A Compliler Optimization
for Automatic Database
Result Caching

Zv Scully (CMU)
Adam Chlipala (MIT)

POPL |/

Teach For Splash

Teach 2500+
high school students
all that you know.

Join hundreds of
MIT students

in sharing

your knowledge.

Past classes

include Calculus,
Monads to Melody,
My Very First Website,
Extreme Origami,
and more!

Nov 21 and 22, 2015

Register Now at esp.mit.edu/reg
Deadline: October 2

Teach a 1 hr class! (or more)

Teach For Splash

Teach 2500+

high school students
all that you know.

Join hundreds of
MIT students

in sharing

your knowledge.

Past classes

include Calculus,
Monads to Melody,
My Very First Website,
Extreme Origami,
and more!

Nov 21 and 22, 2015

Register Now at esp.mit.edu/reg

Deadline: October 2
Teach a 1 hr class! (or more)

M11038: A Battle of Combinatorics Fui

Difficulty: ** Teachers: Luis Herrera Arias

Come and learn about counting things you didn’t know you could count. We’'ll play fun games
and learn the secrets of gambling.

Meeting Time Grades
Section 1: Sun 9:05am--11:55am 10-12
Enroliment

Section 1: Full! (max 12)

M11106: Counting Beyond Infinity rFun

Difficulty: **** Teachers: Dylan Hendrickson, Jordan Hines

What if you started counting and never stopped? In this class, we'll talk about ordinals, the
numbers you get by doing this. We'll see many types of infinity and do strange and exciting
things with them!

Prerequisites
Know what it means for a set to be countable/uncountable. Prior experience with proofs and
set theory would be helpful.

Meeting Time Grades
Section 1: Sun 10:05am--11:55am 9-12
Enrollment

Section 1: Full! (max 40)

M11128: Calculate Pi with Trains!

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

Teach For Splash

Teach 2500+

high school students
all that you know.

Join hundreds of
MIT students

in sharing

your knowledge.

Past classes

include Calculus,
Monads to Melody,
My Very First Website,
Extreme Origami,
and more!

Nov 21 and 22, 2015

Register Now at esp.mit.edu/reg

Deadline: October 2
Teach a 1 hr class! (or more)

M11038: A Battle of Combinatorics Fui

Difficulty: ** Teachers: Luis Herrera Arias

Come and learn about counting things you didn’t know you could count. We’'ll play fun games
and learn the secrets of gambling.

Meeting Time Grades
Section 1: Sun 9:05am--11:55am 10-12
Enroliment
Section 1: Full! (max 12)

M11106: Counting Beyond Infinity rFun

Difficulty: **** Teachers: Dylan Hendrickson, Jordan Hines

What if you started counting and never stopped? In this class, we'll talk about ordinals, the
numbers you get by doing this. We'll see many types of infinity and do strange and exciting
things with them!

Prerequisites
Know what it means for a set to be countable/uncountable. Prior experience with proofs and
set theory would be helpful.

Meeting Time Grades
Section 1: Sun 10:05am--11:55am 9-12
Enroliment
Section 1: Full! (max 40)

M11128: Calculate Pi with Trains!

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

O {x} Web Server

/\ Request logic

id title max_size Size
(X ' ' 1) U
| 1038 "“A Battle of Combinatorics |2 |2]
%_
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate PiWith Trains!” ol >4

O Web Server
show catalog *{2}

/\ Request logic

id title max_size Size
‘ . _ U
| 1038 "“A Battle of Combinatorics |2 |2]
%_
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate PiWith Trains!” ol >4

O Web Server
show catalog *{2}

/\ Request logic

0
c . '
8 SELECT g, title WHERE TRUE
id title max_size Size
(X ' ' 1) U
| 1038 "“A Battle of Combinatorics |2 |2]
Q
o
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate PiWith Trains!” ol >4

O Web Server
check 11128 *{2}

/\ Request logic

id title max_size Size
‘ . _ U
| 1038 "“A Battle of Combinatorics |2 |2]
%_
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate PiWith Trains!” ol >4

O

/\

{x} Web Server
check 11128 {E}

Request logic

e SELECT max_size, size
<~ WHEREid= 11128
title max_size size
y . o v,
| 1038 “A Battle of Combinatorics |12 |12]
D)
&
1106 "Counting Beyond Infinity” 40 40 %
| 1128 “Calculate PiWith Trains!” 55 54

O Web Server
register | 1128 *{2}

/\ Request logic

id title max_size Size
‘ . _ U
| 1038 "“A Battle of Combinatorics |2 |2]
%_
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate PiWith Trains!” ol >4

O Web Server
register | 1128 *{2}

/\ Request logic

s UPDATE size = size + |
m '
o WHEREid= 11128
id title max_size Size
(X ' ' ") U
| 1038 “A Battle of Combinatorics Wi |2]
Q
o
1106 "Counting Beyond Infinity” 40 40 ;&D

| 1128 “Calculate Pi With Trains!” 55 55

Teach For Splash

Teach 2500+

high school students
all that you know.

Join hundreds of
MIT students

in sharing

your knowledge.

Past classes

include Calculus,
Monads to Melody,
My Very First Website,
Extreme Origami,
and more!

Nov 21 and 22, 2015

Register Now at esp.mit.edu/reg

Deadline: October 2
Teach a 1 hr class! (or more)

M11038: A Battle of Combinatorics Fui

Difficulty: ** Teachers: Luis Herrera Arias

Come and learn about counting things you didn’t know you could count. We’'ll play fun games
and learn the secrets of gambling.

Meeting Time Grades
Section 1: Sun 9:05am--11:55am 10-12
Enroliment
Section 1: Full! (max 12)

M11106: Counting Beyond Infinity rFun

Difficulty: **** Teachers: Dylan Hendrickson, Jordan Hines

What if you started counting and never stopped? In this class, we'll talk about ordinals, the
numbers you get by doing this. We'll see many types of infinity and do strange and exciting
things with them!

Prerequisites
Know what it means for a set to be countable/uncountable. Prior experience with proofs and
set theory would be helpful.

Meeting Time Grades
Section 1: Sun 10:05am--11:55am 9-12
Enroliment
Section 1: Full! (max 40)

M11128: Calculate Pi with Trains!

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

M11038: A Battle of Combinatorics Fun:

Difficulty: ** Teachers: Luis Herrera Arias

Come - about counting things you didn’t know you could count. We'll play fun games

TeaCh 2500+ g rets of gambling.

. ing Ti G

hlgh school student B, 3 ?rtnlg?o;;Tni11:55am 1(|)ra}d1ezs

. Enroll

a" that you kn o | Tes‘a CO“ s Mge/n Section I;l:'(I}=url‘l1!e{lrrt1ax 12)

‘ e '\'eache . RPN
oW
\ 5pa\'\‘5’ an? h{of . -
10+ = o class 'S ting Beyond Infinity Fun

© Tren this 9253y tnen

mak!
i\?
2 \n\ete ed \ h\?ywo:,:n ‘\'es‘ag?g:\n the bo“ma:\“ pe \he'e ty: ¥ Teachers: Dylan Hendrickson, Jordan Hines
ve Ny . apab
Tes\2 coll o(kS‘ 1o buld Yo‘%'e \a Col ke MUS'C: [rocla coll, ©
ef now a ! .o \Wan nho\N a \ t\'\a‘ n size ing and never stopped? In this class, we'll talk about ordinals, the
yo ¢ WO play e vy cure © s\a Col s this. We'll see many types of infinity and do strange and exciting
Ev:se A nw\\h Quick ond-state T end PF o
you! \Ne‘\:,e a\\‘\‘h Kits to oY bugg'\ng-s_\ . e pated
- iy - q MU ic
ovide ¥ \ding ing , . pa
pa'ss.\st yoU{‘ :gb = ks g B with electfon'w (ex P t to be countable/uncountable. Prior experience with proofs and
rall ng
of gen® nd workl
ou

\ Grades
--11:55am 9-12

Enroliment
Section 1: Full! (max 40)
late Pi with Trains!
Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

M11038: A Battle of Combinatorics Fun:

Difficulty: ** Teachers: Luis Herrera Arias

Come - about counting things you didn’t know you could count. We'll play fun games

TeaCh 2500+ g rets of gambling.

. ing Ti G

hlgh school student B, 3 ?rtnlg?o;;Tni11:55am 1(|)ra}d1ezs

. Enroll

a" that you kn o | Tes‘a CO“ s Mge/n Section I;l:'(I}=url‘l1!e{lrrt1ax 12)

‘ e '\'eache . RPN
oW
\ 5pa\'\‘5’ an? h{of . -
10+ = o class 'S ting Beyond Infinity Fun

© Tren this 9253y tnen

mak!
i\?
2 \n\ete ed \ h\?ywo:,:n ‘\'es‘ag?g:\n the bo“ma:\“ pe \he'e ty: ¥ Teachers: Dylan Hendrickson, Jordan Hines
ve Ny . apab
Tes\2 coll o(kS‘ 1o buld Yo‘%'e \a Col ke MUS'C: [rocla coll, ©
ef now a ! .o \Wan nho\N a \ t\'\a‘ n size ing and never stopped? In this class, we'll talk about ordinals, the
yo ¢ WO play e vy cure © s\a Col s this. We'll see many types of infinity and do strange and exciting
Ev:se A nw\\h Quick ond-state T end PF o
you! \Ne‘\:,e a\\‘\‘h Kits to oY bugg'\ng-s_\ . e pated
- iy - q MU ic
ovide ¥ \ding ing , . pa
pa'ss.\st yoU{‘ :gb = ks g B with electfon'w (ex P t to be countable/uncountable. Prior experience with proofs and
rall ng
of gen® nd workl
ou

\ Grades
--11:55am 9-12

Enroliment
Section 1: Full! (max 40)
late Pi with Trains!
Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

M11038: A Battle of Combinatorics Fun:

Difficulty: ** Teachers: Luis Herrera Arias

Come - about counting things you didn’t know you could count. We'll play fun games

TeaCh 2500+ v rets of gambling.

hig h school student ?rtlig?ogngiﬁ:SSam ?(I)rﬂezs
: " o P ' Enrollm'ent
, all that you koS /LY e e o LEMR D,

ting Beyond Infinity Fu

v
OW \Iou QO\\? Hom P- e 1o . .
ed \ n Wi ‘\'es\a ine o "\ e ine ty: ¥ Teachers: Dylan Hendrickson, Jordan Hines
\ntere very © £ dwel T apable
esla €O \?to puild yo‘-\l-' a Coll WO mus™ 4 Tesa coll, @
now u W on a \ \\'\a‘ n size ing and never stopped? In this class, we'll talk about ordinals, the
yO gver won an \ay K cluré Tes\@ Col ctis this. We'll see many types of infinity and do strange and exciting
{nose S with 8 AU id-state ond
Wwe'll ped" Kits 10 bul bugg'\ng- .
V°““ e you With ¥ and dedt usic- . ;pated
ovide YOU v ilding ing ™ . - (ex, partic
‘:55'\5\ yoU{‘ :gb : ks a“d p‘ay with electfon'cs (= P ot to be countable/uncountable. Prior experience with proofs and
rall ng
of gen® workl
a background b Grades
a ~11:55am 9-12

Enroliment
Section 1: Full! (max 40)
late Pi with Trains!
Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

M11038: A Battle of Combinatorics Fun:

Teach For Splash

Difficulty: ** Teachers: Luis Herrera Arias
Come - about counting things you didn’t know you could count. We'll play fun games
rets of gambling.
eting Time Grades
In 9:05am--11:55am 10-12
P Enroliment
Section 1: Full! (max 12)
and hoW
)
'\5 ‘O‘ . =
°‘asswe‘\\ inen Nting Beyond Infinity Fun!
\g.be \he'e ‘; e Teachers: Dylan Hendrickson, Jordan Hines
capab

ing and never stopped? In this class, we'll talk about ordinals, the
this. We'll see many types of infinity and do strange and exciting

ing (X
trOf“‘:s (' ot to be countable/uncountable. Prior experience with proofs and

\ Grades
--11:55am 9-12
Enrollment

Section 1: Full! (max 40)

Olate Pi with Trains!

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

M11038: A Battle of Combinatorics Fu:

Teachers: Luis Herrera Arias

Teach For Splash

) | S
10204 Math-y Beading

© " =lav fun games
D’fﬁculty %

Beads I
icosaheqy go- D DUt po 1S Viyi

a fo,- yhedra % an Wan
Class, youy, ha matg folks or ceoare Prettier. yygy S ——

M to make

: buc

. of be, kybal

€Ometric thin M€ trinket ¢ K c;”ds and String. ; (%g-a- fruncateqy
: =

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

M11038: A Battle of Combinatorics Fui

A1n~- Teachers: Luis Herrera Arias
nt
ite the em’O\\me '
s, in that ie:&‘ jlow me 10 i "y ng ™ =lav fun games
y ¢
Hi: Saheqry o ctY. but Teachers:
- Ong I . Polyh - YilVian yy
0 a : an
MY 1 seser® O the es\a et £13Ss, youy o AN folks o e ¥ Prettier: e, 400
Me g > SSion Classaq T ners: P& might € you 1 learn ¢
egi is se - a c lea 0 e om
Qis fi S we Tea! sh 0 aki
ter ull it s : ma in . "9Iks) o € by
@A othe, VS "fiyym Nanotori? Tpe ke other o Y 9€ometric trink UL Of beags 4y CKYDalls (3 i
:) 0Ssj Metric thin, €t to keep) nd String g i 4. t’UnCatea
ding €end or
N

Difficulty: *** Teachers: Ziv Scully,

It turns out that you can calculate pi to very high accuracy by bouncing a small train and a big
train into a wall. Come on a journey through Extra-Nice Physics Land (where there's no
friction and all collisions are perfecitly elastic) to see how it works!

Prerequisites
Given the equation of a line, you should know how to find its slope. We'll also use the
Pythagorean theorem.

Meeting Time Grades
Section 1: Sun 11:05am--11:55am 9-12
Enroliment

Section 1: 54 (max 55)

O {x} Web Server

/\ Request logic

id title max_size Size
(X ' ' 1) U
| 1038 "“A Battle of Combinatorics |2 |2]
%_
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate PiWith Trains!” ol >4

Web Server

L

Request logic

id title max_size Size
‘ . _ U
| 1038 "“A Battle of Combinatorics |2 |2]
%_
| 1106 “Counting Beyond Infinrty” 40 40 ;&D

| 1128 “Calculate PiWith Trains!” ol >4

Web Server

i

Request logic

id title max_size Size
(N} ' ') U
| 1038 “A Battle of Combinatorics Wi Wi]
Q
o
| 1106 “Counting Beyond Infinrty” 40 40 ;&D
| 1128 "Calculate PirWith Trains!” 55 54

—

Web Server

{E} o © 11038 — 12
C
. NG [[106 —» 40
Request logic DB 198 —» 54
id title max_size Size
[' ' 1) U
| 1038 "A Battle of Combinatorics W W]
D)
o
| 1106 “Counting Beyond Infinrty” 40 40 ;&D
| 1128 "Calculate PiWith Trains!” 55 54
—

Web Server

{E} o © 11038 — 12
C
Ng []106 —» 40
Request Ioglc DS 1198 —» 54
v
id title max_size Size
[' ' 1) U
| 1038 "A Battle of Combinatorics W W]
D)
o
| 1106 “Counting Beyond Infinrty” 40 40 %
| 1128 "Calculate PiWith Trains!” 55 54

—

Web Server

{E} o © 11038 — 12
C
Ng []106 —» 40
Request Ioglc DS 1198 —» 54
register | 1128
v
id title max_size Size
[' ' 1) U
| 1038 "A Battle of Combinatorics W W]
D)
o
| 1106 “Counting Beyond Infinrty” 40 40 %
| 1128 "Calculate PiWith Trains!” 55 >4

—

Web Server

{3} o © 11038 — 12
e

R oo N 9 1106 —» 40

equest logiC DT

register | 1128

s UPDATE size = size + |
m I
o VWHEREid=I[1128
id title max_size Size
(X ' ' ") U
| 1038 “A Battle of Combinatorics Wi |2]
Q)
o
1106 "Counting Beyond Infinity” 40 40 %

| 1128 “Calculate Pi With Trains!” 55 55

{i‘? Web Server

Request Ioglc

register 11128

s UPDATE size = size + |
” I
. o WHEREId= 11128
id title max_size Size
(X ' ') D
| 1038 “A Battle of Combinatorics Wi Wi]
Q
o
1106 "Counting Beyond Infinity” 40 40 %
| 1128 “Calculate PiWith Trains!” 55 55

—

;\Nv\,,_% Web Server

' Program instrumentation | ¢ & : :?38 — 12
— O
TTTTICTYUTS U TUEIC —) 2 8] o T,

register | 1128

s UPDATE size = size + |
m I
o VWHEREid=I[1128
id title max_size Size
(X ' ' ") U
| 1038 “A Battle of Combinatorics Wi |2]
Q
o
1106 "Counting Beyond Infinity” 40 40 %

| 1128 “Calculate Pi With Trains!” 55 55

;\Nv\,,_% Web Server

' Program instrumentation | ¢ & : :?38 — 12
— O
TTTTICTYUTS U TUEIC —) 2 8] o T,

register | 1128

'§_ UPDATF <ize = <ize + |
eV}
5 WHEF sQL analysis
id title max_size size
y . o),
| 1038 "A Battle of Combinatorics W W]
D)
o
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate Pi With Trains!” 55 55

gr/\/v\,,_% Web Server

Program instrumentation | ¢ & 1038 — 12
-) NG 11106 — 40
v MCYuUTst1ugrc UV T 1o S,

Cache data structure

register | 1128

'§_ UPDATF <ize = <ize + |
eV}
5 WHEF sQL analysis
id title max_size size
y . o),
| 1038 "A Battle of Combinatorics W W]
D)
o
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate Pi With Trains!” 55 55

gr/\/v\,,_% Web Server

Program instrumentation | ¢ & 1038 — 12
-) NG 11106 — 40
v MCYuUTst1ugrc UV T 1o S,

Cache data structure

/ Concurrency control

. '§_ UPDATF <ize = <ize + |
eV}
5 WHEF sQL analysis
id title max_size size

y . —),
| 1038 "A Battle of Combinatorics W W]
D)
o
| 1106 “Counting Beyond Infinrty” 40 40 %

| 1128 “Calculate Pi With Trains!” 55 55

Approaches to Caching

Caching Automatic Flexible

No caching X

Manual Instrumentation x

Library (e.g. ORM) X

Approaches to Caching

Caching Automatic Flexible

No caching X

Manual Instrumentation x

Library (e.g. ORM) X

Compiler optimization

Sqlcache

a compliler optimization for caching in the

Ur/Web programming language

Ur/Web compiler

92J4N0S

type checking

inlining
Salcache

inlining

code generation

9|geINdaXd

Ur/Web com

92J4N0S

type checking

diler

inlining

Salcache

inlining

code generation

9|geINdaXd

Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

all automatically

for single-server applications

Ur/Web Example

SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]}

INSERT INTO drawings (Shape, Fill)
VALUES ({[yl}, {[zl}

UPDATE drawings SET Fill = {[yl}
WHERE Fill = {[z]}

& Ur/VWeb Example

SELECT Shape FROM drawings <C:]
WHERE drawings.Fill = {[x]}

INSERT INTO drawings (Shape, Fill)
VALUES ({[yl}, {[zl} :

[::] UPDATE drawings SET Fill = {[yl}
WHERE Fill = {[z]}

& Ur/VWeb Example

SELECT Shape FROM drawings <C:]
WHERE drawings.Fill = {[x]}

cached
INSERT INTO drawings (Shape, Fill) region
VALUES ({[yl}, {[z]} :

[::] UPDATE drawings SET Fill = {[yl}
WHERE Fill = {[z]}

& Ur/VWeb Example

SELECT Shape FROM drawings <C:]
WHERE drawings.Fill = {[x]}

cached
INSERT INTO drawings (Shape, Fill) region
VALUES ({[yl}, {[z]} :

[::] UPDATE drawings SET Fill = {[yl}
WHERE Fill = {[z]}

& Ur/VWeb Example

SELECT Shape FROM drawings <C:]
WHERE drawings.Fill = {[x]}

cached
INSERT INTO drawings (Shape, Fill) region
VALUES ({[yl}, {[zl}
cache invalidations @

[::] UPDATE drawings SET Fill = {[y]}
WHERE Fill = {[z]}

& Ur/VWeb Example

SELECT Shape FROM drawings <C:]
WHERE drawings.Fill = {[x]}

cached
INSERT INTO drawings (Shape, Fill) region
VALUES ({[yl}, {[zl}
cache invalidations @

[::] UPDATE drawings SET Fill = {[y]}
WHERE Fill = {[z]}

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

INSERT (shape, fill) = (y, z)

@ @ ®

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

X = @©

Cache

INSERT (shape, fill) = (y, z)

@ @ ®

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

=@ — (O[]

Cache

INSERT (shape, fill) = (y, z)

@ € ®

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

=@ — (O[]
x= W

Cache

INSERT (shape, fill) = (y, z)

@ € ®

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

INSERT (shape, fill) = (y, z)

@ € ®

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

INSERT (shape, fill) = (y, z)

(v.2) = (N)

@ € ®

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

SSBgRIR(]

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

SSBgRIR(]

Invalidation for INSERT
SELECT shape WHERE fill = x © ® ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,z) | 3 (shape, fil.
. fill = x A shape =y A fill = z

Invalidation for INSERT
SELECT shape WHERE fill = x © & ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,z) | 3 (shape, fil.
. fill =x A shape =y A fill = z

Invalidation for INSERT
SELECT shape WHERE fill = x © & ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,2) | 3 (shape, fil).
. fill = x A shape =y A fill = z

Invalidation for INSERT
SELECT shape WHERE fill = x © ® ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,z) | 3 (shape, fil.
. fill = x A shape =y A fill = z

Invalidation for INSERT
SELECT shape WHERE fill = x © ® ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,z) | 3 (shape, fil.
. fill = x A shape =y A fill = z

(y’z>:® """"""" @X:Z

Invalidation for INSERT
SELECT shape WHERE fill = x © & ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,z) | 3 (shape, fil.
. fill = x A shape =y A fill = z

(y’z>:® """"""" @X:Z

cache key

Invalidation for INSERT
SELECT shape WHERE fill = x © & ©

SSBgRIR(]

Cache

Invalidation formula:

INSERT (shape, fill) = (y,2) | 3 (shape, fil.
. fill = x A shape =y A fill = z

(y’z>:® """"""" @X:Z

cache key known during update

Invalidation for INSERT

SELECT shape WHERE fill = x

Cache

INSERT (shape, fill) = (y,2)

SSBgRIR(]

Invalidation formula:
3 (shape, fill).
fill =x AN shape =y A fill = z
—> X =z

inval(z);

Invalidation for UPDATE

SELECT shape WHERE fill = x

Cache

UPDATE fill =y WHERE fill = z

@ @ ®

SSBgRIR(]

Invalidation for UPDATE

SELECT shape WHERE fill = x

X = @©

Cache

UPDATE fill =y WHERE fill = z

@ @ ®

SSBgRIR(]

Invalidation for UPDATE

SELECT shape WHERE fill = x

=@ — (O[]

Cache

UPDATE fill =y WHERE fill = z

@ € ®

SSBgRIR(]

Invalidation for UPDATE

SELECT shape WHERE fill = x

=@ — (O[]
x= W

Cache

UPDATE fill =y WHERE fill = z

@ € ®

SSBgRIR(]

Invalidation for UPDATE

SELECT shape WHERE fill = x

Cache

UPDATE fill =y WHERE fill =

@ € ®

SSBgRIR(]

Invalidation for UPDATE

SELECT shape WHERE fill = x

Cache

UPDATE fill =y WHERE fill =

y=® z=\N

@ € ®

SSBgRIR(]

INnvalidation for UPDATE

- '~

‘

SELECT shape WHERE fill = © @*@
@F@aﬁmi
3 @ [@ @

SSBgRIR(]

P
-
~o -

INnvalidation for UPDATE

- '~

‘

SELECT shape WHERE fill = © @*@
@F@aﬁmi
3 @ [¢] @

SSBgRIR(]

P
-
~o -

INnvalidation for UPDATE

- .~

.*

SELECT shape WHERE fill = © @@

Cache

SSBgRIR(]

P
-
~o -

INnvalidation for UPDATE

- '~

‘

SELECT shape WHERE fill = © @@

Cache

SSBgRIR(]

P
-
~o -

INnvalidation for UPDATE

SELECT shape WHERE fill =

Cache

P
-
~o -

- .~

.*

SSBgRIR(]

INnvalidation for UPDATE

SELECT shape WHERE fill =

Cache

P
-
~o -

- .~

.*

SSBgRIR(]

INnvalidation for UPDATE

- .~

.*

SELECT shape WHERE fill = x @ v

Cache

SSBgRIR(]

Invalidation formula:

; (fill = x Vv fll' = x)
y=@© z=WN SN =y Afill = 2)

P
-
~o -

=z 3 (shape, fill), (shape’, fill").

INnvalidation for UPDATE

- .~

‘

SELECT shapH ERE ‘ @ @ v @

Cache

SSBgRIR(]

Invalidation formula:

UPDATE fill =y WHERE fill = z 3 (shape, fill), (shape’, fill").
(fill = x Vv fll' = x)

y=@ z=N SN =y Afill = 2)

@X:yVX:Z

P
-
~o -

INnvalidation for UPDATE

- .~

‘

SELECT shapH ERE ‘ @ @ v @

Cache

SSBgRIR(]

Invalidation formula:

UPDATE fill =y WHERE fill = z 3 (shape, fill), (shape’, fill").
(fill = x Vv fll' = x)

y=@ z=N SN =y Afill = 2)

@X:yVX:Z

P
-
~o -

INnvalidation for UPDATE

- .~

‘

SELECT shapH ERE ‘ @ @ v @

Cache

SSBgRIR(]

Invalidation formula:

UPDATE fill =y WHERE fill = z 3 (shape, fill), (shape’, fill").
(fill = x Vv fll' = x)

y=@ z=N SN =y Afill = 2)

@Xzy\/x:z

P
-
~o -

INnvalidation for UPDATE

SELECT shape WHERE fill =

Cache

UPDATE fill =y WHERE fill =
y = Z = W

e
-
~o -
-~ -

- .~
.

SSBgRIR(]

Invalidation formula:

3 (shape, fill), (shape’, fill").

(fill = x V fill' =
A(fil =y A fill = z)
@X:‘VVX:Z

inval(y); inval(z);

INnvalidation for UPDATE

- .~

.

SELECT shape WHERE fill =x @ i .

Cache

SSBgRIR(]

“ Invalidation formula:
UPDATE fil =y WHERE fil =z i] (shape f/ D, (shape fill).
F(fill = x A f X) v (fill £ x A fill' = x) ; Snbte B o b e)
; vV (fill = x A fill' = x A shape F shape) j A (fl y A fl — Z)
' @ X = y V i — =

inval(y); inval(z);

P
-
~o -

Compound Cache Keys

SELECT COUNT(*) WHERE fill = x A shape = w

[X,W]:® — 04
(X, W] @ —)0

Cache

Compound Cache Keys

SELECT COUNT(*) WHERE fill = x A shape = w

Cache

[x,w] = @ — 04

(X, W] @ — 0O

INSERT (shape, fill) = (y, z)

UPDATE fill =y WHERE fill = z

Compound Cache Keys

SELECT COUNT(*) WHERE fill = x A shape = w

Cache

[x,w] = @ — 04

(X, W] @ — 0O

INSERT (shape, fill) = (y, z)

—> x=zAw=y
inval([z, y]);

UPDATE fill =y WHERE fill = z

Compound Cache Keys

SELECT COUNT(*) WHERE fill = x A shape = w

[X,W]:® — D4
(X, W] @ — 0O

Cache

INSERT (shape, fill) = (y,z) UPDATE fill =y WHERE fill = z

—> x=zAw=y —> x=yVx=z
inval([z, y]); inval([y, *]); inval([z, *]);

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

y=® z=\N

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

y=® z=\N

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

y=® z=\N

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

40 Y= ® z=WN

—00 § —00 %‘
1:00 @—»53 2:00 @—»24 3:00 @ >)9

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

40 Y= ® z=WN

1:00 @—»53 2:00 @—»24 3:00 @ >)9

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

40 Y= ® z=WN

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

40 Y= ® z=WN

5:00 (W, X) = @

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

40 Y= ® z=WN

5:00 (W, X) = @

Cache Data Structure

SELECT COUNT(*) WHERE fill = x A shape = w

UPDATE fill =y WHERE fill = z
inval([y, *]); inval([z, *]);

40 Y= ® z=WN

5:00 (W, X) = @

Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

talked

talked

Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

Consolidate cached
expressions, but avoid
introducing new keys.

talked

talked

Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

Consolidate cached
expressions, but avoid
introducing new keys.

talked

talked

Two global locks per
cache:“data” lock and
“transaction’’ lock.

Program instrumentation

SOQL analysis

Cache data structure

Concurrency control

Runtime monrtoring

Consolidate cached
expressions, but avoid
introducing new keys.

talked

talked

Two global locks per
cache:“data” lock and
“transaction’ lock.

Deactivate caches
with low hit rate to
reduce serialization.

Performance bvaluation

Course application, concurrency test (queries only)
1000

750
500

250

Throughput (requests/second)

| -thread server 4-thread server 8-thread server | 2-thread server

Ur/Web Ur/Web with Sqlcache

Performance bvaluation

Course application, writes test (4-thread server)
1000

750
500

250

Throughput (requests/second)

O writes/second | write/second |0 writes/second |00 writes/second

Ur/Web Ur/Web with Sqlcache

Sqlcache

caching as a compiler optimization

https://github.com/urweb/urweb

http://github.com/urweb/urweb

Good guestion!

Throughput (requests/second)

Sglcache vs. Dyncache

Course application, concurrency test (queries only)
1000

750
500

250

| -thread server 4_thread server 8-thread server | 2-thread server

Ur/Web Ur/Web with Dyncache Ur/Web with Sqlcache

Throughput (requests/second)

Sglcache vs. Dyncache

Course application, writes test (4-thread server)
1000

750
500

250

O writes/second | write/second |0 writes/second |00 writes/second

Ur/Web Ur/Web with Dyncache Ur/Web with Sqlcache

20

Supported SQL

logic, equalities
all flavors of JOIN

nested queries: FROM

arrthmetic, inequalities nested queries: SELECT,
WHERE

COUNT, SUM
cascading triggers

LIMIT, ORDER BY,

GROUP BY

CURRENT_TIMESTAMP

2|

U

Bla

Related VWork

bdating materializec

<ely et al. (1986)

xCache

Ports et al. (2010)

Sync Kit

Benson et al. (2010)

VIEWS

Why Ur/Web?

table drawings : {Shape : int, Fill : int}

fun shapesOfFill x =
gallery <- queryX1l (SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]})
(fn shape => (% draw it x));
return <xml>Behold: shapes! {gallery}</xml>

fun addDrawing y z =
dml (INSERT INTO drawings (Shape, Fill)

VALUES ({[yl}, {[zl});
return <xml>Drawing added!</xml>

fun replaceFill y z =
dml (UPDATE drawings SET Fill = {[y]}
WHERE Fill = {[z]});
return <xml>Fill replaced!</xml>

23

Why Ur/Web?

table drawings : {Shape : int, Fill : int}

fun shapesOfFill x =
gallery <- queryX1l (SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]})
(fn shape => (% draw it x));
return <xml>Behold: shapes! {gallery}</xml>

fun addDrawing y z =
dml (INSERT INTO drawings (Shape, Fill)
VALUES ({[yl}, {[zl});

return <xml>Drawing adde
First-class SOQL

fun replacefFill y z = -
dml (UPDATE drawings SET Fill = {[y]l}

WHERE Fill = {[z]});
return <xml>Fill replaced!</xml>

23

Why Ur/Web!

~ "ape : int, Fill : int}
Controlled side effects

gallery <— queryXl (SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]})
(fn shape => (% draw it x));

return <xml>Behold: shapes! {gallery}</xml>

fun addDrawing y z =
dml (INSERT INTO drawings (Shape, Fill)

VALUES ({[yl}, {[zl});
return <xml>Drawing adde
First-class SOQL

fun replaceFill y z = -
dml (UPDATE drawings SET Fill = {[y]

WHERE Fill = {[z]});
return <xml>Fill replaced!</xml>

23

Why Ur/Web!

~ "ape : int, Fill : int}
Controlled side effects

gallery <- queryXl (SELECT Shape FROM drawings
WHERE drawings.Fill = {[x]})
(fn shape => (x draw it *));
return <xml>Behold: shapes! {gallery}t</:
Lots of inlining
fun addDrawing y z =
dml (INSERT INTO drawings (Shape, Fill)

VALUES ({[yl}, {[zl});
return <xml>Drawing adde
First-class SOQL
fun replaceFill y z =

dml (UPDATE drawings SET Fill = {[y]}
WHERE Fill = {[z]});
return <xml>Fill replaced!</xml>

23

