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Figure 3.1: The M/M/3/C2UPN CTMC. The repeating portion is to
the right of the dotted line, starting at 2 and 20.

3.2 Exact Analysis of the M/M/3/C2UPN Queue
The continuous time Markov chain (CTMC) for the M/M/3/C2UPN
queue is shown in Figure 3.1. The chain has two layers: a “sad”
layer, in which the middle urinal is occupied, and a “happy” layer,
in which the middle urinal is idle. We label the happy and sad states
with n total urinators in the system with n and n0, respectively.
(There is no state 00 because the middle urinal cannot be occupied
if there are no urinators.)

Because our model is in continuous time, the probability of two
urinators completing at the exact same time is 0. This means that
in the repeating portion of the chain, it is possible to go from sad
to happy (see Figure 2.1) but not vice versa, because a transition
from happy to sad would require simultaneous departures to make
the center urinal available. The only transition into the sad layer is
from state 0, when a urinator arriving at an empty system occupies
the center urinal.

We now apply RRR to �nd N̂ (z). State 0 serves as our single
home state. The �rst step is to compute the expected renewal cycle
length, which we write as L. We will need the following de�nitions.

• Let Li for i � 1 be the expected amount of time it takes
to go left from i , possibly visiting states to the right in the
meantime. Going left from i always ends up at i � 1.

• Let L0i for i � 1 be the expected amount of time it takes to
go left from i 0. Going left from i 0 may end up at either i � 1
or (i � 1)0.

• Let q be the probability that going left from i 0 lands at i � 1,
and let q0 = 1 � q be the probability that going left from i 0

lands at (i � 1)0.
Examining the Markov chain, we see that
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1
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Because the Markov chain repeats after 2 and 20, we know L3 = L2
and L03 = L02, giving us
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1

2µ + �
+

�

2µ + �
(2L2)
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((1 + q0)L02 + (1 � q0)L2).

Given q0, these linear equations are easily solved. Inspecting the
Markov chain, we see that q0 satis�es

q0 =
µ
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Let � = �/µ. Knowing q0 2 (0, 1), we can pick the correct solution
to the quadratic,
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As expected, this is decreasing in �: the more likely arrivals are
compared to departures, the more likely it is that we transition
from sad to happy at some point before going left.

We now compute the expected reward accumulated per renewal
cycle, which we right as R. Let Ri be the total reward accumulated
while going left from i � 0, and similarly for R0i . This includes both
the reward from state i or i 0 and reward from states to the right that
are visited before going left. The reward rate for state i is z (i�2)+

(that is, zmax{i�2,0}), and the reward rate for state i 0 is z (i�1)+ .
Examining the Markov chain, we see that

R =
1
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2
3
R1 +

1
3
R01

R1 =
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(R2 + R1)

R01 =
1

µ + �
+

�

µ + �
(R02 + qR1 + q

0R01).

Because the Markov chain repeats after 2 and 20, we know R3 = zR2
and R03 = zR02, giving us

R2 =
1

2µ + �
+

�

2µ + �
(1 + z)R2

R02 =
z

µ + �
+

�

µ + �
((q0 + z)R02 + (1 � q0)R2).

This is the same q0 as in the computation for L, so this is just a
system of linear equations.

Sparing the reader the remaining details, we skip to the simple
closed-form solution,

N̂ (z) =

(� � 2) (�3� + X + 3) (� (z � 1) � 1) (�2 (X (z � 1) + 4z
� 7) + � (X (z � 2) + 3z � 8) � 2(X + 3) + 3�3 (z � 1))

(3�2 + 5� + (� + 2)X + 6) (�z � 2) (X + � (3 � 6z) + 3) ,

where X =
q
9�2 + 6� + 9. We leave using this result to compute

E[N ] and other metrics as a simple exercise for the reader.

3.3 Generalization to M/M/5/C2UPN
The same general approach works for longer rows of urinals, but
the layer structure becomes more complex. Instead of solving a
quadratic forq0, we must solve a system of quadratics to �nd several
probabilities. Remarkably, the next-largest interesting case, the
M/M/5/C2UPN, admits a closed-form solution. One probability is
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and the rest are algebraic functions of it. From the probabilities,
solving for L and R is routine. Whether the M/M/k/C2UPN has such
an elegant solution for general k is a rich area for future research.
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9�2 + 6� + 9. We leave using this result to compute

E[N ] and other metrics as a simple exercise for the reader.

3.3 Generalization to M/M/5/C2UPN
The same general approach works for longer rows of urinals, but
the layer structure becomes more complex. Instead of solving a
quadratic forq0, we must solve a system of quadratics to �nd several
probabilities. Remarkably, the next-largest interesting case, the
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and the rest are algebraic functions of it. From the probabilities,
solving for L and R is routine. Whether the M/M/k/C2UPN has such
an elegant solution for general k is a rich area for future research.
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