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M11038: A Battle of Combinatorics Fui

Difficulty: ** Teachers: Luis Herrera Arias

Come and learn about counting things you didn’t know you could count. We’'ll play fun games
and learn the secrets of gambling.

Meeting Time Grades
Section 1: Sun 9:05am--11:55am 10-12
Enroliment

Section 1: Full! (max 12)

M11106: Counting Beyond Infinity rFun

Difficulty: **** Teachers: Dylan Hendrickson, Jordan Hines

What if you started counting and never stopped? In this class, we'll talk about ordinals, the
numbers you get by doing this. We'll see many types of infinity and do strange and exciting
things with them!

Prerequisites
Know what it means for a set to be countable/uncountable. Prior experience with proofs and
set theory would be helpful.

Meeting Time Grades
Section 1: Sun 10:05am--11:55am 9-12
Enrollment

Section 1: Full! (max 40)

M11128: Calculate Pi with Trains!

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)
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Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

all automatically

for single-server applications



Ur/Web Example

SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]}

INSERT INTO drawings (Shape, Fill)
VALUES ({[yl}, {[zl}

UPDATE drawings SET Fill = {[yl}
WHERE Fill = {[z]}
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Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

INSERT (shape, fill) = (y,2)

SSBgRIR(]

Invalidation formula:
3 (shape, fill).
fill =x AN shape =y A fill = z
—> X =z

inval(z);
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Invalidation formula:

3 (shape, fill), (shape’, fill").

(fill = x V fill' =
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@X:‘VVX:Z

inval(y); inval(z);
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---
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SELECT shape WHERE fill =x @ i .

Cache

SSBgRIR(]

“ Invalidation formula:
UPDATE fil =y WHERE fil =z i ] (shape f/ D, (shape fill).
F(fill = x A f X) v (fill £ x A fill' = x) ; Snbte B o b e )
; vV (fill = x A fill' = x A shape F shape) j A (fl y A fl — Z)
' @ X = y V i — =

inval(y); inval(z);
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SELECT COUNT(*) WHERE fill = x A shape = w
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Compound Cache Keys
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Compound Cache Keys

SELECT COUNT(*) WHERE fill = x A shape = w

Cache

[x,w] = @ — 04

(X, W] @ — 0O

INSERT (shape, fill) = (y, z)

—> x=zAw=y
inval([z, y]);

UPDATE fill =y WHERE fill = z



Compound Cache Keys

SELECT COUNT(*) WHERE fill = x A shape = w

[X,W]:® — D4
(X, W] @ — 0O

Cache

INSERT (shape, fill) = (y,z)  UPDATE fill =y WHERE fill = z

—> x=zAw=y —> x=yVx=z
inval([z, y]); inval([y, *]); inval([z, *]);
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Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

Runtime monrtoring

Consolidate cached
expressions, but avoid
introducing new keys.

talked

talked

Two global locks per
cache:“data” lock and
“transaction’ lock.

Deactivate caches
with low hit rate to
reduce serialization.
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Performance bvaluation

Course application, writes test (4-thread server)
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Sqlcache

caching as a compiler optimization

https://github.com/urweb/urweb


http://github.com/urweb/urweb

Good guestion!
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Throughput (requests/second)

Sglcache vs. Dyncache

Course application, writes test (4-thread server)
1000
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O writes/second | write/second |0 writes/second |00 writes/second

Ur/Web Ur/Web with Dyncache Ur/Web with Sqlcache
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Supported SQL

logic, equalities
all flavors of JOIN

nested queries: FROM

arrthmetic, inequalities nested queries: SELECT,
WHERE

COUNT, SUM
cascading triggers

LIMIT, ORDER BY,

GROUP BY

CURRENT_TIMESTAMP

2|
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Why Ur/Web?

table drawings : {Shape : int, Fill : int}

fun shapesOfFill x =
gallery <- queryX1l (SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]})
(fn shape => (% draw it x));
return <xml>Behold: shapes! {gallery}</xml>

fun addDrawing y z =
dml (INSERT INTO drawings (Shape, Fill)

VALUES ({[yl}, {[zl});
return <xml>Drawing added!</xml>

fun replaceFill y z =
dml (UPDATE drawings SET Fill = {[y]}
WHERE Fill = {[z]});
return <xml>Fill replaced!</xml>
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Why Ur/Web!

~ "ape : int, Fill : int}
Controlled side effects

gallery <- queryXl (SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]})
(fn shape => (x draw it *));
return <xml>Behold: shapes! {gallery}t</:
Lots of inlining
fun addDrawing y z =
dml (INSERT INTO drawings (Shape, Fill)

VALUES ({[yl}, {[zl});
return <xml>Drawing adde
First-class SOQL
fun replaceFill y z =

dml (UPDATE drawings SET Fill = {[y]}
WHERE Fill = {[z]});
return <xml>Fill replaced!</xml>
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