The Role of Advanced Math in Teaching Performance Modeling

Ziv Scully Cornell ORIE

TeaPACS 2023

Analyzing systems

Analyzing systems

- exact model analysis
- guide simulation
- what to measure?

Analyzing systems

Describing systems

- exact model analysis
- guide simulation
- what to measure?

Analyzing systems

Describing systems

Designing and optimizing systems

- find optimal policies
- evaluate heuristics
- what to optimize?

What role does math play?

- exact model analysis
- guide simulation
- what to measure?

stochastic modeling

- define load, stability
- what is predictable?

Analyzing systems

Describing systems

Designing and optimizing systems

- find optimal policies
- evaluate heuristics
- what to optimize?

What role does math play?

- exact model analysis
- guide simulation
- what to measure?

stochastic modeling

- define load, stability
- what is predictable?

Analyzing systems

Describing systems

Performance modeling needs advanced math

Performance modeling needs advanced math

We can teach advanced math accessibly

Part 1 Performance modeling needs advanced math

Part 2

We can teach advanced math accessibly

Part 1 Performance modeling needs advanced math

Part 2 We can teach advanced math accessibly

Heavy tails are ubiquitous

[Zhao et al., 2022]

Jobs have complex structure

Heavy tails are ubiquitous Finite-state Markov chains aren't enough

[Zhao et al., 2022]

Jobs have complex structure

Heavy tails are ubiquitous Finite-state Markov chains aren't enough

[Zhao et al., 2022]

Jobs have complex structure Age and remaining work aren't enough

Heavy tails are ubiquitous Finite-state Markov chains aren't enough

[Zhao et al., 2022]

Jobs have complex structure Age and remaining work aren't enough

> **Need:** general Markov processes

[Huang et al., 2020]

[Huang et al., 2020]

[Bronson et al., 2020]

Theory: SRPT

SRPT in networks

Theory: SRPT

Practice: Homa

[Montazeri et al., 2020]

SRPT in networks

Theory: SRPT

Practice: Homa

[Montazeri et al., 2020]

Continuous priority, no overhead/delay

SRPT in networks

Theory: SRPT

Continuous priority, no overhead/delay

Practice: Homa

[Montazeri et al., 2020]

Discrete priorities, overheads/delays

SRPT in networks

Theory: SRPT

Practice: Homa

[Montazeri et al., 2020]

Continuous priority, no overhead/delay Discrete priorities, overheads/delays

Need: analyze variety of scheduling policies

22: **end if**

23: end function

[Atre et al., 2020]

[Atre et al., 2020]

Need: expectations from different perspectives

Part 1 Performance modeling needs advanced math

Part 2

We can teach advanced math accessibly
Part 1 Performance modeling needs advanced math

Part 2 We can teach advanced math accessibly

Part 1 Performance modeling needs advanced math

Part 2 We can teach advanced math accessibly

Part 1 Performance modeling needs advanced math

Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving

• Principles: rules that work most of the time

Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving

- Principles: rules that work most of the time
- *Recipes:* common patterns for using principles

Problem: how to know when to hand-wave? **Solution:** clear rules for hand-waving

- *Principles:* rules that work most of the time
- Recipes: common patterns for using principles

Problem: how to know when to hand-wave? **Solution:** clear rules for hand-waving

- Principles: rules that work most of the time
- *Recipes:* common patterns for using principles

Problem: each topic needs many principlesSolution: focus on a few very powerful topics

Description: model with *Markov processes*

Description: model with *Markov processes*

Metrics: define using long-run averages

Description: model with *Markov processes*

Metrics: define using long-run averages

Analysis: reduce to questions about drift

State: all info we need to describe evolution

State: all info we need to describe evolution

current state

State: all info we need to describe evolution

current state

State: all info we need to describe evolution

State: all info we need to describe evolution

State: all info we need to describe evolution

Goal: clear process definition

State: all info we need to describe evolution

Goal: clear process definition *Non-goal (yet):* tractable analysis

State: all info we need to describe evolution

Goal: clear process definition *Non-goal (yet):* tractable analysis *Non-goal:* verifying Markov property

State: list with remaining work of each job

$$[r_1,\ldots,r_n]$$

State: list with remaining work of each job $[r_1, \ldots, r_n]$

State: list with remaining work of each job $[r_1, \ldots, r_n]$

Dynamics:

• If list nonempty: decrease r_1 at rate 1

State: list with remaining work of each job $[r_1, \ldots, r_n]$

- If list nonempty: decrease r_1 at rate 1
- When $r_1 = 0$: remove r_1 from list

State: list with remaining work of each job $[r_1, \ldots, r_n]$

- If list nonempty: decrease r_1 at rate 1
- When $r_1 = 0$: remove r_1 from list
- Poisson(λ): draw from *S*, append it to list

State: list with remaining work of each job $[r_1, \ldots, r_n]$

- If list nonempty: decrease r_1 at rate 1
- When $r_1 = 0$: remove r_1 from list
- Poisson(λ): draw from *S*, append it to list

Work:
$$w([r_1, ..., r_n]) = r_1 + \dots + r_n$$

State: list with remaining work of each job $[r_1, \ldots, r_n]$

Dynamics:

- If list nonempty: decrease r_1 at rate 1
- When $r_1 = 0$: remove r_1 from list
- Poisson(λ): draw from *S*, append it to list

Work:
$$w([r_1, ..., r_n]) = r_1 + \dots + r_n$$

Queue length: $q([r_1, ..., r_n]) = (n-1)^+$

X(t) =state at time t

mean waiting time = $\mathbf{E}_{arrival}[w(X)]$

mean number in queue = $\mathbf{E}_{time}[q(X)]$

X(t) =state at time t

mean waiting time = $\mathbf{E}_{arrival}[w(X)]$

mean number in queue = $\mathbf{E}_{\text{time}}[q(X)]$

X(t) =state at time t

mean waiting time = $\mathbf{E}_{arrival}[w(X)]$

mean number in queue = $\mathbf{E}_{\text{time}}[q(X)]$

X(t) =state at time t

mean waiting time = $\mathbf{E}_{arrival}[w(X)]$

mean number in queue = $\mathbf{E}_{\text{time}}[q(X)]$

Base principle: when averaging over entire timeline, *ignore edge effects*

Base principle: when averaging over entire timeline, *ignore edge effects*

Little's law

Base principle: when averaging over entire timeline, *ignore edge effects*

Base principle: when averaging over entire timeline, *ignore edge effects*

Base principle: when averaging over entire timeline, *ignore edge effects*

Rate conservation law: for any f, average rate of change in f(X) is 0

Base principle: when averaging over entire timeline,

Rate conservation law: for any f, average rate of change in f(X) is 0

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

 $0 = \mathbf{E}_{\text{time}} \Big[\frac{\partial}{\partial r_1} f(X) \Big] \\ + \lambda \mathbf{E}_{\text{departure}} \Big[f(\text{tail}(X)) - f(X) \Big] \\ + \lambda \mathbf{E}_{\text{arrival}} \Big[f(\text{join}(X, [S])) - f(X) \Big]$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

 $0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

 $0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

 $0 = \mathbf{E}_{\text{time}} \begin{bmatrix} \frac{\partial}{\partial r_1} f(X) \end{bmatrix} \\ + \lambda \mathbf{E}_{\text{departure}} \begin{bmatrix} f(\text{tail}(X)) - f(X) \end{bmatrix} \\ + \lambda \mathbf{E}_{\text{arrival}} \begin{bmatrix} f(\text{join}(X, [S])) - f(X) \end{bmatrix}$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

 $0 = \mathbf{E}_{\text{time}} \begin{bmatrix} \frac{\partial}{\partial r_1} f(X) \end{bmatrix}$ + $\lambda \mathbf{E}_{\text{departure}} \begin{bmatrix} f(\text{tail}(X)) - f(X) \end{bmatrix}$ + $\lambda \mathbf{E}_{\text{arrival}} \begin{bmatrix} f(\text{join}(X, [S])) - f(X) \end{bmatrix}$

$$f(x) = w(x)$$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

 $\mathbf{P}_{\text{time}}[X \text{ empty}] = 1 - \lambda \mathbf{E}[S]$

 $0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

f(x) = w(x) $\int \mathbf{P}_{\text{time}}[X \text{ empty}] = 1 - \lambda \mathbf{E}[S]$

 $f(x) = w(x)^2$

 $0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

f(x) = w(x)

 $\mathbf{P}_{\text{time}}[X \text{ empty}] = 1 - \lambda \mathbf{E}[S]$

 $0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

 $f(x) = w(x)^{2}$ $\int_{\text{time}} \frac{\lambda}{2} E[S^{2}] = \frac{\frac{\lambda}{2} E[S^{2}]}{1 - \lambda E[S]}$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from *S*, append it to list

f(x) = w(x)

 $0 = \mathbf{E}_{\text{time}} \begin{bmatrix} \frac{\partial}{\partial r_1} f(X) \end{bmatrix} \\ + \lambda \mathbf{E}_{\text{departure}} \begin{bmatrix} f(\text{tail}(X)) - f(X) \end{bmatrix} \\ + \lambda \mathbf{E}_{\text{arrival}} \begin{bmatrix} f(\text{join}(X, [S])) - f(X) \end{bmatrix}$

 $f(x) = w(x)^{2}$ $E_{\text{time}}[w(X)] = \frac{\frac{\lambda}{2}E[S^{2}]}{1 - \lambda E[S]}$ Principle: PASTA $E_{\text{arrival}}[\cdot] = E_{\text{time}}[\cdot]$

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list

 $0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right]$

Poisson(λ): draw from *S*, append it to list

f(x) = w(x) $\int \mathbf{P}_{\text{time}}[X \text{ empty}] = 1 - \lambda \mathbf{E}[S]$

Recipe: to get *n*th-order info, use (n+1)th-order function *f*

 $+ \lambda \mathbf{E}_{departure} [f(tail(X)) - f(X)]$

+ $\lambda \mathbf{E}_{arrival} [f(join(X, [S])) - f(X)]$

Work decomposition law: under M/G arrivals,

$$\mathbf{E}_{\text{time}}[w(X)] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2] + \mathbf{E}_{\text{time}}[u(X)w(X)]}{1 - \lambda\mathbf{E}[S]}$$

Work decomposition law: under M/G arrivals,

$$\mathbf{E}_{\text{time}}[w(X)] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2] + \mathbf{E}_{\text{time}}[u(X)w(X)]}{1 - \lambda\mathbf{E}[S]}$$
unused
service

Work decomposition law: under M/G arrivals,

$$\mathbf{E}_{\text{time}}[w(X)] = \frac{\frac{\lambda}{2}\mathbf{E}[S^2] + \mathbf{E}_{\text{time}}[u(X)w(X)]}{1 - \lambda\mathbf{E}[S]}$$
unused
service

M/G/1

 $\mathbf{E}_{\text{time}}[u(X)w(X)] = 0$

Work decomposition law: under M/G arrivals,

$$\mathbf{E}_{\text{time}}[w(X)] = \frac{\frac{\lambda}{2}\mathbf{E}[S^{2}] + \mathbf{E}_{\text{time}}[u(X)w(X)]}{1 - \lambda\mathbf{E}[S]}$$

$$\mathbf{M/G/1}$$

$$\mathbf{M/G/k}$$

$$\mathbf{E}_{\text{time}}[u(X)w(X)] = 0$$

$$\frac{\mathbf{E}_{\text{time}}[u(X)w(X)]}{1 - \lambda\mathbf{E}[S]}$$
is work of $\leq k-1$ jobs

Dispatching systems

Dispatching systems

Key: $\mathbf{E}_{\text{time}}[u(X)w(X)]$

Dispatching systems jobs – dispatcher Key: $\mathbf{E}_{\text{time}}[u(X)w(X)]$ If lots of work, want servers busy

1111

Dispatching systems

Possible policy: dispatch to server with less work

Dispatching systems **Possible policy:** dispatch to server jobs · with less work dispatcher $w_2(x)$ Key: $\mathbf{E}_{\text{time}}[u(X)w(X)]$ If lots of work, want servers busy 111 $\rightarrow w_1(x)$

Dispatching systems

Possible policy: dispatch to server with less work

Dispatching systems **Possible policy:** dispatch to server jobs with less work dispatcher $w_2(x)$ d(x)Key: $\mathbf{E}_{\text{time}}[u(X)w(X)]$ If lots of work, want servers busy $\rightarrow w_1(x)$

state space collapse

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from S, append it to list

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from S, append it to list

$0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

Principle: translating dynamics to mean rate

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from S, append it to list

$0 = \mathbf{E}_{\text{time}} \left[\frac{\partial}{\partial r_1} f(X) \right] \\ + \lambda \mathbf{E}_{\text{departure}} \left[f(\text{tail}(X)) - f(X) \right] \\ + \lambda \mathbf{E}_{\text{arrival}} \left[f(\text{join}(X, [S])) - f(X) \right]$

Principle: translating dynamics to mean rate

Dynamics:

- If list nonempty: decrease head at rate 1
- When head = 0: remove head of list
- Poisson(λ): draw from S, append it to list

Principle: translating dynamics to mean rate

Principle for stability?

Principle for mean field?
What principles do we need?

Part 1 Performance modeling needs advanced math

