Recursion Theorem

Ziv Scully

18.504

P-p-p-plot twist!

The master plan

- 1 A very λ -calculus appetizer
 - 2 Main theorem
- 3 Applications
- 4 Fixed points and diagonalization

The story so far

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Depending on who you ask, computation is...

• ... following clear procedures step by step (Turing machines).

Depending on who you ask, computation is...

- ... following clear procedures step by step (Turing machines).
- ... a composition of primitive functions on \mathbb{N} (μ -recursive functions).

Depending on who you ask, computation is...

- ... following clear procedures step by step (Turing machines).
- ... a composition of primitive functions on \mathbb{N} (μ -recursive functions).
- ... complexity that emerges from simple rules (cellular automata).

Depending on who you ask, computation is...

- ... following clear procedures step by step (Turing machines).
- ... a composition of primitive functions on \mathbb{N} (μ -recursive functions).
- ... complexity that emerges from simple rules (cellular automata).
- ... applying functions to functions to get more functions (λ -calculus).

A λ -calculus term is one of three things.

• A variable, such as *x*, *y*, or *z*.

A λ -calculus term is one of three things.

- A variable, such as *x*, *y*, or *z*.
- A function application, one term applied to another, such as

fx, f(gx), or (fx)y = fxy.

A λ -calculus term is one of three things.

- A variable, such as *x*, *y*, or *z*.
- A function application, one term applied to another, such as

$$fx, f(gx),$$
 or $(fx)y = fxy.$

• A function abstraction, making a term a one-argument function, such as

$$\lambda x.x, \quad \lambda x.(\lambda y.x) = \lambda x.\lambda y.x, \quad \text{or } \lambda f.\lambda g.\lambda x.f(gx).$$

A λ -calculus term is one of three things.

- A variable, such as *x*, *y*, or *z*.
- A function application, one term applied to another, such as

$$fx, f(gx),$$
 or $(fx)y = fxy.$

• A function abstraction, making a term a one-argument function, such as

$$\lambda x. x, \qquad \lambda x. (\lambda y. x) = \lambda x. \lambda y. x, \qquad \text{or } \lambda f. \lambda g. \lambda x. f(gx).$$

Additionally, we require that, at the top level, no variable appear outside the scope of a function abstraction that "declares" it.

Evaluating λ -calculus terms

There are two rules for evaluating terms.

• *α*-renaming: change variable names, such as

 $\lambda x. \lambda y. x \rightsquigarrow \lambda f. \lambda g. f.$

Evaluating λ -calculus terms

There are two rules for evaluating terms.

• α -renaming: change variable names, such as

 $\lambda x. \lambda y. x \rightsquigarrow \lambda f. \lambda g. f.$

• β -reduction: apply a function to an argument by substitution, such as

 $(\lambda x. \lambda y. x)(\lambda z. z) \rightsquigarrow \lambda y. \lambda z. z.$

Evaluating λ -calculus terms

There are two rules for evaluating terms.

• α -renaming: change variable names, such as

 $\lambda x. \lambda y. x \rightsquigarrow \lambda f. \lambda g. f.$

• β -reduction: apply a function to an argument by substitution, such as

$$(\lambda x. \lambda y. x)(\lambda z. z) \rightsquigarrow \lambda y. \lambda z. z.$$

These rules are powerful enough to simulate a Turing machine.

Hello, factorial!

Let's define the factorial function.

$$F = \lambda x. \begin{cases} 1 & x = 0 \\ x \times (F(x-1)) & \text{otherwise.} \end{cases}$$

Hello, factorial!

Let's define the factorial function.

$$F = \lambda x. \begin{cases} 1 & x = 0 \\ x \times (F(x-1)) & \text{otherwise.} \end{cases}$$

Problem: we can't have *F* refer to itself in λ -calculus.

Sneakier self-reference

What if we can't use self-reference?

$$F = GG, \text{ where}$$

$$G = \lambda g. \, \lambda x. \begin{cases} 1 & x = 0 \\ x \times (gg(x-1)) & \text{otherwise.} \end{cases}$$

Sneakier self-reference

What if we can't use self-reference?

$$F = GG, \text{ where}$$
$$G = \lambda g. \, \lambda x. \begin{cases} 1 & x = 0\\ x \times (gg(x-1)) & \text{otherwise.} \end{cases}$$

We use an "open" definition: *G* refers to whatever function we want it to use next. Passing *G* to itself gives *G* a reference to itself.

Sneakier self-reference

What if we can't use self-reference?

$$F = GG, \text{ where}$$

$$G = \lambda g. \, \lambda x. \begin{cases} 1 & x = 0 \\ x \times (gg(x-1)) & \text{otherwise.} \end{cases}$$

We use an "open" definition: *G* refers to whatever function we want it to use next. Passing *G* to itself gives *G* a reference to itself.

$$GG = \left(\lambda g. \lambda x. \begin{cases} 1 & x = 0\\ x \times (gg(x-1)) & \text{otherwise} \end{cases}\right) G$$
$$= \lambda x. \begin{cases} 1 & x = 0\\ x \times (GG(x-1)) & \text{otherwise.} \end{cases}$$

Laziness is a virtue

Using a self-application gg for every recursive call is cumbersome. What if we're lazy and want to write f instead of gg?

$$F = \lambda f. \, \lambda x. \begin{cases} 1 & x = 0 \\ x \times (f(x-1)) & \text{otherwise.} \end{cases}$$

Laziness is a virtue

Using a self-application gg for every recursive call is cumbersome. What if we're lazy and want to write f instead of gg?

$$F = \lambda f. \, \lambda x. \begin{cases} 1 & x = 0 \\ x \times (f(x-1)) & \text{otherwise.} \end{cases}$$

F is a "shell" that needs to be filled in by the true factorial function, f. We can think of F as having "type"

$$(\mathbb{N}\to\mathbb{N})\to(\mathbb{N}\to\mathbb{N}).$$

Laziness is a virtue

Using a self-application gg for every recursive call is cumbersome. What if we're lazy and want to write f instead of gg?

$$F = \lambda f. \, \lambda x. \begin{cases} 1 & x = 0 \\ x \times (f(x-1)) & \text{otherwise.} \end{cases}$$

F is a "shell" that needs to be filled in by the true factorial function, f. We can think of F as having "type"

$$(\mathbb{N}\to\mathbb{N})\to(\mathbb{N}\to\mathbb{N}).$$

If f computes factorial, then so does Ff, in which case

$$f = Ff$$
.

That is, we necessarily want a fixed point of F.

Ziv Scully

Wishful thinking

Let's wish for a function Y that finds a fixed point of its input. Namely, Y should satisfy

YF = F(YF).

Wishful thinking

Let's wish for a function Y that finds a fixed point of its input. Namely, Y should satisfy

YF = F(YF).

When *F* is our factorial "shell", we get

$$YF = F(YF) = \lambda x. \begin{cases} 1 & x = 0\\ x * (YF(x-1)) & \text{otherwise.} \end{cases}$$

Wishful thinking

Let's wish for a function *Y* that finds a fixed point of its input. Namely, *Y* should satisfy

YF = F(YF).

When F is our factorial "shell", we get

$$YF = F(YF) = \lambda x. \begin{cases} 1 & x = 0\\ x * (YF(x-1)) & \text{otherwise.} \end{cases}$$

That is, to do recursion, it suffices to find a fixed point of F.

Wish really, really sneakily

We know how to do self-reference: make a function accept any reference as an argument, then feed the function to itself. With that inspiration, we wish for some G_F such that

$$YF = F(YF) = G_F G_F.$$

 $YF = F(YF) = G_F G_F$

$$YF = F(YF) = G_F G_F$$
$$\Uparrow$$
$$G_F G_F = F(G_F G_F)$$

$$YF = F(YF) = G_F G_F$$

$$\uparrow$$

$$G_F G_F = F(G_F G_F)$$

$$= (\lambda g. F(gg)) G_F$$

$$\uparrow$$

$$G_F = \lambda g. F(gg).$$

$$YF = F(YF) = G_F G_F$$

$$\uparrow$$

$$G_F G_F = F(G_F G_F)$$

$$= (\lambda g. F(gg)) G_F$$

$$\uparrow$$

$$G_F = \lambda g. F(gg).$$

Theorem (Existence of the Y combinator)

The combinator

$$Y = \lambda f. G_f G_f = \lambda f. (\lambda g. f(gg)) (\lambda g. f(gg))$$

satisfies YF = F(YF) for all F.

The story so far

A very λ -calculus appetizer

4 Fixed points and diagonalization

Turing machines are computers, too!

Notation: [n] is the Turing machine n encodes.

Theorem (Recursion theorem)

There exists a total (always halting) computable function Y such that for all F, if [F] is total, then

[Y(F)] = [[F](Y(F))].

Turing machines are computers, too!

Notation: [n] is the Turing machine n encodes.

Theorem (Recursion theorem)

There exists a total (always halting) computable function Y such that for all F, if [F] is total, then

[Y(F)] = [[F](Y(F))].

Put another way: if we consider numbers equivalent if they encode equivalent Turing machines, then [F] has a fixed point for all F, and that fixed point is computable from F.

Proof of recursion theorem

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

 $Y(F) = [F](Y(F)) = G_F$
Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$
$$\Uparrow$$
$$G_F](G_F) = [F](G_F)$$

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F)(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

$$(G_F) = \langle g \mapsto [F](g) \rangle.$$

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F)(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

$$(G_F) = \langle g \mapsto [F](g) \rangle.$$

We can compute G_F , so we win!

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

$$(G_F) = \langle g \mapsto [F](g) \rangle.$$

We can compute G_F , so we win! What happens if [F](x) = x + 1?

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F)(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

$$(G_F) = \langle g \mapsto [F](g) \rangle.$$

We can compute G_F , so we win! What happens if [F](x) = x + 1? Y(F) = Y(F) + 1, so the universe explodes.

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F)(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

$$(G_F) = \langle g \mapsto [F](g) \rangle.$$

We can compute G_F , so we win! What happens if [F](x) = x + 1? Y(F) = Y(F) + 1, so computing $Y(F) = G_F$ must not halt.

Notation: [n] is the Turing machine *n* encodes, $x \mapsto E(x)$ is the procedure that maps *x* to expression E(x), and $\langle P \rangle$ is the encoding of procedure *P*.

$$Y(F) = [F](Y(F)) = G_F$$

$$(G_F) = [F](G_F)$$

$$= (g \mapsto [F](g))(G_F)$$

$$(G_F) = \langle g \mapsto [F](g) \rangle.$$

We can compute G_F , so we win! What happens if [F](x) = x + 1? Y(F) = Y(F) + 1, so computing $Y(F) = G_F$ must not halt. We tried to find a fixed point, but we only need a fixed point modulo equivalence of encoded Turing machines.

Ziv Scully

We try again with a slightly weaker goal.

 $Y(F) = G_F$ [Y(F)] = [[F](Y(F))]

We try again with a slightly weaker goal.

 $Y(F) = G_F$ [Y(F)] = [[F](Y(F))] \uparrow $G_F = \langle x \mapsto [[F](G_F)](x) \rangle$

We try again with a slightly weaker goal.

$$Y(F) = G_F$$
$$[Y(F)] = [[F](Y(F))]$$
$$\uparrow$$
$$G_F = \langle x \mapsto [[F](G_F)](x) \rangle$$
$$= (g \mapsto \langle x \mapsto [[F](g)](x) \rangle)(G_F)$$

We try again with a slightly weaker goal.

$$Y(F) = G_F$$

$$[Y(F)] = [[F](Y(F))]$$

$$(f)$$

$$G_F = \langle x \mapsto [[F](G_F)](x) \rangle$$

$$= (g \mapsto \langle x \mapsto [[F](g)](x) \rangle)(G_F)$$

$$(f)$$

$$G_F = \langle g \mapsto \langle x \mapsto [[F](g)](x) \rangle \rangle.$$

We try again with a slightly weaker goal.

$$Y(F) = G_F$$
$$[Y(F)] = [[F](Y(F))]$$
$$\uparrow$$
$$G_F = \langle x \mapsto [[F](G_F)](x) \rangle$$
$$= (g \mapsto \langle x \mapsto [[F](g)](x) \rangle)(G_F)$$
$$\uparrow$$
$$G_F = \langle g \mapsto \langle x \mapsto [[F](g)](x) \rangle \rangle.$$

This time, not only can we compute G_F , but $[G_F]$ is a total function, so computing $Y(F) = G_F$ always halts!

For the skeptical

Just to make sure we have this right, if $Y(F) = G_F$, then

$$[Y(F)](X) = [G_F](X)$$

= $[[\langle g \mapsto \langle x \mapsto [[F](g)](x) \rangle\rangle](G_F)](X)$
= $[\langle x \mapsto [[F](G_F)](x) \rangle](X)$
= $[[F](G_F)](X)$
= $[[F](Y(F))](X).$

As desired, Y(F) and [F](Y(F)) encode equivalent Turing machines.

The story so far

A very λ -calculus appetizer

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Recursion (duh)

Letting $[F](f) = \langle \dots [f] \dots \rangle$ gives

```
[Y(F)] = [[F](Y(F))] = \dots [Y(F)] \dots,
```

so [Y(F)] can make recursive calls.

Recursion (duh)

Letting $[F](f) = \langle \dots [f] \dots \rangle$ gives

$$[Y(F)] = [[F](Y(F))] = \dots [Y(F)] \dots,$$

so [Y(F)] can make recursive calls. In general, $[F](f) = \langle \dots f \dots \rangle$ gives

$$[Y(F)] = [[F](Y(F))] = \dots Y(F) \dots,$$

which gives us something stronger: [Y(F)] can access its own source code. Practical application is that, when defining a procedure *P*, we can use $\langle P \rangle$ in the definition.

A Quine is a program that prints its own source code. This sounds easy at first, but after some trial and error it starts to seem impossible.

A Quine is a program that prints its own source code. This sounds easy at first, but after some trial and error it starts to seem impossible. But we just said that defining $P(x) = \langle P \rangle$ is okay!

A Quine is a program that prints its own source code. This sounds easy at first, but after some trial and error it starts to seem impossible. But we just said that defining $P(x) = \langle P \rangle$ is okay! Letting $[F](f) = \langle x \mapsto f \rangle$ gives

$$[Y(F)](x) = [[F](Y(F))](x) = Y(F).$$

That is, [Y(F)] always returns its encoding.

A Quine is a program that prints its own source code. This sounds easy at first, but after some trial and error it starts to seem impossible. But we just said that defining $P(x) = \langle P \rangle$ is okay! Letting $[F](f) = \langle x \mapsto f \rangle$ gives

$$[Y(F)](x) = [[F](Y(F))](x) = Y(F).$$

That is, [Y(F)] always returns its encoding.

This example is simple enough that we can examine G_F directly.

$$G_F = \langle g \mapsto \langle x \mapsto [[F](g)](x) \rangle \rangle = \langle g \mapsto \langle x \mapsto g \rangle \rangle.$$

A Quine is a program that prints its own source code. This sounds easy at first, but after some trial and error it starts to seem impossible. But we just said that defining $P(x) = \langle P \rangle$ is okay! Letting $[F](f) = \langle x \mapsto f \rangle$ gives

$$[Y(F)](x) = [[F](Y(F))](x) = Y(F).$$

That is, [Y(F)] always returns its encoding.

This example is simple enough that we can examine G_F directly.

$$G_F = \langle g \mapsto \langle x \mapsto [[F](g)](x) \rangle \rangle = \langle g \mapsto \langle x \mapsto g \rangle \rangle.$$

 G_F says "apply my first argument, decoded, to itself, still encoded". $Y(F) = G_F$ decodes G_F and applies it to a still encoded G_F .

A Quine is a program that prints its own source code. This sounds easy at first, but after some trial and error it starts to seem impossible. But we just said that defining $P(x) = \langle P \rangle$ is okay! Letting $[F](f) = \langle x \mapsto f \rangle$ gives

$$[Y(F)](x) = [[F](Y(F))](x) = Y(F).$$

That is, [Y(F)] always returns its encoding.

This example is simple enough that we can examine G_F directly.

$$G_F = \langle g \mapsto \langle x \mapsto [[F](g)](x) \rangle \rangle = \langle g \mapsto \langle x \mapsto g \rangle \rangle.$$

 G_F says "apply my first argument, decoded, to itself, still encoded". $Y(F) = G_F$ decodes G_F and applies it to a still encoded G_F . This echoes the famous natural-language Quine: "quoted and followed by itself is a Quine" quoted and followed by itself is a Quine.

Impossibility results

Theorem (Rice's theorem)

No nontrivial predicate of Turing machines is decidable.

Impossibility results

Theorem (Rice's theorem)

No nontrivial predicate of Turing machines is decidable.

Proof.

Fix some nontrivial predicate decidable by *P*, and let [*A*] and [*B*] satisfy and not satisfy the predicate, respectively.

Impossibility results

Theorem (Rice's theorem)

No nontrivial predicate of Turing machines is decidable.

Proof.

Fix some nontrivial predicate decidable by *P*, and let [*A*] and [*B*] satisfy and not satisfy the predicate, respectively. The procedure

$$Q(x) = \begin{cases} B & P(\langle Q \rangle) \\ A & \text{otherwise} \end{cases}$$

gives a contradiction.

The story so far

A very λ -calculus appetizer

2 Main theorem

3 Applications

Fixed points and diagonalization

A surjection $\hat{a} : \mathbb{N} \to 2^{\mathbb{N}}$ gives a function $a : \mathbb{N} \times \mathbb{N} \to 2$ such that for any $b : \mathbb{N} \to 2$, there is some *n* such that b = a(n, -), in which case we say that *b* is "representable" by *a*.

A surjection $\hat{a} : \mathbb{N} \to 2^{\mathbb{N}}$ gives a function $a : \mathbb{N} \times \mathbb{N} \to 2$ such that for any $b : \mathbb{N} \to 2$, there is some *n* such that b = a(n, -), in which case we say that *b* is "representable" by *a*. Let $\Delta(n) = (n, n)$ and $\sigma(p) = 1 - p$.

A surjection $\hat{a} : \mathbb{N} \to 2^{\mathbb{N}}$ gives a function $a : \mathbb{N} \times \mathbb{N} \to 2$ such that for any $b : \mathbb{N} \to 2$, there is some *n* such that b = a(n, -), in which case we say that *b* is "representable" by *a*. Let $\Delta(n) = (n, n)$ and $\sigma(p) = 1 - p$.

A surjection $\hat{a} : \mathbb{N} \to 2^{\mathbb{N}}$ gives a function $a : \mathbb{N} \times \mathbb{N} \to 2$ such that for any $b : \mathbb{N} \to 2$, there is some *n* such that b = a(n, -), in which case we say that *b* is "representable" by *a*. Let $\Delta(n) = (n, n)$ and $\sigma(p) = 1 - p$.

By construction, because σ has no fixed points, $b(n) \neq a(n,n)$ for all n, which means $b \neq a(n, -)$ for all n. Therefore, \hat{a} is not a surjection.

Suppose $a : \mathbb{N} \times \mathbb{N} \to 2$ decides the halting problem. That is, a(F,X) is 1 if and only if [F](X) halts.

Suppose $a : \mathbb{N} \times \mathbb{N} \to 2$ decides the halting problem. That is, a(F,X) is 1 if and only if [F](X) halts.

Let $\sigma(0) = 1$ and $\sigma(1)$ never terminate.

Suppose $a : \mathbb{N} \times \mathbb{N} \to 2$ decides the halting problem. That is, a(F,X) is 1 if and only if [F](X) halts.

Let $\sigma(0) = 1$ and $\sigma(1)$ never terminate.

Suppose $a : \mathbb{N} \times \mathbb{N} \to 2$ decides the halting problem. That is, a(F,X) is 1 if and only if [F](X) halts.

Let $\sigma(0) = 1$ and $\sigma(1)$ never terminate.

By construction, because σ has no fixed points, $b(\langle b \rangle) \neq a(\langle b \rangle, \langle b \rangle)$. This manifests itself as the usual contradiction:

 $a(\langle b \rangle, \langle b \rangle) = 0 \quad \Longleftrightarrow \quad b(\langle b \rangle) \text{ doesn't halt } \iff \quad a(\langle b \rangle, \langle b \rangle) = 1$

Yet another cookie-cutter diagonalization proof

The general picture, due originally to Lawvere and nicely explained by Yanofsky (http://arxiv.org/abs/math/0305282):

X = domain $\Delta =$ diagonala = "application"Y = "truth values" $\sigma =$ shuffleb = "bad",

where "bad" means not representable as a(x, -) for some x.
Cookies contrapositively cut

Contrapositively, if *b* is representable as a(x, -) for some *x*, then σ must have a fixed point.

A sketchier, boxier recursion theorem

Fix total computable *P*. Let a(f,x) = [f](x) and $\sigma([f]) = \sigma([P(f)])$. (We strategically choose not to worry about how σ is well-defined as part of the composition but isn't on its own.)

A sketchier, boxier recursion theorem

Fix total computable *P*. Let a(f,x) = [f](x) and $\sigma([f]) = \sigma([P(f)])$. (We strategically choose not to worry about how σ is well-defined as part of the composition but isn't on its own.)

All of Δ , *a*, and σ do straightforward computations, so *b* is computable and therefore representable as $a(\langle b \rangle, -)$.

A sketchier, boxier recursion theorem

Fix total computable *P*. Let a(f,x) = [f](x) and $\sigma([f]) = \sigma([P(f)])$. (We strategically choose not to worry about how σ is well-defined as part of the composition but isn't on its own.)

All of Δ , *a*, and σ do straightforward computations, so *b* is computable and therefore representable as $a(\langle b \rangle, -)$.

This means σ has a fixed point, or, equivalently, *P* has a fixed point modulo equivalence of encoded Turing machines.