Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE Amit Harley Cornell CAM

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE
Amit Harley Cornell CAM

Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE

Amit Harlev Cornell CAM

Preprint coming soon...

Beyond the mean: tail metrics

Minimize
$$\begin{cases} \mathbf{P}[T > t]? \\ \mathbf{E}[(T - t)^{+}]? \\ \text{quantiles of } T? \end{cases}$$

Practice: important

Theory: very hard

Practice: important

Theory: very hard

Practice: important

Theory: very hard

Tractable:

study $t \rightarrow \infty$

asymptotics

Practice: important

Theory: very hard

Tractable:

study $t \to \infty$

asymptotics

Asymptotic response time taily

when *S* is light-tailed

Asymptotic response time taily

when *S* is light-tailed

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$C_{\pi} = tail \ constant \ of \ \pi$$

Asymptotic response time taily

when S is light-tailed

Weak optimality:
$$\leftarrow$$
 optimal γ_{π}

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$C_{\pi} = tail \ constant \ of \ \pi$$

Asymptotic response time taily

when S is light-tailed

Weak optimality:
$$\leftarrow$$
 optimal γ_{π}

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$C_{\pi} = tail \ constant \ of \ \pi$$

Strong optimality: optimal γ_{π} and C_{π}

Asymptotic response time taily

when S is light-tailed

Weak optimality: \leftarrow optimal γ_{π}

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$C_{\pi} = tail \ constant \ of \ \pi$$

Strong optimality: optimal γ_{π} and C_{π}

Weak optimality:
$$\qquad \qquad \gamma_{\pi} = decay \ rate \ of \ \pi$$
 optimal γ_{π} $\qquad \qquad C_{\pi} = tail \ constant \ of \ \pi$

Strong optimality: optimal γ_{π} and C_{π}

Conjecture: FCFS optimizes C, too

[Wierman & Zwart, 2012]

Nudge [Grosof et al., 2021]

Nudge [Grosof et al., 2021]

• small job can pass one large job

Nudge [Grosof et al., 2021]

• small job can pass one large job

Nudge [Grosof et al., 2021]

• small job can pass one large job

Nudge [Grosof et al., 2021]

• small job can pass one large job

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Theorem:

 $C_{\rm Nudge} < C_{\rm FCFS}$

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Theorem:

 $C_{\rm Nudge} < C_{\rm FCFS}$

More complex variants get even lower C

[Van Houdt, 2022; Charlet & Van Houdt, 2024]

Design the **Boost** scheduling policy

Analyze Boost's performance

actually a family of many policies

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

actually a family of many policies

all instances

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

actually a family of many policies

Design the Boost scheduling policy

Analyze **Boost**'s performance

all instances

specific instance called γ-Boost

actually a family of many policies

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

all instances

specific instance called γ-Boost

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes

Yu & Scully. Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1. SIGMETRICS 2024.

actually a *family* of many policies

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

specific instance

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes
Yu & Scully. Strongly Tail-Optimal Scheduling
in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes

Harlev, Yu, & Scully. A Gittins Policy for Optimizing Tail Latency. MAMA 2024.

How does the **Boost** policy family work?

How does the **Boost** policy family work?

How do we achieve strong tail optimality?

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How do we achieve strong tail optimality?

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How do we achieve strong tail optimality?

problem

Where do optimal policies come from?

Where do optimal policies come from?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How to handle range of sizes?

Why is achieving strong tail optimality hard?

Batch version of minimizing *C*?

How does the **Boost** policy family work?

How to handle range of sizes?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How to handle range of sizes?

Why is achieving strong tail optimality hard?

Batch version of minimizing *C*?

How does the **Boost** policy family work?

Key information:

boosted arrival time

boosted arrival time

boosted arrival time

boosted arrival time bigger boosts

= arrival time boost(size)

16

= arrival time - boost(size)

smaller sizes get

bigger boosts

boosted arrival time

Scheduling rule: always serve job of minimum boosted arrival time

boosted arrival time

Scheduling rule: always serve job of minimum boosted arrival time

boosted arrival time
= arrival time - boost(size)
can vary choice of
boost function

can be preemptive or nonpreemptive

Scheduling rule: always serve job of minimum boosted arrival time

boosted arrival time
= arrival time - boost(size)
can vary choice of
boost function

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t} \qquad \qquad C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

FCFS

$$T_{\text{FCFS}} = W + S$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

FCFS

$$T_{\text{FCFS}} = W + S$$
 work

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$
 work
 $C_{\text{FCFS}} = C_W \mathbf{E} [e^{\gamma S}]$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{ ext{FCFS}} = W + S$$
 work

$$C_{ ext{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

FCFS

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

Boost

$$T_{\text{Boost}} \approx W + S - b(S) + V$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{ ext{FCFS}} = W + S$$
 work

$$C_{ ext{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

Boost boost function
$$T_{\text{Boost}} \approx W + S - b(S) + V$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{ ext{FCFS}} = W + S$$
 work

$$C_{ ext{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{ ext{FCFS}} = W + S$$
 work
 $C_{ ext{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$
 $\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$V = crossing work$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$V = crossing work$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$V = crossing work$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$V =$$
crossing work

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$V = crossing work$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

V =crossing work

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

V = crossing work

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$"\infty \cdot \mathbf{P}[T > \infty]"$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$"\infty \cdot \mathbf{P}[T > \infty]"$$
Always zero in batch setting

batch setting

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

Batch problem: minimize

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{Finite batch problem?}$$

$$\mathbf{P}[T > \infty]$$

$$\mathbf{P}[T > \infty]$$

Always zero in batch setting

Makes sense in batch setting!

almost classic problem

Batch problem: minimize

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

Batch problem: minimize

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

Batch problem: minimize

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

Classic metric: mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Batch problem: minimize

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

$$t_i = d_i - a_i$$

$$a_i = \text{arrival time of job } i$$

$$d_i = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

Classic metric: mean weighted discounted departure time $\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Batch problem: minimize

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

$$t_i = d_i - a_i$$

$$a_i = \text{arrival time of job } i$$

$$d_i = \text{departure time of job } i$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

Classic metric: mean weighted discounted departure time $\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Batch problem: minimize

$$t_i = d_i - a_i$$

 $a_i =$ arrival time of job i
 $d_i =$ departure time of job i

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$
 $\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$
 $\gamma > 0$

Classic metric: mean weighted discounted departure time $\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Batch problem: minimize before
$$a_i$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

 a_i = arrival time of job i

 d_i = departure time of job i

 $t_i = d_i - a_i$

Classic metric: mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

can't start i

can't start i

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

Batch problem: minimize before
$$a_i$$

$$a_i = \text{arrival time of job } i$$

$$d_i = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$\gamma > 0$$

Classic metric: mean weighted discounted departure time $\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$ discounted departure time

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

can't start i

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

Batch problem: minimize before
$$a_i$$

$$a_i = \text{arrival time of job } i$$

$$d_i = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$\gamma > 0$$

Classic metric: mean weighted discounted departure time $\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$ discounted departure time

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

$$\gamma\text{-Boost}$$

Batch problem: minimize

can't start i before a_i

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

$$t_i = d_i - a_i$$

$$a_i = \text{arrival time of job } i$$

$$d_i = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$\gamma > 0$$

Classic metric: mean weighted discounted departure time

$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Relaxation solved by (sign-flipped) WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$
Unknown sizes:
swap WDSPT for Gittins

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Our contributions:

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

Prove **Boost** is *strongly tail-optimal* for light-tailed sizes

Known job sizes
Yu & Scully. Strongly Tail-Optimal Scheduling
in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes

Harlev, Yu, & Scully. A Gittins Policy for

Optimizing Tail Latency. MAMA 2024.

Our contributions:

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes
Yu & Scully. Strongly Tail-Optimal Scheduling
in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes
Harlev, Yu, & Scully. A Gittins Policy for
Optimizing Tail Latency. MAMA 2024.

Our contributions:

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes
Yu & Scully. Strongly Tail-Optimal Scheduling
in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes
Harlev, Yu, & Scully. A Gittins Policy for
Optimizing Tail Latency. MAMA 2024.

Our contributions:

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

$$y-Boost:$$

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes

Yu & Scully. Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes

Harlev, Yu, & Scully. A Gittins Policy for Optimizing Tail Latency. MAMA 2024.

Bonus slides

Impact of job size variance

Low variance

High variance

Sensitivity analysis

Misspecified γ

Noisy size information

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T > t] \sim Ct^{-\gamma}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

"S Pareto-ish" (regularly varying)

$$P[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T > t] \sim Ct^{-\gamma}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

"S Pareto-ish" (regularly varying)

$$P[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

"S Pareto-ish" (regularly varying)

$$P[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$
 $C_{\pi} = tail \ constant \ of \ \pi$

"S Pareto-ish" (regularly varying)

$$P[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

"S exponential-ish or lighter" (class I)

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$
 $C_{\pi} = tail \ constant \ of \ \pi$

$$C_{\pi}$$
 = tail constant of π

Weak optimality:

maximize γ_{π}

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

"S exponential-ish or lighter" (class I)

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$
 $C_{\pi} = tail \ constant \ of \ \pi$

Weak optimality:

maximize γ_{π}

Strong optimality:

maximize γ_{π} , minimize C_{π}

Heavy-tailed sizes	Light-tailed sizes

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)		
FCFS		

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	
FCFS		optimal γ

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
Main cause of large T?		

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
Main cause of large T?	"Catastrophe" one giant job	

Heavy-1	taile	ed	sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

optimal
$$\gamma = \alpha$$

I'm the

giant job

pessimal γ

FCFS

pessimal $\gamma = \alpha - 1$

optimal γ

"Catastrophe" one giant job

Heavy-	tail	led	sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

optimal $\gamma = \alpha$

I'm the giant job

pessimal γ

FCFS

pessimal $\gamma = \alpha - 1$

I'm stuck behind the giant job

optimal y

Main cause of large T?

"Catastrophe"

one giant job

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

optimal $\gamma = \alpha$

I'm the giant job

pessimal γ

FCFS

pessimal $\gamma = \alpha - 1$

I'm stuck behind the giant job optimal γ

Main cause of large T?

"Catastrophe"

one giant job

II	40:1	1.4	01700
Heavy-	lali	leu	Sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

optimal $\gamma = \alpha$ I'm the

giant job

pessimal γ

FCFS

Main cause of large T?

pessimal $\gamma = \alpha - 1$

I'm stuck behind the giant job

"Catastrophe" one giant job

optimal γ

I see lots of work when I arrive

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

(least attained service)

FCFS

Main cause of large T?

pessimal
$$\gamma = \alpha - 1$$
I'm stuck behind the giant job

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
SRPT or LAS with just two buckets		
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	

"Catastrophe" one giant job

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	intermediate γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ lots of bucket 1 jobs are passing me
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	intermediate γ
Main cause	"Catastrophe"	"Conspiracy"

one giant job

of large *T*?

lots of biggish jobs

	Heavy-tailed sizes	Light-taile I'm a very big job, lots of smaller jobs
SRPT, LAS, etc. (least attained service)	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ lots of bucket 1 jobs are passing me
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	intermediate γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

I'm a very big job, lots of smaller jobs Light-taile are passing me SRPT, LAS, etc. pessimal γ (least attained service) I'm in bucket 2, lots of bucket 1 jobs are passing me **FCFS** SRPT or LAS with intermediate y just two buckets Main cause of large *T*? "Conspiracy" lots of biggish jobs

SRPT, LAS, etc.

(least attained service)

FCFS

SRPT or LAS with just two buckets

Main cause of large *T*?

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

$$R_{\pi} < \infty$$

Strongly optimal

$$R_{\pi}=1$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy-tailed sizes

Light-tailed sizes

Weakly optimal

$$R_{\pi} < \infty$$

Strongly optimal

$$R_{\pi}=1$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

TT	1 1	
Heavy-tail		C17PC
ricavy tar	LCU	DIZCO

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

SRPT

PS (processor sharing)

LAS (least attained service)

Strongly optimal

 $R_{\pi}=1$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy-tailed	sizes

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy-tailed sizes

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

$$R_{\pi} < \infty$$

Preemptive LCFS

Strongly optimal

$$R_{\pi}=1$$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

FCFS? [Wierman & Zwart, 2012]

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)
Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

FCFS? [Wierman & Zwart, 2012]

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et al., 2021]

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

meorem:

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)
Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)
Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et/

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)