The Role of AdV&llCEd Math

in Teaching Performance Modeling

Q7

Ziv Scully
Cornell ORIE

TeaPACS 2023

Goals of performance modeling

Goals of performance modeling

Analyzing systems

Goals of performance modeling

Analyzing systems

Sy

Designing and optimizing systems

Goals of performance modeling

Analyzing systems Describing systems

Y ¥

Designing and optimizing systems

Goals of performance modeling

Analyzing systems Describing systems

Y ¥

Designing and optimizing systems

Goals of performance modeling

» exact model analysis
» guide simulation
* what to measure?

Analyzing systems Describing systems

Y ¥

Designing and optimizing systems

Goals of performance modeling

» exact model analysis
» guide simulation
* what to measure?

Analyzing systems

Describing systems

Y ¥

Designing and optimizing systems

» find optimal policies
« evaluate heuristics

* what to optimize?J

Goals of performance modeling

mtochastic modeling
* define load, stability

» what is predictable?

» exact model analysis
» guide simulation
* what to measure?

Analyzing systems Describing systems

Y ¥

Designing and optimizing systems

» find optimal policies

. evaluate heuristics What role does
* what to optimize?J

Goals of performance modeling

» exact model analysis
» guide simulation
* what to measure?

Analyzing systems

mtochastic modeling
* define load, stability

» what is predictable?

Describing systems

Y ¥

Designing and optimizing systems

» find optimal policies
« evaluate heuristics

* what to optimize?J

Performance modeling
needs advanced math

Performance modeling
needs advanced math

We can teach advanced
math accessibly

Part 1

Performance modeling
needs advanced math

Part 2

We can teach advanced
math accessibly

Part 1

Performance modeling
needs advanced math

What do jobs look like?

What do jobs look like?

~
.l..
-

— 2019 CPU (NCU-hours)
—— 2019 memory (NMU-hours)
----- 2011 CPU (NCU-hours)

------ 2011 memory (NMU-hours)

10 = = = , , —
10° 10~ 107 10° 10° 10"

Fraction of jobs with usage-integral > x
o

Heavy tails are ubiquitous

What do jobs look like?

0 SELECT * FROM
title t,
movie_info mi,
movie_companies mc,
WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id =2 AND
t.year > 2000

Nested Loop

(a)

~
.l..
-

Nested Loop

Index Scan
mc.c_id =2
(b)

()

Index Scan
mi.type_id =113

(e)

Index Scan
t. year > 2000

(d)

— 2019 CPU (NCU-hours)

Fraction of jobs with usage-integral > x
o

_3-
10 —— 2019 memory (NMU-hours) JObS have CompleX StrUCture
----- 2011 CPU (NCU-hours)
------ 2011 memory (NMU-hours) 5,
-4 N
4078 10~ 107 10° 10° 10°

Heavy tails are ubiquitous

What do jobs look like?

0 SELECT * FROM

. title t,

N, movie_info mi,

§ movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id =2 AND
t.year > 2000

Nested Loop

(a)

Nested Loop

(b)

Index Scan
mc.c_id =2
(c)

Index Scan
mi.type_id =113

(e)

Index Scan
t. year > 2000

(d)

| = 2019 CPU (NCU-hours)

Fraction of jobs with usage-integral > x
o

10 —— 2019 memory (NMU-hours) JObS have CompleX StrUCture
----- 2011 CPU (NCU-hours)
------ 2011 memory (NMU-hours)
-4 A
4078 10~ 107 10° 10° 10°

Heavy tails are ubiquitous

<&

Finite-state Markov chains
aren't enough

What do jobs look like?

0 SELECT * FROM

. title t,

N, movie_info mi,

§ movie_companies mc,

WHERE
t.id = mi.movie_id AND
t.id = mc.movie_id AND
mi.type_id = 113 AND
mc.c_id =2 AND
t.year > 2000

Nested Loop

(a)

Nested Loop

Index Scan
mc.c_id =2
(b)

()

Index Scan
mi.type_id =113

(e)

Index Scan
t. year > 2000

(d)

| = 2019 CPU (NCU-hours)
—— 2019 memory (NMU-hours)

Jobs have complex structure
----- 2011 CPU (NCU-hours)

------ 2011 memory (NMU-hours) 5,
_4 “
10745 - . ' ' Py
10° 107 1072 10° 10° 10*

Age and remaining work
aren't enough

Fraction of jobs with usage-integral > x
o

Heavy tails are ubiquitous

<&

Finite-state Markov chains
aren't enough

What do jobs look like?

SELECT * FROM
title t,

mi.type_id = 113 AND
mc.c_id =2 AND
t.year > 2000

— 2019 CPU (NCU-hours)
—— 2019 memory (NMU-hours)
----- 2011 CPU (NCU-hours)

Jobs have complex structure
------ 2011 memory (NMU-hours)

."‘
.
%
*
‘\
*
-4 “
-6 —4 -2 0 2 4
10 10 10 10 10 10

Age and remaining work
aren't enough

raction of jobs with usage-integral > x
o

F
o

Heavy tails are ubiquitous

<&

Finite-state Markov chains Need: general
aren't enough Markov processes

Stability in complex systems

Stability in complex systems

Metastable
failures

Stability in complex systems

Metastable g =
failures 9w
§16Z

200 400 600 800 1000 1200
Time (s)

o

Stability in complex systems

280

260 |

240

220 |

Metastable
failures

Requests per second

0 200 400 600 800 1000 1200
Time (s)

2100 N EE TP
250 T e DB max QPS

m — —

%1 200 DB max QPS/2

= 150 Fbp—-—————— e

—§* —— Stable

3 100 —— Vulnerable

© 50 —— Metastable

Transition

0 100 200 300

Stability in complex systems

160000
5 280
S 260 {50000
O L
(240 140000
2 5
Metastable 2= S o0 2
. }g 200 V
failures % Ja0000 @
8 160 110000
140 1y
' : . : . 4550
0 200 400 600 800 1000 1200
Time (s)
FOO |- v v vvvmmmmmmeee e
250 T e DB max QPS
(//-)\ — — -
%1 200 DB max QPS/2
2 10 p———————f e ——— e ——
= —— Stable
(_% 100 —— Vulnerable
50 —— Metastable

Transition

100 200 300

Need: drift methods,
mean field methods

Scheduling practicalities

Scheduling practicalities

Theory: SRPT

Scheduling practicalities
networks

Theory: SRPT Practice: Homa

Scheduling practicalities
networks

Theory: SRPT Practice: Homa

-> dge

Continuous priority,
no overhead/delay

Scheduling practicalities
networks

Theory: SRPT Practice: Homa
1 y
- age - age
Continuous priority, Discrete priorities,

no overhead/delay overheads/delays

Scheduling practicalities
networks

Theory: SRPT Practice: Homa
1 y
- age - age
Continuous priority, Discrete priorities,
no overhead/delay overheads/delays

Need: analyze variety
of scheduling policies

What should we measure?

What should we measure?

Z

3

B's Aggregate Delay: 5

What should we measure?

Algorithm 1 Estimating AggregateDelay

: struct OBJECTMETADATA
NumWindows = 0
CumulativeDelay = 0
WindowStartldx = —co

: function ESTIMATEAGGREGATEDELAY(X: OBJECTMETADATA)
X.CumulativeDelay

return X.NumWindows

: end function

——______100tmesteps _ ______ [AYATA)

1
2
3
4
5:
6
7
8
9

Z

10: function ONAccEss(Timeldx, X: OBJECTMETADATA)
11: // Time since start of the previous miss window

12: TSSW = (Timeldx - X WindowStartldx)

13:
___________________ | 14: if TSSW > Z then

: 15: // This access commences a new miss window
B's Aggregate DEI&y: 5 16: X NumWindows +=1
17: X.CumulativeDelay +=Z
18: X WindowStartldx = Timeldx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if

23: end function

What should we measure?

Algorithm 1 Estimating AggregateDelay

: struct OBJECTMETADATA
NumWindows = 0
CumulativeDelay = 0
WindowStartldx = —co

: function ESTIMATEAGGREGATEDELAY(X: OBJECTMETADATA)
X.CumulativeDelay

return X.NumWindows

: end function

________lootimesteps TAJAJA

1
2
3
4
5:
6
7
8
9

Z

10: function ONAccEss(Timeldx, X: OBJECTMETADATA)
11: // Time since start of the previous miss window
12: TSSW = (Timeldx - X WindowStartldx)

13:
___________________ | 14: if TSSW > Z then

: 15: // This access commences a new miss window
B's Aggregate DEI&y: 5 16: X NumWindows +=1
17: X.CumulativeDelay +=Z
18: X WindowStartldx = Timeldx
19: else
20: // This access is part of the previous miss window
21: X.CumulativeDelay += (Z - TSSW)
22: end if

23: end function

Need: expectations from
different perspectives

Part 1

Performance modeling
needs advanced math

Part 2

We can teach advanced
math accessibly

Part 2

We can teach advanced
math accessibly

Part 2

We can teach advanced
math accessibly

Simplify core
foundations

Part 2

We can teach advanced
math accessibly

Prioritize very
flexible tools

Simplify core
foundations

A Problem: many students lack math background

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

@ Solution: clear rules for hand-waving

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving
* Principles: rules that work most of the time

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving

* Principles: rules that work most of the time
* Recipes: common patterns for using principles

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving
* Principles: rules that work most of the time
* Recipes: common patterns for using principles

& Problem: each topic needs many principles

A Problem: many students lack math background
@ Solution: hand-wave

A Problem: how to know when to hand-wave?

Solution: clear rules for hand-waving

* Principles: rules that work most of the time
* Recipes: common patterns for using principles

& Problem: each topic needs many principles

@ Solution: focus on a few very powerful topics

Proposed toolbox

Proposed toolbox

Description: model with Markov processes

10

Proposed toolbox

Description: model with Markov processes

Metrics: define using long-run averages

10

Proposed toolbox

Description: model with Markov processes
Metrics: define using long-run averages

Analysis: reduce to questions about drift

10

Description via Markov processes

11

Description via Markov processes

State: all info we need to describe evolution

11

Description via Markov processes

State: all info we need to describe evolution

current state

11

Description via Markov processes

State: all info we need to describe evolution

@ deterministic flow

current state

11

Description via Markov processes

State: all info we need to describe evolution

@ deterministic flow

current state
% stochastic jumps

11

Description via Markov processes

State: all info we need to describe evolution

a deterministic flow %

current state future states
% stochastic jumps

11

Description via Markov processes

State: all info we need to describe evolution

a deterministic flow %

current state future states
% stochastic jumps

Goal: clear process definition

11

Description via Markov processes

State: all info we need to describe evolution

@ deterministic flow %

current state future states
% stochastic jumps

Goal: clear process definition

Non-goal (yet): tractable analysis

11

Description via Markov processes

State: all info we need to describe evolution

@ deterministic flow %

current state future states
% stochastic jumps

Goal: clear process definition
Non-goal (yet): tractable analysis
Non-goal: verifying Markov property

11

Example: M/G/1

Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

12

Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

Dynamics:

12

Example: M/G/1
State: list with remaining work of each job
(7, .., 1]

Dynamics:
- If list nonempty: decrease r; at rate 1

12

Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

Dynamics:
- If list nonempty: decrease r; at rate 1
 When r; = 0: remove r1 from list

12

Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

Dynamics:

- If list nonempty: decrease r; at rate 1

* When r1 = 0: remove r1 from list

» Poisson(A): draw from S, append it to list

12

Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

Dynamics:

- If list nonempty: decrease r; at rate 1

* When r1 = 0: remove r1 from list

» Poisson(A): draw from S, append it to list

Work: w([rq,...,r,)=r{+---+r1,

12

Example: M/G/1

State: list with remaining work of each job

(7, .., 1]

Dynamics:

- If list nonempty: decrease r; at rate 1

* When r1 = 0: remove r1 from list

» Poisson(A): draw from S, append it to list

Work: w([rq,...,r,)=r{+---+r1,

Queue length: q([rq,...,r,])=(n—1)"

12

Metrics via long-run averages

X(t) = state at time t
mean waiting time = Earrival [W(X)]

mean number in queue = Eiime[q(X)]

13

Metrics via long-run averages

X(t) = state at time t

mean waiting time = Eamival[w(X)]

mean number in queue = Eiime[q(X)]

work

/[\

/\N .

work

A

/\N .

13

Metrics via long-run averages

X(t) = state at time t
mean waiting time = Earrival [W(X)]

mean number in queue = Eiime[q(X)]

work work

A A

Mtime Mtime

A A A
Zt arrivalf(X(t))

arrivals

E,rrival [f (X)] =

Metrics via long-run averages

X(t) = state at time t
mean waiting time = Earrival [W(X)]

mean number in queue = Eiime[q(X)]

work work

A A

Mtime Mtime

A A A —

long time

- d
Do/ K@) P oon o SEX(O)dE

arrivals long time

E,rrival [f (X)] =

13

Principles for long-run averages

14

Principles for long-run averages

Base principle: when averaging over entire timeline,

ignore edge effects

14

Principles for long-run averages

Base principle: when averaging over entire timeline,

ignore edge effects

¢

Little's law

14

Principles for long-run averages

Base principle: when averaging over entire timeline,

ignore edge effects

4

Little's law Renewal-reward

Principles for long-run averages

Base principle: when averaging over entire timeline,

ignore edge effects

¢

Little's law

N

Renewal-reward

p¥

Palm inversion

14

Principles for long-run averages

Base principle: when averaging over entire timeline,

ignore edge effects

L™

Little's law Renewal-reward Palm inversion

for any f, average rate of change in f(X) is O

14

Principles for long-run averages

Base principle: when averaging over entire timeline,

requires
stability!

¢

Little's law

N

Renewal-reward

jignore edge effects

p¥

Palm inversion

for any f, average rate of change in f(X) is O

14

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list
 Poisson(A): draw from S, append it to list

15

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list
 Poisson(A): draw from S, append it to list

0= Etimel:airlf(X):I
+ AEdeparture | f (tail(X)) — f (X))
+ AEarrival[f (JOil’l(X, [S])) _f(X):I

15

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list
 Poisson(A): draw from S, append it to list

0= Etime[airlf(x)]
+ AEdeparture | f (tail(X)) — f (X))
+ AEarrivall:f GOil’l(X, [S])) _f(X):I

15

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list
 Poisson(A): draw from S, append it to list

0= Etime[airlf(x)]
+ AEdeparture | f (RIl(X)) = f (X))
+ AEarrivall:f GOil’l(X, [S])) _f(X):I

15

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

0= Etime[airlf(x)]
+ AEdeparture|f (RIl(X)) = f (X))
+ AEarrival I:f GOiIl(X, [S])) o f (X):I

15

Analysis via drift

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

0= Etime[airlf(x)]
+ AEdeparture|f (RIl(X)) = f (X))
+ AEarrival I:f GOiIl(X, [S])) o f (X):I

) = w(x)

15

Analysis via drift

Dynamics:) = w(x)

- If list nonempty: decrease head at rate 1

* When head = 0: remove head of list

- Poisson(A): draw from S, append it to list Pime[X empty] =1— AE[S]

0= Etime[airlf(x)]
+ AEdeparture|f (RIl(X)) = f (X))
+ AEarrival I:f GOiIl(X, [S])) o f (X):I

15

Analysis via drift

Dynamics:) = w(x)

- If list nonempty: decrease head at rate 1

* When head = 0: remove head of list

- Poisson(A): draw from S, append it to list Pime[X empty] =1— AE[S]

fO0) = w(x)?
0= Etime[airlf(x)]

+ AEdeparture|f (RIl(X)) = f (X))
+ AEarrival I:f GOiIl(X, [S])) o f (X):I

15

Analysis via drift

Dynamics:) = w(x)

- If list nonempty: decrease head at rate 1

* When head = 0: remove head of list

- Poisson(A): draw from S, append it to list Pime[X empty] =1— AE[S]

f0o) = w(x)?
0= Etime[airlf(x)]
+ AEdeparture | f (tail(X0)) = f(X)] B ()] = 2]
+ ABprrival| £ Goin(X, [S1)) — £ (X))] e 1— AE[S]

15

Analysis via drift

Dynamics:) = w(x)

- If list nonempty: decrease head at rate 1

* When head = 0: remove head of list

- Poisson(A): draw from S, append it to list Pime[X empty] =1— AE[S]

f0o) = w(x)?
0= Etime[airlf(x)]
+ AEdeparture | f (tail(X0)) = f(X)] B ()] = 2]
+ ABprrival| £ Goin(X, [S1)) — £ (X))] e 1— AE[S]

Principle: PASTA
Earrivall -] = Etimel -]

15

Analysis via drift

Dynamics:) = w(x)

- If list nonempty: decrease head at rate 1

* When head = 0: remove head of list

- Poisson(A): draw from S, append it to list Pime[X empty] =1— AE[S]

f0o) = w(x)?
0= Etimel:airlf(X):I
+ AEdeparture | f (tail(X0)) = f(X)] B ()] = 2]
+ ABauivall f Goin(X, [S])) — £ (X)] e 1— AE[S]

. . Principle: PASTA
Recipe: to get nth-order info, Earrivall*] = Etime["]

use (n+1)th-order function f

15

Beyond the M/G/1

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

%E[Sz] T Etime[u(X) W(X)]
1—AE[S]

Eiime [W(X)] —

16

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

LE[S?] + Egme[u(X) w(X)]
1 ;\'E[S] unuse

serV1ce

Eiime [W(X)] —

16

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

_E 52 Etlme X X
E. .[wX)]= =2 []+1 AE[[L;(]) w()]
M/G/1

Etime[u(X) W(X)] =0

16

Beyond the M/G/1

Work decomposition law: under M/G arrivals,

_E[Sz] T Et1me[u(X) W(X)]
1—AE[S] /7 unuse

Etime [W(X)] —

serV1ce

4 Sy

M/G/1 M/G/k

Eiimel u(X)w(X)] . .
Eiolu(X)w(X)]=0 1%&}3{;5). is work of < k—1 jobs

16

Dispatching systems

/

jobs ——>

dispatcher

N

17

Dispatching systems

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

17

Dispatching systems

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

17

Dispatching systems

Possible policy:
dispatch to server
with less work

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

17

w2(x)

Dispatching systems

Possible policy:

dispatch to server

with less work

w1 (x)

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

17

w2(x)

Dispatching systems

Possible policy:

dispatch to server

with less work

w1 (x)

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

17

w2(x)

Dispatching systems

Possible policy:

dispatch to server

with less work

w1 (x)

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

17

w2(x)

Dispatching systems

Possible policy:

dispatch to server

with less work

\\d (%)

€

w1 (x)

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

17

Dispatching systems

Possible policy:
dispatch to server
with less work

wa(x)
’\\d(X)

€

w1 (x)

f(x) = exp(6d(x))

|

y4uik
jobs——% :
|

|

dispatcher

N

Key: Egimelu(X) w(X)]

If lots of work,
want servers busy

state space collapse

17

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

0= Etime[airlf (X):I
B AEdeparture I:f (taﬂ(X)) - f (X):I
+ AE, v [f GoIn(X, [ST) — £ (0)]

18

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1

« When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

0= Etimel:airlf(x)]

3 AEdeparture I:f (taﬂ(X)) - f (X):I

- AEq iy f Goin(X, [ST) — £ (X))

Principle: translating
dynamics to mean rate

18

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

Principle: translating
dynamics to mean rate

0= Etime[airlf (X):I
B AEdeparture I:f (taﬂ(X)) - f (X):I
+ AE, v [f GoIn(X, [ST) — £ (0)]

@ Principle for
stability?

-

18

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

Principle: translating
dynamics to mean rate

0= Etime[airlf (X):I
B AEdeparture I:f (taﬂ(X)) - f (X):I
+ AE, v [f GoIn(X, [ST) — £ (0)]

@ Principle for @ Principle for
stability? mean field?

Q Q

18

What principles do we need?

Dynamics:

- If list nonempty: decrease head at rate 1
* When head = 0: remove head of list

* Poisson(A): draw from S, append it to list

Principle: translating
dynamics to mean rate

0= Etime[airlf (X):I
B AEdeparture I:f (taﬂ(X)) - f (X):I
+ AE, v [f GoIn(X, [ST) — £ (0)]

@ Principle for @ Principle for @ Principles for
stability? mean field? composition?

Q Q Q

18

Part 1

Performance modeling
needs advanced math

Part 2

We can teach advanced
math accessibly

Prioritize very
flexible tools

Simplify core
foundations

19

