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networks

Theory: SRPT Practice: Homa
1 y
- age - age
Continuous priority, Discrete priorities,
no overhead/delay overheads/delays

Need: analyze variety
of scheduling policies




What should we measure?



What should we measure?

Z

3

B's Aggregate Delay: 5




What should we measure?

Algorithm 1 Estimating AggregateDelay

: struct OBJECTMETADATA
NumWindows = 0
CumulativeDelay = 0
WindowStartldx = —co

: function ESTIMATEAGGREGATEDELAY(X: OBJECTMETADATA)
X.CumulativeDelay

return X.NumWindows

: end function

——______100tmesteps _ ______ [AYATA)

1
2
3
4
5:
6
7
8
9

Z

10: function ONAccEss(Timeldx, X: OBJECTMETADATA)
11: // Time since start of the previous miss window

12: TSSW = (Timeldx - X WindowStartldx)

13:
___________________ | 14: if TSSW > Z then

: 15: // This access commences a new miss window
B's Aggregate DEI&y: 5 16: X NumWindows +=1
17: X.CumulativeDelay +=Z
18: X WindowStartldx = Timeldx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if

23: end function




What should we measure?

Algorithm 1 Estimating AggregateDelay

: struct OBJECTMETADATA
NumWindows = 0
CumulativeDelay = 0
WindowStartldx = —co

: function ESTIMATEAGGREGATEDELAY(X: OBJECTMETADATA)
X.CumulativeDelay

return X.NumWindows

: end function

________lootimesteps TAJAJA

1
2
3
4
5:
6
7
8
9

Z

10: function ONAccEss(Timeldx, X: OBJECTMETADATA)
11: // Time since start of the previous miss window
12: TSSW = (Timeldx - X WindowStartldx)

13:
___________________ | 14: if TSSW > Z then

: 15: // This access commences a new miss window
B's Aggregate DEI&y: 5 16: X NumWindows +=1
17: X.CumulativeDelay +=Z
18: X WindowStartldx = Timeldx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if

23: end function

Need: expectations from
different perspectives




Part 1

Performance modeling
needs advanced math

Part 2

We can teach advanced
math accessibly



Part 2

We can teach advanced
math accessibly



Part 2

We can teach advanced
math accessibly

Simplify core
foundations




Part 2

We can teach advanced
math accessibly

Prioritize very
flexible tools

Simplify core
foundations




A Problem: many students lack math background



A Problem: many students lack math background
@ Solution: hand-wave



A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?



A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

@ Solution: clear rules for hand-waving



A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving
* Principles: rules that work most of the time



A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving

* Principles: rules that work most of the time
* Recipes: common patterns for using principles



A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving
* Principles: rules that work most of the time
* Recipes: common patterns for using principles

& Problem: each topic needs many principles



A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving

* Principles: rules that work most of the time
* Recipes: common patterns for using principles

& Problem: each topic needs many principles

@ Solution: focus on a few very powerful topics
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Description via Markov processes

State: all info we need to describe evolution

@ deterministic flow %

current state future states
% stochastic jumps

Goal: clear process definition
Non-goal (yet): tractable analysis
Non-goal: verifying Markov property
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Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

Dynamics:

- If list nonempty: decrease r; at rate 1

* When r1 = 0: remove r1 from list

» Poisson(A): draw from S, append it to list

Work: w([rq,...,r,)=r{+---+r1,

Queue length: q([rq,...,r,])=(n—1)"
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X(t) = state at time t
mean waiting time = Earrival [W(X)]

mean number in queue = Eiime[q(X)]

work work
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Mtime Mtime
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long time
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# arrivals long time

E,rrival [f (X)] =
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Principles for long-run averages

Base principle: when averaging over entire timeline,

requires
stability!

¢
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Palm inversion

for any f, average rate of change in f(X) is O
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Dynamics: ) = w(x)

- If list nonempty: decrease head at rate 1

* When head = 0: remove head of list

- Poisson(A): draw from S, append it to list  Pime[X empty] =1— AE[S]

f0o) = w(x)?
0= Etimel:airlf(X):I
+ AEdeparture | f (tail(X0)) = f(X) ] B ()] = 2]
+ ABauivall f Goin(X, [S])) — £ (X)] e 1— AE[S]

. . Principle: PASTA
Recipe: to get nth-order info, Earrivall*] = Etime["]

use (n+1)th-order function f
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Dispatching systems

Possible policy:
dispatch to server
with less work
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Part 1

Performance modeling
needs advanced math

Part 2

We can teach advanced
math accessibly

Prioritize very
flexible tools

Simplify core
foundations
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