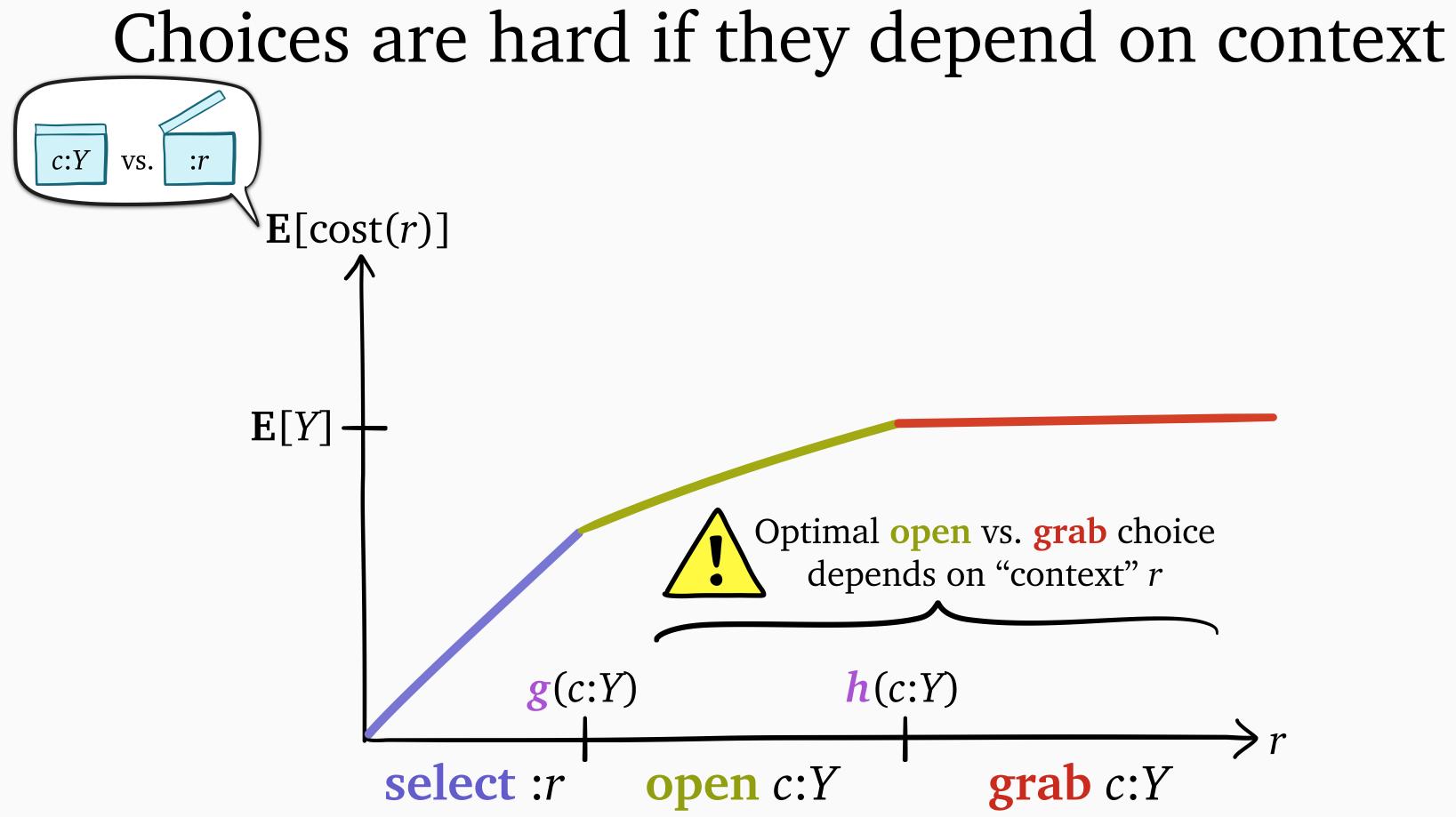




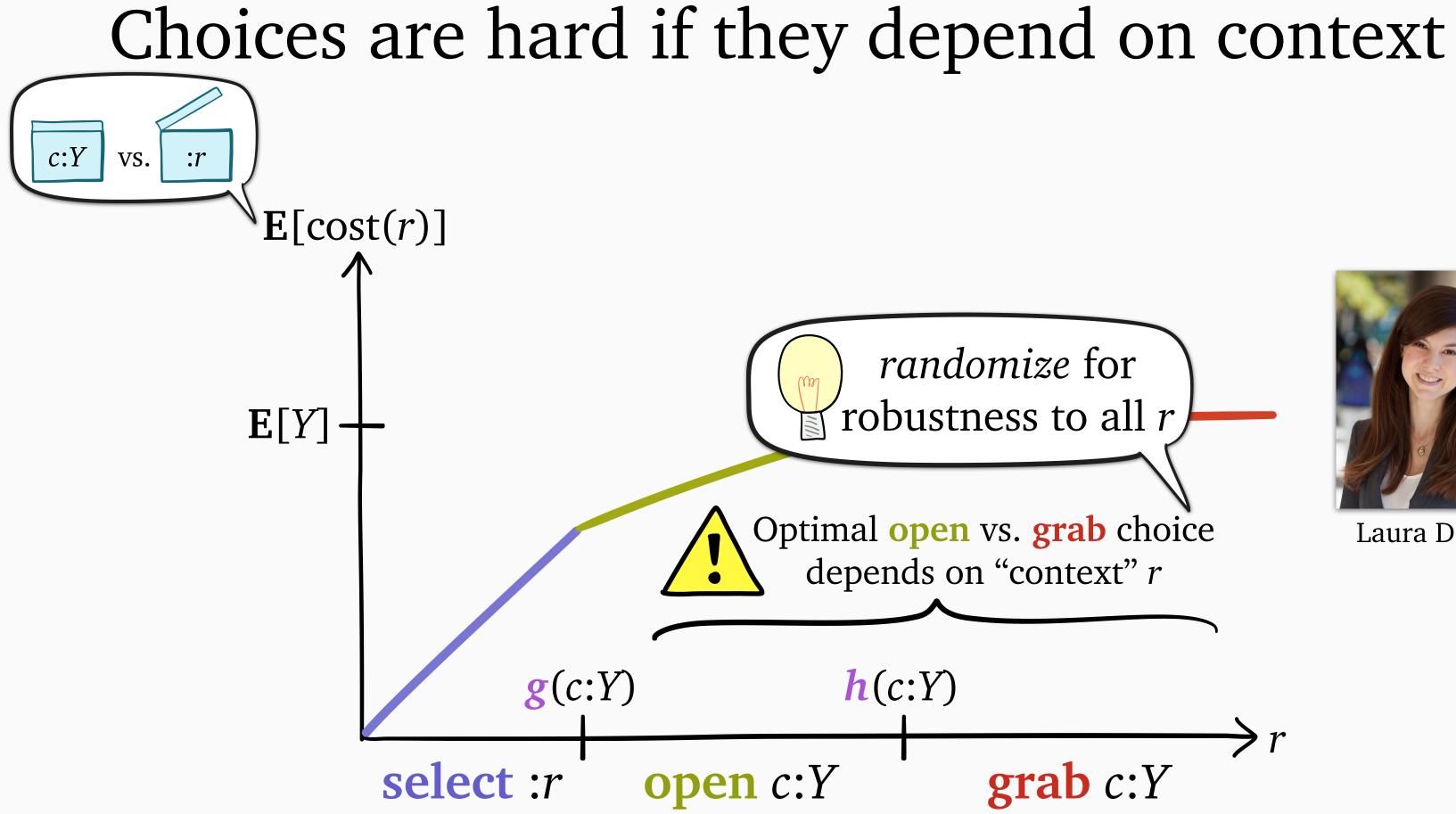
> r grab c:Y



> r grab c:Y



> r grab c:Y



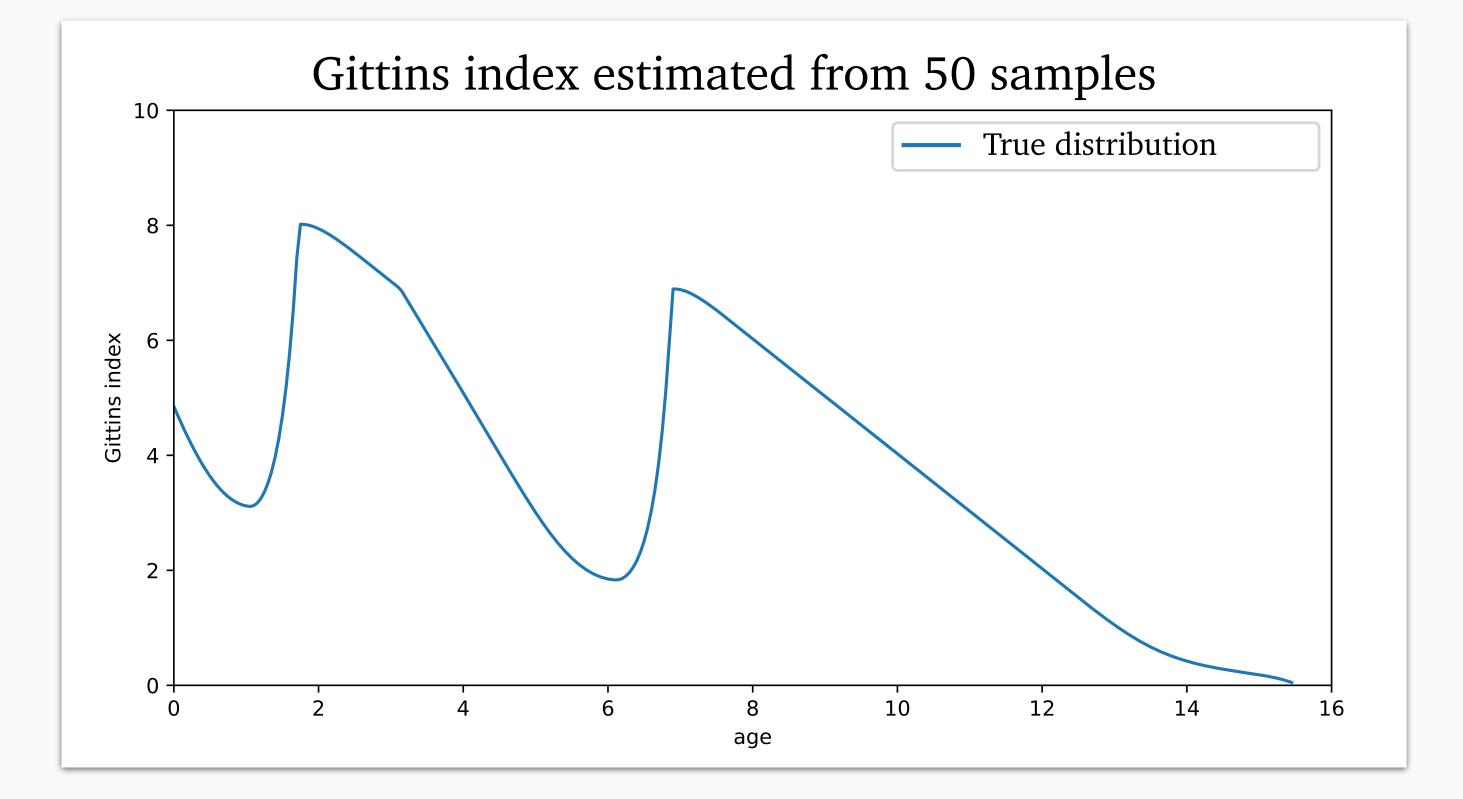
Laura Doval

Open question: Gittins from empirical data?



Shefali Ramakrishna

Amit Harlev

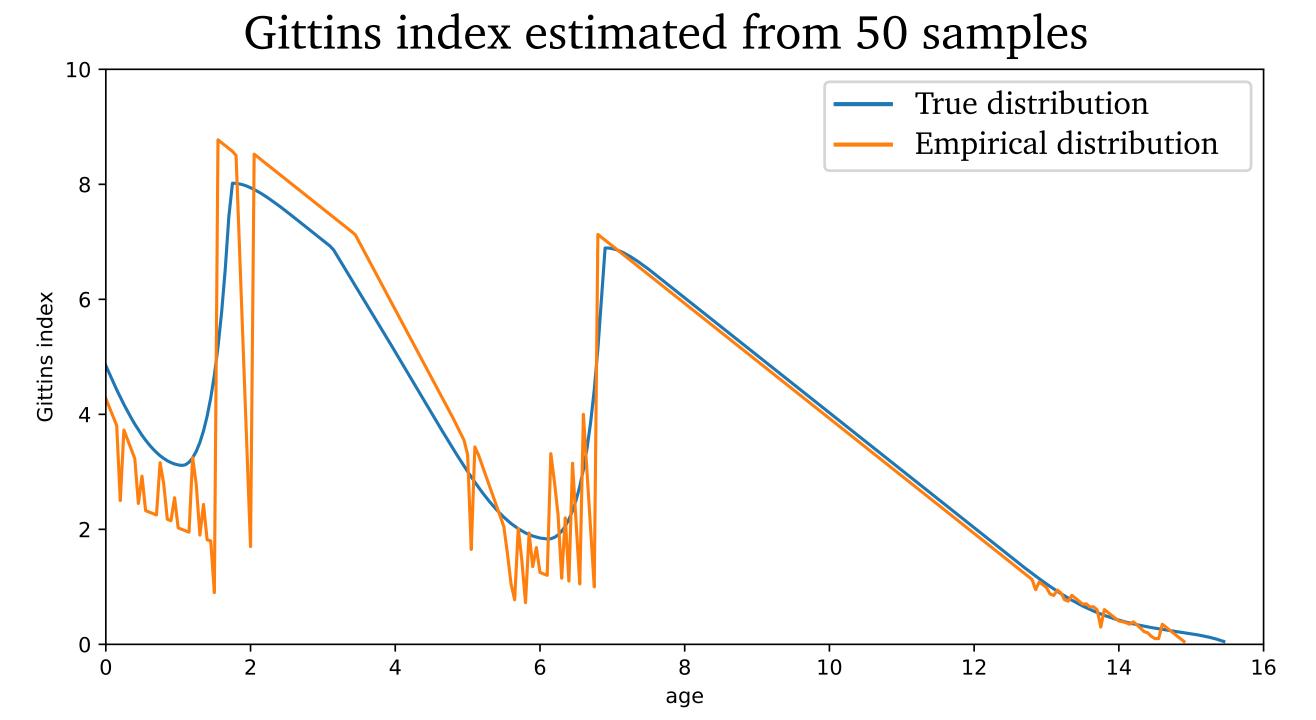


Open question: Gittins from empirical data?



Shefali Ramakrishna

Amit Harlev

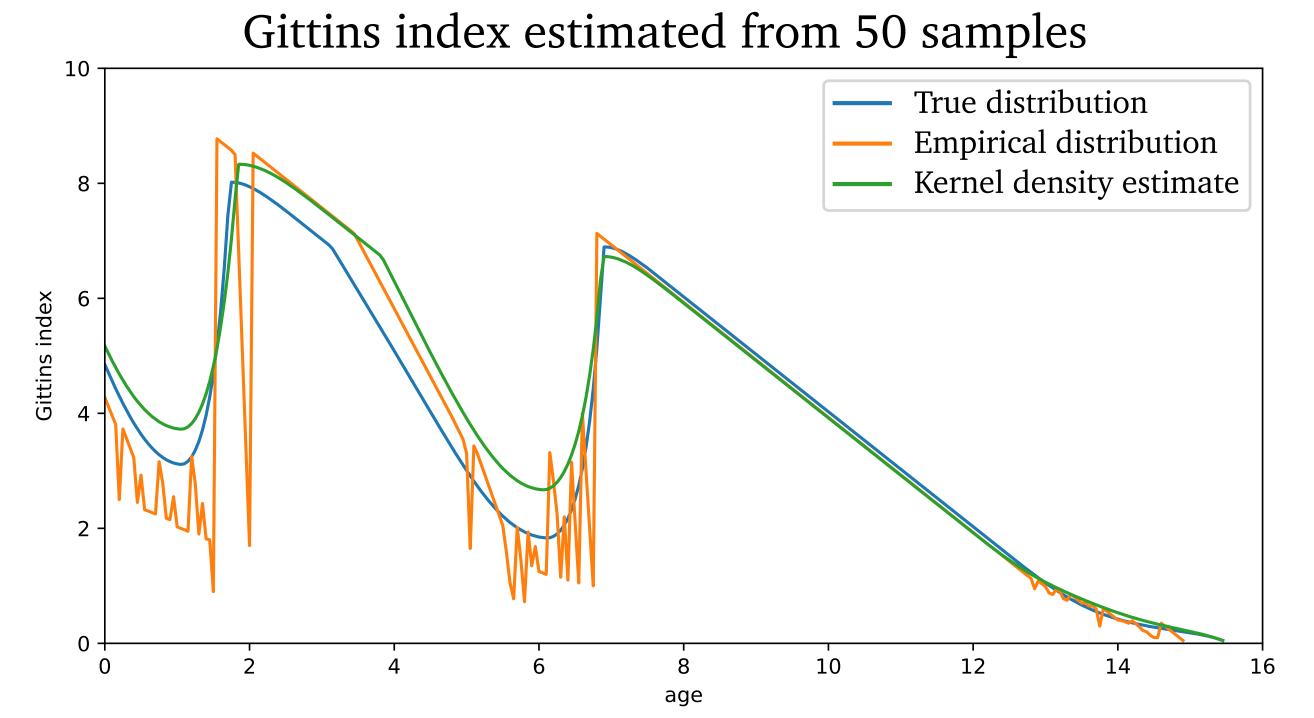


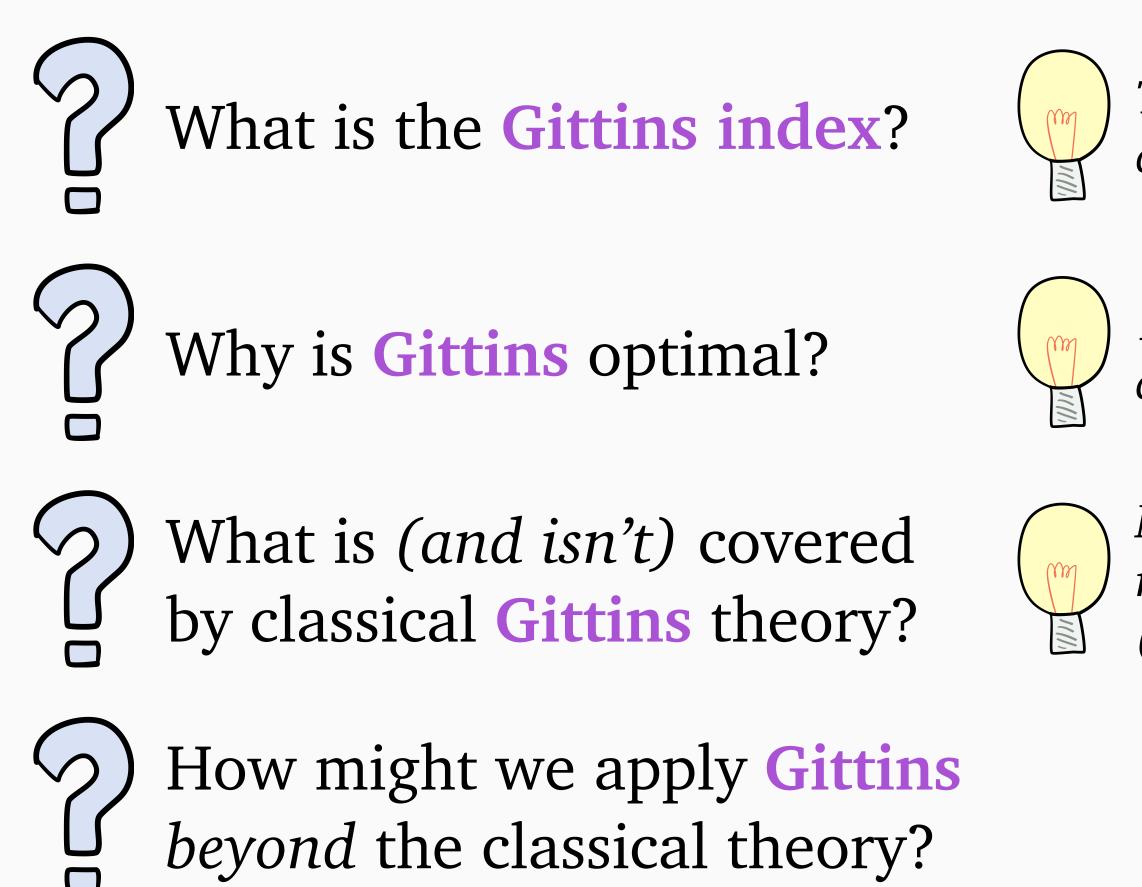
Open question: Gittins from empirical data?



Shefali Ramakrishna

Amit Harlev

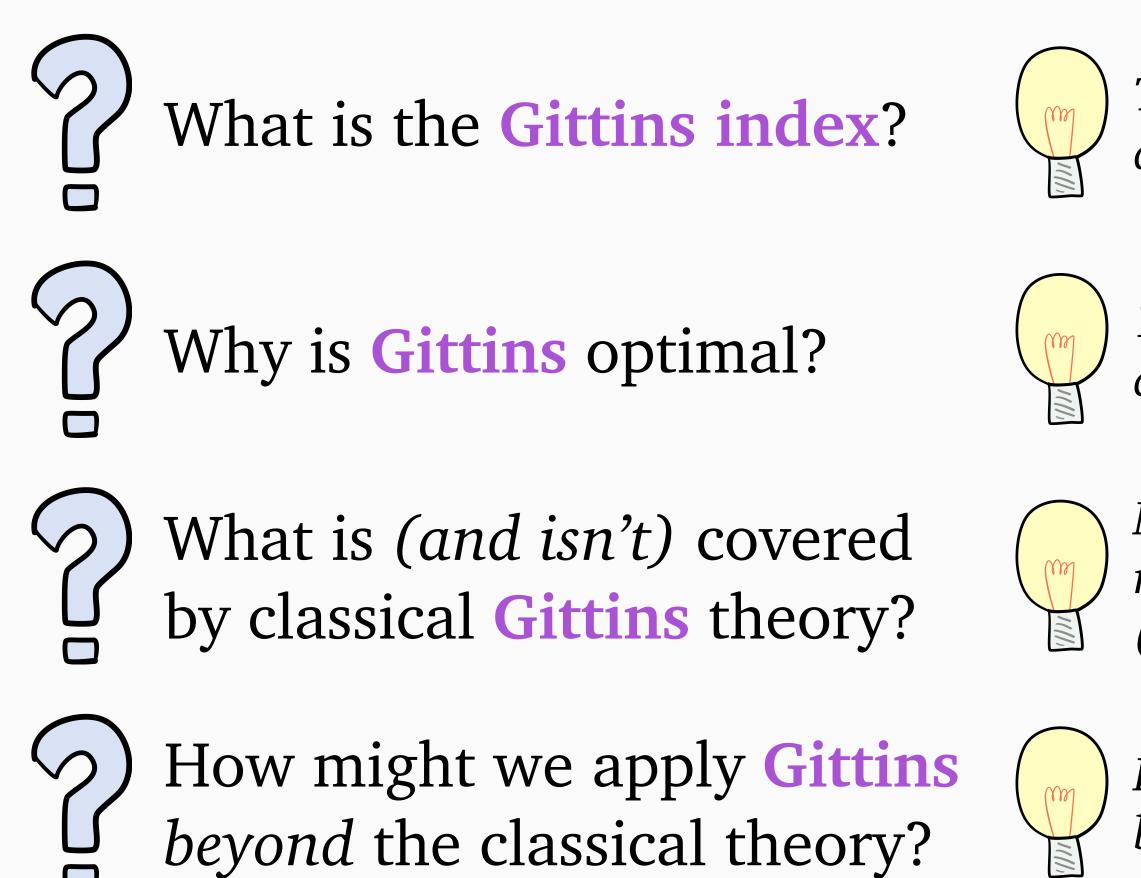




The deterministic action that dominates a stochastic action

1.5-action problem faithfully abstracts full problem

Need independent Markov reward/cost processes (possibly with branching)



The deterministic action that dominates a stochastic action

1.5-action problem faithfully abstracts full problem

Need independent Markov reward/cost processes (possibly with branching)

Lots of approaches, but also: just try it!