Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1

Ziv Scully Cornell ORIE

Joint work with

George Yu Cornell ORIE Amit Harley Cornell CAM

Minimize
$$\begin{cases} \mathbf{P}[T > t]? \\ \mathbf{E}[(T - t)^{+}]? \\ \text{quantiles of } T? \end{cases}$$

Practice: important

Theory: very hard

Practice: important

Theory: very hard

Practice: important

Theory: very hard

Tractable: study $t \rightarrow \infty$

asymptotics

Optimizing tail asymptotics

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

$$R_{\pi} < \infty$$

Strongly optimal

$$R_{\pi}=1$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy-tailed sizes

Light-tailed sizes

Weakly optimal

$$R_{\pi} < \infty$$

Strongly optimal

$$R_{\pi}=1$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

	1 1	
Heavy-tai	led	S17.PS
ricary tar	104	

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

SRPT

PS (processor sharing)

LAS (least attained service)

Strongly optimal

$$R_{\pi}=1$$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy	/-tail	led	sizes

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy-tailed sizes

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Heavy-tailed sizes

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

FCFS? [Wierman & Zwart, 2012]

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)
Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

FCFS? [Wierman & Zwart, 2012]

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

Theorem: $R_{\text{Nudge}} < R_{\text{FCFS}}$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

LAS (least attained service)

Theorem:

 $R_{\rm Nudge} < R_{\rm FCFS}$

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)
Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Weakly optimal $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)
Nudge [Grosof et al., 2021]

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

Weakly optimal

 $R_{\pi} < \infty$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et/

Strongly optimal

 $R_{\pi}=1$

SRPT

PS (processor sharing)

Asymptotic tail ratio:
$$R_{\pi} = \sup_{\pi'} \limsup_{t \to \infty} \frac{\mathbf{P}[T_{\pi} > t]}{\mathbf{P}[T_{\pi'} > t]}$$

Light-tailed sizes

$$R_{\pi} < \infty$$

Preemptive LCFS

FCFS (first-come first-served)

Nudge [Grosof et

Strongly optimal

$$R_{\pi}=1$$

SRPT

PS (processor sharing)

Design the **Boost** scheduling policy

Analyze Boost's performance

actually a family of many policies

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

actually a family of many policies

all instances

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

actually a family of many policies

Design the Boost scheduling policy

Analyze Boost's performance

all instances

specific instance called γ-Boost

actually a family of many policies

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

all instances

specific instance called γ-Boost

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes

Yu & Scully. Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1. SIGMETRICS 2024.

actually a *family* of many policies

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

specific instance called **γ-Boost**

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes
Yu & Scully. Strongly Tail-Optimal Scheduling
in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes

Harlev, Yu, & Scully. A Gittins Policy for Optimizing Tail Latency. MAMA 2024.

How does the **Boost** policy family work?

How does the **Boost** policy family work?

How do we achieve strong tail optimality?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How do we achieve strong tail optimality?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How do we achieve strong tail optimality?

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T > t] \sim Ct^{-\gamma}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

"S Pareto-ish" (regularly varying)

$$P[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T > t] \sim Ct^{-\gamma}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

"S Pareto-ish" (regularly varying)

$$P[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

$$\mathbf{P}[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$
 $C_{\pi} = tail \ constant \ of \ \pi$

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

"S exponential-ish or lighter" (class I)

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$
 $C_{\pi} = tail \ constant \ of \ \pi$

$$C_{\pi}$$
 = tail constant of π

Weak optimality:

maximize γ_{π}

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

"S exponential-ish or lighter" (class I)

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$
 $C_{\pi} = tail \ constant \ of \ \pi$

Weak optimality:

maximize γ_{π}

Strong optimality:

maximize γ_{π} , minimize C_{π}

"S Pareto-ish" (regularly varying)

$$\mathbf{P}[S > s] \sim As^{-\alpha}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} t^{-\gamma_{\pi}}$$

Light-tailed sizes

"S exponential-ish or lighter" (class I)

$$P[S > s] \sim Ae^{-\alpha s}$$

$$\mathbf{P}[T_{\pi} > t] \sim C_{\pi} e^{-\gamma_{\pi} t}$$

$$\gamma_{\pi}=decay\ rate\ of\ \pi$$

$$\gamma_{\pi} = decay \ rate \ of \ \pi$$

$$C_{\pi} = tail \ constant \ of \ \pi$$

Weak optimality:

maximize γ_{π}

Strong optimality:

maximize γ_{π} , minimize C_{π}^{ν}

$$R_{\pi} = \frac{C_{\pi}}{\inf_{\pi'} C_{\pi'}}$$

Heavy-tailed sizes	Light-tailed sizes

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.		
FCFS		

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	
FCFS		optimal γ

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
Main cause of large T?		

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
Main cause of large T?	"Catastrophe" one giant job	

Heavy-	tail	led	sizes

Light-tailed sizes

SRPT, LAS, etc.

optimal
$$\gamma = \alpha$$
I'm the giant job

pessimal γ

FCFS

pessimal
$$\gamma = \alpha - 1$$

optimal γ

"Catastrophe" one giant job

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$ I'm the giant job	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$ I'm stuck behind the giant job	optimal γ
Main cause of large T?	"Catastrophe" one giant job	

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$ I'm the giant job	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$ I'm stuck behind the giant job	optimal γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

**	. •1	1 1	•
Heavy	_ † 21		C17AC
11Cavy	-tan	LCU	217 (2)

Light-tailed sizes

SRPT, LAS, etc.

optimal
$$\gamma = \alpha$$
I'm the giant job

pessimal γ

FCFS

pessimal $\gamma = \alpha - 1$ I'm stuck behind the giant job

optimal γ

when I arrive

Main cause of large T?

"Catastrophe" one giant job

"Conspiracy" lots of biggish jobs

I see lots of work

Heavy-tailed sizes

Light-tailed sizes

SRPT, LAS, etc.

FCFS

Main cause of large T?

optimal $\gamma = \alpha$ I'm the

I'm the giant job

pessimal $\gamma = \alpha - 1$

I'm stuck behind the giant job

"Catastrophe" one giant job

pessimal γ

I'm a very big job, lots of smaller jobs are passing me

optimal γ

I see lots of *work* when I arrive

"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
	66Cataataatha?	
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
SRPT or LAS with just two buckets		
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

Heavy-tailed sizes	

Light-tailed sizes

SRPT, LAS, etc.

optimal $\gamma = \alpha$

pessimal γ

FCFS

pessimal $\gamma = \alpha - 1$

optimal γ

SRPT or LAS with just two buckets

pessimal $\gamma = \alpha - 1$

"Catastrophe" one giant job

"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	intermediate γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-tailed sizes
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ lots of bucket 1 jobs are passing me
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	intermediate γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

	Heavy-tailed sizes	Light-taile I'm a very big job, lots of smaller jobs
SRPT, LAS, etc.	optimal $\gamma = \alpha$	pessimal γ
FCFS	pessimal $\gamma = \alpha - 1$	optimal γ lots of bucket 1 jobs are passing me
SRPT or LAS with just two buckets	pessimal $\gamma = \alpha - 1$	intermediate γ
Main cause of large T?	"Catastrophe" one giant job	"Conspiracy" lots of biggish jobs

I'm a very big job, lots of smaller jobs Light-taile are passing me pessimal γ SRPT, LAS, etc. I'm in bucket 2, lots of bucket 1 jobs are passing me **FCFS** SRPT or LAS with intermediate γ just two buckets Main cause of large *T*? "Conspiracy" lots of biggish jobs

SRPT, LAS, etc.

FCFS

SRPT or LAS with just two buckets

Main cause of large T?

"Conspiracy" lots of biggish jobs

Nudge [Grosof et al., 2021]

• small job can pass one large job

Nudge [Grosof et al., 2021]

• small job can pass one large job

Nudge [Grosof et al., 2021]

• small job can pass one large job

- small job can pass one large job
- large job can't be passed twice

- small job can pass one large job
- large job can't be passed twice

- small job can pass one large job
- large job can't be passed twice

- small job can pass one large job
- large job can't be passed twice

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Theorem:

 $C_{\rm Nudge} < C_{\rm FCFS}$

Nudge [Grosof et al., 2021]

- small job can pass one large job
- large job can't be passed twice

Theorem:

 $C_{\rm Nudge} < C_{\rm FCFS}$

More complex variants get even lower C

[Van Houdt, 2022; Charlet & Van Houdt, 2024]

Can we beat Nudge?

Can we beat Nudge?

Can we beat Nudge?

Can we beat Nudge?

Can we beat Nudge?

Can we beat Nudge?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How to handle range of sizes?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How to handle range of sizes?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

How to handle range of sizes?

Why is achieving strong tail optimality hard?

Batch version of minimizing *C*?

How does the **Boost** policy family work?

Key information:

boosted arrival time

boosted arrival time

boosted arrival time

boosted arrival time bigger boosts

= arrival time - boost(size)

boosted arrival time

= arrival time - boost(size)

smaller sizes get

bigger boosts

Boost policies

boosted arrival time

Boost policies

Scheduling rule: always serve job of minimum boosted arrival time

boosted arrival time

Boost policies

Scheduling rule: always serve job of minimum boosted arrival time

boosted arrival time
= arrival time - boost(size)

can vary choice of
boost function

Boost policies

can be preemptive or nonpreemptive

Scheduling rule: always serve job of minimum boosted arrival time

boosted arrival time
= arrival time - boost(size)
can vary choice of
boost function

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t} \qquad \qquad C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$
 work

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$
 $C_{\text{ECFS}} = C_W \mathbf{E} [e^{\gamma S}]$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

FCFS

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

Boost

$$T_{\text{Boost}} \approx W + S - b(S) + V$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$T_{\text{FCFS}} = W + S$$

$$\text{work}$$

$$C_{\text{FCFS}} = C_W \mathbf{E}[e^{\gamma S}]$$

$$\lim_{t \to \infty} e^{\gamma t} \mathbf{P}[W > t]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

Boost boost function
$$T_{\text{Boost}} \approx W + S - b(S) + V$$

$$\text{crossing work}$$

$$C_{\text{Boost}} = C_W \mathbf{E}[e^{\gamma(S - b(S))}] \mathbf{E}[e^{\gamma V}]$$

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$\mathbf{P}[T > t] \sim Ce^{-\gamma t}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$
final value theorem

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{``0 · E}[e^{\gamma T}]\text{''}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{``0 · E}[e^{\gamma T}]\text{''}$$

Minimizing C is like minimizing $\mathbf{E}[e^{\gamma T}]...$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{``0 · E}[e^{\gamma T}]\text{''}$$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$... which we can turn into a finite batch problem!

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{"0} \cdot \mathbf{E}[e^{\gamma T}]$$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$

 a_i = arrival time of job i

 d_i = departure time of job i

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{``0 · E}[e^{\gamma T}]\text{''}$$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

$$t_i = d_i - a_i$$

$$a_i = \text{arrival time of job } i$$

$$d_i = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

$$C = \lim_{t \to \infty} e^{\gamma t} \mathbf{P}[T > t] = \lim_{\theta \to \gamma} \frac{\gamma - \theta}{\gamma} \mathbf{E}[e^{\theta T}]$$

$$\text{``0 · E}[e^{\gamma T}]\text{''}$$

Minimizing C is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$

$$t_i = d_i - a_i$$
 $a_i = \text{arrival time of job } i$
 $d_i = \text{departure time of job } i$
 $\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of iob}$

$$d_i = \text{departure time of job } i$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

Mean weighted discounted departure time: $\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_i} e^{\gamma d_i}$$

Mean weighted discounted departure time: $\frac{1}{n}\sum_{i=1}^{n}w_{i}e^{-\theta d_{i}}$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$

 $a_i = \text{arrival time of iob}$

$$d_i = \text{departure time of job } i$$

$$\begin{aligned}
t_i &= d_i - a_i \\
a_i &= \text{arrival time of job } i \\
d_i &= \text{departure time of job } i
\end{aligned}$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^n e^{\gamma t_i} = \frac{1}{n} \sum_{i=1}^n e^{-\gamma a_i} e^{\gamma d_i}$$

Mean weighted discounted departure time:
$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$... which we can turn into a finite batch problem!

$$t_i = d_i - a_i$$

$$a_{i} = \text{arrival time of job } i$$

$$a_{i} = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_{i}} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_{i}} e^{\gamma d_{i}}$$

$$\gamma > 0$$

Mean weighted discounted departure time:
$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Minimizing *C* is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

can't start i before a_i

$$t_i = d_i - a_i$$

$$t_{i} = d_{i} - a_{i}$$

$$a_{i} = \text{arrival time of job } i$$

$$d_{i} = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_{i}} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_{i}} e^{\gamma d_{i}}$$

$$\gamma > 0$$

Mean weighted discounted departure time:
$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Minimizing C is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

can't start i

$$t_i = d_i - a_i$$

$$t_{i} = d_{i} - a_{i}$$

$$a_{i} = \text{arrival time of job } i$$

$$d_{i} = \text{departure time of job } i$$

$$\mathbf{E}[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_{i}} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_{i}} e^{\gamma d_{i}}$$

$$\gamma > 0$$

Relaxation solved by WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

Mean weighted discounted departure time:
$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Minimizing C is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

can't start i

$$t_i = d_i - a_i$$

$$t_{i} = d_{i} - a_{i}$$

$$a_{i} = \text{arrival time of job } i$$

$$d_{i} = \text{departure time of job } i$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_{i}} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_{i}} e^{\gamma d_{i}}$$

Relaxation solved by WDSPT, which is **Boost** with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

Mean weighted discounted departure time:
$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Minimizing C is like minimizing $\mathbf{E}[e^{\gamma T}]...$

... which we can turn into a finite batch problem!

can't start i before a_i

$$t_i = d_i - a_i$$
 $a_i = \text{arriva}$
 $Unknown \ sizes:$
 $d_i = \text{depar}$
 $Swap \ WDSPT \ for \ Gittins$

$$t_{i} = d_{i} - a_{i}$$

$$a_{i} = \text{arriv:}$$

$$d_{i} = \text{depar}$$
Unknown sizes:
$$d_{i} = \text{depar}$$

$$E[e^{\gamma T}] = \frac{1}{n} \sum_{i=1}^{n} e^{\gamma t_{i}} = \frac{1}{n} \sum_{i=1}^{n} e^{-\gamma a_{i}} e^{\gamma d_{i}}$$

$$\gamma > 0$$

Relaxation solved by WDSPT, which is Boost with

$$b(s) = \frac{1}{\gamma} \log \frac{1}{1 - e^{-\gamma s}}$$

Mean weighted discounted departure time:
$$\frac{1}{n} \sum_{i=1}^{n} w_i e^{-\theta d_i}$$

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Boost

Why is achieving strong tail optimality hard?

How does the **Boost** policy family work?

Empirical performance

Our contributions:

Design the **Boost** scheduling policy

Analyze **Boost**'s performance

all instances

specific instance called γ-Boost

Prove Boost is strongly tail-optimal for light-tailed sizes

Known job sizes

Yu & Scully. Strongly Tail-Optimal Scheduling in the Light-Tailed M/G/1. SIGMETRICS 2024.

Unknown job sizes

Harlev, Yu, & Scully. A Gittins Policy for Optimizing Tail Latency. MAMA 2024.