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ABSTRACT
Queueing systems with multiple servers operating in parallel, such
as the M/M/k model, have been extensively studied. However, most
prior literature examines the limited case in which that all servers
may operate simultaneously. This is despite the fact that many
practical queueing systems encounter constraints that make this
an unrealistic assumption. In this work, we investigate one such
setting: the men’s lavatory, in which a strict etiquette requires that
no two adjacent urinals be in use at the same time. We introduce and
analyze a new queueing model, the Context-2 Unease Processing
Network (C2UPN), which formalizes a row of urinals used with
perfect etiquette. We derive exact results for a row of 3 urinals (UUU)
using the Recursive Renewal Reward (RRR) technique. Remarkably,
our method generalizes to many other urinal topologies, including
longer rows and cyclic con�gurations.
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1 INTRODUCTION
Imagine you are at a conference, and the second co�ee break is ap-
proaching. Most attendees are �lled with the free diuretics provided
during the �rst co�ee break and have only one question on their
minds: how long will they have to wait in line to use the restroom
once the break starts? It is of utmost importance to sustain only
a short queueing time. Despite the universality of this problem,
there is shockingly little theoretical work analyzing response time
in bathrooms. Instead, most prior work on bathrooms focuses on
anthropological studies of human behavior in bathrooms.

In this paper, we turn to queueing theory to present new exact
analysis of response time in one speci�c category of bathroom
queueing problem: the urinals-only setting. Here customers arrive
to the system, wait in the queue for an available urinal, and depart
the system upon completing their urination. While many bathrooms
consist of both urinals and stalls, we choose to focus on the urinals-
only setting for two reasons. First, often in bathrooms that o�er
both urinals and stalls, people opt to only use the stalls even if there
are vacant urinals [2]. Second, the introduction of stalls necessitates
the existence of both “type-1” and “type-2” customers that have
di�erent service times; this complicates the analysis.

Urinal queueing exhibits several unique properties not present
in other bathroom queueing settings. Most notably, here we must
consider the degree of urinal etiquette exhibited by urinators. Urinal

etiquette has to do with the number of vacant urinals left between
urinators. The three possible urinal etiquette degrees are:

(1) No etiquette. Here an arriving urinator will use any va-
cant urinal, regardless of whether the adjacent urinals are
vacant or occupied.

(2) Partial etiquette. Here an arriving urinator may choose to
use a vacant urinal that is adjacent to an occupied urinal
(for example, if the urinator is experiencing a high degree
of urgency). The urinator may also choose to join the queue
if the only vacant urinals are adjacent to occupied urinals.

(3) Perfect etiquette. Here an arriving urinator never uses a
vacant urinal that is adjacent to an occupied urinal.

In all three settings, we assume that an arriving urinator will always
use a vacant urinal that is not adjacent to an occupied urinal. We
note that Justus argues that the “bu�er zone” is mandatory, meaning
that an arriving urinator may never use a vacant urinal that is next
to an occupied urinal, except in cases of unusually high load [5].
We agree, hence in this paper we focus on the perfect etiquette
setting.

Our main contribution in this paper is the �rst exact analysis
of response time in urinal systems. We begin by studying 3- and
5-urinal systems con�gured in a standard topology in which the
urinals are arranged in a straight line. Our approach involves mod-
eling the system using a Markov chain and apply the Recursive
Renewal Reward (RRR) technique to solve the chain exactly. In Sec-
tion 4 we consider alternative urinal topologies and investigate the
conditions under which our approach allows us to develop exact
analysis. Finally in Section 5 we discuss directions for future work.

1.1 Related Work
As noted above, most of the related work focuses on human be-
havior. Cahill et al. conduct an extensive observational study of
humans in bathrooms and �nd that while unacquainted individ-
uals typically avoid conversation at urinals, people who already
know each other often converse while urinating (though they avoid
making eye contact) [2].1 The authors also point out that closed
stalls make excellent hiding places while conducting observational
studies in bathrooms [2]. Empirical results also indicate that women
spend a signi�cantly longer time using bathrooms than men do [1].
Perhaps this is because 85% of women choose to “crouch” instead of
sitting directly on public toilet seats, which can reduce the average
�ow rate by 21% [8]. We refer the reader to [9] for a survey of
1Our personal sense of urinal etiquette, �nely tuned by more than two decades of
combined urinal experience, discourages urinal conversation, particularly between
students and their advisors.
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Figure 2.1: The urinal selection process with 3 urinals in a row
(viz. the M/M/3/C2UPN queue). A single completion at the center
urinal leaves the next urinator with a choice between 3 available
urinals. If they choose an edge urinal, then a second urinator can
also enter service.

other related behavioral results, perhaps to read while using the
bathroom (69% of people use their phones while on the toilet [3]).

All of the above work, though interesting, is orthogonal to our
mathematical approach to the urinal problem. To our knowledge,
the only existing theoretical work on urinal usage is [6]. The paper
considers a setting in which a urinator enters the system and needs
to choose which urinal to occupy so as to maximize his privacy, i.e.,
the time until an adjacent urinal becomes occupied. Unfortunately
the model makes several uncomfortable assumptions, including
that the urination duration is in�nite, so urinators never leave
the bathroom. Our work allows for �nite urination duration and
assumes perfect etiquette, so privacy is always maintained.

2 SYSTEM MODEL
We model urinals as servers of �xed service rate 1. Lavatory users,
or urinators, have i.i.d. service requirements drawn from a speci�ed
distribution and arrive according to a speci�ed stochastic process.
There is a queue of in�nite capacity holding waiting urinators, who
enter service when possible in �rst-come, �rst-served order.

In traditional queueing, all servers are available at all times.
Unfortunately, life is not so simple in the men’s lavatory. In practice,
adjacent urinals cannot both serve urinators at the same time. We
capture this as an unease graph: vertices represent urinals, and edges
represent pairs of urinals that cannot be occupied simultaneously.
While a urinal is serving a urinator, its neighbors in the unease
graph become unavailable until service at the urinal completes.

The urinator waiting at the head of the queue enters service
at the �rst urinal to become available. When multiple urinals to
become available simultaneously, the urinator occupies a urinal
chosen uniformly at random from the set of available urinals. Note
that a single completion can enable more than one waiting urinator
to enter service. Figure 2.1 illustrates an example of the urinal
selection process.

In the vast majority of men’s lavatories, the urinals are assembled
in a small number of rows. In this case, the unease graph is a union
of paths, with edges between adjacent urinals in the same row. We
call a single row of urinals a Context-2 Unease Processing Network
(C2UPN), as each occupied urinal makes up to 2 urinals unavailable.

For the remainder of this paper, we consider the Markovian
case, which has exponential service and interarrival times. Urinator
service requirements are distributed exponentially with rate µ, and
the lavatory experiences a Poisson arrival stream of urinators with
rate λ. In Kendall notation, this is the M/M/k/C2UPN queue.

A natural generalization of the C2UPN is to consider other urinal
topologies arising from unease graphs beyond paths. Because the
number of urinals made uneasy by an may be an arbitrary number
N , we refer to this as the Context-N Unease Processing Network
(CNUPN). We discuss some CNUPN systems in Section 4.

3 ANALYZING MARKOVIAN C2UPN QUEUES
Our chief weapon for analyzing M/M/k/C2UPN systems is Recursive
Renewal Reward (RRR), a technique pioneered by Gandhi et al. [4].
Originally introduced to analyze the M/M/k queue with exponen-
tially distributed setup costs, RRR enables exact analysis of many
queueing systems with Markov chains that are in�nite in just one
dimension. Roughly speaking, we can think of a one-dimensionally
in�nite Markov chain as consisting of several “layers” of states. If
the chain is eventually periodic and transitions between layers in
the repeating region are all one-way, we can apply RRR to compute
variety of metrics. Speci�cally, we �nd the z-transform of the num-
ber of jobs in the queue, from which various useful metrics, such
as expected system response time, follow easily.

3.1 Summary of RRR
Here we give a high-level overview of RRR, referring the reader
to Gandhi et al. [4] for a more detailed exposition. RRR solves
the following problem: given a Markov chain with certain nice
properties, �nd the average value of some time-varying reward rate,
which depends only on the current state. For example, to �nd the
average number of jobs in the queue, E[N ], we set the reward rate
in each state to the number of urinators in the queue. (We write N
instead of the usual NQ for the number in queue to reduce clutter.)

We designate some set of states as home states. For queueing
systems, there is usually a single home state, namely the empty
system. Given home states, a renewal cycle is the time interval
between transitions into the set home states. A classic result of
renewal-reward theory tells us that

E[reward rate] =
E[reward accumulated in a renewal cycle]

E[length of a renewal cycle]
.

For certain Markov chains, such as that of the M/M/3/C2UPN, the
two quantities right-hand side are very easy to compute!

It is clear how to use RRR to compute expectations. To compute
more complicated metrics, such as Var(N ), we just use a more
complicated reward rate function. In particular, all moments of N
can be computed from its z-transform, N̂ (z). Because N̂ (z) = E[zN ],
we can compute it by setting the reward rate of each state to be zn ,
where n is the number of jobs in the queue when the chain is in
that state.
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Figure 3.1: The M/M/3/C2UPN CTMC. The repeating portion is to
the right of the dotted line, starting at 2 and 2′.

3.2 Exact Analysis of the M/M/3/C2UPN Queue
The continuous time Markov chain (CTMC) for the M/M/3/C2UPN
queue is shown in Figure 3.1. The chain has two layers: a “sad”
layer, in which the middle urinal is occupied, and a “happy” layer,
in which the middle urinal is idle. We label the happy and sad states
with n total urinators in the system with n and n′, respectively.
(There is no state 0′ because the middle urinal cannot be occupied
if there are no urinators.)

Because our model is in continuous time, the probability of two
urinators completing at the exact same time is 0. This means that
in the repeating portion of the chain, it is possible to go from sad
to happy (see Figure 2.1) but not vice versa, because a transition
from happy to sad would require simultaneous departures to make
the center urinal available. The only transition into the sad layer is
from state 0, when a urinator arriving at an empty system occupies
the center urinal.

We now apply RRR to �nd N̂ (z). State 0 serves as our single
home state. The �rst step is to compute the expected renewal cycle
length, which we write as L. We will need the following de�nitions.

• Let Li for i ≥ 1 be the expected amount of time it takes
to go left from i , possibly visiting states to the right in the
meantime. Going left from i always ends up at i − 1.

• Let L′i for i ≥ 1 be the expected amount of time it takes to
go left from i ′. Going left from i ′ may end up at either i − 1
or (i − 1)′.

• Let q be the probability that going left from i ′ lands at i − 1,
and let q′ = 1 − q be the probability that going left from i ′

lands at (i − 1)′.
Examining the Markov chain, we see that

L =
1
λ
+
2
3
L1 +

1
3
L′1

L1 =
1

µ + λ
+

λ

µ + λ
(L2 + L1)

L′1 =
1

µ + λ
+

λ

µ + λ
(L′2 + qL1 + q

′L′1).

Because the Markov chain repeats after 2 and 2′, we know L3 = L2
and L′3 = L′2, giving us

L2 =
1

2µ + λ
+

λ

2µ + λ
(2L2)

L′2 =
1

µ + λ
+

λ

µ + λ
((1 + q′)L′2 + (1 − q′)L2).

Given q′, these linear equations are easily solved. Inspecting the
Markov chain, we see that q′ satis�es

q′ =
µ

µ + λ

( 1
3

)
+

λ

µ + λ
(q′)2.

Let ρ = λ/µ. Knowing q′ ∈ (0, 1), we can pick the correct solution
to the quadratic,

q′ =
1
2ρ

(
1 + ρ −

√
(1 + ρ)2 −

4
3
ρ

)
.

As expected, this is decreasing in ρ: the more likely arrivals are
compared to departures, the more likely it is that we transition
from sad to happy at some point before going left.

We now compute the expected reward accumulated per renewal
cycle, which we right as R. Let Ri be the total reward accumulated
while going left from i ≥ 0, and similarly for R′i . This includes both
the reward from state i or i ′ and reward from states to the right that
are visited before going left. The reward rate for state i is z (i−2)

+

(that is, zmax{i−2,0}), and the reward rate for state i ′ is z (i−1)
+
.

Examining the Markov chain, we see that

R =
1
λ
+
2
3
R1 +

1
3
R′1

R1 =
1

µ + λ
+

λ

µ + λ
(R2 + R1)

R′1 =
1

µ + λ
+

λ

µ + λ
(R′2 + qR1 + q

′R′1).

Because the Markov chain repeats after 2 and 2′, we know R3 = zR2
and R′3 = zR′2, giving us

R2 =
1

2µ + λ
+

λ

2µ + λ
(1 + z)R2

R′2 =
z

µ + λ
+

λ

µ + λ
((q′ + z)R′2 + (1 − q′)R2).

This is the same q′ as in the computation for L, so this is just a
system of linear equations.

Sparing the reader the remaining details, we skip to the simple
closed-form solution,

N̂ (z) =

(ρ − 2) (−3ρ + X + 3) (ρ (z − 1) − 1) (ρ2 (X (z − 1) + 4z
− 7) + ρ (X (z − 2) + 3z − 8) − 2(X + 3) + 3ρ3 (z − 1))

(3ρ2 + 5ρ + (ρ + 2)X + 6) (ρz − 2) (X + ρ (3 − 6z) + 3)
,

where X =
√
9ρ2 + 6ρ + 9. We leave using this result to compute

E[N ] and other metrics as a simple exercise for the reader.

3.3 Generalization to M/M/5/C2UPN
The same general approach works for longer rows of urinals, but
the layer structure becomes more complex. Instead of solving a
quadratic forq′, we must solve a system of quadratics to �nd several
probabilities. Remarkably, the next-largest interesting case, the
M/M/5/C2UPN, admits a closed-form solution. One probability is

1
2ρ

(
1 + ρ −

1
√
219

√
111ρ2 + 36

√
9ρ4 + 3ρ3 + 3ρ + 9 + 55ρ + 111

)
,

and the rest are algebraic functions of it. From the probabilities,
solving for L and R is routine. Whether the M/M/k/C2UPN has such
an elegant solution for general k is a rich area for future research.
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Figure 4.1: A 5-urinal CUP system.

Figure 4.2: State transitions in the 7-state linear urinal con�gura-
tion when the queue is non-empty.

4 ALTERNATIVE URINAL TOPOLOGIES
Thus far we have considered only the “standard” bathroom topology
in which the urinals are arranged in a row, making the unease graph
a path. But a multitude of urinal arrangements are possible. In this
section we extend our results to an important class of alternative
topologies: Circular Urinal Positioning (CUP).

In a CUP system, the urinals are arranged in a circle around
a central pillar (see Figure 4.1), making the unease graph a cycle.
Urinators arrive to the system as a Poisson process with rate λ
and the urination duration is exponentially distributed with rate
µ. Unlike in the line topology studied in the previous section, in
a CUP system all of the urinals are symmetric in that there is
not an endpoint with only a single neighboring urinal. While the
CUP con�guration makes it more challenging for urinators to �nd
private urinals, we �nd that surprisingly, the CUP con�guration
makes analysis much more tractable in large bathrooms.

Consider the 7-urinal system. In a linear con�guration, there are
�ve possible states when the queue is non-empty and assuming
perfect etiquette. The transitions between these states are shown in
Figure 4.2. The complicated state transitions, and in particular the
non-DAG structure, make it di�cult to solve the resulting Markov
chain using RRR. This is because it is possible to transition back and
forth between pairs of states, meaning that �nding the “leftward”
probabilities will require solving a high-degree polynomial.

Figure 4.3: State transitions in the 7-urinal CUP con�guration
when the queue is non-empty.

Now suppose that instead our 7 urinals are arranged in a CUP
structure. Now there is only one possible state when the queue is
non-empty and all urinators observe perfect etiquette. The new
state transition diagram is shown in Figure 4.3. Indeed, the system
reduces to an M/M/3, which is easy to solve.

In general, the state space for any size urinal system is simpler in
the CUP con�guration than in the linear con�guration. Due to the
increased analytical tractability of large CUP systems, we suggest
that all bathrooms be recon�gured so that the urinals satisfy a CUP
structure.

5 CONCLUSIONS AND FUTUREWORK
In this paper we derived the �rst exact analysis of mean response
time in urinal systems. Our approach, which uses the Recursive
Renewal Reward technique, applies in the 3- and 5-urinal linear
C2UPN systems, as well as in larger CUP systems.

There are several interesting and important directions for future
work. Here we only consider the perfect etiquette setting, in which
urinators never occupy adjacent urinals. When load is high, it
may be necessary to move instead to the partial etiquette setting,
in which urinators may occupy adjacent urinals if their urgency
is su�ciently high. This complicates our Markov chain analysis
because it introduces many new possible states for the urinal system.
Furthermore, in the “probabilistic urgency” (p-urgency) setting, the
exponential urination duration assumption may not be realistic.
Empirical work has shown that a more realistic distribution is the
sum of a delay before the start of urination, and a urination duration;
both of these components depend on the proximity of the urinator
to other urinators [7]. Hence in the partial etiquette/p-urgency
setting, we also need to extend our results to general urination
duration distributions.

An alternative direction for future work involves the strategic
decision of which urinal to choose in a p-urgency system. We have
assumed that a urinator will choose uniformly at random from
among the permissible urinals, but this need not be the case. A
common strategy is to choose the urinal that maximizes the distance
between urinators. While this strategy is bene�cial for ensuring
one’s individual privacy, it may reduce the overall system e�ciency.
An interesting direction for future work would be to investigate
the Privacy-E�ciency Envelope.
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We hope that this paper will serve as the start of a steady stream
of future work on analyzing the performance of urinal and other
crucial lavatory-related queueing systems.
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