The Role of Advanced Math in Teaching Performance Modeling

Ziv Scully
Cornell ORIE
TeaPACS 2023

Goals of performance modeling

Goals of performance modeling

Analyzing systems

Goals of performance modeling

Analyzing systems

Designing and optimizing systems

Goals of performance modeling

Analyzing systems

Describing systems

Designing and optimizing systems

Goals of performance modeling

Analyzing systems

Describing systems

Designing and optimizing systems

Goals of performance modeling

- exact model analysis
- guide simulation
- what to measure?

Analyzing systems

Describing systems

Designing and optimizing systems

Goals of performance modeling

- exact model analysis
- guide simulation
- what to measure?

Analyzing systems Describing systems

Designing and optimizing systems

Goals of performance modeling

- exact model analysis
- guide simulation
- what to measure?

Analyzing systems

Designing and optimizing systems

- stochastic modeling
- define load, stability
- what is predictable?

Describing systems

Goals of performance modeling

- exact model analysis
- guide simulation
- what to measure?
- stochastic modeling
- define load, stability
- what is predictable?

Describing systems

Designing and optimizing systems

Performance modeling needs advanced math

Performance modeling needs advanced math

We can teach advanced math accessibly

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

What do jobs look like?

What do jobs look like?

[Tirmazi et al., 2020]

Heavy tails are ubiquitous

What do jobs look like?

Jobs have complex structure

Heavy tails are ubiquitous

What do jobs look like?

Jobs have complex structure

Heavy tails are ubiquitous

Finite-state Markov chains aren't enough

What do jobs look like?

[Tirmazi et al., 2020]

Heavy tails are ubiquitous

Finite-state Markov chains aren't enough

Jobs have complex structure

Age and remaining work aren't enough

What do jobs look like?

[Tirmazi et al., 2020]

Heavy tails are ubiquitous

Finite-state Markov chains aren't enough

[Zhao et al., 2022]
Jobs have complex structure

Age and remaining work aren't enough

Need: general Markov processes

Stability in complex systems

Stability in complex systems

Stability in complex systems

Metastable failures

[Huang et al., 2020]

Stability in complex systems

Amem failures

[Huang et al., 2020]

Stability in complex systems

[Huang et al., 2020]

Need: drift methods, mean field methods
[Bronson et al., 2020]

Scheduling practicalities

Scheduling practicalities

Theory: SRPT

Scheduling practicalities

SRPT in
networks
Theory: SRPT

Practice: Homa
[Montazeri et al., 2020]

Scheduling practicalities

Theory: SRPT
Practice: Homa
[Montazeri et al., 2020]

Continuous priority, no overhead/delay

Scheduling practicalities

Theory: SRPT

Continuous priority, no overhead/delay

Practice: Homa
[Montazeri et al., 2020]

Discrete priorities, overheads/delays

Scheduling practicalities

Theory: SRPT
Practice: Homa
[Montazeri et al., 2020]

Discrete priorities, overheads/delays

Need: analyze variety of scheduling policies

What should we measure?

What should we measure?

What should we measure?

[Atre et al., 2020]

```
Algorithm 1 Estimating AggregateDelay
    struct ObjectMetadata
        NumWindows = 0
        CumulativeDelay = 0
        WindowStartIdx = -\infty
    function EstimateAggregateDelay(X: ObjectMetadata)
        return \frac{X.CumulativeDelay}{XNumWindows}
    end function
    function OnAccess(TimeIdx, X: ObjectMetadata)
        // Time since start of the previous miss window
        TSSW = (TimeIdx - X.WindowStartIdx)
        if TSSW }\geq\textrm{Z}\mathrm{ then
            // This access commences a new miss window
            X.NumWindows += 1
            X.CumulativeDelay += Z
            X.WindowStartIdx = TimeIdx
        else
            // This access is part of the previous miss window
            X.CumulativeDelay += (Z - TSSW)
        end if
    end function
```


What should we measure?

[Atre et al., 2020]

```
Algorithm 1 Estimating AggregateDelay
    struct ObjectMetadata
        NumWindows = 0
        CumulativeDelay = 0
        WindowStartIdx = -\infty
    function EstimateAggregateDelay(X: ObjectMetadata)
        return 既.CumulativeDelay
    end function
    function OnAccess(TimeIdx, X: ObjectMetadata)
        // Time since start of the previous miss window
        TSSW = (TimeIdx - X.WindowStartIdx)
        if TSSW }\geq\textrm{Z}\mathrm{ then
            // This access commences a new miss window
            X.NumWindows += 1
            X.CumulativeDelay += Z
            X.WindowStartIdx = TimeIdx
        else
            // This access is part of the previous miss window
            X.CumulativeDelay += (Z - TSSW)
        end if
    end function
```

[Atre et al., 2020]

Need: expectations from different perspectives

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

Simplify core foundations

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

Simplify core foundations

\ Problem: many students lack math background
\} Problem: many students lack math background Solution: hand-wave
\ Problem: many students lack math background Solution: hand-wave
\. Problem: how to know when to hand-wave?

Problem: many students lack math background Solution: hand-wave

©
Problem: how to know when to hand-wave?
Q
Solution: clear rules for hand-waving

Problem: many students lack math background Solution: hand-wave

\triangle
Problem: how to know when to hand-wave?
Q
Solution: clear rules for hand-waving

- Principles: rules that work most of the time

Problem: many students lack math background Solution: hand-wave

Problem: how to know when to hand-wave?
mism
Solution: clear rules for hand-waving

- Principles: rules that work most of the time
- Recipes: common patterns for using principles

Problem: many students lack math background Solution: hand-wave

Problem: how to know when to hand-wave?
m
Solution: clear rules for hand-waving

- Principles: rules that work most of the time
- Recipes: common patterns for using principles

4
Problem: each topic needs many principles

Problem: many students lack math background Solution: hand-wave

Problem: how to know when to hand-wave?
Solution: clear rules for hand-waving

- Principles: rules that work most of the time
- Recipes: common patterns for using principles

\triangle
Problem: each topic needs many principles
Solution: focus on a few very powerful topics

Proposed toolbox

Proposed toolbox

Description: model with Markov processes

Proposed toolbox

Description: model with Markov processes
Metrics: define using long-run averages

Proposed toolbox

Description: model with Markov processes
Metrics: define using long-run averages
Analysis: reduce to questions about drift

Description via Markov processes

Description via Markov processes

State: all info we need to describe evolution

Description via Markov processes

State: all info we need to describe evolution

current state

Description via Markov processes

State: all info we need to describe evolution

deterministic flow
current state

Description via Markov processes

State: all info we need to describe evolution

deterministic flow
current state

\pm
stochastic jumps

Description via Markov processes

State: all info we need to describe evolution
current state
deterministic flow
\rightarrow
stochastic jumps

future states

Description via Markov processes

State: all info we need to describe evolution
current state
deterministic flow

stochastic jumps
future states

Goal: clear process definition

Description via Markov processes

State: all info we need to describe evolution
current state
deterministic flow

stochastic jumps
future states

Goal: clear process definition
Non-goal (yet): tractable analysis

Description via Markov processes

State: all info we need to describe evolution
current state
deterministic flow
\triangle stochastic jumps
future states

Goal: clear process definition
Non-goal (yet): tractable analysis
Non-goal: verifying Markov property

Example: M/G/1

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Dynamics:

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Dynamics:

- If list nonempty: decrease r_{1} at rate 1

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Dynamics:

- If list nonempty: decrease r_{1} at rate 1
- When $r_{1}=0$: remove r_{1} from list

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Dynamics:

- If list nonempty: decrease r_{1} at rate 1
- When $r_{1}=0$: remove r_{1} from list
- Poisson(λ): draw from S, append it to list

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Dynamics:

- If list nonempty: decrease r_{1} at rate 1
- When $r_{1}=0$: remove r_{1} from list
- Poisson(λ): draw from S, append it to list

Work: $w\left(\left[r_{1}, \ldots, r_{n}\right]\right)=r_{1}+\cdots+r_{n}$

Example: M/G/1

State: list with remaining work of each job

$$
\left[r_{1}, \ldots, r_{n}\right]
$$

Dynamics:

- If list nonempty: decrease r_{1} at rate 1
- When $r_{1}=0$: remove r_{1} from list
- Poisson(λ): draw from S, append it to list

Work: $w\left(\left[r_{1}, \ldots, r_{n}\right]\right)=r_{1}+\cdots+r_{n}$
Queue length: $q\left(\left[r_{1}, \ldots, r_{n}\right]\right)=(n-1)^{+}$

Metrics via long-run averages

$X(t)=$ state at time t
mean waiting time $=\mathrm{E}_{\text {arrival }}[w(X)]$ mean number in queue $=\mathrm{E}_{\text {time }}[q(X)]$

Metrics via long-run averages

$$
\begin{aligned}
X(t) & =\text { state at time } t \\
\text { mean waiting time } & =\mathrm{E}_{\text {arrival }}[w(X)]
\end{aligned}
$$ mean number in queue $=\mathrm{E}_{\text {time }}[q(X)]$

Metrics via long-run averages

$X(t)=$ state at time t mean waiting time $=\mathrm{E}_{\text {arrival }}[w(X)]$ mean number in queue $=\mathrm{E}_{\text {time }}[q(X)]$

$\mathbf{E}_{\text {arrival }}[f(X)]=\frac{\sum_{t \text { arrival }} f(X(t))}{\# \text { arrivals }}$

Metrics via long-run averages

$X(t)=$ state at time t mean waiting time $=\mathrm{E}_{\text {arrival }}[w(X)]$ mean number in queue $=\mathrm{E}_{\text {time }}[q(X)]$

$\mathbf{E}_{\text {arrival }}[f(X)]=\frac{\sum_{t \text { arrival }} f(X(t))}{\# \text { arrivals }}$

$\mathbf{E}_{\text {time }}[f(X)]=\frac{\int_{0}^{\text {long time }} f(X(t)) \mathrm{d} t}{\text { long time }}$

Principles for long-run averages

Principles for long-run averages

Base principle: when averaging over entire timeline, ignore edge effects

Principles for long-run averages

Base principle: when averaging over entire timeline, ignore edge effects

Little's law

Principles for long-run averages

Base principle: when averaging over entire timeline, ignore edge effects

Little's law

Renewal-reward

Principles for long-run averages

Base principle: when averaging over entire timeline, ignore edge effects

Little's law

Renewal-reward

Palm inversion

Principles for long-run averages

Base principle: when averaging over entire timeline, ignore edge effects

Little's law

Renewal-reward

Palm inversion

Rate conservation law:

for any f, average rate of change in $f(X)$ is 0

Principles for long-run averages

Base principle: when averaging over entire timeline,
requires
stability!

Little's law

Renewal-reward

Palm inversion

Rate conservation law:

for any f, average rate of change in $f(X)$ is 0

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathrm{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathrm{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathrm{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathrm{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathbf{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Analysis via drift

Dynamics:

$$
f(x)=w(x)
$$

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathbf{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list
$f(x)=w(x)$

$$
\mathbf{P}_{\text {time }}[X \text { empty }]=1-\lambda \mathrm{E}[S]
$$

$$
0=\mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right]
$$

$$
+\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)]
$$

$$
+\lambda \mathbf{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

```
\[
f(x)=w(x)
\]
```



```
\[
\mathbf{P}_{\text {time }}[X \text { empty }]=1-\lambda \mathbf{E}[S]
\]
```

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathbf{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

$$
f(x)=w(x)^{2}
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
f(x)=w(x)
$$

$$
\mathbf{P}_{\text {time }}[X \text { empty }]=1-\lambda \mathrm{E}[S]
$$

$$
\begin{gathered}
f(x)=w(x)^{2} \\
\cdots \\
\mathrm{E}_{\text {time }}[w(X)]=\frac{\frac{\lambda}{2} \mathrm{E}\left[S^{2}\right]}{1-\lambda \mathrm{E}[S]}
\end{gathered}
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathrm{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathrm{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

RCL

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathrm{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathrm{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Recipe: to get n th-order info, use $(n+1)$ th-order function f

$$
\mathbf{P}_{\text {time }}[X \text { empty }]=1-\lambda \mathbf{E}[S]
$$

$$
f(x)=w(x)^{2}
$$

$$
\mathrm{E}_{\text {time }}[w(X)]=\frac{\frac{\lambda}{2} \mathrm{E}\left[S^{2}\right]}{1-\lambda \mathrm{E}[S]}
$$

Principle: PASTA
$\mathrm{E}_{\text {arrival }}[\cdot]=\mathrm{E}_{\text {time }}[\cdot]$

Beyond the M/G/1

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

$$
\mathbf{E}_{\text {time }}[w(X)]=\frac{\frac{\lambda}{2} \mathbf{E}\left[S^{2}\right]+\mathbf{E}_{\text {time }}[u(X) w(X)]}{1-\lambda \mathbf{E}[S]}
$$

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

$$
\mathbf{E}_{\text {time }}[w(X)]=\frac{\frac{\lambda}{2} \mathrm{E}\left[S^{2}\right]+\mathbf{E}_{\text {time }}[u(X) w(X)]}{1-\lambda \mathrm{E}[S]] \begin{array}{c}
\text { unused } \\
\text { service }
\end{array}}
$$

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

$$
\mathbf{E}_{\text {time }}[w(X)]=\frac{\frac{\lambda}{2} \mathrm{E}\left[S^{2}\right]+\mathbf{E}_{\text {time }}[u(X) w(X)]}{1-\lambda \mathrm{E}[S]] \begin{array}{c}
\text { unused } \\
\text { service }
\end{array}}
$$

M/G/1

$\mathbf{E}_{\text {time }}[u(X) w(X)]=0$

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

$$
\mathbf{E}_{\text {time }}[w(X)]=\frac{\frac{\lambda}{2} \mathrm{E}\left[S^{2}\right]+\mathbf{E}_{\text {time }}[u(X) w(X)]}{1-\lambda \mathrm{E}[S]] \begin{array}{c}
\begin{array}{c}
\text { unused } \\
\text { service }
\end{array}
\end{array}}
$$

M/G/1
M/G/k
$\mathbf{E}_{\text {time }}[u(X) w(X)]=0$

$$
\frac{\mathrm{E}_{\mathrm{time} e}[u(X) w(X)]}{1-\lambda \mathrm{E}[S]} \text { is work of } \leq k-1 \text { jobs }
$$

Dispatching systems

Dispatching systems

Key: $\mathbf{E}_{\text {time }}[u(X) w(X)]$

Dispatching systems

Key: $\mathbf{E}_{\text {time }}[u(X) w(X)]$

If lots of work, want servers busy

Dispatching systems

Possible policy:

 dispatch to server with less work

Dispatching systems

Possible policy: dispatch to server with less work

Dispatching systems

Possible policy: dispatch to server with less work

Dispatching systems

Possible policy: dispatch to server with less work

Dispatching systems

Possible policy: dispatch to server with less work

Dispatching systems

Possible policy: dispatch to server with less work

Key: $\mathbf{E}_{\text {time }}[u(X) w(X)]$
If lots of work, want servers busy

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

What principles do we need?

Principle: translating dynamics to mean rate

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
)
$$

RCL

$$
0=\mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right]
$$

$$
+\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)]
$$

$$
+\lambda \mathrm{E}_{\text {arrival }}[f(\mathrm{join}(X,[S]))-f(X)]
$$

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list
$0=\mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right]$
$+\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)]$
$+\lambda \mathbf{E}_{\text {arrival }}[f(\mathrm{join}(X,[S]))-f(X)]$

Principle: translating dynamics to mean rate

$$
1
$$ RCL

?
Principle for stability?

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

Principle: translating dynamics to mean rate

$$
0=\mathbf{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right]
$$

$$
+\lambda \mathbf{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)]
$$

$$
+\lambda \mathrm{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
$$

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
- When head $=0$: remove head of list
- Poisson (λ) : draw from S, append it to list

$$
\begin{aligned}
0= & \mathrm{E}_{\text {time }}\left[\frac{\partial}{\partial r_{1}} f(X)\right] \\
& +\lambda \mathrm{E}_{\text {departure }}[f(\operatorname{tail}(X))-f(X)] \\
& +\lambda \mathrm{E}_{\text {arrival }}[f(\operatorname{join}(X,[S]))-f(X)]
\end{aligned}
$$

Principle: translating dynamics to mean rate

?
Principle for stability?

?
Principle for mean field?

?
Principles for composition?

Part 1

Performance modeling needs advanced math

Part 2
We can teach advanced math accessibly

Simplify core foundations

Prioritize very flexible tools

