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Our contributions:

@Z% Design the Boost scheduling policy

(‘ all instances )
Analyze Boost’s performance specific instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes . + Unknown job sizes
] Yu & Scully. Strongly Tail-Optimal Scheduling Harlev Yu, & Scully. A Gittins Policy for
U in the Light-Tailed M/G/1. SIGMETRICS 2024. Optimiging Tail Latency. MAMA 2024.
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