Strongly Tail-Optimal
S che dllllllg in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Joint work with
George Yu Cornell ORIE
Amit Harlev Cornell CAM
1

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

|0

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

%

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @DZ

How should we schedule jobs to minimize delay?

—

T = response time

How should we schedule jobs to minimize delay?

e T
SElIRe,
l I
T = response time

How should we schedule jobs to minimize delay?

7 l @U

I

T = response time

@ Minimize E[T]?

-

How should we schedule jobs to minimize delay?

v T

I

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

Clllll

How should we schedule jobs to minimize delay?

%a}

|\C

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

|\C

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

|\C

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

|\C

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%}9 3
L I

T = response time
L Serve short jobs
EP ?
Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

Gf_} _
3 U
l S
T = response time
L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

Gf_} _
3 U
l S
T = response time
L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

Gf_} _
3 U
l S
T = response time
L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

L I
T = response time
shortest remaining
Brocessing time
. Serve short jobs .
9 -
@ Minimize E[T]: Q before long jobs ﬁ SRPT: minimizes E|[T]

-

Beyond the mean: tail metrics

5)

T = response time

Beyond the mean: tail metrics

-

P[T > t]?
Minimize < E[(T — t)+]?

= _quantiles of T?

- 11Tl
3 U
L I
T = response time

Beyond the mean: tail metrics

-

P[T > t]? @Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T?

- 11T
3 U
L N
T = response time

Beyond the mean: tail metrics

-

P[T > t]? @Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T? ATheory: very hard

- 11Tl
3 U
L I
T = response time

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T? ATheory: very hard

SEENO;

M/G arrivals |
T = response time

e arrival rate A
* job size dist. S

Beyond the mean: tail metrics

rP:T > t]? Q?Practice: important Tractable:
Minimize < E[(T — t)+]? study t — o
= _quantiles of T? ATheory: very hard asymptotics

0%

T = response time

Gﬁe
%
M/G arrivals |

e arrival rate A
* job size dist. S

Optimizing tail asymptotics

Optimizing tail asymptotics

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Optimizing tail asymptotics

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Weakly optimal
R, < o

Strongly optimal
Rn' — 1

Optimizing tail asymptotics

S . P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]
Heavy-tailed sizes

Weakly optimal
R, < o

Strongly optimal
Rn' — 1

Optimizing tail asymptotics

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
7t/ t— OO P[TTC/ > t]

Heavy-tailed sizes Light-tailed sizes

Weakly optimal | Preemptive LCFS

R, < SRPT
PS (processor sharing)
LAS (least attained service)

Strongly optimal
Rr[— 1

Optimizing tail asymptotics

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
7t/ t— OO P[TTC/ > t]

Heavy-tailed sizes Light-tailed sizes

Weakly optimal | Preemptive LCFS
R, < o

Strongly optimal | SRPT
Rr=1 PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ = t]

Heavy-tailed sizes Light-tailed sizes

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS

Lewish Corollary of prior work

[Wierman & Zwart, 2012]
SRPT
PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ = t]

Heavy-tailed sizes@ Light-tailed sizes

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS

Lewish Corollary of prior work

[Wierman & Zwart, 2012]
SRPT
PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS

SRPT
PS (processor sharing)

LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

TC/

P[T, >t]
t— 0O P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS

SRPT
PS (processor sharing)

LAS (least attained service)

ECES (first-come first-served)

Optimizing tail asymptotics

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
7t/ t— OO P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weak].y Optimal Pl‘eemptive LCFS FCFS (first_cgme first_served)
R, < o
Stl‘Ongly Optimal SRPT FCFS? [wierman & /Zwart, 2012]
Rr=1 PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ = t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS ECES (first-come first-served)
Nudge [Grosof et al., 2021]

SRPT FCES? [Wierman & Zwart, 2012]

PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS ECES (first-come first-served)
Nudge [Grosof et al., 2021]

Theorem:
\ RNudge < RFcFs

SRPT FCFS? [wierm

PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS ECES (first-come first-served)
Nudge [Grosof et al., 2021]

Theorem:
\ RNudge < RrcFs

SRPT FCFS? [wierm

PS (processor sharing) @
LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS ECES (first-come first-served)
Nudge [Grosof et al., 2021]

SRPT
PS (processor sharing)

LAS (least attained service)

Optimizing tail asymptotics

Asymptotic tail ratio: R = suplimsup

P[T, >t]
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS ECES (first-come first-served)
Nudge [Grosof et al., 2021]

SRPT S Boost@(%

PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes@ Light-tailed sizes -!S

Weakly optimal | Preemptive LCFS FCFES (first-come first-served)
Ry < o Nudge [Grosof e B

Theorem:

Strongly optimal | SRPT S B()()St@(%

Rr=1 PS (processor sharing)
LAS (least attained service)

Optimizing tail asymptotics

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Weakly optimal
R, < o

Strongly optimal
Rr[— 1

Preemptive LCFS ECES (first-come first-served)
Nudge [Grosof e N

SRPT S Boost@(%

PS (processor sharing)
LAS (least attained service)

Our contributions:

@Z% Design the Boost scheduling policy

Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

of many policies

Olll‘ COIltl‘ibllti()IlS o gctually a family)

@Z% Design the Boost scheduling policy

Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

Olll‘ COIltl‘ibllti()IlS o gctually a family)

of many policies

@Z% Design the Boost scheduling policy

(‘ all instances)
Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

of many policies

Olll‘ COIltl‘iblltiOIlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

of many policies

Olll‘ COIltl‘iblltiOIlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes
] Yu & Scully. Strongly Tail-Optimal Scheduling

—

U in the Light-Tailed M/G/1. SIGMETRICS 2024.

Olll‘ COIltl‘iblltiOIlS o actually a family)

of many policies

@Z% Design the Boost scheduling policy

(‘ all instances)
Analyze Boost’s performance specific instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes . + Unknown job sizes
] Yu & Scully. Strongly Tail-Optimal Scheduling Harlev Yu, & Scully. A Gittins Policy for
U in the Light-Tailed M/G/1. SIGMETRICS 2024. Optimiging Tail Latency. MAMA 2024.

Boost@

@ How does the Boost policy family work?
=

Boost@

How does the Boost policy family work?

How do we achieve strong tail optimality?

[
[

Boost@(%

Why is achieving strong tail optimality hard?

How do we achieve strong tail optimality?

=
@ How does the Boost policy family work?
=
?

Boost@

@ Why is achieving strong tail optimality hard?
=

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As“ P[S>s]~Ae™®

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As“ P[S>s]~Ae™®

<&

P[T>t]~Ct"”

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As“ P[S>s]~Ae™®

<& <&

P[T>t]~Ct” P[T>t]~Ce™*

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As™* P[S>s]~Ae™®

<& <&

P[T.>t]~C_t " P[T.>t]~C_ e '

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C_t " P[T.>t]~C_ e '

v, = decay rate of

C,. = tail constant of 7

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C_t " P[T.>t]~C_ e '

v, = decay rate of

C,. = tail constant of 7

Weak optimality:
maximize Y

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C, t " P[T.>t]~C, e "'

v, = decay rate of

C,. = tail constant of 7

Weak optimality: Strong optimality:
maximize Y maximize yr, minimize Cy

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s|~As ¢ P[S>s]|~Ae™™®
P[T.>t]~C_t = P[T.>t]~C, e "'

v, = decay rate of

C,. = tail constant of 7

Weak optimality: Strong optimality:
maximize Y maximize yr, minimize Cy

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

FCFS

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc. optimal y = «

FCFS optimal y

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc. optimal y = « pessimal y

FCFS pessimaly = a — 1 optimal y

Background on decay rates

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. optimal y = « pessimal y
FCFS pessimaly = a — 1 optimal y

Main cause
o of large T?

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause
o of large T?

optimal y = «

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

I see lots of work
when I arrive

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

I'm a very big job,
lots of smaller jobs
are passing me

optimal y

I see lots of work
when I arrive

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes Light-tailed sizes
SRPT, LAS, etc. optimal y = « pessimal y
FCFS pessimaly = a — 1 optimal y
Main cause | “Catastrophe” “Conspiracy”
o of large T? one giant job lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.
FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.
FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.
FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y
optimal y

intermediate y

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.
FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

. I'm in bucket 2,
optimal ¥ ots of bucket 1 jobs

are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

Background on decay rates

Heavy-tailed sizes

bﬂw

Light-tail

SRPT, LAS, etc.
FCFES

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

m a very big job
lots of smaller Jobs
are passing me

I'm in bucket 2
optimal ¥ ots of bucket 1 JObS
are passing me

N7

pessimal y

YE3

intermediate y

“Conspiracy”
lots of biggish jobs

Background on decay rates

SRPT, LAS, etc.
FCFES

SRPT or LAS with
just two buckets

Main cause
o of large T?

I'm a very blg job
lots of smaller Jobs
are passing me

pessimal y

I'm in bucket
7 | lots of bucket 1 JObS
are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

Background on decay rates

SRPT, LAS, etc.
FCFES

SRPT or LAS with
just two buckets

Main cause
o of large T?

=

ff

/\ Takeaway:

for optimality, must

avoid strict priorities

I'm a very blg job
lots of smaller Jobs
are passing me

pessimal y

I'm in bucket
7 | lots of bucket 1 JObS
are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

Can we beat FCFES?

Can we beat FCFES?

Can we beat FCFES?

Q Nudge

Can we beat FCFES?

Q Nudge

Can we beat FCFES?

Q Nudge

Can we beat FCFES?

Nudge

- small job can pass one large job

Can we beat FCFES?

Nudge
- small job can pass one large job

Can we beat FCFES?

Nudge
- small job can pass one large job

Can we beat FCFES?

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

3¢

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

3¢

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

3¢

U

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

0<p 83' §

Nudge Theorem:

- small job can pass one large job CNudge < CEcFs
- large job can’t be passed twice

Can we beat FCFS?
@udge?

0<p 83' §

Nudge Theorem:

- small job can pass one large job CNudge < CEcFs
- large job can’t be passed twice

More complex variants get even lower C

Can we beat Nudge?

Can we beat Nudge?

@ How to handle
range of sizes?

C:

iy

10

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small?

U U

i

10

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large?

Cllll

o § G@

i

10

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large? something else?

o

i

G@

Cllll

o § G@

i

10

Can we beat Nudge?

What info could
help us decide?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large? something else?

o

i

G@

Cllll

o § G@

i

10

Where do optimal policies come from?

11

Where do optimal policies come from?

Queueing
problem

Clll)l

11

Where do optimal policies come from?

%

arrivals

Queueing
problem

U

Clll)l

11

Where do optimal policies come from?

Queueing

problem <

U

A\

O

arrivals

11

Where do optimal policies come from?

Queueing
problem

&

U

Clll)l

Batch -
problem | -

o
G
]
]

A\

O

arrivals

11

Where do optimal policies come from?

Queueing
problem

e.g. min E|[T]
yields SRPT

Batch
problem

.
Ciy

Clllll

U

&

A\

O

arrivals

11

Where do optimal policies come from?

Queueing

problem

e.g. min E|[T]
yields SRPT

Batch

problem
U U

Clllll

Clllll

U

&

A\

O

arrivals

11

Where do optimal policies come from?

Queueing
problem

e.g. min E|[T]
yields SRPT

Batch

problem
U U

Clllll

&

A\

O

arrivals

11

Where do optimal policies come from?
A\

&

Queueing

problem Q
arrivals
e.g. min E|[T]
yields SRPT
Batch

@ Batch version of
minimizing C?

-

Clllll

roblem
00

11

Where do optimal policies come from?
A\

&

Queueing
problem

e.g. min E|[T] ,
vields SRPT Q Non-asymptotic
version of metric?

Batch
@ Batch version of
minimizing C?

roblem
00 ¢

O

arrivals

Clllll

11

[
%
/4

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

12

[
%
/4

Boost@(%

Why is achieving strong tail optimality hard?

Batch version of
minimizing C?

How to handle
range of sizes?

How does the Boost policy family work?

How do we achieve strong tail optimality?

12

V4
%
/4

Boost@(%

Why is achieving strong tail optimality hard?

Batch version of
minimizing C?

How to handle
range of sizes?

How does the Boost policy family work?

How do we achieve strong tail optimality?

12

Boost@

@ How does the Boost policy family work?
=

12

Key information:

@ How to handle
range of sizes?

S

iy

13

Key information: arrival times

@ How to handle
range of sizes?

S

iy

13

i

Key information: arrival times

@ How to handle
J = range of sizes?

>

13

i

Key information: arrival times

@ How to handle
J = range of sizes?

> time

i

13

i

Key information: arrival times

@ How to handle
J = range of sizes?

> time >time

G
Clllll

i

13

s

Key information: arrival times

@ How to handle
J = range of sizes?

> time >time

G
CIII

C

]

G
L

G

13

Key information: arrival times

Key information: arrival times

Combining arrival time and size

14

Combining arrival time and size

: boosted arrival time
\ | = arrival time — boost(size)

14

Combining arrival time and size

boosted arrival time
= arrival time — boost(size)

time

l(

arrival tim@

14

Combining arrival time and size

\}@@ boosted arrival time
= arrival time — boost(size)

time
ﬁﬁ arrival tim@

_/
— —

boost

14

Combining arrival time and size

\% boosted arrival time
= arrival time — boost(size)

time
ﬁﬁ arrival tim@

_/
— —

boost

14

Combining arrival time and size

boosted arrival time

Cboosted‘
arrival time = arrival time — boost(size)

time

arrival tim@

oosted

b
arrival time

Combining arrival time and size

| = arrival time — boost(size)
fime

arrival tim@

smaller sizes get
. . bigger boosts
boosted arrival time ,—28

14

oosted

b
arrival time

Combining arrival time and size

| = arrival time — boost(size)
fime

arrival tim@

smaller sizes get
. . bigger boosts
boosted arrival time ,—28

14

Combining arrival time and size

smaller sizes get
. . bigger boosts
boosted arrival time ,—28

= arrival time — boost(size)

boosted
arrival time

time

arrival tim@

14

Boost policies

boosted arrival time
= arrival time — boost(size)

15

Boost policies

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — boost(size)

15

Boost policies

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — boost(size)

can vary choice of
boost function

15

, Boost policies
(can be preemptive ?
Or nonpreemptive

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — boost(size)

can vary choice of
boost function

15

V4
%
/4

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

16

Y4
Y4
?

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

16

Boost@

@ How do we achieve strong tail optimality?
=

16

I[s Boost weakly tail optimal?

I[s Boost weakly tail optimal?

P[T>t]~Ce*

17

I[s Boost weakly tail optimal?

P[T>t]~Ce™™ C=lim e""P[T > t] = lim
t— 00 00—y Y

17

I[s Boost weakly tail optimal?

P[T>t]~Ce*

— 6
C = lim e"P[T > t] = lim !

t— 00 00—y Y
final value
theorem

E[eGT]

17

I[s Boost weakly tail optimal?

y — 0

P[T>t]~Ce™™ C = lim e""P[T > t] = lim

t— 00 00—y Y
final value
theorem

FCFS
Tpcps =W +5

E[eGT]

17

I[s Boost weakly tail optimal?

y — 0

P[T>t]~Ce™™ C = lim e""P[T > t] = lim

t— 00 00—y Y
final value
theorem

FCFS

‘work)

E[eGT]

17

I[s Boost weakly tail optimal?

P[T>t]~Ce*

FCFS

‘work)

Crcps = CWE[eYS]

— 6
C = lim e"P[T > t] = lim !

t— 00 00—y Y
final value
theorem

E[eGT]

17

I[s Boost weakly tail optimal?

y — 0

P[T>t]~Ce™* C = lim e"'P[T > t] = lim E[eT]

t— 00 00—y Y
final value
theorem

FCFS

‘work)

Crcps = CWE[eYS]

lim e""P[W > t]

t— 00

17

I[s Boost weakly tail optimal?

P[T>t]~Ce*

FCFS

‘work)

Crcps = CWE[eYS]

lim e""P[W > t]

t— 00

t— 00

— 6
C = lim e"P[T > t] = lim ———E[e®7]

00—y)/
final value
theorem

Boost
TBoost ~ W+S—b(S)+V

17

I[s Boost weakly tail optimal?

— 6
P[T > t]~ Ce " C = lim ¢"*P[T > ¢] = lim l——a P
t— 00 —Y Y
final value
theorem
FCES Boost boost functio@
TFCFS:W_l_S TBOOStNW_I_S_b(S)_I_V
‘work)

Crcps = CWE[eYS]

lim e"'P[W > t]

t— 00

17

I[s Boost weakly tail optimal?

P[T>t]~Ce*

FCFS

‘work)

Crcps = CWE[eYS]

lim e""P[W > t]

t— 00

— 6
C = lim e"P[T > t] = lim ———E[e®7]

t— 00

00—y)/
final value
theorem

Boost (boost functio@

TBoost ~W+S5— b(S) + V)
; crossing work)

17

I[s Boost weakly tail optimal?

P[T>t]~Ce*

FCFS

‘work)

Crcps = CWE[eYS]

lim e""P[W > t]

t— 00

— 6
C = lim e"P[T > t] = lim ——E[¢°"]
t— 00 00—y Y
final value
theorem

Boost (boost functio@

TBoost ~W+S5— b(S) + V)
; crossing work)

17

I[s Boost weakly tail optimal?

— 0
P[T>t]~Ce™™ C = lim e"'P[T > t] = éim ! E[e’"]
t— 00 —Y Y
final value
theorem
Crossing work Boost (boost function)

Toost & W +S —Db(S) + Vi
; crossing work)

17

I[s Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = lim e"'P[T > t] = éim ! E[e’T]
t— 00 —Y Y
final value
theorem
Crossing work Boost (boost function)
_ _ TBoostNW_I_S_b(S)_I_V
-] ; crossing work)
>

17

I[s Boost weakly tail optimal?

— 0
P[T>t]~Ce" C = lim e"'P[T > t] = éim ! E[e’T]
t— 00 —Y Y
final value
theorem
Crossing work Boost (boost function)
g | i TBoostNW_I_S_b(S)_I_V
| - ;crossing work)
E >

17

I[s Boost weakly tail optimal?

P[T>t]~Ce™™

Crossing work

2 R

U

>

LE

— 6
C = lim e”P[T > l'] — lim r E[eQT]
t— 00 00—y Y
final value
theorem

Boost (boost functio@

Toost W +S—Db(S)+V,
; crossing work)

17

I[s Boost weakly tail optimal?

P[T>t]~Ce*

Crossing work

2R

U

>

LE

T =

— 6
C = lim e"P[T > t] = lim ——E[¢°"]
t— 00 00—y Y
final value
theorem

Boost (boost functio@

TBoost ~W+S5— b(S) + V)
; crossing work)

Lemma: finite
if b(s) = O(1/s)

17

A path to strong tail optimality

y — 0

C = lim e"*P[T > t] = lim E[e®]

t— 00 60—y ’)/

18

A path to strong tail optimality

iy

C = lim e"P[T > t] = lim ——E[¢°"]
t— 00 60—y ’)/

o)

Y
ccO . E[e}/T]n

18

A path to strong tail optimality

—0
C = lim e"P[T > t] = lim ——E[¢°"]

t— 00 60—y ’)/
L _
~
ccO . E[e}/T]n

Q Minimizing C is like minimizing E[¢"”]...

18

A path to strong tail optimality

—0
C = lim e"P[T > t] = lim ——E[¢°"]

t— 00 60—y ’)/
L _
~—
ccO . E[e}/T]n

Minimizing C is like minimizing E[e""]...
... which we can turn into a finite batch problem!

18

A path to strong tail optimality

—0
C = lim e"P[T > t] = lim ——E[¢°"]

t— 00 60—y ’)/
L _
~—
ccO . E[e}/T]n

Minimizing C is like minimizing E[e""]...
... which we can turn into a finite batch problem!

ti — di — ai
a; = arrival time of job i

d. = departure time of job i

18

A path to strong tail optimality

o

—0
C = lim e"P[T > t] = lim ——E[¢°"]

t— 00 60—y ’)/
L _
~—
ccO . E[e}/T]n

Minimizing C is like minimizing E[e""]...

... which we can turn into a finite batch problem!

ti — di — ai 1 n 1 n

a; = arrival time of job i E[e"']= = E et = — E e Vel
: : : n < n “

d; = departure time of job i i=1 i=1

18

A path to strong tail optimality

o

—0
C = lim e"P[T > t] = lim ——E[¢°"]

t— 00 60—y ’)/
L _
~—
ccO . E[e}/T]n

Minimizing C is like minimizing E[e""]...

... which we can turn into a finite batch problem!

almost classic
problem

ti — di — ai 1 1 n

a, = arrival time of job i E[eYT] = — E elti = — E e Tdiprd
: : : n < n “

d; = departure time of job i i=1 i=1

18

Almost classic

Minimizing C is like minimizing E[e""]...
... which we can turn into a finite batch problem!

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"']= = E elli = — E o VqipYd;
: : : n+< n <

d; = departure time of job i i=1 i=1

19

Almost classic

Minimizing C is like minimizing E[e""]...
... which we can turn into a finite batch problem!

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"']= = E elli = — E o VqipYd;
: : : n+< n <

d; = departure time of job i i=1 i=1

. . , 1<
Mean weighted discounted departure time: — E w,e 0%
n “
1=1

19

Almost classic

Minimizing C is like minimizing E[e""]...
... which we can turn into a finite batch problem!

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"']= = E elli = — E o VqipYd;
: : : n+< n <

d; = departure time of job i i=1 i=1

: . . 1 <
&Mean weighted discounted departure time: — E w,e 0%
n 4
=1

19

Almost classic

Minimizing C is like minimizing E[e""]...
... which we can turn into a finite batch problem!

t; =d; —q; n

n
1 1 e
a; = arrival time of job i E[e"']= = E elli = — E o VqipYd;
: N n-“ n-“
d; = departure time of job i i=1 i=1

: . . 1 <
&Mean weighted discounted departure time: — E w,e O
n 4
=1

—o<9

9

Almost classic

Minimizing C is like minimizing E[e""]...
.. which we can turn into a finite batch problem!

ti — di — Cll-
a; = arrival time of job i E[eYT] = Z elti = — Z e Tl
d. = departure time of job i &/ > (D

o . . 1 n
&Mean weighted discounted departure time: — Z w,e0d:
n 4

=9

19

Almost classic

Minimizing C is like minimizing E[e""]...
.. which we can turn into a finite batch problem!

can’t start 1
before a;
ti — di — Cll-

: : : : T 1 t; —ra; ,vd;
a; = arrival time of job i E[eY] — —ZGY = —Z Tt
d. = departure time of job i &/ > (D

o . . 1 n
&Mean weighted discounted departure time: — Z w,e0d:
n 4

=9

19

Almost classic

Minimizing C is like minimizing E[e""]...
.. which we can turn into a finite batch problem!

can’t start i
before q;

ti — di — Cll-
a; = arrival time of job i E[eYT] = Z elti = — Z e Tl
d. = departure time of job i &/ > (D
Relaxation solved by WDSPT, which is Boost with
1 1
b(s) = —log
Y 1l—e7rs

o . . 1 n
&Mean weighted discounted departure time: — Z w,e0d:
n 4

=9

19

Almost classic

Minimizing C is like minimizing E[e""]...
.. which we can turn into a finite batch problem!

can’t start i
before q;

ti — di — ai
a; = arrival time of job i E[eYT] = Z elti = — Z e Tl
d. = departure time of job i &/ > (D

Relaxation solved by WDSPT, which is Boost with
1

1
_sb(s)=—1log —
y-Boosﬁ y l—e

o . . 1 n
&Mean weighted discounted departure time: — Z w,e0d:
n 4

=9

19

Almost classic

Minimizing C is like minimizing E[e""]...
.. which we can turn into a finite batch problem!

can’t start i
before q;

E[eyT] — Z elti = — Z —}/ale}/d
7>0)

Unknown sizes:
swap WDSPT for Gittins

Relaxation solved by WDSPT, which is Boost with
1

1
_sb(s)=—1log —
y-Boosﬁ y l—e

o . . 1 n
&Mean weighted discounted departure time: — Z w,e0d:
n 4

=9

19

Y4
Y4
?

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

20

S

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

20

o o
(@) ~J
1

S
o

Tail Improvement Ratio
o o @ ©
—_ [\ w

<
o

Empirical performance

p = 0.8, Exponential

<
N
1

10 15 20 25 30 35
Response time

Tail Improvement Ratio

S
N

S
o

S
o

e
N
1

o
wo

S
B

<
—

<
o

p = 0.8, Hyperexponential

1

|

A,—VVVVVVVYVVVVVVVVVYVVVVVVV

Nudge-M

Nudge-K

0 10 20 30 40
Response time

50

60

70

21

Our contributions:

@Z% Design the Boost scheduling policy

(‘ all instances)
Analyze Boost’s performance specific instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

1 Known job sizes . + Unknown job sizes
] Yu & Scully. Strongly Tail-Optimal Scheduling Harlev Yu, & Scully. A Gittins Policy for
U in the Light-Tailed M/G/1. SIGMETRICS 2024. Optimiging Tail Latency. MAMA 2024.

U

