Strongly Tail-Optimal
SChe dlllillg in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Joint work with
George Yu Cornell ORIE
Amit Harlev Cornell CAM
1

Strongly Tail-Optimal
SChe dlllillg in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE
ﬁ Best paper award at
Toint work with SIGMETRICS 2024
George Yu Cornell ORIE
1

Amit Harlev Cornell CAM

Strongly Tail-Optimal
SChe dlllillg in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Best paper award at
Toint work with SIGMETRICS 2024
George Yu Cornell ORIE

Amit Harlev Cornell CAM

Preprmt coming soon..

Tradeoft: priority vs. starvation

w

Tradeoft: priority vs. starvation

Tradeoft: priority vs. starvation

Tradeoft: priority vs. starvation

Prioritize 6 Don’t starve

short jobs H O H long jobs

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

|0

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

%

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @

How should we schedule jobs to minimize delay?

7 @DZ

How should we schedule jobs to minimize delay?

How should we schedule jobs to minimize delay?

@%fj s @U

How should we schedule jobs to minimize delay?

@%fj s @U

@ Minimize E[T]?

-

How should we schedule jobs to minimize delay?

v T

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

Cllll

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?

%a}

I

L Serve short jobs
?
@ Minimize E[T]: Q before long jobs

-

How should we schedule jobs to minimize delay?
Gfe
3 U
R
L Serve short jobs
@ Minimize E{T]? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?
I
3 U
L Y
L Serve short jobs
@ Minimize ELT1? Q before long jobs

-

How should we schedule jobs to minimize delay?

R0,

shortest remaining
processing time

@ Minimize E[T]? Q]:S)Egseslfcl) 211; ;gbbz SRPT: minimizes E|[T]

-

X

Beyond the mean: tail metrics

5)

l @T:

Beyond the mean: tail metrics

-

P[T > t]?
Minimize < E[(T — t)+]?

= _quantiles of T?

% . 10}

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T?

% . 10}

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T? ATheory: very hard

% . 10}

Beyond the mean: tail metrics

-

P[T > t]? Q?Practice: important
Minimize {

E[(T —t)*]?
= _quantiles of T? ATheory: very hard

BN

M/G arrivals |

e arrival rate A
* job size dist. S

Beyond the mean: tail metrics

rP:T > t]? Q?Practice: important Tractable:
Minimize { E[(T —t)*]? study t — oo
= _quantiles of T? ATheory: very hard asymptotics

0%

D

Gﬁe
%
M/G arrivals |

e arrival rate A
* job size dist. S

Beyond the mean: tail metrics

no single t value
1S most important
P[T > t]? Q? Practice: important @ Tractable:

Minimize { E[(T —t)*]? study t — oo
= _quantiles of T? ATheory: very hard asymptotics

BN

M/G arrivals |

e arrival rate A
* job size dist. S

Asymptotic response time tail

probability

1

0 threshold t

Asymptotic response time tail

probability

threshold t

ependsi Asymptotic response time tail
policy &

probability

threshold t

ependsi Asymptotic response time tail
policy &

probability

threshold t

ependsi Asymptotic response time tailt

policy Wh en S 5
probability light-tailed

threshold t

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability C’ght-tail@
response time tail
N P[T,>t]

asymptotic behavior
C.e '

threshold t

v . = decay rate of T

C.. = tail constant of T

policy

ependsi Asymptotic response time tailt

when S @
probability light-tailed

response time tail

Cn P[Tﬂ' > t]

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal ¥ C.. = tail constant of T

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability Cght-taileg
response time tail
N P[T,>t]

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal y-

_—> Strong optimality:

C.. = tail constant of T optimal y and C;

ependsi Asymptotic response time taily_——
licv 77 winemn o 18
— probability Cght-taileg
response time tail
N P[T,>t]

asymptotic behavior
C.e '

threshold t

— decay rate of Tt
Weak optimality: < I'n Y

optimal y-

_—> Strong optimality:

C.. = tail constant of T optimal y and C;

hen S is

olicy
P ight- talled

probability

ependsi Asymptotic response time tallt
1

response time tail

Cn P[Tﬁ > t]

Heavy-tailed S:
SRPT has optimal
asymptotic behavior

asymptotic behavior o,
C 7€ ¥t (roughly)
0 threshold t
= decay rate of
Weak optimality: <~ I'n . Y _—> Strong optimality:
optimal ¥ C.. = tail constant of T optimal y» and Cx

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

P[T > t]
0.10 -

0.08
0.06 |
0.04

0.02

0.00

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

P[T > t]
0.10 -

0.08
0.06 |
0.04

0.02

0.00

FCFES vs. SRPT

me. FCEFS

(first-come
first-served)

= = = SRPT

P[T > t]/P[Trcrs > t]
14 -

1.2 F

FCFES vs. SRPT

L ¢
0.6 -\ Y
-\
04}
N ==
0.2 |
0.0- | 1 | 1 1 1 1 | 1
0 10 20 30 40

me. FCEFS

(first-come
first-served)

= = = SRPT

1.4

12|

FCFES vs. SRPT

P[T > t]/P[Trcrs > t] =
: ; Observation: QM

! VFCFS = YSRPT

- 4
: 4
E ! e FCEFS
/4 fi
_ , (first-come
L / first-served)
'\ ’
RY ,/ = = = SRPT
-\ _ v 4
N\ ~_ - =
I ' ' 't

0 10 20 30 40

FCFES vs. SRPT

P[T > t]/P[Tecrs > t] =
14 , Observation: M@

! YFCFS = YSRPT

1.2 - J
_ 4
1.0
! s FCF'S
0.8 ,' Prior work: (first-come
L / see [Boxma & Zwart, 2007] first-served)
0.6 1 V4 : :
v R * Yrcrs 1S optimal - = = SRPT
04k % ’ : .
RN L” * YSRPT 1S peSSlmCll
i S =
0.2 |-
0.0] " ! 1 1 1 1 1 1 1 1 1 1 1 1 1 . . ! . | t

Tradeoft: priority vs. starvation

Prioritize 6 Don’t starve

short jobs H O H long jobs

Tradeoft: priority vs. starvation

§f{PT:
optimal E[T] @

Prioritize Don’t starve

short jobs n O H long jobs

Tradeoft: priority vs. starvation

SRPT: FCFS:
optimal E[T] @ optimal y

Prioritize Don’t starve

short jobs O long jobs

Tradeoft: priority vs. starvation

Open problem:
SRPT: optimal y and C F(FFS:
optimal E[T] @ optimal y

Prioritize Don’t starve

short jobs O long jobs

Tradeoft: priority vs. starvation

Open problem:
SE%PT: FCFS:
optimal E[T] @ optimal y

optimal y and C
Prioritize Don’t starve

short jobs O long jobs

Conjecture: FCFS optimizes C, too
|[Wierman & Zwart, 2012]

Tradeoft: priority vs. starvation

Open problem:
SRPT: optimal y and C F(FFS:
optimal E[T] @ optimal y

Prioritize Don’t starve

short jobs O long jobs

Conjecture: FCFS optimizes C, too
|[Wierman & Zwart, 2012]

Tradeoft: priority vs. starvation

Open problem:
SE%PT: FCFS:
optimal E[T] @ optimal y

optimal y and C
Prioritize Don’t starve

short jobs O long jobs

partial
priority

S~
=
@

Conjecture: FCFS optimizes C, too
|[Wierman & Zwart, 2012]

Can we beat FCFES?

Can we beat FCFES?

Can we beat FCFES?

Q Nudge

Can we beat FCFES?

Nudge

- small job can pass one large job

Can we beat FCFES?

Nudge
- small job can pass one large job

Can we beat FCFES?

Nudge
- small job can pass one large job

Can we beat FCFES?

Nudge
- small job can pass one large job

Can we beat FCFES?

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

3¢

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

3¢

U

Nudge

- small job can pass one large job
- large job can’t be passed twice

Can we beat FCFS?
@udge@

0<p 83' §

Nudge Theorem:

- small job can pass one large job CNudge < CFCFS
- large job can’t be passed twice

Can we beat FCFS?
@udge?

0<p 83' §

Nudge Theorem:

- small job can pass one large job CNudge < CFCFS
- large job can’t be passed twice

More complex variants get even lower C

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]

1.4

1.2

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 i !

1.2 — J

1.0
0.8

0.6 I

04 § ’

0.2 L

0.0 N T B S t

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 i !

1.2 — J

1.0
0.8

0.6 I

04 § ’

0.2 L

0.0 N T B S t

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 -

1.2 !

1.0 §
0.8
0.6 -
04l v ’ = Boost@

0.2 -

ooLb— s

Optimizing the tail constant C

P[T > t]/P[Trcrs > t]
14 -

1.2 !

1.0 |
0.8
0.6 -
oal - Boost@

CEW! Theorem: Boost
optimizes y and C

0.2 -

0.0L

Our contributions:

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

10

of many policies

Olll‘ COIltl‘iblltiOIlS o gctually a family)

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

10

Olll‘ COIltl‘iblltiOIlS o gctually a family)

of many policies

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

10

of many policies

Olll‘ COIltl‘ibllti()IlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

10

of many policies

Olll‘ COIltl‘iblltiOIlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes

10

of many policies

Olll‘ COIltl‘ibllti()IlS o gctually a family)

@Z% Design the Boost scheduling policy

(‘ all instances)
@ Analyze Boost’s performance gpeciﬁc instanca

called y-Boost

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

{1 Known job sizes . + Unknown job sizes

E 3

10

Boost@

@ How does the Boost policy family work?
=

11

[
[

Boost@

How does the Boost policy family work?

How do we achieve strong tail optimality?

11

[
%
/4

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

11

Boost@

@ Why is achieving strong tail optimality hard?
=

11

Can we beat Nudge?

Can we beat Nudge?

@ How to handle
range of sizes?

C:

iy

12

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small?

U U

i

12

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large?

Cllll

o § G@

i

12

Can we beat Nudge?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large? something else?

o

i

G@

Cllll

o § G@

i

12

Can we beat Nudge?

What info could
help us decide?

@ How to handle
range of sizes?

E:

iy

medium = small? medium = large? something else?

o

i

G@

Cllll

o § G@

i

12

Where do optimal policies come from?

13

Where do optimal policies come from?

Queueing
problem

Clll)l

13

Where do optimal policies come from?

%

arrivals

Queueing
problem

U

Clll)l

13

Where do optimal policies come from?

Queueing

problem <

U

A\

O

arrivals

13

Where do optimal policies come from?

Queueing
problem

&

U

Clll)l

Batch -
problem | -

o
G
]
]

A\

O

arrivals

13

Where do optimal policies come from?

Queueing
problem

e.g. min E|[T]
yields SRPT

Batch
problem

.
Ciy

Clllll

U

&

A\

O

arrivals

13

Where do optimal policies come from?

Queueing

problem

e.g. min E|[T]
yields SRPT

Batch

problem
U U

Clllll

Clllll

U

&

A\

O

arrivals

13

Where do optimal policies come from?

Queueing
problem

e.g. min E|[T]
yields SRPT

Batch

problem
U U

Clllll

&

A\

O

arrivals

13

Where do optimal policies come from?
A\

&

Queueing

problem Q
arrivals
e.g. min E|[T]
yields SRPT
Batch

@ Batch version of
minimizing C?

-

Clllll

roblem
00

13

Where do optimal policies come from?
A\

&

Queueing
problem

e.g. min E|[T] ,
vields SRPT Q Non-asymptotic
version of metric?

Batch
@ Batch version of
minimizing C?

roblem
00 ¢

O

arrivals

Clllll

13

[
%
/4

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

14

[
%
/4

Boost@(%

Why is achieving strong tail optimality hard?

Batch version of
minimizing C?

How to handle
range of sizes?

How does the Boost policy family work?

How do we achieve strong tail optimality?

14

V4
%
/4

Boost@(%

Why is achieving strong tail optimality hard?

Batch version of
minimizing C?

How to handle
range of sizes?

How does the Boost policy family work?

How do we achieve strong tail optimality?

14

Boost@

@ How does the Boost policy family work?
=

14

Key information:

@ How to handle
range of sizes?

S

iy

15

Key information: arrival times

@ How to handle
range of sizes?

S

iy

15

i

Key information: arrival times

@ How to handle
J = range of sizes?

>

15

i

Key information: arrival times

@ How to handle
J = range of sizes?

>

i

15

s

Key information: arrival times

@ How to handle
J = range of sizes?

> >

G
C|||

C

15

s

Key information: arrival times

@ How to handle
J = range of sizes?

> >

G
CIII

C

]

G
L

G

15

Key information: arrival times

I @

>

Key information: arrival times

I @

>

Combining arrival time and size

16

Combining arrival time and size

boosted arrival time
= arrival time — boost(size)

{C

16

Combining arrival time and size

boosted arrival time
= arrival time — boost(size)

NG

arrival tim@

l(

16

Combining arrival time and size

\}ﬁ@ boosted arrival time
= arrival time — boost(size)

ﬁﬁ I; arrival tim@

—

J

-~

boost

16

Combining arrival time and size

\% boosted arrival time
= arrival time — boost(size)

ﬁﬁ I; arrival tim@

_/
— —

boost

16

Combining arrival time and size

boosted arrival time

Cboosted‘
arrival time = arrival time — boost(size)

arrival tim@

oosted

b
arrival time

Combining arrival time and size

= arrival time — boost(size)

arrival tim@

smaller sizes get
. . bigger boosts
boosted arrival time ,—28

16

Combining arrival time and size

smaller sizes get
. . bigger boosts
boosted arrival time ,—28

= arrival time — boost(size)

boosted
arrival time

arrival tim@

16

Combining arrival time and size

smaller sizes get
. . bigger boosts
boosted arrival time ,—28

= arrival time — boost(size)

boosted
arrival time

arrival tim@

4

16

Boost policies

boosted arrival time
= arrival time — boost(size)

17

C
]

Boost policies

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — boost(size)

17

C
]

Boost policies

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
= arrival time — boost(size)

can vary choice of
J boost function

17

Boost policies

can be preemptive
Or nonpreemptive

Scheduling rule: always serve job of
minimum boosted arrival time

boosted arrival time
G = arrival time — boost(size)

can vary choice of
boost function

=
B
C

17

V4
%
/4

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

18

Y4
Y4
?

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

18

Boost@

@ How do we achieve strong tail optimality?
=

18

Why is Boost weakly tail optimal?

Why is Boost weakly tail optimal?

P[T >t]~Ce "

19

Why is Boost weakly tail optimal?

P[T >t]~Ce " C = lim e"P[T > t]

t— 00

19

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

19

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCES
Tpcps =W +5

19

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCFS

‘work)

19

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCFS

‘work)

Crcps = CWE[eYS]

19

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = lim e"'P[T > t] = lim E[eT]

t— 00 6 —Y ‘)/
final value
theorem

FCFS

‘work)

Crcps = CWE[eYS]

lim e"'P[W > t]

t— 00

19

Why is Boost weakly tail optimal?

y — 06

P[T>t]~Ce " C = tlim e"'P[T > t] = éim E[eT]
— 00 —Y ‘)/
final value
theorem
FCFS Boost
‘work)

Crcps = CWE[BYS]

lim e"'P[W > t]

t— 00

19

Why is Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = lim e"'P[T > t] = éim ! E[e’7]
t— 00 —Y »)/
final value
theorem
FCES Boost boost functio@
Tecps =W + S Tooost W +S—Db(S)+V
‘work)

Crcps = CWE[BYS]

lim e""P[W > t]

t— 00

19

Why is Boost weakly tail optimal?

P[T >t]~Ce™

FCFS

Tpcps =W, +5
‘work)

Crcps = CWE[BYS]

lim e"'P[W > t]
t— 00

— 6
C = lim e""'P[T > t] = lim r E[e®]
t— 00 0—y ,Y
final value
theorem

Boost (boost functio@

Toooe W +S—b(S)+V

19

Why is Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = tlim e"'P[T > t] = éim ! E[e’7]
—> 00 —Y »)/
final value
theorem
FCES BooOst (boost functio@
Tecps =W + S Tooost W +S—Db(S)+V
s
C'FCFS — CWE[BYS] C'Boost — CWE[eY(S_b(S))] E[eyV]

lim e""P[W > t]

t— 00

Why is Boost weakly tail optimal?

— 6
P[T>t]~Ce" C = tlim e"'P[T > t] = éim ! E[e’7]
—> 00 —Y »)/
final value
theorem
FCES BooOst (boost functio@
Tecps =W + S Tooost W +S—Db(S)+V
s
C'FCFS — CWE[BYS] C'Boost — CWE[eY(S_b(S))] E[eyV]

lim e""P[W > t]
t— 00

19

Why is Boost weakly tail optimal?

— 0
P[T >t]~Ce " C=lim e"P[T >t] = éim r E[e?T]
t— 00 —Y ’)/
final value
theorem

Boost fboost function) V = crossing work

TBoost ~ W+S—b(5)+V

C'Boost — CWE[eY(S_b(S))] E[eYV]

CIIIII\
CIIIII\I

g4

20

Why is Boost weakly tail optimal?

— 0
P[T >t]~Ce " C = tlim e"'P[T > t] = éim r E[e?T]
— 00 —Y ‘)/
final value
theorem

Boost fboost function) V = crossing work

Tooooe W +S—b(S)+V work that “boosts past” a given time

C'Boost — CWE[eY(S_b(S))] E[eYV]

g4 >

Clllll\l
CIIIII\I

20

Why is Boost weakly tail optimal?

— 0
P[T>t]~Ce C = tlim e"'P[T >t]= éim ! E[e’"]
—> 00 —Y ')/
final value
theorem

Boost fboost function) V = crossing work

Tooooe W +S—b(S)+V work that “boosts past” a given time

C'Boost — CWE[eY(S_b(S))] E[eYV]

g4

---’-----
CI I I I I
CI I I I I

20

Why is Boost weakly tail optimal?

— 06
P[T>t]~Ce™" :> C = lim e"P[T > t] = lim Y E[e?T]

t— 00

Boost (‘boost function)
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

00—y Y
final value
theorem

V = crossing work
work that “boosts past” a given time

Cll)l
CIIIII\I
CIIIII\I

-’-----

eht
T

I
@

20

Why is Boost weakly tail optimal?

P[T >t]~ Ce"t :{>

Boost (‘boost function)
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

— 6
C = lim e"'P[T > t] = lim r E[e?T]
t— 0O 00—y ’)/
final value
theorem

V = crossing work
work that “boosts past” a given time

X

&3

chilt
T T

—- HJ.__:,___-_%_g._

20

Why is Boost weakly tail optimal?

— 0
P[T>t]~Ce " :> C = tlim e"'P[T > t] =1lim Y E[eT]

Boost (‘boost function)
TBoost ~W+S5— b(S) +

V
I}

C'Boost — CWE[eY(S_b(S))] E[eYV]

00—y Y
final value
theorem

V = crossing work
work that “boosts past” a given time

| %
a% 1

T_1T

—- HJ.__:,___-_%_g._

20

Why is Boost weakly tail optimal?

— 0
P[T >t]~Ce " C = tlim e"'P[T > t] = éim r E[e?T]
— 00 —Y ’)/
final value
theorem

Boost fboost function) V = crossing work

Tooooe W +S—b(S)+V work that “boosts past” a given time

C'Boost — CWE[eY(S_b(S))] E[eYV] @ % %

Lemma: finite

i
if b(s) = O(1/s) T T

20

How to achieve strong tail optimality?

0
C = lim e"'P[T > t] = lim ~——F[¢°"]
t— 00 O—y Y

21

How to achieve strong tail optimality?

— lim e — 1im Y= greor ..
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
problem?

-

21

How to achieve strong tail optimality?

— lim e — 1im Y= greor ..
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
= ~ problem?

Y
“00 -P[T > 00]” O

21

How to achieve strong tail optimality?

— lim e — 1im Y= greor ..
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
= ~ problem?

Y
“00 -P[T > 00]” O

Always zero in

batch setting

21

How to achieve strong tail optimality?

i ot 1 Y =0 . or o
C= lim e"P[T>t]=lim » Ele™] @ Finite batch
= ~ - ~ problem?

Y Y
“oO P[T > OO]” “O‘E[eYT]” -

Always zero in
batch setting

21

How to achieve strong tail optimality?

i ot 1 Y =0 . or o
C= lim e"P[T>t]=lim » Ele™] @ Finite batch
= ~ - ~ problem?

Y Y
“oO P[T > OO]” “O°E[6YT]” -

Makes sense in
batch setting!

Always zero in
batch setting

21

How to achieve strong tail optimality?

— lim e — 1im L9 gpeem ..
C= lim e"P[T>t]=lim » Ele™] @ Finite batch
= ~ - ~ problem?

Y Y
“oO P[T > OO]” “O°E[6YT]” -

Makes sense in
batch setting!

Always zero in
batch setting

ti:di_ai

a; = arrival time of job i

d. = departure time of job i

21

How to achieve strong tail optimality?

— lim e’ — tim T =Y greer ..
C = lim e"PLT > t]=lim ——Ele"] @lete batch

L L
~— ~ problem?

“oO P[T > OO]” “O°E[6YT]” -

Makes sense in
batch setting!

Always zero in
batch setting

Batch problem: minimize

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"'] == E elli = — E p ViV
: : : n < n <

d; = departure time of job i i=1 i=1

21

How to achieve strong tail optimality?

— lim e’ — tim T =Y greer ..
C = lim e"PLT > t]=lim ——Ele"] @ Finite batch
= ~ - ~ problem?

~ ~
almost classic
problem

“oO P[T > OO]” “O°E[6YT]” -
Batch problem: minimize

Makes sense in
batch setting!

Always zero in
batch setting

t; =d; —q; 1 n 1 n

a; = arrival time of job i E[e"'] == E elli = — E p ViV
: : : n < n <

d; = departure time of job i i=1 i=1

21

How to achieve strong tail optimality?

Batch problem minimize
ti —_ di — Cll-

a; = arrival time of job 1 E[eYT] — E elti = — E o VqipYd;

d. = departure time of job i i=1

U

How to achieve strong tail optimality?

Batch problem: minimize
ti — di — Cll- n n
. . . . T]- t: 1 —vda.: d:
a; = arrival time of job i E[eY]:_ZeYl:_Ze Tieht
1=1

: : : n “ n 4
d. = departure time of job i i=1

Classic metric: mean weighted 1 Zn: Y
discounted departure time n 4= l
=

U

How to achieve strong tail optimality?

Batch problem: minimize
ti — di — Cll- n n
. . . . T]- t: 1 —vda.: d:
a; = arrival time of job i E[eY]:_ZeYl:_Ze Tieht
1=1

: : : n “ n 4
d. = departure time of job i i=1

Classic metric: mean weighted 1 Zn: Y
discounted departure time n 4= l
=

U

How to achieve strong tail optimality?

Batch problem' minimize
ti —_ di — al’

a; = arrival time of job i E[eYT] = E elti = — E e Tl

d. = departure time of job i

Classic metric: mean weighted Z W, e 04
discounted departure time
—6 < 0)

U

How to achieve strong tail optimality?

Batch problem: minimize
t; = d; —q 1 & 1
a; = arrival time of job i E[eYT] = — Z e’ = — Z e—Yaing

d; = departure time of job i s = 3/ > (D

Classic metric: mean weighted 1 Z)
discounted departure time :

U

How to achieve strong tail optimality?

can’t start i
Batch problem: minimize\ before a;

ti — di — d; n n
. . . . T]‘ t: 1 —v'a: d
a; = arrival time of job i E[eY] = — E el = — e el
d; = departure time of job i s = &/ > (D

Classic metric: mean weighted 1 Z 1
discounted departure time né— ' &

U

How to achieve strong tail optimality?

can’t start i

Batch problem: minimize\ before a;
ti —_ di — al’ n

1 1
a; = arrival time of job i E[eYT] = — Z el = — e Vel
d. = departure time of job i i3 = é\:y > (D
Classic metric: mean weighted Z " e_Qd
discounted departure time

Relaxation solved by (sign-flipped) WDSPT, which is Boost with

1 1
b(s) = —1
() MR pp—

U

How to achieve strong tail optimality?

can’t start i

Batch problem: minimize\ before a;
ti —_ di — al’ n

1 1
a; = arrival time of job i E[eYT] = — Z el = — e Vel
d. = departure time of job i i3 = é\:y > (D
Classic metric: mean weighted Z " e_Qd
discounted departure time

Relaxation solved by (sign-flipped) WDSPT, which is Boost with

1 1
b(s) = —log
- Y 1l —e 78
y-Boosé

U

How to achieve strong tail optimality?

can’t start i

Batch problem: minimize\ before a;
ti —_ di — al’ n

1 1
a; = arrival time of job i E[eYT] = — Z el = — Z e Vel
d; = departure time of job i s = &/ > (D
Classic metric: mean weighted Z " e_Qd
discounted departure time

Relaxation solved by (sign-flipped) WDSPT, which is Boost with

1 1
b(s) = —log
- Y 1l —e 78
y-Boosé

Unknown sizes:
swap WDSPT for Gittins

U

Y4
Y4
?

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

23

S

Boost@(%

Why is achieving strong tail optimality hard?
How does the Boost policy family work?

How do we achieve strong tail optimality?

23

Our contributions:

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

{1 Known job sizes . + Unknown job sizes

E 3

24

Our contributions:

@Z% Design the Boost scheduling policy
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

{1 Known job sizes . + Unknown job sizes

E 3

Our contributions:

@Z% Design the Boost scheduling policy

(‘compute CBoost)
@ Analyze Boost’s performance

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

{1 Known job sizes . + Unknown job sizes

E 3

Our contributions:

@Z% Design the Boost scheduling policy

(‘compute CBoost)
Y- Boost
@ Analyze Boost’s performance b

s)= —log

ﬁ Prove Boost is strongly tail-optimal for light-tailed sizes

\f

U

{1 Known job sizes . + Unknown job sizes

S

24

Bonus slides

o o
(@) ~J
1

e
3

Tail Improvement Ratio
> o o

S
o

Impact of job size variance

L.ow variance

p = 0.8, Exponential

<
N
1

10 15 20 25 30 35
Response time

Tail Improvement Ratio

0.7

0.6 1

0.5 1

e
w

S
B

0.0

High variance

p = 0.8, Hyperexponential

—&— DBoost
Nudge-M
—4— Nudge-K

Nudge

—#*— SRPT
Jﬁvyvvvvvvvvvvvvvvvvvvvvvvv YVYVYVYVYVYyYYVY
0 10 20 30 40 50 60 70

Response time

26

Sensitivity analysis

Misspecified y Noisy size information
0.35
g - .2 030
< <
A A
+ 0.30 +— 0.25
5 5
QE) 005 QE) 0.20
> ' >
o o
a a0.15
b—Ei 0.20 é
— — 0.10
< <
. .-
0.15 0.054
010 0.00 -
6 é 1IO 1I5 2I0 2I5 3I0 3I5 | 6 é 1IO 1I5 2IO 2I5 3IO 3I5

Response time Response time

Heavy-tailed sizes
“S Pareto-ish” (regularly varying)

P[S>s]~As“

Light-tailed sizes

“S exponential-ish or lighter” (class 1)

P[S>s]~Ae™®

28

Heavy-tailed sizes
“S Pareto-ish” (regularly varying)

P[S>s]~As“

<&

P[T>t]~Ct"”

Light-tailed sizes

“S exponential-ish or lighter” (class 1)

P[S>s]~Ae™®

28

Heavy-tailed sizes
“S Pareto-ish” (regularly varying)

P[S>s]~As“

<&

P[T>t]~Ct"”

Light-tailed sizes

“S exponential-ish or lighter” (class 1)

P[S>s]~Ae™®

<&

P[T>t]~Ce™*

28

Heavy-tailed sizes Light-tailed sizes

“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)

P[S>s]~As™* P[S>s]~Ae™®

<& <&

P[T.>t]~C_t " P[T.>t]~C_ e '

28

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C_t " P[T.>t]~C_ e '

v, = decay rate of

C,. = tail constant of 7

28

Heavy-tailed sizes Light-tailed sizes
“S Pareto-ish” (regularly varying) “S exponential-ish or lighter” (class 1)
P[S>s]~As™* P[S>s]~Ae™®
P[T.>t]~C_t " P[T.>t]~C_ e '

v, = decay rate of

C,. = tail constant of 7

Weak optimality:
maximize Y

28

Heavy-tailed sizes
“S Pareto-ish” (regularly varying)

P[S>s]~As™*

<&

PIT.>t]~C_t7'"

Weak optimality:
maximize Y

Light-tailed sizes

“S exponential-ish or lighter” (class 1)

P[S>s]~Ae™®

<&

P[T >t]~C_ e '~

v, = decay rate of

C,. = tail constant of 7

Strong optimality:
maximize yr, minimize Cy

28

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

29

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

29

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least attained service) optimal y = a

FCFES optimal y

29

Background on decay rates

Heavy-tailed sizes Light-tailed sizes

SRPT, LAS, etc.

(least attained service) optimaly = a pessimal y

FCFES pessimaly = a — 1 optimal y

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «

pessimaly =a — 1

pessimal y

optimal y

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

optimal y

I see lots of work
when I arrive

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y =
I'm the
giant job

pessimaly = a — 1

I’'m stuck behind
the giant job

“Catastrophe”
one giant job

pessimal y

I'm a very blg job
lots of smaller Jobs
are passing me

optimal y

I see lots of work
when I arrive

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause
o of large T?

optimal y = «

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «

pessimaly = a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

optimal y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y
optimal y

intermediate y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

pessimal y

. I'm in bucket 2,
optimal ¥ ots of bucket 1 jobs

are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

Heavy-tailed sizes

bﬂw

Light-tail

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

optimal y = «
pessimaly = a — 1

pessimaly =a — 1

“Catastrophe”
one giant job

m a very big job
lots of smaller Jobs
are passing me

I'm in bucket 2
optimal ¥ ots of bucket 1 JObS
are passing me

N7

pessimal y

YE3

intermediate y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

SRPT, LAS, etc.

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

I'm a very blg job
lots of smaller Jobs
are passing me

pessimal y

I'm in bucket
7 | lots of bucket 1 JObS
are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

29

Background on decay rates

SRPT, LAS, etc.

FCFS

SRPT or LAS with
just two buckets

Main cause
o of large T?

=

ff

/\ Takeaway:

for optimality, must

avoid strict priorities

I'm a very blg job
lots of smaller Jobs
are passing me

pessimal y

I'm in bucket
7 | lots of bucket 1 JObS
are passing me

intermediate y

“Conspiracy”
lots of biggish jobs

29

Background on weak and strong optimality

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Weakly optimal
R, < o

Strongly optimal
Rn' — 1

30

Background on weak and strong optimality

S . P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]
Heavy-tailed sizes

Weakly optimal
R, < o

Strongly optimal
Rn' — 1

30

Background on weak and strong optimality

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
T’ t— 00 P[TTC’ > t]

Heavy-tailed sizes

Weakly optimal | Preemptive LCFS
Rr < SRPT
PS
LAS

Strongly optimal
Rn' — 1

30

Background on weak and strong optimality

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
T’ t— 00 P[TTC’ > t]

Heavy-tailed sizes

Weakly optimal | Preemptive LCFS
R, < o

Strongly optimal | SRPT
Rn' — 1 PS
LAS

30

Background on weak and strong optimality

S . P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]
Heavy-tailed sizes

Weakly optimal | Preemptive LCFS
R, < o

Lewish Corollary of prior work

Strongly optimal | SRPT
Rn' — 1 PS
LAS

30

Background on weak and strong optimality

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
T’ t— 00 P[TTC’ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS
R, < o

Lewish Corollary of prior work

Strongly optimal | SRPT
Rn' — 1 PS
LAS

30

Background on weak and strong optimality

o , P[T,>t]
Asymptotic tail ratio: R = suplimsup
T’ t— 00 P[TTC’ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS
R, < o

Strongly optimal | SRPT
Rn' — 1 PS
LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCES
Rr <

Strongly optimal | SRPT
Rn' — 1 PS
LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCFS
R, < o

Strongly optimal | SRPT FCES?
Rn' — 1 PS

LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCFS
Rz < o Nudge

Strongly optimal | SRPT FCES?
Rn' — 1 PS

LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCFS
R < o Nudge

Strongly optimal | SRPT FCES? _RNudge < Rrcrs
Rn' — 1 PS

LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCES
Rz < Nudge

Strongly optimal | SRPT FCES? _RNudge < Rrcrs
LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCES
Rz < Nudge

Strongly optimal | SRPT
Rn' — 1 PS
LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @

Weakly optimal | Preemptive LCFS FCFS
Rz < Nudge
Strongly optimal | SRPT S BOOSt@
Rr[— 1 PS

LAS

30

Background on weak and strong optimality

, P[T, >t]
Asymptotic tail ratio: R = suplimsup
7t/ t— 00 P[TTC/ > t]

Heavy-tailed sizes @ @

Weakly optimal | Preemptive LCFS FCES
Rr <
Nudge Theorem:
RBoost = 1
Strongly optimal | SRPT S BOOSt@
Rr[— 1 PS

LAS

30

