
Ziv Scully
Cornell ORIE

TeaPACS 2023

The Role of Advanced Math

in Teaching Performance Modeling

1

Goals of performance modeling

2

Goals of performance modeling

2

Analyzing systems

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Describing systems

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Describing systems

What role does
math play?

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Describing systems

• exact model analysis
• guide simulation
• what to measure?

What role does
math play?

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Describing systems

• exact model analysis
• guide simulation
• what to measure?

• find optimal policies
• evaluate heuristics
• what to optimize?

What role does
math play?

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Describing systems

• exact model analysis
• guide simulation
• what to measure?

• stochastic modeling
• define load, stability
• what is predictable?

• find optimal policies
• evaluate heuristics
• what to optimize?

What role does
math play?

Goals of performance modeling

2

Analyzing systems

Designing and optimizing systems

Describing systems

• exact model analysis
• guide simulation
• what to measure?

• stochastic modeling
• define load, stability
• what is predictable?

• find optimal policies
• evaluate heuristics
• what to optimize?

What role does
math play?

How much
math?

3

Performance modeling
needs advanced math

3

Performance modeling
needs advanced math

We can teach advanced
math accessibly

3

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Part 2

Part 1

3

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Part 2

Part 1

What do jobs look like?

4

What do jobs look like?

4

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

10
−6

10
−4

10
−2

10
0

10
2

10
410

−4

10
−3

10
−2

10
−1

10
0

)U
aF

tio
n

of
 Mo

bs
 w

ith
 u

sa
ge

-in
te

gU
al

 >
x

2019 C3U (1CU-houUs)
2019 PePoUy (10U-houUs)
2011 C3U (1CU-houUs)
2011 PePoUy (10U-houUs)

Figure 12. CCDF of resource-usage-hours by job for 2011 and 2019
– i.e., the fraction of jobs that use at least G resource-hours. Note
the log-log scale.

for memory), and ignore the outliers at the very end of the
tail (the top 0.01% of jobs), we are able to �t our 2019 data
to Pareto distributions with U = 0.69 (CPU) and U = 0.72
(memory) with an '2 goodness of �t of over 99% in both
cases.

Pareto distributions, particularly those with U < 1, exhibit
a strong heavy-tailed property, where a small number of the
largest jobs comprise most of the load [9]. The “heavy-tailed
property” is far more extreme than the commonly cited “80-
20 rule,” where the 20% largest jobs comprise 80% of the load.
In prior empirical studies of compute consumption and �le
sizes [9, 17–20], the authors observe a heavy-tailed property
where the 1% largest jobs comprise 50% of the load. The
heavy-tailed property we observed in the 2019 traces is even
more extreme: the largest 1% of jobs comprise 99.2% of the
CPU load (99.1% of the memory load), and the largest 0.1%
of jobs comprise 93.1% (92.6%) of the load.

We call the largest 1% of jobs hogs, and the remaining 99%
of jobs mice. A later section discusses some of the conse-
quences of this for workload scheduling.

7.1 Comparison with 2011 data
We see a similar story, albeit not quite so extreme, for the
2011 data (see Table 2 and Figure 12). The 2011 data is a factor
of eight smaller in scale than 2019, and the rawmachine sizes
were di�erent. However, we can still directly compare the
squared coe�cient of variation and the overall distribution
parameters, both of which are invariant to normalization.
Additionally, both 2011 and 2019 resource usage values are
measured in terms of the fraction of available resources at
the time, which means that the results have a similar inter-
pretation.
The 2011 data is not that di�erent from the 2019 data:

both sets of data follow Pareto(U) distributions (see Table

Figure 13. Correlation between compute and median memory
consumption for jobs grouped into 1-hour NCU buckets.

2), for both CPU and memory. The 2011 data is somewhat
less variable (⇠2 values for both CPU and memory usage
are about 4 times lower than in 2019)1 and somewhat less
heavy-tailed in terms of the fraction of load made up by the
largest 1% and 0.01% of jobs – but still very high compared
to other published data. Our general characterization of jobs
into hogs and mice appears to hold consistently across the
years.

We note that [27] claimed that Google compute consump-
tion and memory consumption did not follow power-law
distributions in 2011. This is because their analysis looked
at instantaneous job sizes, not the integral of consumption
over time, so we are looking at di�erent signals.

7.2 Correlations between compute and memory
consumption

Given that compute consumption and memory consumption
follow almost the same distribution (see Figure 12), it is
reasonable to ask whether these metrics are correlated. Our
analysis suggests they are. Figure 13 shows NCU-hours on
the x-axis, quantized into buckets of size 1 NCU-hour. For
each of those buckets of size 1 NCU-hour, we plot (on the
y-axis) the median NMU-hours consumed by jobs that fall
within that bucket. The result is almost a straight line (with
Pearson correlation coe�cient of 0.97): the higher the NCU-
hours used, the higher the median NMU-hours. This is not
entirely surprising as the job duration is a common factor of
both metrics.

1Although the ⇠2 values are lower for the 2011 data, both the mean and
variance are higher for the 2011 data. This is consistent with the fact that the
2011 CCDF curves in Figure 12 stochastically dominates the corresponding
2019 CCDF curves.

Heavy tails are ubiquitous

[Tirmazi et al., 2020]

What do jobs look like?

4

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

10
−6

10
−4

10
−2

10
0

10
2

10
410

−4

10
−3

10
−2

10
−1

10
0

)U
aF

tio
n

of
 Mo

bs
 w

ith
 u

sa
ge

-in
te

gU
al

 >
x

2019 C3U (1CU-houUs)
2019 PePoUy (10U-houUs)
2011 C3U (1CU-houUs)
2011 PePoUy (10U-houUs)

Figure 12. CCDF of resource-usage-hours by job for 2011 and 2019
– i.e., the fraction of jobs that use at least G resource-hours. Note
the log-log scale.

for memory), and ignore the outliers at the very end of the
tail (the top 0.01% of jobs), we are able to �t our 2019 data
to Pareto distributions with U = 0.69 (CPU) and U = 0.72
(memory) with an '2 goodness of �t of over 99% in both
cases.

Pareto distributions, particularly those with U < 1, exhibit
a strong heavy-tailed property, where a small number of the
largest jobs comprise most of the load [9]. The “heavy-tailed
property” is far more extreme than the commonly cited “80-
20 rule,” where the 20% largest jobs comprise 80% of the load.
In prior empirical studies of compute consumption and �le
sizes [9, 17–20], the authors observe a heavy-tailed property
where the 1% largest jobs comprise 50% of the load. The
heavy-tailed property we observed in the 2019 traces is even
more extreme: the largest 1% of jobs comprise 99.2% of the
CPU load (99.1% of the memory load), and the largest 0.1%
of jobs comprise 93.1% (92.6%) of the load.

We call the largest 1% of jobs hogs, and the remaining 99%
of jobs mice. A later section discusses some of the conse-
quences of this for workload scheduling.

7.1 Comparison with 2011 data
We see a similar story, albeit not quite so extreme, for the
2011 data (see Table 2 and Figure 12). The 2011 data is a factor
of eight smaller in scale than 2019, and the rawmachine sizes
were di�erent. However, we can still directly compare the
squared coe�cient of variation and the overall distribution
parameters, both of which are invariant to normalization.
Additionally, both 2011 and 2019 resource usage values are
measured in terms of the fraction of available resources at
the time, which means that the results have a similar inter-
pretation.
The 2011 data is not that di�erent from the 2019 data:

both sets of data follow Pareto(U) distributions (see Table

Figure 13. Correlation between compute and median memory
consumption for jobs grouped into 1-hour NCU buckets.

2), for both CPU and memory. The 2011 data is somewhat
less variable (⇠2 values for both CPU and memory usage
are about 4 times lower than in 2019)1 and somewhat less
heavy-tailed in terms of the fraction of load made up by the
largest 1% and 0.01% of jobs – but still very high compared
to other published data. Our general characterization of jobs
into hogs and mice appears to hold consistently across the
years.

We note that [27] claimed that Google compute consump-
tion and memory consumption did not follow power-law
distributions in 2011. This is because their analysis looked
at instantaneous job sizes, not the integral of consumption
over time, so we are looking at di�erent signals.

7.2 Correlations between compute and memory
consumption

Given that compute consumption and memory consumption
follow almost the same distribution (see Figure 12), it is
reasonable to ask whether these metrics are correlated. Our
analysis suggests they are. Figure 13 shows NCU-hours on
the x-axis, quantized into buckets of size 1 NCU-hour. For
each of those buckets of size 1 NCU-hour, we plot (on the
y-axis) the median NMU-hours consumed by jobs that fall
within that bucket. The result is almost a straight line (with
Pearson correlation coe�cient of 0.97): the higher the NCU-
hours used, the higher the median NMU-hours. This is not
entirely surprising as the job duration is a common factor of
both metrics.

1Although the ⇠2 values are lower for the 2011 data, both the mean and
variance are higher for the 2011 data. This is consistent with the fact that the
2011 CCDF curves in Figure 12 stochastically dominates the corresponding
2019 CCDF curves.

Heavy tails are ubiquitous

[Tirmazi et al., 2020]

Jobs have complex structure

[Zhao et al., 2022]

!eryFormer: A Tree Transformer Model for!ery Plan
Representation

Yue Zhao
Nanyang Technological University

zhao0342@e.ntu.edu.sg

Gao Cong
Nanyang Technological University

gaocong@ntu.edu.sg

Jiachen Shi
Nanyang Technological University

jiachen001@e.ntu.edu.sg

Chunyan Miao
Nanyang Technological University

ascymiao@ntu.edu.sg

ABSTRACT
Machine learning has become a prominent method in many data-
base optimization problems such as cost estimation, index selection
and query optimization. Translating query execution plans into
their vectorized representations is non-trivial. Recently, several
query plan representation methods have been proposed. However,
they have two limitations. First, they do not fully utilize readily
available database statistics in the representation, which charac-
terizes the data distribution. Second, they typically have di!culty
in modeling long paths of information "ow in a query plan, and
capturing parent-children dependency between operators.

To tackle these limitations, we propose!eryFormer, a learning-
based query plan representationmodel with a tree-structured Trans-
former architecture. In particular, we propose a novel scheme to
integrate histograms obtained from database systems into query
plan encoding. In addition, to e#ectively capture the information
"ow following the tree structure of a query plan, we develop a
tree-structured model with the attention mechanism. We integrate
!eryFormer into four machine learning models, each for a data-
base optimization task, and experimental results show that !ery-
Former is able to improve performance of these models signi$cantly.

PVLDB Reference Format:
Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. QueryFormer: A
Tree Transformer Model for Query Plan Representation. PVLDB, 15(8):
1658 - 1670, 2022.
doi:10.14778/3529337.3529349

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhaoyue-ntu/QueryFormer.

1 INTRODUCTION
A host of work [9, 16, 17, 30, 36, 37, 39] which leverages machine
learning techniques for database optimizations depends on phys-
ical query plans. A physical query plan describes a sequence of
operations, such as joins and scans, and the algorithms used for
operators during query execution [3]. A physical query plan may

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529349

Index Scan
t. year > 2000

(d)

Index Scan
mi.type_id = 113

(e)

Index Scan
mc.c_id = 2

(c)

Nested Loop

(a)

Nested Loop

(b)

SELECT * FROM
title t,
movie_info mi,
movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id = 2 AND
t.year > 2000

Figure 1: Example query and query plan from JOB-Light.

contain up to hundreds of operations [39] and it can be modeled
as a Directed Acyclic Graph (DAG) where each node describes an
operation and each edge indicates the dependency of two nodes, i.e.,
children nodes are executed $rst and the output of each children
node is fed into the parent. A real-life example of a query and its
query plan is shown in Figure 1.

Physical query plans have been used as the input to the ma-
chine learning models for database optimization tasks such as
cardinality and cost estimation [30], index recommendation [9],
query optimization [16, 17], view selection [37], and join order
selection [18, 36]. Despite targeting on di#erent tasks, the models
proposed in these studies rely on the representations of query plans
to learn the correlations between query plan properties and the
targeted outputs. Therefore, representation learning for physical
query plans, or encoding physical query plans is a cornerstone for
the successful application of machine learning techniques to solve
database tasks with physical plans as the input.

To extract useful features from physical query plans and encode
them into vectors, a number of query plan representation methods
have been proposed. A summary of these approaches is shown in
Table 1 and we will review them and their limitations in Section 2.2.
Overall, they have two limitations: (1) they do not fully utilize the
statistics of database content in the representation, and (2) they have
di!culty in modeling long paths of information "ow and capturing
parent-children dependency.We next illustrate the limitations using
the Tree-LSTMmodel [31] as an example, which is used to represent
physical plans in E2E-Cost [30] for cost estimation. First, E2E-Cost
includes a small sample for each table in the encoding, similar
to the encoding method [12]. However, sampling su#ers from 0-
tuple problem for some queries [22]. In contrast, we argue that
the readily available per-table statistics, such as histograms, can
provide useful knowledge about data distribution [2]. Second, E2E-
Cost uses RNN model, which is generally di!cult to train because

����

What do jobs look like?

4

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

10
−6

10
−4

10
−2

10
0

10
2

10
410

−4

10
−3

10
−2

10
−1

10
0

)U
aF

tio
n

of
 Mo

bs
 w

ith
 u

sa
ge

-in
te

gU
al

 >
x

2019 C3U (1CU-houUs)
2019 PePoUy (10U-houUs)
2011 C3U (1CU-houUs)
2011 PePoUy (10U-houUs)

Figure 12. CCDF of resource-usage-hours by job for 2011 and 2019
– i.e., the fraction of jobs that use at least G resource-hours. Note
the log-log scale.

for memory), and ignore the outliers at the very end of the
tail (the top 0.01% of jobs), we are able to �t our 2019 data
to Pareto distributions with U = 0.69 (CPU) and U = 0.72
(memory) with an '2 goodness of �t of over 99% in both
cases.

Pareto distributions, particularly those with U < 1, exhibit
a strong heavy-tailed property, where a small number of the
largest jobs comprise most of the load [9]. The “heavy-tailed
property” is far more extreme than the commonly cited “80-
20 rule,” where the 20% largest jobs comprise 80% of the load.
In prior empirical studies of compute consumption and �le
sizes [9, 17–20], the authors observe a heavy-tailed property
where the 1% largest jobs comprise 50% of the load. The
heavy-tailed property we observed in the 2019 traces is even
more extreme: the largest 1% of jobs comprise 99.2% of the
CPU load (99.1% of the memory load), and the largest 0.1%
of jobs comprise 93.1% (92.6%) of the load.

We call the largest 1% of jobs hogs, and the remaining 99%
of jobs mice. A later section discusses some of the conse-
quences of this for workload scheduling.

7.1 Comparison with 2011 data
We see a similar story, albeit not quite so extreme, for the
2011 data (see Table 2 and Figure 12). The 2011 data is a factor
of eight smaller in scale than 2019, and the rawmachine sizes
were di�erent. However, we can still directly compare the
squared coe�cient of variation and the overall distribution
parameters, both of which are invariant to normalization.
Additionally, both 2011 and 2019 resource usage values are
measured in terms of the fraction of available resources at
the time, which means that the results have a similar inter-
pretation.
The 2011 data is not that di�erent from the 2019 data:

both sets of data follow Pareto(U) distributions (see Table

Figure 13. Correlation between compute and median memory
consumption for jobs grouped into 1-hour NCU buckets.

2), for both CPU and memory. The 2011 data is somewhat
less variable (⇠2 values for both CPU and memory usage
are about 4 times lower than in 2019)1 and somewhat less
heavy-tailed in terms of the fraction of load made up by the
largest 1% and 0.01% of jobs – but still very high compared
to other published data. Our general characterization of jobs
into hogs and mice appears to hold consistently across the
years.

We note that [27] claimed that Google compute consump-
tion and memory consumption did not follow power-law
distributions in 2011. This is because their analysis looked
at instantaneous job sizes, not the integral of consumption
over time, so we are looking at di�erent signals.

7.2 Correlations between compute and memory
consumption

Given that compute consumption and memory consumption
follow almost the same distribution (see Figure 12), it is
reasonable to ask whether these metrics are correlated. Our
analysis suggests they are. Figure 13 shows NCU-hours on
the x-axis, quantized into buckets of size 1 NCU-hour. For
each of those buckets of size 1 NCU-hour, we plot (on the
y-axis) the median NMU-hours consumed by jobs that fall
within that bucket. The result is almost a straight line (with
Pearson correlation coe�cient of 0.97): the higher the NCU-
hours used, the higher the median NMU-hours. This is not
entirely surprising as the job duration is a common factor of
both metrics.

1Although the ⇠2 values are lower for the 2011 data, both the mean and
variance are higher for the 2011 data. This is consistent with the fact that the
2011 CCDF curves in Figure 12 stochastically dominates the corresponding
2019 CCDF curves.

Heavy tails are ubiquitous

[Tirmazi et al., 2020]

Finite-state Markov chains
aren't enough

Jobs have complex structure

[Zhao et al., 2022]

!eryFormer: A Tree Transformer Model for!ery Plan
Representation

Yue Zhao
Nanyang Technological University

zhao0342@e.ntu.edu.sg

Gao Cong
Nanyang Technological University

gaocong@ntu.edu.sg

Jiachen Shi
Nanyang Technological University

jiachen001@e.ntu.edu.sg

Chunyan Miao
Nanyang Technological University

ascymiao@ntu.edu.sg

ABSTRACT
Machine learning has become a prominent method in many data-
base optimization problems such as cost estimation, index selection
and query optimization. Translating query execution plans into
their vectorized representations is non-trivial. Recently, several
query plan representation methods have been proposed. However,
they have two limitations. First, they do not fully utilize readily
available database statistics in the representation, which charac-
terizes the data distribution. Second, they typically have di!culty
in modeling long paths of information "ow in a query plan, and
capturing parent-children dependency between operators.

To tackle these limitations, we propose!eryFormer, a learning-
based query plan representationmodel with a tree-structured Trans-
former architecture. In particular, we propose a novel scheme to
integrate histograms obtained from database systems into query
plan encoding. In addition, to e#ectively capture the information
"ow following the tree structure of a query plan, we develop a
tree-structured model with the attention mechanism. We integrate
!eryFormer into four machine learning models, each for a data-
base optimization task, and experimental results show that !ery-
Former is able to improve performance of these models signi$cantly.

PVLDB Reference Format:
Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. QueryFormer: A
Tree Transformer Model for Query Plan Representation. PVLDB, 15(8):
1658 - 1670, 2022.
doi:10.14778/3529337.3529349

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhaoyue-ntu/QueryFormer.

1 INTRODUCTION
A host of work [9, 16, 17, 30, 36, 37, 39] which leverages machine
learning techniques for database optimizations depends on phys-
ical query plans. A physical query plan describes a sequence of
operations, such as joins and scans, and the algorithms used for
operators during query execution [3]. A physical query plan may

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529349

Index Scan
t. year > 2000

(d)

Index Scan
mi.type_id = 113

(e)

Index Scan
mc.c_id = 2

(c)

Nested Loop

(a)

Nested Loop

(b)

SELECT * FROM
title t,
movie_info mi,
movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id = 2 AND
t.year > 2000

Figure 1: Example query and query plan from JOB-Light.

contain up to hundreds of operations [39] and it can be modeled
as a Directed Acyclic Graph (DAG) where each node describes an
operation and each edge indicates the dependency of two nodes, i.e.,
children nodes are executed $rst and the output of each children
node is fed into the parent. A real-life example of a query and its
query plan is shown in Figure 1.

Physical query plans have been used as the input to the ma-
chine learning models for database optimization tasks such as
cardinality and cost estimation [30], index recommendation [9],
query optimization [16, 17], view selection [37], and join order
selection [18, 36]. Despite targeting on di#erent tasks, the models
proposed in these studies rely on the representations of query plans
to learn the correlations between query plan properties and the
targeted outputs. Therefore, representation learning for physical
query plans, or encoding physical query plans is a cornerstone for
the successful application of machine learning techniques to solve
database tasks with physical plans as the input.

To extract useful features from physical query plans and encode
them into vectors, a number of query plan representation methods
have been proposed. A summary of these approaches is shown in
Table 1 and we will review them and their limitations in Section 2.2.
Overall, they have two limitations: (1) they do not fully utilize the
statistics of database content in the representation, and (2) they have
di!culty in modeling long paths of information "ow and capturing
parent-children dependency.We next illustrate the limitations using
the Tree-LSTMmodel [31] as an example, which is used to represent
physical plans in E2E-Cost [30] for cost estimation. First, E2E-Cost
includes a small sample for each table in the encoding, similar
to the encoding method [12]. However, sampling su#ers from 0-
tuple problem for some queries [22]. In contrast, we argue that
the readily available per-table statistics, such as histograms, can
provide useful knowledge about data distribution [2]. Second, E2E-
Cost uses RNN model, which is generally di!cult to train because

����

What do jobs look like?

4

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

10
−6

10
−4

10
−2

10
0

10
2

10
410

−4

10
−3

10
−2

10
−1

10
0

)U
aF

tio
n

of
 Mo

bs
 w

ith
 u

sa
ge

-in
te

gU
al

 >
x

2019 C3U (1CU-houUs)
2019 PePoUy (10U-houUs)
2011 C3U (1CU-houUs)
2011 PePoUy (10U-houUs)

Figure 12. CCDF of resource-usage-hours by job for 2011 and 2019
– i.e., the fraction of jobs that use at least G resource-hours. Note
the log-log scale.

for memory), and ignore the outliers at the very end of the
tail (the top 0.01% of jobs), we are able to �t our 2019 data
to Pareto distributions with U = 0.69 (CPU) and U = 0.72
(memory) with an '2 goodness of �t of over 99% in both
cases.

Pareto distributions, particularly those with U < 1, exhibit
a strong heavy-tailed property, where a small number of the
largest jobs comprise most of the load [9]. The “heavy-tailed
property” is far more extreme than the commonly cited “80-
20 rule,” where the 20% largest jobs comprise 80% of the load.
In prior empirical studies of compute consumption and �le
sizes [9, 17–20], the authors observe a heavy-tailed property
where the 1% largest jobs comprise 50% of the load. The
heavy-tailed property we observed in the 2019 traces is even
more extreme: the largest 1% of jobs comprise 99.2% of the
CPU load (99.1% of the memory load), and the largest 0.1%
of jobs comprise 93.1% (92.6%) of the load.

We call the largest 1% of jobs hogs, and the remaining 99%
of jobs mice. A later section discusses some of the conse-
quences of this for workload scheduling.

7.1 Comparison with 2011 data
We see a similar story, albeit not quite so extreme, for the
2011 data (see Table 2 and Figure 12). The 2011 data is a factor
of eight smaller in scale than 2019, and the rawmachine sizes
were di�erent. However, we can still directly compare the
squared coe�cient of variation and the overall distribution
parameters, both of which are invariant to normalization.
Additionally, both 2011 and 2019 resource usage values are
measured in terms of the fraction of available resources at
the time, which means that the results have a similar inter-
pretation.
The 2011 data is not that di�erent from the 2019 data:

both sets of data follow Pareto(U) distributions (see Table

Figure 13. Correlation between compute and median memory
consumption for jobs grouped into 1-hour NCU buckets.

2), for both CPU and memory. The 2011 data is somewhat
less variable (⇠2 values for both CPU and memory usage
are about 4 times lower than in 2019)1 and somewhat less
heavy-tailed in terms of the fraction of load made up by the
largest 1% and 0.01% of jobs – but still very high compared
to other published data. Our general characterization of jobs
into hogs and mice appears to hold consistently across the
years.

We note that [27] claimed that Google compute consump-
tion and memory consumption did not follow power-law
distributions in 2011. This is because their analysis looked
at instantaneous job sizes, not the integral of consumption
over time, so we are looking at di�erent signals.

7.2 Correlations between compute and memory
consumption

Given that compute consumption and memory consumption
follow almost the same distribution (see Figure 12), it is
reasonable to ask whether these metrics are correlated. Our
analysis suggests they are. Figure 13 shows NCU-hours on
the x-axis, quantized into buckets of size 1 NCU-hour. For
each of those buckets of size 1 NCU-hour, we plot (on the
y-axis) the median NMU-hours consumed by jobs that fall
within that bucket. The result is almost a straight line (with
Pearson correlation coe�cient of 0.97): the higher the NCU-
hours used, the higher the median NMU-hours. This is not
entirely surprising as the job duration is a common factor of
both metrics.

1Although the ⇠2 values are lower for the 2011 data, both the mean and
variance are higher for the 2011 data. This is consistent with the fact that the
2011 CCDF curves in Figure 12 stochastically dominates the corresponding
2019 CCDF curves.

Heavy tails are ubiquitous

[Tirmazi et al., 2020]

Finite-state Markov chains
aren't enough

Age and remaining work
aren't enough

Jobs have complex structure

[Zhao et al., 2022]

!eryFormer: A Tree Transformer Model for!ery Plan
Representation

Yue Zhao
Nanyang Technological University

zhao0342@e.ntu.edu.sg

Gao Cong
Nanyang Technological University

gaocong@ntu.edu.sg

Jiachen Shi
Nanyang Technological University

jiachen001@e.ntu.edu.sg

Chunyan Miao
Nanyang Technological University

ascymiao@ntu.edu.sg

ABSTRACT
Machine learning has become a prominent method in many data-
base optimization problems such as cost estimation, index selection
and query optimization. Translating query execution plans into
their vectorized representations is non-trivial. Recently, several
query plan representation methods have been proposed. However,
they have two limitations. First, they do not fully utilize readily
available database statistics in the representation, which charac-
terizes the data distribution. Second, they typically have di!culty
in modeling long paths of information "ow in a query plan, and
capturing parent-children dependency between operators.

To tackle these limitations, we propose!eryFormer, a learning-
based query plan representationmodel with a tree-structured Trans-
former architecture. In particular, we propose a novel scheme to
integrate histograms obtained from database systems into query
plan encoding. In addition, to e#ectively capture the information
"ow following the tree structure of a query plan, we develop a
tree-structured model with the attention mechanism. We integrate
!eryFormer into four machine learning models, each for a data-
base optimization task, and experimental results show that !ery-
Former is able to improve performance of these models signi$cantly.

PVLDB Reference Format:
Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. QueryFormer: A
Tree Transformer Model for Query Plan Representation. PVLDB, 15(8):
1658 - 1670, 2022.
doi:10.14778/3529337.3529349

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhaoyue-ntu/QueryFormer.

1 INTRODUCTION
A host of work [9, 16, 17, 30, 36, 37, 39] which leverages machine
learning techniques for database optimizations depends on phys-
ical query plans. A physical query plan describes a sequence of
operations, such as joins and scans, and the algorithms used for
operators during query execution [3]. A physical query plan may

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529349

Index Scan
t. year > 2000

(d)

Index Scan
mi.type_id = 113

(e)

Index Scan
mc.c_id = 2

(c)

Nested Loop

(a)

Nested Loop

(b)

SELECT * FROM
title t,
movie_info mi,
movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id = 2 AND
t.year > 2000

Figure 1: Example query and query plan from JOB-Light.

contain up to hundreds of operations [39] and it can be modeled
as a Directed Acyclic Graph (DAG) where each node describes an
operation and each edge indicates the dependency of two nodes, i.e.,
children nodes are executed $rst and the output of each children
node is fed into the parent. A real-life example of a query and its
query plan is shown in Figure 1.

Physical query plans have been used as the input to the ma-
chine learning models for database optimization tasks such as
cardinality and cost estimation [30], index recommendation [9],
query optimization [16, 17], view selection [37], and join order
selection [18, 36]. Despite targeting on di#erent tasks, the models
proposed in these studies rely on the representations of query plans
to learn the correlations between query plan properties and the
targeted outputs. Therefore, representation learning for physical
query plans, or encoding physical query plans is a cornerstone for
the successful application of machine learning techniques to solve
database tasks with physical plans as the input.

To extract useful features from physical query plans and encode
them into vectors, a number of query plan representation methods
have been proposed. A summary of these approaches is shown in
Table 1 and we will review them and their limitations in Section 2.2.
Overall, they have two limitations: (1) they do not fully utilize the
statistics of database content in the representation, and (2) they have
di!culty in modeling long paths of information "ow and capturing
parent-children dependency.We next illustrate the limitations using
the Tree-LSTMmodel [31] as an example, which is used to represent
physical plans in E2E-Cost [30] for cost estimation. First, E2E-Cost
includes a small sample for each table in the encoding, similar
to the encoding method [12]. However, sampling su#ers from 0-
tuple problem for some queries [22]. In contrast, we argue that
the readily available per-table statistics, such as histograms, can
provide useful knowledge about data distribution [2]. Second, E2E-
Cost uses RNN model, which is generally di!cult to train because

����

What do jobs look like?

4

Need: general
Markov processes

EuroSys ’20, April 27–30, 2020, Heraklion, Greece Tirmazi et. al

10
−6

10
−4

10
−2

10
0

10
2

10
410

−4

10
−3

10
−2

10
−1

10
0

)U
aF

tio
n

of
 Mo

bs
 w

ith
 u

sa
ge

-in
te

gU
al

 >
x

2019 C3U (1CU-houUs)
2019 PePoUy (10U-houUs)
2011 C3U (1CU-houUs)
2011 PePoUy (10U-houUs)

Figure 12. CCDF of resource-usage-hours by job for 2011 and 2019
– i.e., the fraction of jobs that use at least G resource-hours. Note
the log-log scale.

for memory), and ignore the outliers at the very end of the
tail (the top 0.01% of jobs), we are able to �t our 2019 data
to Pareto distributions with U = 0.69 (CPU) and U = 0.72
(memory) with an '2 goodness of �t of over 99% in both
cases.

Pareto distributions, particularly those with U < 1, exhibit
a strong heavy-tailed property, where a small number of the
largest jobs comprise most of the load [9]. The “heavy-tailed
property” is far more extreme than the commonly cited “80-
20 rule,” where the 20% largest jobs comprise 80% of the load.
In prior empirical studies of compute consumption and �le
sizes [9, 17–20], the authors observe a heavy-tailed property
where the 1% largest jobs comprise 50% of the load. The
heavy-tailed property we observed in the 2019 traces is even
more extreme: the largest 1% of jobs comprise 99.2% of the
CPU load (99.1% of the memory load), and the largest 0.1%
of jobs comprise 93.1% (92.6%) of the load.

We call the largest 1% of jobs hogs, and the remaining 99%
of jobs mice. A later section discusses some of the conse-
quences of this for workload scheduling.

7.1 Comparison with 2011 data
We see a similar story, albeit not quite so extreme, for the
2011 data (see Table 2 and Figure 12). The 2011 data is a factor
of eight smaller in scale than 2019, and the rawmachine sizes
were di�erent. However, we can still directly compare the
squared coe�cient of variation and the overall distribution
parameters, both of which are invariant to normalization.
Additionally, both 2011 and 2019 resource usage values are
measured in terms of the fraction of available resources at
the time, which means that the results have a similar inter-
pretation.
The 2011 data is not that di�erent from the 2019 data:

both sets of data follow Pareto(U) distributions (see Table

Figure 13. Correlation between compute and median memory
consumption for jobs grouped into 1-hour NCU buckets.

2), for both CPU and memory. The 2011 data is somewhat
less variable (⇠2 values for both CPU and memory usage
are about 4 times lower than in 2019)1 and somewhat less
heavy-tailed in terms of the fraction of load made up by the
largest 1% and 0.01% of jobs – but still very high compared
to other published data. Our general characterization of jobs
into hogs and mice appears to hold consistently across the
years.

We note that [27] claimed that Google compute consump-
tion and memory consumption did not follow power-law
distributions in 2011. This is because their analysis looked
at instantaneous job sizes, not the integral of consumption
over time, so we are looking at di�erent signals.

7.2 Correlations between compute and memory
consumption

Given that compute consumption and memory consumption
follow almost the same distribution (see Figure 12), it is
reasonable to ask whether these metrics are correlated. Our
analysis suggests they are. Figure 13 shows NCU-hours on
the x-axis, quantized into buckets of size 1 NCU-hour. For
each of those buckets of size 1 NCU-hour, we plot (on the
y-axis) the median NMU-hours consumed by jobs that fall
within that bucket. The result is almost a straight line (with
Pearson correlation coe�cient of 0.97): the higher the NCU-
hours used, the higher the median NMU-hours. This is not
entirely surprising as the job duration is a common factor of
both metrics.

1Although the ⇠2 values are lower for the 2011 data, both the mean and
variance are higher for the 2011 data. This is consistent with the fact that the
2011 CCDF curves in Figure 12 stochastically dominates the corresponding
2019 CCDF curves.

Heavy tails are ubiquitous

[Tirmazi et al., 2020]

Finite-state Markov chains
aren't enough

Age and remaining work
aren't enough

Jobs have complex structure

[Zhao et al., 2022]

!eryFormer: A Tree Transformer Model for!ery Plan
Representation

Yue Zhao
Nanyang Technological University

zhao0342@e.ntu.edu.sg

Gao Cong
Nanyang Technological University

gaocong@ntu.edu.sg

Jiachen Shi
Nanyang Technological University

jiachen001@e.ntu.edu.sg

Chunyan Miao
Nanyang Technological University

ascymiao@ntu.edu.sg

ABSTRACT
Machine learning has become a prominent method in many data-
base optimization problems such as cost estimation, index selection
and query optimization. Translating query execution plans into
their vectorized representations is non-trivial. Recently, several
query plan representation methods have been proposed. However,
they have two limitations. First, they do not fully utilize readily
available database statistics in the representation, which charac-
terizes the data distribution. Second, they typically have di!culty
in modeling long paths of information "ow in a query plan, and
capturing parent-children dependency between operators.

To tackle these limitations, we propose!eryFormer, a learning-
based query plan representationmodel with a tree-structured Trans-
former architecture. In particular, we propose a novel scheme to
integrate histograms obtained from database systems into query
plan encoding. In addition, to e#ectively capture the information
"ow following the tree structure of a query plan, we develop a
tree-structured model with the attention mechanism. We integrate
!eryFormer into four machine learning models, each for a data-
base optimization task, and experimental results show that !ery-
Former is able to improve performance of these models signi$cantly.

PVLDB Reference Format:
Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. QueryFormer: A
Tree Transformer Model for Query Plan Representation. PVLDB, 15(8):
1658 - 1670, 2022.
doi:10.14778/3529337.3529349

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/zhaoyue-ntu/QueryFormer.

1 INTRODUCTION
A host of work [9, 16, 17, 30, 36, 37, 39] which leverages machine
learning techniques for database optimizations depends on phys-
ical query plans. A physical query plan describes a sequence of
operations, such as joins and scans, and the algorithms used for
operators during query execution [3]. A physical query plan may

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529349

Index Scan
t. year > 2000

(d)

Index Scan
mi.type_id = 113

(e)

Index Scan
mc.c_id = 2

(c)

Nested Loop

(a)

Nested Loop

(b)

SELECT * FROM
title t,
movie_info mi,
movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id = 2 AND
t.year > 2000

Figure 1: Example query and query plan from JOB-Light.

contain up to hundreds of operations [39] and it can be modeled
as a Directed Acyclic Graph (DAG) where each node describes an
operation and each edge indicates the dependency of two nodes, i.e.,
children nodes are executed $rst and the output of each children
node is fed into the parent. A real-life example of a query and its
query plan is shown in Figure 1.

Physical query plans have been used as the input to the ma-
chine learning models for database optimization tasks such as
cardinality and cost estimation [30], index recommendation [9],
query optimization [16, 17], view selection [37], and join order
selection [18, 36]. Despite targeting on di#erent tasks, the models
proposed in these studies rely on the representations of query plans
to learn the correlations between query plan properties and the
targeted outputs. Therefore, representation learning for physical
query plans, or encoding physical query plans is a cornerstone for
the successful application of machine learning techniques to solve
database tasks with physical plans as the input.

To extract useful features from physical query plans and encode
them into vectors, a number of query plan representation methods
have been proposed. A summary of these approaches is shown in
Table 1 and we will review them and their limitations in Section 2.2.
Overall, they have two limitations: (1) they do not fully utilize the
statistics of database content in the representation, and (2) they have
di!culty in modeling long paths of information "ow and capturing
parent-children dependency.We next illustrate the limitations using
the Tree-LSTMmodel [31] as an example, which is used to represent
physical plans in E2E-Cost [30] for cost estimation. First, E2E-Cost
includes a small sample for each table in the encoding, similar
to the encoding method [12]. However, sampling su#ers from 0-
tuple problem for some queries [22]. In contrast, we argue that
the readily available per-table statistics, such as histograms, can
provide useful knowledge about data distribution [2]. Second, E2E-
Cost uses RNN model, which is generally di!cult to train because

����

Stability in complex systems

5

Stability in complex systems

5

Metastable
failures

Stability in complex systems

5

[Huang et al., 2020]

Metastable
failures

Stability in complex systems

5

[Bronson et al., 2020]

[Huang et al., 2020]

Metastable
failures

Stability in complex systems

5

Need: drift methods,
mean field methods

[Bronson et al., 2020]

[Huang et al., 2020]

Metastable
failures

Scheduling practicalities

6

Scheduling practicalities

6

Theory: SRPT

Scheduling practicalities

6

Practice: Homa

SRPT in
networks

[Montazeri et al., 2020]
Theory: SRPT

Scheduling practicalities

6

rank

age

Continuous priority,
no overhead/delay

Practice: Homa

SRPT in
networks

[Montazeri et al., 2020]
Theory: SRPT

Scheduling practicalities

6

rank

age

Continuous priority,
no overhead/delay

rank

age

Discrete priorities,
overheads/delays

Practice: Homa

SRPT in
networks

[Montazeri et al., 2020]
Theory: SRPT

Scheduling practicalities

6

Need: analyze variety
of scheduling policies

rank

age

Continuous priority,
no overhead/delay

rank

age

Discrete priorities,
overheads/delays

Practice: Homa

SRPT in
networks

[Montazeri et al., 2020]
Theory: SRPT

What should we measure?

7

What should we measure?

7

B

Cache A
A's Aggregate Delay: 6

Cache B

Z=3

B's Aggregate Delay: 5

10 timesteps 90 timesteps to serve other objects

?

100 timesteps

B

A A A

Figure 11: Ranking objects solely based on aggregate delaymay lead
to poor utilization of cache space.

delay of 5 andwill be accessed only 10 timesteps in the future. Should
the rank function preferAorB?Assumingwe keep the cached object
until its next access, keepingAutilizes one cache line –which cannot
be used for other objects – for a very long interval. On average, each
timestep we keepA in the cache will ‘save’ an average of 6

100 units of
delay. On the other hand, for each timestep we keep B in the cache,
we save an average of 5

10 units of delay, with the opportunity to
cache other objects in the remaining 90 timesteps. Hence, B appears
to be – on average – a more e�cient use of cache space.6

Following this intuition, our o�ine ranking function, ���������,
computes two values for each object.A��Dela�(x) is the aggregate
delay for the next access to object x , andTTNA(x) is the number of
timesteps until the next access to x .7 The rank is then:

Rank(x)= A��Dela�(x)
TTNA(x) (3)

We �nd that, across allZ values, the average request latency pro-
vided by ��������� is within 0.1-12% of ���������. In Figure 12, we
show the average latency for ��������� and ��������� (normalized
against the performance of Belady’s algorithm) for a range ofZ val-
ues for the CAIDA Chicago network trace; ��������� closely trails
���������, although the gap between the two widens asZ grows.
Furthermore, ��������� runs several orders of magnitude faster
than ���������, computing a cache schedule in under 3 seconds for
a trace containing 250,000 requests, where ���������would take
up to 8 hours.

4.2 Online Algorithm:���
Finally, we turn to the true online setting, where we both need

to use simple heuristics to rank objects and do not have knowledge
of the future. Fortunately, we can use the past to make predictions
about the future. Just as LRU uses recency as a ranking function –
the ‘inverse’ of Belady’s algorithm – we need to ‘�ip’ our measures
ofA��Dela�(x) andTTNA(x) to use data from past requests rather
than future ones.
6This intuition does not necessarily lead to optimal decisions! For example, if we were
to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then
it would have been better to prefer A.
7Note that Belady’s algorithm uses the ranking function 1

TTNA(x) alone.

Figure 12: ��������� closely trails ���������.

Luckily,wealreadyhavea large literatureofestimators forTTNA(x),
as almost all algorithmsareessentiallypredictorsof thenext access to
an object. Recall that Belady’s algorithm ranks objects byTTNA(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-
ing algorithms aim to operate as close to Belady as possible [55], and
so the closer their ranking function is to 1

TT NA(x) , the better they
perform. Hence, in §5we experiment with using LRU [64], ARC [41],
and LHD [5] as estimators ofTTNA(x).
This leaves us with estimatingA��Dela�(x). Recall that we mea-

sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and
any subsequent delayed hits for x . We ‘�ip’ this by assuming that
all past requests to x were misses and then calculating the average
aggregate delay per miss; we illustrate this in Algorithm 1.We �nd
that this approximates the trueA��Dela�(x)well, e.g.with a Pearson
Correlation Coe�cient of 0.7 for the network trace.
Finally, to create ���, we combine the code8 from Algorithm 1

with a known estimator forTTNA(x).We can now compute the rank
using Eq. (3).

Algorithm 1 Estimating AggregateDelay
1: structO�����M�������
2: NumWindows = 0
3: CumulativeDelay = 0
4: WindowStartIdx = �1
5:
6: function E�������A��������D����(X:O�����M�������)
7: return X.CumulativeDelay

X.NumWindows
8: end function
9:
10: functionO�A�����(TimeIdx, X:O�����M�������)
11: // Time since start of the previous miss window
12: TSSW = (TimeIdx - X.WindowStartIdx)
13:
14: if TSSW � Z then
15: // This access commences a newmiss window
16: X.NumWindows += 1
17: X.CumulativeDelay += Z
18: X.WindowStartIdx = TimeIdx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if
23: end function

We note that parallel work [40] in our group has shown that any
deterministic online algorithm for the delayed hits problem has a
competitive ratio9 of �(kZ), wherek is the size of the cache. Despite
falling in that category, our empirical evaluations show that ���
yields considerable latency improvements over traditional caching
algorithms, and its simplicity lends itself well to implementation.We
leave to future work to �nd a randomized caching strategy which
improves upon���’s worst-case performance.

8For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior
knowledge of Z . Both of these assumptions are easily dispensable.
9The competitive ratio of an online algorithm, � , is the worst-case ratio between the
costs of the solution computed by � to that of the optimal, o�ine solution for the same
problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to
impose bounds on its worst-case performance (i.e. for themost pessimal workload) [57].

502

[Atre et al., 2020]

What should we measure?

7

B

Cache A
A's Aggregate Delay: 6

Cache B

Z=3

B's Aggregate Delay: 5

10 timesteps 90 timesteps to serve other objects

?

100 timesteps

B

A A A

Figure 11: Ranking objects solely based on aggregate delaymay lead
to poor utilization of cache space.

delay of 5 andwill be accessed only 10 timesteps in the future. Should
the rank function preferAorB?Assumingwe keep the cached object
until its next access, keepingAutilizes one cache line –which cannot
be used for other objects – for a very long interval. On average, each
timestep we keepA in the cache will ‘save’ an average of 6

100 units of
delay. On the other hand, for each timestep we keep B in the cache,
we save an average of 5

10 units of delay, with the opportunity to
cache other objects in the remaining 90 timesteps. Hence, B appears
to be – on average – a more e�cient use of cache space.6

Following this intuition, our o�ine ranking function, ���������,
computes two values for each object.A��Dela�(x) is the aggregate
delay for the next access to object x , andTTNA(x) is the number of
timesteps until the next access to x .7 The rank is then:

Rank(x)= A��Dela�(x)
TTNA(x) (3)

We �nd that, across allZ values, the average request latency pro-
vided by ��������� is within 0.1-12% of ���������. In Figure 12, we
show the average latency for ��������� and ��������� (normalized
against the performance of Belady’s algorithm) for a range ofZ val-
ues for the CAIDA Chicago network trace; ��������� closely trails
���������, although the gap between the two widens asZ grows.
Furthermore, ��������� runs several orders of magnitude faster
than ���������, computing a cache schedule in under 3 seconds for
a trace containing 250,000 requests, where ���������would take
up to 8 hours.

4.2 Online Algorithm:���
Finally, we turn to the true online setting, where we both need

to use simple heuristics to rank objects and do not have knowledge
of the future. Fortunately, we can use the past to make predictions
about the future. Just as LRU uses recency as a ranking function –
the ‘inverse’ of Belady’s algorithm – we need to ‘�ip’ our measures
ofA��Dela�(x) andTTNA(x) to use data from past requests rather
than future ones.
6This intuition does not necessarily lead to optimal decisions! For example, if we were
to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then
it would have been better to prefer A.
7Note that Belady’s algorithm uses the ranking function 1

TTNA(x) alone.

Figure 12: ��������� closely trails ���������.

Luckily,wealreadyhavea large literatureofestimators forTTNA(x),
as almost all algorithmsareessentiallypredictorsof thenext access to
an object. Recall that Belady’s algorithm ranks objects byTTNA(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-
ing algorithms aim to operate as close to Belady as possible [55], and
so the closer their ranking function is to 1

TT NA(x) , the better they
perform. Hence, in §5we experiment with using LRU [64], ARC [41],
and LHD [5] as estimators ofTTNA(x).
This leaves us with estimatingA��Dela�(x). Recall that we mea-

sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and
any subsequent delayed hits for x . We ‘�ip’ this by assuming that
all past requests to x were misses and then calculating the average
aggregate delay per miss; we illustrate this in Algorithm 1.We �nd
that this approximates the trueA��Dela�(x)well, e.g.with a Pearson
Correlation Coe�cient of 0.7 for the network trace.
Finally, to create ���, we combine the code8 from Algorithm 1

with a known estimator forTTNA(x).We can now compute the rank
using Eq. (3).

Algorithm 1 Estimating AggregateDelay
1: structO�����M�������
2: NumWindows = 0
3: CumulativeDelay = 0
4: WindowStartIdx = �1
5:
6: function E�������A��������D����(X:O�����M�������)
7: return X.CumulativeDelay

X.NumWindows
8: end function
9:
10: functionO�A�����(TimeIdx, X:O�����M�������)
11: // Time since start of the previous miss window
12: TSSW = (TimeIdx - X.WindowStartIdx)
13:
14: if TSSW � Z then
15: // This access commences a newmiss window
16: X.NumWindows += 1
17: X.CumulativeDelay += Z
18: X.WindowStartIdx = TimeIdx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if
23: end function

We note that parallel work [40] in our group has shown that any
deterministic online algorithm for the delayed hits problem has a
competitive ratio9 of �(kZ), wherek is the size of the cache. Despite
falling in that category, our empirical evaluations show that ���
yields considerable latency improvements over traditional caching
algorithms, and its simplicity lends itself well to implementation.We
leave to future work to �nd a randomized caching strategy which
improves upon���’s worst-case performance.

8For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior
knowledge of Z . Both of these assumptions are easily dispensable.
9The competitive ratio of an online algorithm, � , is the worst-case ratio between the
costs of the solution computed by � to that of the optimal, o�ine solution for the same
problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to
impose bounds on its worst-case performance (i.e. for themost pessimal workload) [57].

502

[Atre et al., 2020]

Figure 11: Ranking objects solely based on aggregate delaymay lead
to poor utilization of cache space.

delay of 5 andwill be accessed only 10 timesteps in the future. Should
the rank function preferAorB?Assumingwe keep the cached object
until its next access, keepingAutilizes one cache line –which cannot
be used for other objects – for a very long interval. On average, each
timestep we keepA in the cache will ‘save’ an average of 6

100 units of
delay. On the other hand, for each timestep we keep B in the cache,
we save an average of 5

10 units of delay, with the opportunity to
cache other objects in the remaining 90 timesteps. Hence, B appears
to be – on average – a more e�cient use of cache space.6

Following this intuition, our o�ine ranking function, ���������,
computes two values for each object.A��Dela�(x) is the aggregate
delay for the next access to object x , andTTNA(x) is the number of
timesteps until the next access to x .7 The rank is then:

Rank(x)= A��Dela�(x)
TTNA(x) (3)

We �nd that, across allZ values, the average request latency pro-
vided by ��������� is within 0.1-12% of ���������. In Figure 12, we
show the average latency for ��������� and ��������� (normalized
against the performance of Belady’s algorithm) for a range ofZ val-
ues for the CAIDA Chicago network trace; ��������� closely trails
���������, although the gap between the two widens asZ grows.
Furthermore, ��������� runs several orders of magnitude faster
than ���������, computing a cache schedule in under 3 seconds for
a trace containing 250,000 requests, where ���������would take
up to 8 hours.

4.2 Online Algorithm:���
Finally, we turn to the true online setting, where we both need

to use simple heuristics to rank objects and do not have knowledge
of the future. Fortunately, we can use the past to make predictions
about the future. Just as LRU uses recency as a ranking function –
the ‘inverse’ of Belady’s algorithm – we need to ‘�ip’ our measures
ofA��Dela�(x) andTTNA(x) to use data from past requests rather
than future ones.
6This intuition does not necessarily lead to optimal decisions! For example, if we were
to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then
it would have been better to prefer A.
7Note that Belady’s algorithm uses the ranking function 1

TTNA(x) alone.

Figure 12: ��������� closely trails ���������.

Luckily,wealreadyhavea large literatureofestimators forTTNA(x),
as almost all algorithmsareessentiallypredictorsof thenext access to
an object. Recall that Belady’s algorithm ranks objects byTTNA(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-
ing algorithms aim to operate as close to Belady as possible [55], and
so the closer their ranking function is to 1

TT NA(x) , the better they
perform. Hence, in §5we experiment with using LRU [64], ARC [41],
and LHD [5] as estimators ofTTNA(x).
This leaves us with estimatingA��Dela�(x). Recall that we mea-

sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and
any subsequent delayed hits for x . We ‘�ip’ this by assuming that
all past requests to x were misses and then calculating the average
aggregate delay per miss; we illustrate this in Algorithm 1.We �nd
that this approximates the trueA��Dela�(x)well, e.g.with a Pearson
Correlation Coe�cient of 0.7 for the network trace.
Finally, to create ���, we combine the code8 from Algorithm 1

with a known estimator forTTNA(x).We can now compute the rank
using Eq. (3).

Algorithm 1 Estimating AggregateDelay
1: structO�����M�������
2: NumWindows = 0
3: CumulativeDelay = 0
4: WindowStartIdx = �1
5:
6: function E�������A��������D����(X:O�����M�������)
7: return X.CumulativeDelay

X.NumWindows
8: end function
9:
10: functionO�A�����(TimeIdx, X:O�����M�������)
11: // Time since start of the previous miss window
12: TSSW = (TimeIdx - X.WindowStartIdx)
13:
14: if TSSW � Z then
15: // This access commences a newmiss window
16: X.NumWindows += 1
17: X.CumulativeDelay += Z
18: X.WindowStartIdx = TimeIdx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if
23: end function

We note that parallel work [40] in our group has shown that any
deterministic online algorithm for the delayed hits problem has a
competitive ratio9 of �(kZ), wherek is the size of the cache. Despite
falling in that category, our empirical evaluations show that ���
yields considerable latency improvements over traditional caching
algorithms, and its simplicity lends itself well to implementation.We
leave to future work to �nd a randomized caching strategy which
improves upon���’s worst-case performance.

8For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior
knowledge of Z . Both of these assumptions are easily dispensable.
9The competitive ratio of an online algorithm, � , is the worst-case ratio between the
costs of the solution computed by � to that of the optimal, o�ine solution for the same
problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to
impose bounds on its worst-case performance (i.e. for themost pessimal workload) [57].

502

[Atre et al., 2020]

What should we measure?

7

Need: expectations from
different perspectives

B

Cache A
A's Aggregate Delay: 6

Cache B

Z=3

B's Aggregate Delay: 5

10 timesteps 90 timesteps to serve other objects

?

100 timesteps

B

A A A

Figure 11: Ranking objects solely based on aggregate delaymay lead
to poor utilization of cache space.

delay of 5 andwill be accessed only 10 timesteps in the future. Should
the rank function preferAorB?Assumingwe keep the cached object
until its next access, keepingAutilizes one cache line –which cannot
be used for other objects – for a very long interval. On average, each
timestep we keepA in the cache will ‘save’ an average of 6

100 units of
delay. On the other hand, for each timestep we keep B in the cache,
we save an average of 5

10 units of delay, with the opportunity to
cache other objects in the remaining 90 timesteps. Hence, B appears
to be – on average – a more e�cient use of cache space.6

Following this intuition, our o�ine ranking function, ���������,
computes two values for each object.A��Dela�(x) is the aggregate
delay for the next access to object x , andTTNA(x) is the number of
timesteps until the next access to x .7 The rank is then:

Rank(x)= A��Dela�(x)
TTNA(x) (3)

We �nd that, across allZ values, the average request latency pro-
vided by ��������� is within 0.1-12% of ���������. In Figure 12, we
show the average latency for ��������� and ��������� (normalized
against the performance of Belady’s algorithm) for a range ofZ val-
ues for the CAIDA Chicago network trace; ��������� closely trails
���������, although the gap between the two widens asZ grows.
Furthermore, ��������� runs several orders of magnitude faster
than ���������, computing a cache schedule in under 3 seconds for
a trace containing 250,000 requests, where ���������would take
up to 8 hours.

4.2 Online Algorithm:���
Finally, we turn to the true online setting, where we both need

to use simple heuristics to rank objects and do not have knowledge
of the future. Fortunately, we can use the past to make predictions
about the future. Just as LRU uses recency as a ranking function –
the ‘inverse’ of Belady’s algorithm – we need to ‘�ip’ our measures
ofA��Dela�(x) andTTNA(x) to use data from past requests rather
than future ones.
6This intuition does not necessarily lead to optimal decisions! For example, if we were
to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then
it would have been better to prefer A.
7Note that Belady’s algorithm uses the ranking function 1

TTNA(x) alone.

Figure 12: ��������� closely trails ���������.

Luckily,wealreadyhavea large literatureofestimators forTTNA(x),
as almost all algorithmsareessentiallypredictorsof thenext access to
an object. Recall that Belady’s algorithm ranks objects byTTNA(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-
ing algorithms aim to operate as close to Belady as possible [55], and
so the closer their ranking function is to 1

TT NA(x) , the better they
perform. Hence, in §5we experiment with using LRU [64], ARC [41],
and LHD [5] as estimators ofTTNA(x).
This leaves us with estimatingA��Dela�(x). Recall that we mea-

sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and
any subsequent delayed hits for x . We ‘�ip’ this by assuming that
all past requests to x were misses and then calculating the average
aggregate delay per miss; we illustrate this in Algorithm 1.We �nd
that this approximates the trueA��Dela�(x)well, e.g.with a Pearson
Correlation Coe�cient of 0.7 for the network trace.
Finally, to create ���, we combine the code8 from Algorithm 1

with a known estimator forTTNA(x).We can now compute the rank
using Eq. (3).

Algorithm 1 Estimating AggregateDelay
1: structO�����M�������
2: NumWindows = 0
3: CumulativeDelay = 0
4: WindowStartIdx = �1
5:
6: function E�������A��������D����(X:O�����M�������)
7: return X.CumulativeDelay

X.NumWindows
8: end function
9:
10: functionO�A�����(TimeIdx, X:O�����M�������)
11: // Time since start of the previous miss window
12: TSSW = (TimeIdx - X.WindowStartIdx)
13:
14: if TSSW � Z then
15: // This access commences a newmiss window
16: X.NumWindows += 1
17: X.CumulativeDelay += Z
18: X.WindowStartIdx = TimeIdx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if
23: end function

We note that parallel work [40] in our group has shown that any
deterministic online algorithm for the delayed hits problem has a
competitive ratio9 of �(kZ), wherek is the size of the cache. Despite
falling in that category, our empirical evaluations show that ���
yields considerable latency improvements over traditional caching
algorithms, and its simplicity lends itself well to implementation.We
leave to future work to �nd a randomized caching strategy which
improves upon���’s worst-case performance.

8For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior
knowledge of Z . Both of these assumptions are easily dispensable.
9The competitive ratio of an online algorithm, � , is the worst-case ratio between the
costs of the solution computed by � to that of the optimal, o�ine solution for the same
problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to
impose bounds on its worst-case performance (i.e. for themost pessimal workload) [57].

502

[Atre et al., 2020]

Figure 11: Ranking objects solely based on aggregate delaymay lead
to poor utilization of cache space.

delay of 5 andwill be accessed only 10 timesteps in the future. Should
the rank function preferAorB?Assumingwe keep the cached object
until its next access, keepingAutilizes one cache line –which cannot
be used for other objects – for a very long interval. On average, each
timestep we keepA in the cache will ‘save’ an average of 6

100 units of
delay. On the other hand, for each timestep we keep B in the cache,
we save an average of 5

10 units of delay, with the opportunity to
cache other objects in the remaining 90 timesteps. Hence, B appears
to be – on average – a more e�cient use of cache space.6

Following this intuition, our o�ine ranking function, ���������,
computes two values for each object.A��Dela�(x) is the aggregate
delay for the next access to object x , andTTNA(x) is the number of
timesteps until the next access to x .7 The rank is then:

Rank(x)= A��Dela�(x)
TTNA(x) (3)

We �nd that, across allZ values, the average request latency pro-
vided by ��������� is within 0.1-12% of ���������. In Figure 12, we
show the average latency for ��������� and ��������� (normalized
against the performance of Belady’s algorithm) for a range ofZ val-
ues for the CAIDA Chicago network trace; ��������� closely trails
���������, although the gap between the two widens asZ grows.
Furthermore, ��������� runs several orders of magnitude faster
than ���������, computing a cache schedule in under 3 seconds for
a trace containing 250,000 requests, where ���������would take
up to 8 hours.

4.2 Online Algorithm:���
Finally, we turn to the true online setting, where we both need

to use simple heuristics to rank objects and do not have knowledge
of the future. Fortunately, we can use the past to make predictions
about the future. Just as LRU uses recency as a ranking function –
the ‘inverse’ of Belady’s algorithm – we need to ‘�ip’ our measures
ofA��Dela�(x) andTTNA(x) to use data from past requests rather
than future ones.
6This intuition does not necessarily lead to optimal decisions! For example, if we were
to prefer B and evict A, but in the 90 timesteps after B no other requests arrived then
it would have been better to prefer A.
7Note that Belady’s algorithm uses the ranking function 1

TTNA(x) alone.

Figure 12: ��������� closely trails ���������.

Luckily,wealreadyhavea large literatureofestimators forTTNA(x),
as almost all algorithmsareessentiallypredictorsof thenext access to
an object. Recall that Belady’s algorithm ranks objects byTTNA(x)
alone, and is optimal in the absence of delayed hits. Hit-rate optimiz-
ing algorithms aim to operate as close to Belady as possible [55], and
so the closer their ranking function is to 1

TT NA(x) , the better they
perform. Hence, in §5we experiment with using LRU [64], ARC [41],
and LHD [5] as estimators ofTTNA(x).
This leaves us with estimatingA��Dela�(x). Recall that we mea-

sure Aggregate Delay by assuming that the next request to object x
will be a miss, and computing the sum of delays for the miss to x and
any subsequent delayed hits for x . We ‘�ip’ this by assuming that
all past requests to x were misses and then calculating the average
aggregate delay per miss; we illustrate this in Algorithm 1.We �nd
that this approximates the trueA��Dela�(x)well, e.g.with a Pearson
Correlation Coe�cient of 0.7 for the network trace.
Finally, to create ���, we combine the code8 from Algorithm 1

with a known estimator forTTNA(x).We can now compute the rank
using Eq. (3).

Algorithm 1 Estimating AggregateDelay
1: structO�����M�������
2: NumWindows = 0
3: CumulativeDelay = 0
4: WindowStartIdx = �1
5:
6: function E�������A��������D����(X:O�����M�������)
7: return X.CumulativeDelay

X.NumWindows
8: end function
9:
10: functionO�A�����(TimeIdx, X:O�����M�������)
11: // Time since start of the previous miss window
12: TSSW = (TimeIdx - X.WindowStartIdx)
13:
14: if TSSW � Z then
15: // This access commences a newmiss window
16: X.NumWindows += 1
17: X.CumulativeDelay += Z
18: X.WindowStartIdx = TimeIdx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if
23: end function

We note that parallel work [40] in our group has shown that any
deterministic online algorithm for the delayed hits problem has a
competitive ratio9 of �(kZ), wherek is the size of the cache. Despite
falling in that category, our empirical evaluations show that ���
yields considerable latency improvements over traditional caching
algorithms, and its simplicity lends itself well to implementation.We
leave to future work to �nd a randomized caching strategy which
improves upon���’s worst-case performance.

8For the sake of brevity, the provided pseudocode assumes discrete timesteps and prior
knowledge of Z . Both of these assumptions are easily dispensable.
9The competitive ratio of an online algorithm, � , is the worst-case ratio between the
costs of the solution computed by � to that of the optimal, o�ine solution for the same
problem instance. Knowledge of a caching algorithm’s competitive ratio allows us to
impose bounds on its worst-case performance (i.e. for themost pessimal workload) [57].

502

[Atre et al., 2020]

8

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Part 2

Part 1

8

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Part 2

Part 1

8

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Simplify core
foundations

Part 2

Part 1

8

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Simplify core
foundations

Prioritize very
flexible tools

Part 2

Part 1

9

Problem: many students lack math background

9

Problem: many students lack math background
Solution: hand-wave

9

Problem: many students lack math background
Solution: hand-wave

Problem: how to know when to hand-wave?

9

Problem: many students lack math background
Solution: hand-wave

Problem: how to know when to hand-wave?
Solution: clear rules for hand-waving

9

Problem: many students lack math background
Solution: hand-wave

Problem: how to know when to hand-wave?
Solution: clear rules for hand-waving
• Principles: rules that work most of the time

9

Problem: many students lack math background
Solution: hand-wave

Problem: how to know when to hand-wave?
Solution: clear rules for hand-waving
• Principles: rules that work most of the time
• Recipes: common patterns for using principles

9

Problem: many students lack math background
Solution: hand-wave

Problem: how to know when to hand-wave?
Solution: clear rules for hand-waving
• Principles: rules that work most of the time
• Recipes: common patterns for using principles

Problem: each topic needs many principles

9

Problem: many students lack math background
Solution: hand-wave

Problem: how to know when to hand-wave?
Solution: clear rules for hand-waving
• Principles: rules that work most of the time
• Recipes: common patterns for using principles

Problem: each topic needs many principles
Solution: focus on a few very powerful topics

Proposed toolbox

10

Proposed toolbox

10

Description: model with Markov processes

Proposed toolbox

10

Description: model with Markov processes

Metrics: define using long-run averages

Proposed toolbox

10

Description: model with Markov processes

Analysis: reduce to questions about drift

Metrics: define using long-run averages

Description via Markov processes

11

Description via Markov processes

11

State: all info we need to describe evolution

Description via Markov processes

11

current state

State: all info we need to describe evolution

Description via Markov processes

11

current state

State: all info we need to describe evolution

deterministic flow

Description via Markov processes

11

current state

State: all info we need to describe evolution

deterministic flow

stochastic jumps

Description via Markov processes

11

current state

State: all info we need to describe evolution

deterministic flow

stochastic jumps
future states

Description via Markov processes

11

current state

Goal: clear process definition

State: all info we need to describe evolution

deterministic flow

stochastic jumps
future states

Description via Markov processes

11

current state

Goal: clear process definition
Non-goal (yet): tractable analysis

State: all info we need to describe evolution

deterministic flow

stochastic jumps
future states

Description via Markov processes

11

current state

Goal: clear process definition
Non-goal (yet): tractable analysis
Non-goal: verifying Markov property

State: all info we need to describe evolution

deterministic flow

stochastic jumps
future states

Example: M/G/1

12

Example: M/G/1

12

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

Example: M/G/1

12

Dynamics:

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

Example: M/G/1

12

Dynamics:
• If list nonempty: decrease r1 at rate 1

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

Example: M/G/1

12

Dynamics:
• If list nonempty: decrease r1 at rate 1
• When r1 = 0: remove r1 from list

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

Example: M/G/1

12

Dynamics:
• If list nonempty: decrease r1 at rate 1
• When r1 = 0: remove r1 from list
• Poisson(λ): draw from S, append it to list

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

Example: M/G/1

12

Dynamics:
• If list nonempty: decrease r1 at rate 1
• When r1 = 0: remove r1 from list
• Poisson(λ): draw from S, append it to list

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

w([r1, . . . , rn]) = r1 + · · ·+ rn

<latexit sha1_base64="T3ssC8f0Sa2aR7072NUl8KU67Tg=">AAADmXicbVLNbtNAEN7G/JTwl8KxFwtfglhFXttpG0VIpRyoOJWftEWOFa3XE9fqeh2tN6SR5VfgabjCe3DjUVg7PpDWs4eZ+fb7RjOjCRc8yZVt/9npGPfuP3i4+6j7+MnTZ897ey/O82wpGUxYxjN5GdIceCJgohLF4XIhgaYhh4vw+n31f/EdZJ5k4qtaLyBIaSySecKo0tCs11/1fTkj2JxGmcqxKWcieG2+1Z6Ybzag9hqd9Sx7YNdm3g1IE1iosbPZXueblrNlCkIxTvPcJ2ShgoJKlTAOZXe6zGFB2TWNwWdXGgaJTZHNqWDrq0jHNM0pT2IRFHokvoy2NcVNPX3Z7U4jmOvx6zQHVXz+cFIW1cskFTFgh7iYuDZ23bGECDs2wZ6LXTLWu9DNUUwORvjI1TxnHPIl4NEIj3Rqe2MFlOMDDxPvSLMOx2vgPFvFEkBobIjJsMKrHgSsWJamVETFtO4kUaXvBn5QTBXcqBoqLKfcpOF84xNVWG5pkbK8XSOTIi59py7Q1PMtEjQzlVWpcluhZ2sTVHALO40VbaM3O2mTVLtpk9R4C79aXhu/xlv4ax6LNv5/S29k+hjJ7dO7G5w7A+INhp886/jk7+Ysd9E+eoX6iKBDdIxO0RmaIIZ+oJ/oF/pt7BvvjFPj44ba2WlO+SXaMuPLP6F7JEw=</latexit>

Work:

Example: M/G/1

12

Dynamics:
• If list nonempty: decrease r1 at rate 1
• When r1 = 0: remove r1 from list
• Poisson(λ): draw from S, append it to list

[r1, . . . , rn]

<latexit sha1_base64="K3IuW9iQNfBjEiuKsfOcizMWAlg=">AAADgnicbVJNb9NAEN3GBUr4aFKOXCJ8QWgVeW2nbZQeqnKAY0GkLXKsaL2euFbX62i9IY2s/Slc4Tdx46ewdnwgrWcPnnl+bzRvNNGSp4VynD97HWv/ydNnB8+7L16+en3Y6x9dFflKMpiynOfyJqIF8FTAVKWKw81SAs0iDtfR3cfq//UPkEWai29qs4Qwo4lIFymjykDzXj+Qc4IHszhXBR7IuQjnPdsZOnUMHiekSWzUxOW83/lu5GyVgVCM06IICFmqsKRSpYyD7s5WBSwpu6MJBOzWwCDxQOQLKtjmNjY5zQrK00SEpZmdr+JdTXlf29Td7iyGhfFZlwWo8uunC11WL5dUJIBd4mHiOdjzJhJi7DoE+x72yMSYNsNRTI7H+NQzPHcS8RXg8RiPTen4EwWU42MfE//UsE4mG+A8XycSQBhshMmowqsZBKxZnmVUxOWsniRVOvDCICxnCu5VDZW2q7dltNh+U1XanraJ1g975FIkOnDrBk2/wCZh40lXrfSuwnhrE1RwCztLFG2jNztpk1S7aZPUeAu/Wl4bv8Zb+BueiDb+f0tvZOYYycPTe5xcuUPiD0dffPv84u/2LA/QW/QOvUcEnaBz9BldoiliaI1+ol/ot7VvfbCI5W2pnb3mlN+gnbDO/gG+3hz0</latexit>

State: list with remaining work of each job

w([r1, . . . , rn]) = r1 + · · ·+ rn

<latexit sha1_base64="T3ssC8f0Sa2aR7072NUl8KU67Tg=">AAADmXicbVLNbtNAEN7G/JTwl8KxFwtfglhFXttpG0VIpRyoOJWftEWOFa3XE9fqeh2tN6SR5VfgabjCe3DjUVg7PpDWs4eZ+fb7RjOjCRc8yZVt/9npGPfuP3i4+6j7+MnTZ897ey/O82wpGUxYxjN5GdIceCJgohLF4XIhgaYhh4vw+n31f/EdZJ5k4qtaLyBIaSySecKo0tCs11/1fTkj2JxGmcqxKWcieG2+1Z6Ybzag9hqd9Sx7YNdm3g1IE1iosbPZXueblrNlCkIxTvPcJ2ShgoJKlTAOZXe6zGFB2TWNwWdXGgaJTZHNqWDrq0jHNM0pT2IRFHokvoy2NcVNPX3Z7U4jmOvx6zQHVXz+cFIW1cskFTFgh7iYuDZ23bGECDs2wZ6LXTLWu9DNUUwORvjI1TxnHPIl4NEIj3Rqe2MFlOMDDxPvSLMOx2vgPFvFEkBobIjJsMKrHgSsWJamVETFtO4kUaXvBn5QTBXcqBoqLKfcpOF84xNVWG5pkbK8XSOTIi59py7Q1PMtEjQzlVWpcluhZ2sTVHALO40VbaM3O2mTVLtpk9R4C79aXhu/xlv4ax6LNv5/S29k+hjJ7dO7G5w7A+INhp886/jk7+Ysd9E+eoX6iKBDdIxO0RmaIIZ+oJ/oF/pt7BvvjFPj44ba2WlO+SXaMuPLP6F7JEw=</latexit>

Work:

q([r1, . . . , rn]) = (n� 1)+

<latexit sha1_base64="LspOQIdax6sVPCdukiSKGtyA/Ug=">AAADu3icbVJNb9NAEN3GfJTwlcKRi4WFlKpL5LWdtlFUqSoHEKeCSFvkmGhtT1zT9Tqs16SR5f/Er0HiRH8Ka8cH0np9mJnn90YzT+MvWJxJ0/yz1dHu3X/wcPtR9/GTp8+e93ZenGVpLgKYBClLxYVPM2Axh4mMJYOLhQCa+AzO/at31f/znyCyOOVf5GoBXkIjHs/jgEoFzXof3yz7rpgRrE/DVGZYFzPu7epHKhJ9bw2qqNDuj3Zin+tvdbL7bW/WM8yBWT/9bkKaxEDNO53tdL6qXkGeAJcBo1nmErKQXkGFjAMGZXeaZ7CgwRWNwA0uFQwC6zydUx6sLkOV0ySjLI64V6ilWR5uaorr2p+y252GMFcG1WUGsvj8/qQsqi8VlEeALWJjYpvYtscCQmyZBDs2tslYuaWGo5jsj/ChrXjW2Gc54NEIj1RpOmMJlOF9BxPnULEOxitgLF1GAoArbIjJsMKrGTgsgzRJKA+LaT1JLEvX9lyvmEq4ljVUGFa5Lv35OsayMOzSIGV5u0cqeFS6Vt2g6ecaxGt2KqtW5aZC7dYmqOAWdhJJ2kZvPGmTVN60SWq8hV+Z18av8Rb+ikW8jf+f6Y1MHSO5fXp3kzNrQJzB8JNjHJ/crM9yG71Cr1EfEXSAjtEHdIomKEC/0G/0F91oR1qgfdfYmtrZak75Jdp4Wv4PXqEumw==</latexit>

Queue length:

Metrics via long-run averages

13

X(t) = state at time t

mean waiting time = Earrival[w(X)]

mean number in queue = Etime[q(X)]

Metrics via long-run averages

13

X(t) = state at time t

mean waiting time = Earrival[w(X)]

mean number in queue = Etime[q(X)]

time

work

time

work

Metrics via long-run averages

13

X(t) = state at time t

mean waiting time = Earrival[w(X)]

mean number in queue = Etime[q(X)]

time

work

time

work

Earrival[f (X)] =

P
t arrival f (X (t))
arrivals

<latexit sha1_base64="pp9XEzJi1DKKlQ5S1Zbk52bhdGg=">AAADynicbVLPb9MwFPZafozyq4Mjl4hcVsmq4qTdVlVI0xCCA4eB6NYpiSrXcdNojlM5zrbK8o3/i7+DGxeu8C/gpAHRLc8HP3/v+56eP735iiW5dJzvO632vfsPHu4+6jx+8vTZ8+7ei7M8KwShE5KxTEznOKcs4XQiE8nodCUoTueMns8v35b18ysq8iTjX+R6RcMUxzxZJARLA826F8G7mQpSLJciVViI5AozrdVif9rT1hsrWAhMVJAX6UxJK5D0RirrH80ytH3Z62m1qQT231qu9axrO32nCutugurEBnWczvZaF0GUkSKlXBKG89xHaCVDM5VMCKO6ExQ5XWFyiWPqk6WBqYAWzxaYk/UyMjlOc8ySmIfKeMCKaFujbiq7dKcTRHRh/KqeOZXq8/sTrcqTCcxjCl3kQeQ50PPGgkbQdRAceNBDY2OeGQ5DdDCCR57hueM5KygcjeDIPJ3BWFLM4MEAosGRYR2O15Sx7DoWlHKDDSEalng5A6fXJEtTzCMVVJMkUvte6IcbMytI2W7t7XyxuROpbE/bSOvbPTLBY+27VYO6n2+jsP6TLlvpbYX5W5OghBvYaSxxE732pElSetMkqfAGfmleE7/CG/hrFvMm/n+m1zKzjOj26t1Nztw+GvSHnwb28cmPzVruglfgNdgHCByCY/ABnIIJIOAb+Al+gd/tj23RXrfVhtraqVf5JdiK9tc/5A88JQ==</latexit>

Metrics via long-run averages

13

X(t) = state at time t

mean waiting time = Earrival[w(X)]

mean number in queue = Etime[q(X)]

time

work

time

work

Earrival[f (X)] =

P
t arrival f (X (t))
arrivals

<latexit sha1_base64="pp9XEzJi1DKKlQ5S1Zbk52bhdGg=">AAADynicbVLPb9MwFPZafozyq4Mjl4hcVsmq4qTdVlVI0xCCA4eB6NYpiSrXcdNojlM5zrbK8o3/i7+DGxeu8C/gpAHRLc8HP3/v+56eP735iiW5dJzvO632vfsPHu4+6jx+8vTZ8+7ei7M8KwShE5KxTEznOKcs4XQiE8nodCUoTueMns8v35b18ysq8iTjX+R6RcMUxzxZJARLA826F8G7mQpSLJciVViI5AozrdVif9rT1hsrWAhMVJAX6UxJK5D0RirrH80ytH3Z62m1qQT231qu9axrO32nCutugurEBnWczvZaF0GUkSKlXBKG89xHaCVDM5VMCKO6ExQ5XWFyiWPqk6WBqYAWzxaYk/UyMjlOc8ySmIfKeMCKaFujbiq7dKcTRHRh/KqeOZXq8/sTrcqTCcxjCl3kQeQ50PPGgkbQdRAceNBDY2OeGQ5DdDCCR57hueM5KygcjeDIPJ3BWFLM4MEAosGRYR2O15Sx7DoWlHKDDSEalng5A6fXJEtTzCMVVJMkUvte6IcbMytI2W7t7XyxuROpbE/bSOvbPTLBY+27VYO6n2+jsP6TLlvpbYX5W5OghBvYaSxxE732pElSetMkqfAGfmleE7/CG/hrFvMm/n+m1zKzjOj26t1Nztw+GvSHnwb28cmPzVruglfgNdgHCByCY/ABnIIJIOAb+Al+gd/tj23RXrfVhtraqVf5JdiK9tc/5A88JQ==</latexit>

Etime[f (X)] =

R long time
0 f (X (t))dt

long time

<latexit sha1_base64="+3jAuf2u2UtBMQ0pZlWP59XVXr0=">AAADzHicbZJPb9MwGMa9lT+j/FkHRy4RubSSVcVNuq2qkKYhBCc0EN2KklA5yds0muNUictWWb7yvfgY3LhxhW+Ak+ZA19iHvH7ye17Zj95gyZJCWNbPvf3WvfsPHh48aj9+8vTZYefo+WWRrfIQJmHGsnwa0AJYwmEiEsFgusyBpgGDq+D6Tfn/6hvkRZLxz2K9BD+lMU/mSUiFlmYd13s7k15KxSJPpUhSUErOu9OeMl4b3jynofQSLmbWV+kJuBWSZTw2Npyhua7o9QwvkkLbdoBZx7T6VrWM3YLUhYnqdTE72v/iRVm4SoGLkNGicAlZCl/SXCQhA9X2VgUsaXhNY3DDhZYhxwbP5pSH60Wka5oWlCUx96VOga2ibY+8rQJT7bYXwVwnVh0LEPLTu3Mly53llMeAB8TGxLawbY9ziPDAItixsU3GOj59OYrJ8Qif2pobjAO2Ajwa4ZE+Ws5YAGX42MHEOdXUyXgNjGU3cQ7AtTbEZFjq5R043IRZmlIeSa+6SSKUa/uuv4mykqQ5qJMN5ptvIqRpK5ModbdHlvNYuYOqQd3PNYlfv0mVrdS2Q7+tyVDKDXQaC9qE15k0WcpsmiyV3sCX4TXxld7Ar1nMm/j/Qq9tehjJ3dHbLS4HfeL0hx8d8+z812YsD9BL9Ap1EUEn6Ay9RxdogkL0A/1Gf9Df1oeWaMmW2qD7e/Uov0Bbq/X9HyOyPR0=</latexit>

Principles for long-run averages

14

Principles for long-run averages

14

Base principle: when averaging over entire timeline,

ignore edge effects

Principles for long-run averages

14

Base principle: when averaging over entire timeline,

ignore edge effects

Little's law

Principles for long-run averages

14

Base principle: when averaging over entire timeline,

ignore edge effects

Little's law Renewal-reward

Principles for long-run averages

14

Base principle: when averaging over entire timeline,

ignore edge effects

Little's law Renewal-reward Palm inversion

Principles for long-run averages

14

Base principle: when averaging over entire timeline,

ignore edge effects

Rate conservation law:
for any f, average rate of change in f(X) is 0

Little's law Renewal-reward Palm inversion

Principles for long-run averages

14

Base principle: when averaging over entire timeline,

ignore edge effects

Rate conservation law:
for any f, average rate of change in f(X) is 0

requires
stability!

Little's law Renewal-reward Palm inversion

Analysis via drift

15

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

Analysis via drift

15

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

f(x) = w(x)Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

f(x) = w(x)

Ptime[X empty] = 1��E[S]

<latexit sha1_base64="XY9w4/KRKX7BLE8D9hh3ZpXX6ic=">AAAD9HicbVJLb9NAEN40PEp4tIULiIuFValVl8obp48oQqqKEBzDI22QbaKNPXGtrtdhvWkarfbE3+CGuPJ/uHHlX7B2fKCtx4eZ+fx9o9lPM56yJJeO87ux0rx1+87d1Xut+w8ePlpb33h8kmczEcIgzFgmhmOaA0s4DGQiGQynAmg6ZnA6Pn9d/D+9AJEnGf8kF1MIUhrzZJKEVBpotP5tc77liRHBlh9lMseWGPFg23plMrF2lqDJBm1tfq1nbnHrpUW2v+y0/P5I+SmVZyJVMklBazW0fAmXUlmQTuVCa8Mnhu4zs2JELf+N+qhH67az65Rh3SxIVdioiv5oY+Wz2SGcpcBlyGiee4RMZaCokEnIQLf8WQ5TGp7TGLzwzMAgsMWzCeXh4iwyNU1zypKYB8q4xWbRVY26LI3VrZYfwcQ4W7Y5SPXh7bFWxZcJymPAbeJi4jrYdXsCItx2CO642CU9Y7NZjmKy38WHruG1e2M2A9zt4q5pnU5PAmV4v4NJ59CwDnoLYCybxwKAG2wPk70CL3bgMA+zNKU8Un65SSK15wZeoEpvS0jZbb1sx5NlTqSyXW0Tra/PyASPtdcuB1TzPJsE1Zt0MUpfVZi31QkKuIadxpLW0StP6iSFN3WSEq/hF+bV8Uu8hr9gMa/j/2d6JTPHSK6f3s3ipL1LOrt77zv20fGf5VmuoufoBdpCBB2gI/QO9dEAhehvY63xtPGsedH83vzR/LmkrjSqU36CrkTz1z8ACEJS</latexit>

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

f(x) = w(x)

f(x) = w(x)2

Ptime[X empty] = 1��E[S]

<latexit sha1_base64="XY9w4/KRKX7BLE8D9hh3ZpXX6ic=">AAAD9HicbVJLb9NAEN40PEp4tIULiIuFValVl8obp48oQqqKEBzDI22QbaKNPXGtrtdhvWkarfbE3+CGuPJ/uHHlX7B2fKCtx4eZ+fx9o9lPM56yJJeO87ux0rx1+87d1Xut+w8ePlpb33h8kmczEcIgzFgmhmOaA0s4DGQiGQynAmg6ZnA6Pn9d/D+9AJEnGf8kF1MIUhrzZJKEVBpotP5tc77liRHBlh9lMseWGPFg23plMrF2lqDJBm1tfq1nbnHrpUW2v+y0/P5I+SmVZyJVMklBazW0fAmXUlmQTuVCa8Mnhu4zs2JELf+N+qhH67az65Rh3SxIVdioiv5oY+Wz2SGcpcBlyGiee4RMZaCokEnIQLf8WQ5TGp7TGLzwzMAgsMWzCeXh4iwyNU1zypKYB8q4xWbRVY26LI3VrZYfwcQ4W7Y5SPXh7bFWxZcJymPAbeJi4jrYdXsCItx2CO642CU9Y7NZjmKy38WHruG1e2M2A9zt4q5pnU5PAmV4v4NJ59CwDnoLYCybxwKAG2wPk70CL3bgMA+zNKU8Un65SSK15wZeoEpvS0jZbb1sx5NlTqSyXW0Tra/PyASPtdcuB1TzPJsE1Zt0MUpfVZi31QkKuIadxpLW0StP6iSFN3WSEq/hF+bV8Uu8hr9gMa/j/2d6JTPHSK6f3s3ipL1LOrt77zv20fGf5VmuoufoBdpCBB2gI/QO9dEAhehvY63xtPGsedH83vzR/LmkrjSqU36CrkTz1z8ACEJS</latexit>

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

f(x) = w(x)

f(x) = w(x)2

Ptime[X empty] = 1��E[S]

<latexit sha1_base64="XY9w4/KRKX7BLE8D9hh3ZpXX6ic=">AAAD9HicbVJLb9NAEN40PEp4tIULiIuFValVl8obp48oQqqKEBzDI22QbaKNPXGtrtdhvWkarfbE3+CGuPJ/uHHlX7B2fKCtx4eZ+fx9o9lPM56yJJeO87ux0rx1+87d1Xut+w8ePlpb33h8kmczEcIgzFgmhmOaA0s4DGQiGQynAmg6ZnA6Pn9d/D+9AJEnGf8kF1MIUhrzZJKEVBpotP5tc77liRHBlh9lMseWGPFg23plMrF2lqDJBm1tfq1nbnHrpUW2v+y0/P5I+SmVZyJVMklBazW0fAmXUlmQTuVCa8Mnhu4zs2JELf+N+qhH67az65Rh3SxIVdioiv5oY+Wz2SGcpcBlyGiee4RMZaCokEnIQLf8WQ5TGp7TGLzwzMAgsMWzCeXh4iwyNU1zypKYB8q4xWbRVY26LI3VrZYfwcQ4W7Y5SPXh7bFWxZcJymPAbeJi4jrYdXsCItx2CO642CU9Y7NZjmKy38WHruG1e2M2A9zt4q5pnU5PAmV4v4NJ59CwDnoLYCybxwKAG2wPk70CL3bgMA+zNKU8Un65SSK15wZeoEpvS0jZbb1sx5NlTqSyXW0Tra/PyASPtdcuB1TzPJsE1Zt0MUpfVZi31QkKuIadxpLW0StP6iSFN3WSEq/hF+bV8Uu8hr9gMa/j/2d6JTPHSK6f3s3ipL1LOrt77zv20fGf5VmuoufoBdpCBB2gI/QO9dEAhehvY63xtPGsedH83vzR/LmkrjSqU36CrkTz1z8ACEJS</latexit>

Etime[w(X)] =
�
2 E[S2]

1��E[S]

<latexit sha1_base64="qLJfyZXvZcTLC4QuY+mf8AnGq+o=">AAAEQ3icbVJLb9NAEHYaHiW8WjhysbAqpepSee20TRQhVUUVHMOjbZDtRht74lhdr8N6Qxqt9ufxB7hx484NcUVi7fhAG48l78y33zeanZnxjCa5sO0fjY3mnbv37m8+aD189PjJ063tZ+d5NuchnIUZzfhwTHKgCYMzkQgKwxkHko4pXIyv3hT3F1+B50nGPonlDIKUxCyZJCERGhptfd9ZtD0+wsj0o0zkyOQjFuyar/WJzb0VqE+Ntna+1DPbzHxl4t3LvdaOPxhJPyViylMpkhSUkkPTF3AtpAnpTCyV0gKs+T7VNUbE9E/lR9XyT9d0i/ZwtyD7E05CWf1XIiUdVeguHc1bS6ZGW5a9b5dmrju4ciyjssFoe+OzflI4T4GJkJI89zCeiUASLpKQgi5vnsOMhFckBi+cahg4Mlk2ISxcTiPtkzQnNIlZIHXz6Ty6qZHX5ZxUq+VHMNGDKsMchPzw9kTJ4ss4YTEgB7sIuzZy3T6HCDk2Rh0Xubivp6aLIwgf9lDX1TynP6ZzQL0e6unQ7vQFEIoOOwh3upp11F8Cpdki5gBMYwcIHxR4UQODRZilKWGR9MtKEqE8N/ACWU6qhKTlqFU4nqzOREjLVRZW6naOjLNYeU6ZoMrnWTio3qSKVOqmQr+tTlDANew0FqSOXvWkTlL0pk5S4jX8onl1/BKv4S9pzOr4/zW9kullxLdXb905d/ZxZ//gfcc6Pvm5WstN44Xx0mgb2Dgyjo13xsA4M8JGt3HZiBvT5rfmr+bv5p8VdaNRrfJz44Y1//4Db7FhUw==</latexit>

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

f(x) = w(x)

f(x) = w(x)2

Ptime[X empty] = 1��E[S]

<latexit sha1_base64="XY9w4/KRKX7BLE8D9hh3ZpXX6ic=">AAAD9HicbVJLb9NAEN40PEp4tIULiIuFValVl8obp48oQqqKEBzDI22QbaKNPXGtrtdhvWkarfbE3+CGuPJ/uHHlX7B2fKCtx4eZ+fx9o9lPM56yJJeO87ux0rx1+87d1Xut+w8ePlpb33h8kmczEcIgzFgmhmOaA0s4DGQiGQynAmg6ZnA6Pn9d/D+9AJEnGf8kF1MIUhrzZJKEVBpotP5tc77liRHBlh9lMseWGPFg23plMrF2lqDJBm1tfq1nbnHrpUW2v+y0/P5I+SmVZyJVMklBazW0fAmXUlmQTuVCa8Mnhu4zs2JELf+N+qhH67az65Rh3SxIVdioiv5oY+Wz2SGcpcBlyGiee4RMZaCokEnIQLf8WQ5TGp7TGLzwzMAgsMWzCeXh4iwyNU1zypKYB8q4xWbRVY26LI3VrZYfwcQ4W7Y5SPXh7bFWxZcJymPAbeJi4jrYdXsCItx2CO642CU9Y7NZjmKy38WHruG1e2M2A9zt4q5pnU5PAmV4v4NJ59CwDnoLYCybxwKAG2wPk70CL3bgMA+zNKU8Un65SSK15wZeoEpvS0jZbb1sx5NlTqSyXW0Tra/PyASPtdcuB1TzPJsE1Zt0MUpfVZi31QkKuIadxpLW0StP6iSFN3WSEq/hF+bV8Uu8hr9gMa/j/2d6JTPHSK6f3s3ipL1LOrt77zv20fGf5VmuoufoBdpCBB2gI/QO9dEAhehvY63xtPGsedH83vzR/LmkrjSqU36CrkTz1z8ACEJS</latexit>

Etime[w(X)] =
�
2 E[S2]

1��E[S]

<latexit sha1_base64="qLJfyZXvZcTLC4QuY+mf8AnGq+o=">AAAEQ3icbVJLb9NAEHYaHiW8WjhysbAqpepSee20TRQhVUUVHMOjbZDtRht74lhdr8N6Qxqt9ufxB7hx484NcUVi7fhAG48l78y33zeanZnxjCa5sO0fjY3mnbv37m8+aD189PjJ063tZ+d5NuchnIUZzfhwTHKgCYMzkQgKwxkHko4pXIyv3hT3F1+B50nGPonlDIKUxCyZJCERGhptfd9ZtD0+wsj0o0zkyOQjFuyar/WJzb0VqE+Ntna+1DPbzHxl4t3LvdaOPxhJPyViylMpkhSUkkPTF3AtpAnpTCyV0gKs+T7VNUbE9E/lR9XyT9d0i/ZwtyD7E05CWf1XIiUdVeguHc1bS6ZGW5a9b5dmrju4ciyjssFoe+OzflI4T4GJkJI89zCeiUASLpKQgi5vnsOMhFckBi+cahg4Mlk2ISxcTiPtkzQnNIlZIHXz6Ty6qZHX5ZxUq+VHMNGDKsMchPzw9kTJ4ss4YTEgB7sIuzZy3T6HCDk2Rh0Xubivp6aLIwgf9lDX1TynP6ZzQL0e6unQ7vQFEIoOOwh3upp11F8Cpdki5gBMYwcIHxR4UQODRZilKWGR9MtKEqE8N/ACWU6qhKTlqFU4nqzOREjLVRZW6naOjLNYeU6ZoMrnWTio3qSKVOqmQr+tTlDANew0FqSOXvWkTlL0pk5S4jX8onl1/BKv4S9pzOr4/zW9kullxLdXb905d/ZxZ//gfcc6Pvm5WstN44Xx0mgb2Dgyjo13xsA4M8JGt3HZiBvT5rfmr+bv5p8VdaNRrfJz44Y1//4Db7FhUw==</latexit>

Principle: PASTA
Earrival[·] = Etime[·]

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Analysis via drift

15

f(x) = w(x)

f(x) = w(x)2

Ptime[X empty] = 1��E[S]

<latexit sha1_base64="XY9w4/KRKX7BLE8D9hh3ZpXX6ic=">AAAD9HicbVJLb9NAEN40PEp4tIULiIuFValVl8obp48oQqqKEBzDI22QbaKNPXGtrtdhvWkarfbE3+CGuPJ/uHHlX7B2fKCtx4eZ+fx9o9lPM56yJJeO87ux0rx1+87d1Xut+w8ePlpb33h8kmczEcIgzFgmhmOaA0s4DGQiGQynAmg6ZnA6Pn9d/D+9AJEnGf8kF1MIUhrzZJKEVBpotP5tc77liRHBlh9lMseWGPFg23plMrF2lqDJBm1tfq1nbnHrpUW2v+y0/P5I+SmVZyJVMklBazW0fAmXUlmQTuVCa8Mnhu4zs2JELf+N+qhH67az65Rh3SxIVdioiv5oY+Wz2SGcpcBlyGiee4RMZaCokEnIQLf8WQ5TGp7TGLzwzMAgsMWzCeXh4iwyNU1zypKYB8q4xWbRVY26LI3VrZYfwcQ4W7Y5SPXh7bFWxZcJymPAbeJi4jrYdXsCItx2CO642CU9Y7NZjmKy38WHruG1e2M2A9zt4q5pnU5PAmV4v4NJ59CwDnoLYCybxwKAG2wPk70CL3bgMA+zNKU8Un65SSK15wZeoEpvS0jZbb1sx5NlTqSyXW0Tra/PyASPtdcuB1TzPJsE1Zt0MUpfVZi31QkKuIadxpLW0StP6iSFN3WSEq/hF+bV8Uu8hr9gMa/j/2d6JTPHSK6f3s3ipL1LOrt77zv20fGf5VmuoufoBdpCBB2gI/QO9dEAhehvY63xtPGsedH83vzR/LmkrjSqU36CrkTz1z8ACEJS</latexit>

Etime[w(X)] =
�
2 E[S2]

1��E[S]

<latexit sha1_base64="qLJfyZXvZcTLC4QuY+mf8AnGq+o=">AAAEQ3icbVJLb9NAEHYaHiW8WjhysbAqpepSee20TRQhVUUVHMOjbZDtRht74lhdr8N6Qxqt9ufxB7hx484NcUVi7fhAG48l78y33zeanZnxjCa5sO0fjY3mnbv37m8+aD189PjJ063tZ+d5NuchnIUZzfhwTHKgCYMzkQgKwxkHko4pXIyv3hT3F1+B50nGPonlDIKUxCyZJCERGhptfd9ZtD0+wsj0o0zkyOQjFuyar/WJzb0VqE+Ntna+1DPbzHxl4t3LvdaOPxhJPyViylMpkhSUkkPTF3AtpAnpTCyV0gKs+T7VNUbE9E/lR9XyT9d0i/ZwtyD7E05CWf1XIiUdVeguHc1bS6ZGW5a9b5dmrju4ciyjssFoe+OzflI4T4GJkJI89zCeiUASLpKQgi5vnsOMhFckBi+cahg4Mlk2ISxcTiPtkzQnNIlZIHXz6Ty6qZHX5ZxUq+VHMNGDKsMchPzw9kTJ4ss4YTEgB7sIuzZy3T6HCDk2Rh0Xubivp6aLIwgf9lDX1TynP6ZzQL0e6unQ7vQFEIoOOwh3upp11F8Cpdki5gBMYwcIHxR4UQODRZilKWGR9MtKEqE8N/ACWU6qhKTlqFU4nqzOREjLVRZW6naOjLNYeU6ZoMrnWTio3qSKVOqmQr+tTlDANew0FqSOXvWkTlL0pk5S4jX8onl1/BKv4S9pzOr4/zW9kullxLdXb905d/ZxZ//gfcc6Pvm5WstN44Xx0mgb2Dgyjo13xsA4M8JGt3HZiBvT5rfmr+bv5p8VdaNRrfJz44Y1//4Db7FhUw==</latexit>

Recipe: to get nth-order info,
use (n+1)th-order function f

Principle: PASTA
Earrival[·] = Etime[·]

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

Beyond the M/G/1

16

Beyond the M/G/1

16

Etime[w(X)] =
�
2 E[S2] + Etime[u(X)w(X)]

1��E[S]

<latexit sha1_base64="8WsBQMqPJjcFMmSYeWCdiKXtepY=">AAAFVHiclVJbT9swGA2Fbiy7wfa4F2tVUSs8FCflUlVIiAlte2NjXKY4VG7ihgwnKY5DqSz/zUl7m/Y79jAnrWDQvMyRYvvknOPPX85gxKJMWNbPhdriUv3R4+Un5tNnz1+8XFl9dZKlOffpsZ+ylJ8NSEZZlNBjEQlGz0acknjA6Ong8n3x/fSa8ixKk69iMqJeTMIkGkY+ERrqry78bo5bLu8jCHCQigwC3k+8NtjVMwLrU1DPGjWbV9XMVgLeAdQ+Xzeb+LAvcUzEBY+liGKqlDwDWNAbIQGNR2KilBYgzcdMFxkQgA/kkTLxwZxu3DprF2Q85MSXs/dUpKStCt25rYoS57W51gIMQemh5Nx5ymxaYG23QuriQRR6EovpeSPCRUSYul0VbVFgWNaGsdkEeqzhq5wERSW3Z9zZBrRQ5vzOe9i6PZJETGmrtq7vPywJ59G1Lmre8HsaJdoQAvfIu3PtrzSsDascYH6BZouGMRuH/dXaN/2L/TymifAZyTIXoZHwZNECn1H9u/JMX8u/JCF1/QsNUw5Bkg5J4k8uAr0mcUZYFCae1GlkeXBfI2/K4CrTxAEd6uSW24wK+eXDvpLFk3KShBTayIHIsaDj9DgNoG0h2HGgg3o6xro4AtFWF+44mmf3BiynsNuFXb21Oj1BCYNbHYg6O5q13ZtQxtJxyClNNLYJ0WaBFzUkdOyncUySQOKykkgo1/HcIgY6uSUkG7aabgfD6RwJ2XBUAyn10CPlSahcuzSY+bkN5M3upAordV+h71YlKOAKdhwKUkWf9aRKUvSmSlLiFfyieVX8Eq/gT1iYVPH/afpMpsOIHkZvfnFib6DOxubnTmNv/9c0lsvGG+Ot0TKQsW3sGR+NQ+PY8GufamntpjZZ+rH0p75Yr0+ptYVZlF8b90b9xV8oCbz4</latexit>

Work decomposition law: under M/G arrivals,

Beyond the M/G/1

16

Etime[w(X)] =
�
2 E[S2] + Etime[u(X)w(X)]

1��E[S]

<latexit sha1_base64="8WsBQMqPJjcFMmSYeWCdiKXtepY=">AAAFVHiclVJbT9swGA2Fbiy7wfa4F2tVUSs8FCflUlVIiAlte2NjXKY4VG7ihgwnKY5DqSz/zUl7m/Y79jAnrWDQvMyRYvvknOPPX85gxKJMWNbPhdriUv3R4+Un5tNnz1+8XFl9dZKlOffpsZ+ylJ8NSEZZlNBjEQlGz0acknjA6Ong8n3x/fSa8ixKk69iMqJeTMIkGkY+ERrqry78bo5bLu8jCHCQigwC3k+8NtjVMwLrU1DPGjWbV9XMVgLeAdQ+Xzeb+LAvcUzEBY+liGKqlDwDWNAbIQGNR2KilBYgzcdMFxkQgA/kkTLxwZxu3DprF2Q85MSXs/dUpKStCt25rYoS57W51gIMQemh5Nx5ymxaYG23QuriQRR6EovpeSPCRUSYul0VbVFgWNaGsdkEeqzhq5wERSW3Z9zZBrRQ5vzOe9i6PZJETGmrtq7vPywJ59G1Lmre8HsaJdoQAvfIu3PtrzSsDascYH6BZouGMRuH/dXaN/2L/TymifAZyTIXoZHwZNECn1H9u/JMX8u/JCF1/QsNUw5Bkg5J4k8uAr0mcUZYFCae1GlkeXBfI2/K4CrTxAEd6uSW24wK+eXDvpLFk3KShBTayIHIsaDj9DgNoG0h2HGgg3o6xro4AtFWF+44mmf3BiynsNuFXb21Oj1BCYNbHYg6O5q13ZtQxtJxyClNNLYJ0WaBFzUkdOyncUySQOKykkgo1/HcIgY6uSUkG7aabgfD6RwJ2XBUAyn10CPlSahcuzSY+bkN5M3upAordV+h71YlKOAKdhwKUkWf9aRKUvSmSlLiFfyieVX8Eq/gT1iYVPH/afpMpsOIHkZvfnFib6DOxubnTmNv/9c0lsvGG+Ot0TKQsW3sGR+NQ+PY8GufamntpjZZ+rH0p75Yr0+ptYVZlF8b90b9xV8oCbz4</latexit>

Work decomposition law: under M/G arrivals,

unused
service

Beyond the M/G/1

16

Etime[w(X)] =
�
2 E[S2] + Etime[u(X)w(X)]

1��E[S]

<latexit sha1_base64="8WsBQMqPJjcFMmSYeWCdiKXtepY=">AAAFVHiclVJbT9swGA2Fbiy7wfa4F2tVUSs8FCflUlVIiAlte2NjXKY4VG7ihgwnKY5DqSz/zUl7m/Y79jAnrWDQvMyRYvvknOPPX85gxKJMWNbPhdriUv3R4+Un5tNnz1+8XFl9dZKlOffpsZ+ylJ8NSEZZlNBjEQlGz0acknjA6Ong8n3x/fSa8ixKk69iMqJeTMIkGkY+ERrqry78bo5bLu8jCHCQigwC3k+8NtjVMwLrU1DPGjWbV9XMVgLeAdQ+Xzeb+LAvcUzEBY+liGKqlDwDWNAbIQGNR2KilBYgzcdMFxkQgA/kkTLxwZxu3DprF2Q85MSXs/dUpKStCt25rYoS57W51gIMQemh5Nx5ymxaYG23QuriQRR6EovpeSPCRUSYul0VbVFgWNaGsdkEeqzhq5wERSW3Z9zZBrRQ5vzOe9i6PZJETGmrtq7vPywJ59G1Lmre8HsaJdoQAvfIu3PtrzSsDascYH6BZouGMRuH/dXaN/2L/TymifAZyTIXoZHwZNECn1H9u/JMX8u/JCF1/QsNUw5Bkg5J4k8uAr0mcUZYFCae1GlkeXBfI2/K4CrTxAEd6uSW24wK+eXDvpLFk3KShBTayIHIsaDj9DgNoG0h2HGgg3o6xro4AtFWF+44mmf3BiynsNuFXb21Oj1BCYNbHYg6O5q13ZtQxtJxyClNNLYJ0WaBFzUkdOyncUySQOKykkgo1/HcIgY6uSUkG7aabgfD6RwJ2XBUAyn10CPlSahcuzSY+bkN5M3upAordV+h71YlKOAKdhwKUkWf9aRKUvSmSlLiFfyieVX8Eq/gT1iYVPH/afpMpsOIHkZvfnFib6DOxubnTmNv/9c0lsvGG+Ot0TKQsW3sGR+NQ+PY8GufamntpjZZ+rH0p75Yr0+ptYVZlF8b90b9xV8oCbz4</latexit>

Work decomposition law: under M/G arrivals,

unused
service

M/G/1

Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Beyond the M/G/1

16

Etime[w(X)] =
�
2 E[S2] + Etime[u(X)w(X)]

1��E[S]

<latexit sha1_base64="8WsBQMqPJjcFMmSYeWCdiKXtepY=">AAAFVHiclVJbT9swGA2Fbiy7wfa4F2tVUSs8FCflUlVIiAlte2NjXKY4VG7ihgwnKY5DqSz/zUl7m/Y79jAnrWDQvMyRYvvknOPPX85gxKJMWNbPhdriUv3R4+Un5tNnz1+8XFl9dZKlOffpsZ+ylJ8NSEZZlNBjEQlGz0acknjA6Ong8n3x/fSa8ixKk69iMqJeTMIkGkY+ERrqry78bo5bLu8jCHCQigwC3k+8NtjVMwLrU1DPGjWbV9XMVgLeAdQ+Xzeb+LAvcUzEBY+liGKqlDwDWNAbIQGNR2KilBYgzcdMFxkQgA/kkTLxwZxu3DprF2Q85MSXs/dUpKStCt25rYoS57W51gIMQemh5Nx5ymxaYG23QuriQRR6EovpeSPCRUSYul0VbVFgWNaGsdkEeqzhq5wERSW3Z9zZBrRQ5vzOe9i6PZJETGmrtq7vPywJ59G1Lmre8HsaJdoQAvfIu3PtrzSsDascYH6BZouGMRuH/dXaN/2L/TymifAZyTIXoZHwZNECn1H9u/JMX8u/JCF1/QsNUw5Bkg5J4k8uAr0mcUZYFCae1GlkeXBfI2/K4CrTxAEd6uSW24wK+eXDvpLFk3KShBTayIHIsaDj9DgNoG0h2HGgg3o6xro4AtFWF+44mmf3BiynsNuFXb21Oj1BCYNbHYg6O5q13ZtQxtJxyClNNLYJ0WaBFzUkdOyncUySQOKykkgo1/HcIgY6uSUkG7aabgfD6RwJ2XBUAyn10CPlSahcuzSY+bkN5M3upAordV+h71YlKOAKdhwKUkWf9aRKUvSmSlLiFfyieVX8Eq/gT1iYVPH/afpMpsOIHkZvfnFib6DOxubnTmNv/9c0lsvGG+Ot0TKQsW3sGR+NQ+PY8GufamntpjZZ+rH0p75Yr0+ptYVZlF8b90b9xV8oCbz4</latexit>

Work decomposition law: under M/G arrivals,

unused
service

M/G/k
Etime[u(X)w(X)]

1��E[S]
= work of k� 1 jobs

<latexit sha1_base64="l6J1qai8UjOACV8Govhe0YRa0Do=">AAAFs3icnVNdb9MwFM0KhVG+NnjkxaLr1Aoz1U27raomjaEJHgdjW1GSVU7iZlmdpHPcdZXl/8Ov4RV446dgp9HG1ryAK9XXN+ece3Ny7Y5pmPJm89dS6d798oOHy48qj588ffZ8ZfXFcZpMmEeOvIQmrO/ilNAwJkc85JT0x4zgyKXkxB29189PLglLwyT+wmdj4kQ4iMNh6GGuUoPV0rvatG6xAYLA9hOeQsAGsdMAO2pH4M08qXaVrdQuipH1GLwFqHH6plKzDwbCjjA/Y5HgYUSkFH1gc3LFBSDRmM+kVASk8DZVTfoY2PviUCri/gJxWu83NNoeMuyJ/H/OkqIlNfG0JXWPi9yJ4gIbgkxDioWCqmITrO8UUC3bDQNH2Hxeb4wZDzGV15H2RYJh1pttV2pArXX7YoJ93cl1jRtZn2jmhN1oD+vXJXFIpZJqqP7+QRIzFl6qphYFz5MwVoIQWIfOjWolN+8/fNL+Z59vmrARSIZgzabkAoz0F18D54mbysFKtbnRzBZYDFAeVI18Haih+6omyJtEJOYexWlqITTmjtAGe5SodiepMs0b4YBY3plKEwZBnAxx7M3OfBXjKMU0DGJHqGGnE/82R1xl90JWKrZPhupiZMeUcPH5w54U+pcwHAcEtpAJkdmEptljxIetJoJtE5qop26Jag5DtNmF26bCtXounRDY7cKuOjbbPU4whZttiNrbCrXVmxFKk2nACIlVrgNRR+d1DzGZekkU4dgXdtZJyKVlOpYeMuVslhLVlpwf3eF8D7momrKKpLyrkbA4kFYrE8j1rCpy8neSWkreZqh3KyLodAE6CjgugueeFFG0N0WULF+A1+YV4bN8AX5Gg7gI/5fpOU0NI7o7eovBcWsDtTc6n9rV3b3f87FcNl4Zr426gYwtY9f4aBwYR4ZX+lb6XvpR+lnulK2yW/bn0NJSPsovjVurHP0BSpPd/A==</latexit>

is work of ≤ k−1 jobs

M/G/1

Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Dispatching systems

17

dispatcher
jobs

Dispatching systems

17

dispatcher
jobs

Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

If lots of work,
want servers busy

dispatcher
jobs

Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

If lots of work,
want servers busy

Possible policy:
dispatch to server

with less work dispatcher
jobs

Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

If lots of work,
want servers busy

Possible policy:
dispatch to server

with less work
w2(x)

w1(x)

dispatcher
jobs

Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

If lots of work,
want servers busy

Possible policy:
dispatch to server

with less work
w2(x)

w1(x)

dispatcher
jobs

x
Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

If lots of work,
want servers busy

Possible policy:
dispatch to server

with less work
w2(x)

w1(x)

dispatcher
jobs

x
Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

If lots of work,
want servers busy

Possible policy:
dispatch to server

with less work
w2(x)

w1(x)

dispatcher
jobs

x

d(x)
Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

Dispatching systems

17

f(x) = exp(θd(x)) state space collapse
RCL

If lots of work,
want servers busy

Possible policy:
dispatch to server

with less work
w2(x)

w1(x)

dispatcher
jobs

x

d(x)
Etime[u(X)w(X)] = 0

<latexit sha1_base64="aANHbdsDlYViggGyie8NEDF6XtU=">AAAF2XicnVNdb9MwFM0KhVG+NnjkxaLb1AkzxU33pWrSNDTB42DsAyVd5SZuls1JOsddV1l+4A3xyv/inTd+BK8grtNqY2skBK5U2yfnnHt9fd3p8SiTtv1tqnTrdvnO3el7lfsPHj56PDP7ZD9L+8Jne37KU3HYoRnjUcL2ZCQ5O+wJRuMOZwed01fm+8E5E1mUJu/lsMdaMQ2TqBv5VALUni2F84OaK9oEIy9IZYaRaCetRbQBM0EvRiDMgFbmz4qZtQS9RGTx6EVl3ttpKy+m8ljESkYx01odIk+yC6kQi3tyqDUICPA9DkkGFHnbaleDcHtCOKgdLhq21xXUV+P/kUqrujbCo7o2OU5q+6BFHka5h1YTASGijRY2CqSu14nClvLkKF6PChlRri9Xpi4adfPcPK8yj2AseGd9GphMLmNc2QbMKPviyrtbuwxJI67BahHy+wdLKkR0DklNGp6kUQKGGLm7rStXKO/oNP9RKHMB+f0NUnGK0i6a8zg7Q6fmyufQSdrJdOVvvuBht2eq9pKdDzS5IONF1RqPHWjND9Bnfj9mifQ5zTKXkJ5sKXMNPmcQtZ9Baf1TGjLXPwaYCYyStEsTf3gcwJrGGeVRmLQUPAneD65r1EX+enSl4gWsC88n32ZMqnevt7Qyv1TQJGS4ThxMHBs7TlOwANdtghsOdkgT3hIkRzFZWcdrDvDqzQ7vM7y+jtdhazeaklGOVxqYNNaAtdocMs7TQSgYSwBbxmTZ4CaHhA38NI5pEigvzySS2nVarmlFKH8OqWpdj7ad7miOpKo6ukq0vumRiiTUbj03GPu5VdIan0kbK31dAWcrEhi4gB2HkhbRxzUpkpjaFElyvIBvilfEz/EC/pCHSRH/j6KPZdCM5GbrTS7260uksbT8tlHd3Po+astp65n13KpZxFq1Nq031o61Z/mlr6UfpZ+lX2W3/LH8qfx5RC1NjVv5qXVtlL/8BjDj69Y=</latexit>

Key:

What principles do we need?

18

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL

What principles do we need?

18

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL Principle: translating
dynamics to mean rate

What principles do we need?

18

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL Principle: translating
dynamics to mean rate

Principle for
stability?

What principles do we need?

18

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL Principle: translating
dynamics to mean rate

Principle for
stability?

Principle for
mean field?

What principles do we need?

18

Dynamics:
• If list nonempty: decrease head at rate 1
• When head = 0: remove head of list
• Poisson(λ): draw from S, append it to list

0= Etime
⇥
@
@ r1

f (X)
⇤

+�Edeparture
⇥

f (tail(X))� f (X)
⇤

+�Earrival
⇥

f (join(X , [S]))� f (X)
⇤

<latexit sha1_base64="9z40baFfUGAUUMDlVcMi6FyQMxk=">AAAFJ3icjVJdb9MwFM1KgRG+NniEh4hqU6uZKU66j6pCmoYmkOBhMPaBkqxyEzcLc5zOcddVln8QP4DfwRuCN/gn2Gm0sTUPOFJ8fXLOyb3Xtz8kSc5t+9dc7Vb99p278/fM+w8ePnq8sPjkIM9GLMT7YUYydtRHOSYJxfs84QQfDRlGaZ/gw/7pa/398ByzPMnoJz4Z4iBFMU0GSYi4gnqLc9+Wxk2P9SCw/CjjObBYjwYt65XaobUyBdWuUHPprJrZpNZLC7aOV8wlf7cn/BTxE5YKnqRYSnFk+RxfcGHhdMgnUioBVHyfqCQjZPk7Yk8q4c6McNw8amm2P2AoFOV7qpLCkVp47CjejJs0bWtZ6WYsPb+fxIHw+dRriBhPEJGXka5ZWoPiv75vLvtnIxTpJly6XzlGWItG7Mp20Lz8G0qIVC4tldn/uSHGknOVyqzXlyyhygtY3l5wZdhbaNirdrGs2QCWQcMo125vsfZZ3Vo4SjHlIUF57kE45IHQhYcES9Mf5aqi8BTF2AtPFIwZsGg2QDScnEQqRmmOSBLTQKgBI6PoukZcFLMoTdOP8EANY3HMMRcf32xLoZ+MIRpj4EAXQNcGrttlOAKODUHbBS7sqslUySEA1ztg01U8p9snIww6HdBRR7vd5RgRsN4GsL2pWBvdCSYkG8cMY6qwNQDXNK5zoHgcZmmKaCT8IpOES88NPH35ahgLSDQcOT32B9M94aLhygaU8qZHxmgsPacwKP28BgzKmqS2ktcVqrYqgYYr2GnMURW97EmVRPemSlLgFXzdvCp+gVfwJySmVfx/ml7K1DDCm6M3Gxw4q7C9uvah3dja/j0dy3njmfHCaBrQ2DC2jLfGrrFvhLXnte3au9r7+tf69/qP+s8ptTZXjvJT49qq//kLddWw/A==</latexit>

RCL Principle: translating
dynamics to mean rate

Principle for
stability?

Principle for
mean field?

Principles for
composition?

19

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Simplify core
foundations

Prioritize very
flexible tools

Part 2

Part 1

