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Step 1: rate each box separately

=] Gittins index:
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Theorem: [Weitzman, 1979]

the Gittins policy is optimal

Step 2: act on box of best rating
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dominates a stochastic action

' K . The deterministic action that
E; What is the Gittins index? Q ¢ determintstic action tha
Q

i ; Why is Gittins optimal? Q 1.5-action problem faithfully
-

abstracts full problem

What is (and isn’t) covered
o Dby classical Gittins theory?

@ How might we apply Gittins

o Dbeyond the classical theory?
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abstracts full problem
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Two new Gittins applications

Tail scheduling

(in single-server queues)

IHENEG;

> G

P[T > t]

Goal: minimize probability
of very long response time

BayesOpt

(Bayesian optimization)

Goal: find large function value
with few function evaluations
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is Gittins still
optimal if...

.. and with discounted
costs/rewards

&3
&3

SBRINS

... we serve k jobs at once?

... jobs arrive over time (arbitrary)

... jobs arrive over time (Poisson)

.. Poisson arrivals atfected by job in service?
.. different jobs have different holding costs?
.. holding costs change over time (arbitrary)?
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Mean SChEdllliIlg: 83 ... we serve k jobs at once?
1s Gittins still

, . S@ ... jobs arrive over time (arbitrary)
optimal if...

... jobs arrive over time (Poisson)

.. Poisson arrivals atfected by job in service?

v/

George Yu Amit Harlev

@ or inflated!

... and with discounted
costs/rewards

.. holding costs change over time (arbitrary)?

i

.. holding costs change over time (convex)?

Qy ... different jobs have different holding costs?

.. holding costs ch dexponential 0?
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Pandora’s box:
is Gittins still
optimal if...

VRBRBIVINES

.. we open k boxes at once?
.. we select k boxes at the end?

.. we select a spanning tree of boxes at the end?

[Singla, 2018; Gupta et al., 2019]

.. We can open at most n boxes?

.. We can open at most n boxes in expectation?

[Aminian, Manshadi, & Niazadeh, 2025]

.. We can select a closed box?

[Fu, Li, & Liu, 2023; Beyhaghi & Cai, 2023]

.. there are correlations between box values?
[Gergatsouli & Tzamos, 2023]

. there are multiple inspection steps?
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Choices are hard if they depend on context
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Choices are hard if they depend on context
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always ing it
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Choices are hard if they depend on context

c:Y ’ VS.

I

E[cost(r)]
N

Optimal open vs. grab choice
depends on “context” r
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Choices are hard if they depend on context

c:Y ’ VS. | :r

E[cost(r)]
N

randomize for
<{ robustness to all r

CE Optimal open vs. grab choice Laura Doval

E[Y] 1

depends on “context” r

z2(cY) h(c:Y)

select :r opencY grab c:Y



Open question: Gittins from empirical data?
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dominates a stochastic action

' K . The deterministic action that
E; What is the Gittins index? Q ¢ deterministic action tha
Q

abstracts full problem

i ; Why is Gittins optimal? Q 1.5-action problem faithfully
-

What is (and isn’t) covered Q Need independent Markov

: . reward,/cost processes
= by classical Gittins theory? (possibly with branching)

@ How might we apply Gittins

o Dbeyond the classical theory?
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dominates a stochastic action

' K . The deterministic action that
E; What is the Gittins index? Q ¢ deterministic action tha
Q

abstracts full problem

i ; Why is Gittins optimal? Q 1.5-action problem faithfully
-

What is (and isn’t) covered Q Need independent Markov

: . reward,/cost processes
= by classical Gittins theory? (possibly with branching)

@ How might we apply Gittins Lots of approaches,
beyond the classical theory? but also: just try it!

-
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