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G(cY)
c:Y ’ T r small r large
openc:Y select :r

profit = E[max(Y, r)] — c profit = r

Indifference point r = G(c:Y)

Elmax(Y,r)] —c=r
= E[max(Y — r,0)] =c

(57, )

Definition: G(c:Y) is solution r to

EI(Y,r) = c
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O., OZ?ZO Decision process:
C¢> SO CTD ﬂ?\ C¢D » Advance one Markov chain every step
0 » Get reward based on its current state
- Stop when one Markov chain terminates
O - O - O - O
O ) O N O Goal: maximize E[total reward]

Optimal policy: advance Markov chain
whose state has greatest Gittins index
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- Stop when one Markov chain terminates
O - O - O - O
O " O ) O Goal: maximize E[total reward]

Job scheduling:

.. , Want to minimize, for all k,
« All transitions incur reward —1

E[time to kth completion]
- Terminal state = “job complete”

* Minimizing E[time to first completion]
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Tail scheduling Moment generating function fact:
P[T>t]~Ce % (t— 00)

1 \ G : ()
p E[e1799T] ~ ¢ (¢ = 0)

€

P[T > t] Q On completion, job pays cost 1,
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which inflates during time T
Goal: minimize probability %ﬁscountin@

of very long response time with y > 1
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Empirical results: tail scheduling
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See our SIGMETRICS papers [Yu & Scully, 2024; Harlev et al., 2025; Yu et al, 2026]
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« Computation, especially for continuous
state spaces

e.g. Pandora’s box
with optional inspection

 Multiple actions within each process,
i.e. MDP selection

 “Restless” process state changes occurring
even when not actively advanced
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