
Recursion Theorem

Ziv Scully

18.504

Ziv Scully Recursion Theorem 18.504 1 / 28



A very λ-calculus appetizer

P-p-p-plot twist!

λ
Ziv Scully Recursion Theorem 18.504 2 / 28



A very λ-calculus appetizer

The master plan

1 A very λ-calculus appetizer

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Ziv Scully Recursion Theorem 18.504 3 / 28



A very λ-calculus appetizer

The story so far

1 A very λ-calculus appetizer

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Ziv Scully Recursion Theorem 18.504 4 / 28



A very λ-calculus appetizer

What is computation?

Depending on who you ask, computation is...

... following clear procedures step by step (Turing machines).

... a composition of primitive functions on N (µ-recursive functions).

... complexity that emerges from simple rules (cellular automata).

... applying functions to functions to get more functions (λ-calculus).

Ziv Scully Recursion Theorem 18.504 5 / 28



A very λ-calculus appetizer

What is computation?

Depending on who you ask, computation is...

... following clear procedures step by step (Turing machines).

... a composition of primitive functions on N (µ-recursive functions).

... complexity that emerges from simple rules (cellular automata).

... applying functions to functions to get more functions (λ-calculus).

Ziv Scully Recursion Theorem 18.504 5 / 28



A very λ-calculus appetizer

What is computation?

Depending on who you ask, computation is...

... following clear procedures step by step (Turing machines).

... a composition of primitive functions on N (µ-recursive functions).

... complexity that emerges from simple rules (cellular automata).

... applying functions to functions to get more functions (λ-calculus).

Ziv Scully Recursion Theorem 18.504 5 / 28



A very λ-calculus appetizer

What is computation?

Depending on who you ask, computation is...

... following clear procedures step by step (Turing machines).

... a composition of primitive functions on N (µ-recursive functions).

... complexity that emerges from simple rules (cellular automata).

... applying functions to functions to get more functions (λ-calculus).

Ziv Scully Recursion Theorem 18.504 5 / 28



A very λ-calculus appetizer

Definition of λ-calculus

A λ-calculus term is one of three things.

A variable, such as x, y, or z.

A function application, one term applied to another, such as

f x, f (gx), or (f x)y = f x y.

A function abstraction, making a term a one-argument function, such
as

λx. x, λx. (λy. x) = λx.λy. x, or λf .λg.λx. f (gx).

Additionally, we require that, at the top level, no variable appear outside
the scope of a function abstraction that “declares” it.

Ziv Scully Recursion Theorem 18.504 6 / 28



A very λ-calculus appetizer

Definition of λ-calculus

A λ-calculus term is one of three things.

A variable, such as x, y, or z.

A function application, one term applied to another, such as

f x, f (gx), or (f x)y = f x y.

A function abstraction, making a term a one-argument function, such
as

λx. x, λx. (λy. x) = λx.λy. x, or λf .λg.λx. f (gx).

Additionally, we require that, at the top level, no variable appear outside
the scope of a function abstraction that “declares” it.

Ziv Scully Recursion Theorem 18.504 6 / 28



A very λ-calculus appetizer

Definition of λ-calculus

A λ-calculus term is one of three things.

A variable, such as x, y, or z.

A function application, one term applied to another, such as

f x, f (gx), or (f x)y = f x y.

A function abstraction, making a term a one-argument function, such
as

λx. x, λx. (λy. x) = λx.λy. x, or λf .λg.λx. f (gx).

Additionally, we require that, at the top level, no variable appear outside
the scope of a function abstraction that “declares” it.

Ziv Scully Recursion Theorem 18.504 6 / 28



A very λ-calculus appetizer

Definition of λ-calculus

A λ-calculus term is one of three things.

A variable, such as x, y, or z.

A function application, one term applied to another, such as

f x, f (gx), or (f x)y = f x y.

A function abstraction, making a term a one-argument function, such
as

λx. x, λx. (λy. x) = λx.λy. x, or λf .λg.λx. f (gx).

Additionally, we require that, at the top level, no variable appear outside
the scope of a function abstraction that “declares” it.

Ziv Scully Recursion Theorem 18.504 6 / 28



A very λ-calculus appetizer

Evaluating λ-calculus terms

There are two rules for evaluating terms.

α-renaming: change variable names, such as

λx.λy. x  λf .λg. f .

β-reduction: apply a function to an argument by substitution, such as

(λx.λy. x)(λz. z)  λy.λz. z.

These rules are powerful enough to simulate a Turing machine.

Ziv Scully Recursion Theorem 18.504 7 / 28



A very λ-calculus appetizer

Evaluating λ-calculus terms

There are two rules for evaluating terms.

α-renaming: change variable names, such as

λx.λy. x  λf .λg. f .

β-reduction: apply a function to an argument by substitution, such as

(λx.λy. x)(λz. z)  λy.λz. z.

These rules are powerful enough to simulate a Turing machine.

Ziv Scully Recursion Theorem 18.504 7 / 28



A very λ-calculus appetizer

Evaluating λ-calculus terms

There are two rules for evaluating terms.

α-renaming: change variable names, such as

λx.λy. x  λf .λg. f .

β-reduction: apply a function to an argument by substitution, such as

(λx.λy. x)(λz. z)  λy.λz. z.

These rules are powerful enough to simulate a Turing machine.

Ziv Scully Recursion Theorem 18.504 7 / 28



A very λ-calculus appetizer

Hello, factorial!

Let’s define the factorial function.

F = λx.

(

1 x = 0

x× (F(x− 1)) otherwise.

Problem: we can’t have F refer to itself in λ-calculus.

Ziv Scully Recursion Theorem 18.504 8 / 28



A very λ-calculus appetizer

Hello, factorial!

Let’s define the factorial function.

F = λx.

(

1 x = 0

x× (F(x− 1)) otherwise.

Problem: we can’t have F refer to itself in λ-calculus.

Ziv Scully Recursion Theorem 18.504 8 / 28



A very λ-calculus appetizer

Sneakier self-reference

What if we can’t use self-reference?

F = GG, where

G= λg.λx.

(

1 x = 0

x× (g g (x− 1)) otherwise.

We use an “open” definition: G refers to whatever function we want it to
use next. Passing G to itself gives G a reference to itself.

GG=

�

λg.λx.

(

1 x = 0

x× (gg (x− 1)) otherwise

�

G

= λx.

(

1 x = 0

x× (G G (x− 1)) otherwise.

Ziv Scully Recursion Theorem 18.504 9 / 28



A very λ-calculus appetizer

Sneakier self-reference

What if we can’t use self-reference?

F = GG, where

G= λg.λx.

(

1 x = 0

x× (g g (x− 1)) otherwise.

We use an “open” definition: G refers to whatever function we want it to
use next. Passing G to itself gives G a reference to itself.

GG=

�

λg.λx.

(

1 x = 0

x× (gg (x− 1)) otherwise

�

G

= λx.

(

1 x = 0

x× (G G (x− 1)) otherwise.

Ziv Scully Recursion Theorem 18.504 9 / 28



A very λ-calculus appetizer

Sneakier self-reference

What if we can’t use self-reference?

F = GG, where

G= λg.λx.

(

1 x = 0

x× (g g (x− 1)) otherwise.

We use an “open” definition: G refers to whatever function we want it to
use next. Passing G to itself gives G a reference to itself.

GG=

�

λg.λx.

(

1 x = 0

x× (gg (x− 1)) otherwise

�

G

= λx.

(

1 x = 0

x× (G G (x− 1)) otherwise.

Ziv Scully Recursion Theorem 18.504 9 / 28



A very λ-calculus appetizer

Laziness is a virtue

Using a self-application g g for every recursive call is cumbersome. What if
we’re lazy and want to write f instead of gg?

F = λf .λx.

(

1 x = 0

x× (f (x− 1)) otherwise.

F is a “shell” that needs to be filled in by the true factorial function, f . We
can think of F as having “type”

(N→ N)→ (N→ N).

If f computes factorial, then so does F f , in which case

f = F f .

That is, we necessarily want a fixed point of F.

Ziv Scully Recursion Theorem 18.504 10 / 28



A very λ-calculus appetizer

Laziness is a virtue

Using a self-application g g for every recursive call is cumbersome. What if
we’re lazy and want to write f instead of gg?

F = λf .λx.

(

1 x = 0

x× (f (x− 1)) otherwise.

F is a “shell” that needs to be filled in by the true factorial function, f . We
can think of F as having “type”

(N→ N)→ (N→ N).

If f computes factorial, then so does F f , in which case

f = F f .

That is, we necessarily want a fixed point of F.

Ziv Scully Recursion Theorem 18.504 10 / 28



A very λ-calculus appetizer

Laziness is a virtue

Using a self-application g g for every recursive call is cumbersome. What if
we’re lazy and want to write f instead of gg?

F = λf .λx.

(

1 x = 0

x× (f (x− 1)) otherwise.

F is a “shell” that needs to be filled in by the true factorial function, f . We
can think of F as having “type”

(N→ N)→ (N→ N).

If f computes factorial, then so does F f , in which case

f = F f .

That is, we necessarily want a fixed point of F.

Ziv Scully Recursion Theorem 18.504 10 / 28



A very λ-calculus appetizer

Wishful thinking

Let’s wish for a function Y that finds a fixed point of its input. Namely, Y
should satisfy

Y F = F (Y F).

When F is our factorial “shell”, we get

Y F = F (Y F) = λx.

(

1 x = 0

x ∗ (Y F (x− 1)) otherwise.

That is, to do recursion, it suffices to find a fixed point of F.

Ziv Scully Recursion Theorem 18.504 11 / 28



A very λ-calculus appetizer

Wishful thinking

Let’s wish for a function Y that finds a fixed point of its input. Namely, Y
should satisfy

Y F = F (Y F).

When F is our factorial “shell”, we get

Y F = F (Y F) = λx.

(

1 x = 0

x ∗ (Y F (x− 1)) otherwise.

That is, to do recursion, it suffices to find a fixed point of F.

Ziv Scully Recursion Theorem 18.504 11 / 28



A very λ-calculus appetizer

Wishful thinking

Let’s wish for a function Y that finds a fixed point of its input. Namely, Y
should satisfy

Y F = F (Y F).

When F is our factorial “shell”, we get

Y F = F (Y F) = λx.

(

1 x = 0

x ∗ (Y F (x− 1)) otherwise.

That is, to do recursion, it suffices to find a fixed point of F.

Ziv Scully Recursion Theorem 18.504 11 / 28



A very λ-calculus appetizer

Wish really, really sneakily

We know how to do self-reference: make a function accept any reference
as an argument, then feed the function to itself. With that inspiration, we
wish for some GF such that

Y F = F (Y F) = GF GF.

Ziv Scully Recursion Theorem 18.504 12 / 28



A very λ-calculus appetizer

Y combinator? Because functions!

Y F = F (Y F) = GF GF

⇑
GF GF = F (GF GF)

= (λg. F (gg))GF

⇑
GF = λg. F (g g).

Theorem (Existence of the Y combinator)

The combinator

Y = λf . Gf Gf = λf . (λg. f (g g)) (λg. f (g g))

satisfies Y F = F (Y F) for all F.

Ziv Scully Recursion Theorem 18.504 13 / 28



A very λ-calculus appetizer

Y combinator? Because functions!

Y F = F (Y F) = GF GF

⇑
GF GF = F (GF GF)

= (λg. F (gg))GF

⇑
GF = λg. F (g g).

Theorem (Existence of the Y combinator)

The combinator

Y = λf . Gf Gf = λf . (λg. f (g g)) (λg. f (g g))

satisfies Y F = F (Y F) for all F.

Ziv Scully Recursion Theorem 18.504 13 / 28



A very λ-calculus appetizer

Y combinator? Because functions!

Y F = F (Y F) = GF GF

⇑
GF GF = F (GF GF)

= (λg. F (gg))GF

⇑
GF = λg. F (g g).

Theorem (Existence of the Y combinator)

The combinator

Y = λf . Gf Gf = λf . (λg. f (g g)) (λg. f (g g))

satisfies Y F = F (Y F) for all F.

Ziv Scully Recursion Theorem 18.504 13 / 28



A very λ-calculus appetizer

Y combinator? Because functions!

Y F = F (Y F) = GF GF

⇑
GF GF = F (GF GF)

= (λg. F (gg))GF

⇑
GF = λg. F (g g).

Theorem (Existence of the Y combinator)

The combinator

Y = λf . Gf Gf = λf . (λg. f (g g)) (λg. f (g g))

satisfies Y F = F (Y F) for all F.

Ziv Scully Recursion Theorem 18.504 13 / 28



A very λ-calculus appetizer

Y combinator? Because functions!

Y F = F (Y F) = GF GF

⇑
GF GF = F (GF GF)

= (λg. F (gg))GF

⇑
GF = λg. F (g g).

Theorem (Existence of the Y combinator)

The combinator

Y = λf . Gf Gf = λf . (λg. f (g g)) (λg. f (g g))

satisfies Y F = F (Y F) for all F.

Ziv Scully Recursion Theorem 18.504 13 / 28



Main theorem

The story so far

1 A very λ-calculus appetizer

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Ziv Scully Recursion Theorem 18.504 14 / 28



Main theorem

Turing machines are computers, too!

Notation: [n] is the Turing machine n encodes.

Theorem (Recursion theorem)

There exists a total (always halting) computable function Y such that for all
F, if [F] is total, then

[Y(F)] = [[F](Y(F))].

Put another way: if we consider numbers equivalent if they encode
equivalent Turing machines, then [F] has a fixed point for all F, and that
fixed point is computable from F.

Ziv Scully Recursion Theorem 18.504 15 / 28



Main theorem

Turing machines are computers, too!

Notation: [n] is the Turing machine n encodes.

Theorem (Recursion theorem)

There exists a total (always halting) computable function Y such that for all
F, if [F] is total, then

[Y(F)] = [[F](Y(F))].

Put another way: if we consider numbers equivalent if they encode
equivalent Turing machines, then [F] has a fixed point for all F, and that
fixed point is computable from F.

Ziv Scully Recursion Theorem 18.504 15 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so the universe explodes.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so the universe explodes.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so the universe explodes.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so the universe explodes.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!

What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so the universe explodes.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?

Y(F) = Y(F) + 1, so the universe explodes.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so the universe explodes.

We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so computing Y(F) = [GF](GF) must not halt.

We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem

Notation: [n] is the Turing machine n encodes, x 7→ E(x) is the procedure
that maps x to expression E(x), and 〈P〉 is the encoding of procedure P.

Y(F) = [F](Y(F)) = [GF](GF)

⇑
[GF](GF) = [F]([GF](GF))

= (g 7→ [F]([g](g)))(GF)

⇑
GF = 〈g 7→ [F]([g](g))〉.

We can compute GF, so we win!
What happens if [F](x) = x+ 1?
Y(F) = Y(F) + 1, so computing Y(F) = [GF](GF) must not halt.
We tried to find a fixed point, but we only need a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 16 / 28



Main theorem

Proof of recursion theorem 2: electric boogaloo

We try again with a slightly weaker goal.

Y(F) = [GF](GF)

[Y(F)] = [[F](Y(F))]

⇑
[GF](GF) = 〈x 7→ [[F]([GF](GF))](x)〉

= (g 7→ 〈x 7→ [[F]([g](g))](x)〉)(GF)

⇑
GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉.

This time, not only can we compute GF, but [GF] is a total function, so
computing Y(F) = [GF](GF) always halts!

Ziv Scully Recursion Theorem 18.504 17 / 28



Main theorem

Proof of recursion theorem 2: electric boogaloo

We try again with a slightly weaker goal.

Y(F) = [GF](GF)

[Y(F)] = [[F](Y(F))]

⇑
[GF](GF) = 〈x 7→ [[F]([GF](GF))](x)〉

= (g 7→ 〈x 7→ [[F]([g](g))](x)〉)(GF)

⇑
GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉.

This time, not only can we compute GF, but [GF] is a total function, so
computing Y(F) = [GF](GF) always halts!

Ziv Scully Recursion Theorem 18.504 17 / 28



Main theorem

Proof of recursion theorem 2: electric boogaloo

We try again with a slightly weaker goal.

Y(F) = [GF](GF)

[Y(F)] = [[F](Y(F))]

⇑
[GF](GF) = 〈x 7→ [[F]([GF](GF))](x)〉

= (g 7→ 〈x 7→ [[F]([g](g))](x)〉)(GF)

⇑
GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉.

This time, not only can we compute GF, but [GF] is a total function, so
computing Y(F) = [GF](GF) always halts!

Ziv Scully Recursion Theorem 18.504 17 / 28



Main theorem

Proof of recursion theorem 2: electric boogaloo

We try again with a slightly weaker goal.

Y(F) = [GF](GF)

[Y(F)] = [[F](Y(F))]

⇑
[GF](GF) = 〈x 7→ [[F]([GF](GF))](x)〉

= (g 7→ 〈x 7→ [[F]([g](g))](x)〉)(GF)

⇑
GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉.

This time, not only can we compute GF, but [GF] is a total function, so
computing Y(F) = [GF](GF) always halts!

Ziv Scully Recursion Theorem 18.504 17 / 28



Main theorem

Proof of recursion theorem 2: electric boogaloo

We try again with a slightly weaker goal.

Y(F) = [GF](GF)

[Y(F)] = [[F](Y(F))]

⇑
[GF](GF) = 〈x 7→ [[F]([GF](GF))](x)〉

= (g 7→ 〈x 7→ [[F]([g](g))](x)〉)(GF)

⇑
GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉.

This time, not only can we compute GF, but [GF] is a total function, so
computing Y(F) = [GF](GF) always halts!

Ziv Scully Recursion Theorem 18.504 17 / 28



Main theorem

For the skeptical

Just to make sure we have this right, if Y(F) = [GF](GF), then

[Y(F)](X) = [[GF](GF)](X)

= [[〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉](GF)](X)

= [〈x 7→ [[F]([GF](GF))](x)〉](X)
= [[F]([GF](GF))](X)

= [[F](Y(F))](X).

As desired, Y(F) and [F](Y(F)) encode equivalent Turing machines.

Ziv Scully Recursion Theorem 18.504 18 / 28



Applications

The story so far

1 A very λ-calculus appetizer

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Ziv Scully Recursion Theorem 18.504 19 / 28



Applications

Recursion (duh)

Letting [F](f) = 〈. . . [f] . . . 〉 gives

[Y(F)] = [[F](Y(F))] = . . . [Y(F)] . . . ,

so [Y(F)] can make recursive calls.

In general, [F](f) = 〈. . . f . . . 〉 gives

[Y(F)] = [[F](Y(F))] = . . . Y(F) . . . ,

which gives us something stronger: [Y(F)] can access its own source code.
Practical application is that, when defining a procedure P, we can use 〈P〉
in the definition.

Ziv Scully Recursion Theorem 18.504 20 / 28



Applications

Recursion (duh)

Letting [F](f) = 〈. . . [f] . . . 〉 gives

[Y(F)] = [[F](Y(F))] = . . . [Y(F)] . . . ,

so [Y(F)] can make recursive calls.
In general, [F](f) = 〈. . . f . . . 〉 gives

[Y(F)] = [[F](Y(F))] = . . . Y(F) . . . ,

which gives us something stronger: [Y(F)] can access its own source code.
Practical application is that, when defining a procedure P, we can use 〈P〉
in the definition.

Ziv Scully Recursion Theorem 18.504 20 / 28



Applications

Quines

A Quine is a program that prints its own source code. This sounds easy at
first, but after some trial and error it starts to seem impossible.

But we just said that defining P(x) = 〈P〉 is okay!
Letting [F](f) = 〈x 7→ f〉 gives

[Y(F)](x) = [[F](Y(F))](x) = Y(F).

That is, [Y(F)] always returns its encoding.
This example is simple enough that we can examine GF directly.

GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉= 〈g 7→ 〈x 7→ [g](g)〉〉.

GF says “apply my first argument, decoded, to itself, still encoded”.
Y(F) = [GF](GF) decodes GF and applies it to a still encoded GF.
This echoes the famous natural-language Quine: “quoted and followed by
itself is a Quine” quoted and followed by itself is a Quine.

Ziv Scully Recursion Theorem 18.504 21 / 28



Applications

Quines

A Quine is a program that prints its own source code. This sounds easy at
first, but after some trial and error it starts to seem impossible.
But we just said that defining P(x) = 〈P〉 is okay!

Letting [F](f) = 〈x 7→ f〉 gives

[Y(F)](x) = [[F](Y(F))](x) = Y(F).

That is, [Y(F)] always returns its encoding.
This example is simple enough that we can examine GF directly.

GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉= 〈g 7→ 〈x 7→ [g](g)〉〉.

GF says “apply my first argument, decoded, to itself, still encoded”.
Y(F) = [GF](GF) decodes GF and applies it to a still encoded GF.
This echoes the famous natural-language Quine: “quoted and followed by
itself is a Quine” quoted and followed by itself is a Quine.

Ziv Scully Recursion Theorem 18.504 21 / 28



Applications

Quines

A Quine is a program that prints its own source code. This sounds easy at
first, but after some trial and error it starts to seem impossible.
But we just said that defining P(x) = 〈P〉 is okay!
Letting [F](f) = 〈x 7→ f〉 gives

[Y(F)](x) = [[F](Y(F))](x) = Y(F).

That is, [Y(F)] always returns its encoding.

This example is simple enough that we can examine GF directly.

GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉= 〈g 7→ 〈x 7→ [g](g)〉〉.

GF says “apply my first argument, decoded, to itself, still encoded”.
Y(F) = [GF](GF) decodes GF and applies it to a still encoded GF.
This echoes the famous natural-language Quine: “quoted and followed by
itself is a Quine” quoted and followed by itself is a Quine.

Ziv Scully Recursion Theorem 18.504 21 / 28



Applications

Quines

A Quine is a program that prints its own source code. This sounds easy at
first, but after some trial and error it starts to seem impossible.
But we just said that defining P(x) = 〈P〉 is okay!
Letting [F](f) = 〈x 7→ f〉 gives

[Y(F)](x) = [[F](Y(F))](x) = Y(F).

That is, [Y(F)] always returns its encoding.
This example is simple enough that we can examine GF directly.

GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉= 〈g 7→ 〈x 7→ [g](g)〉〉.

GF says “apply my first argument, decoded, to itself, still encoded”.
Y(F) = [GF](GF) decodes GF and applies it to a still encoded GF.
This echoes the famous natural-language Quine: “quoted and followed by
itself is a Quine” quoted and followed by itself is a Quine.

Ziv Scully Recursion Theorem 18.504 21 / 28



Applications

Quines

A Quine is a program that prints its own source code. This sounds easy at
first, but after some trial and error it starts to seem impossible.
But we just said that defining P(x) = 〈P〉 is okay!
Letting [F](f) = 〈x 7→ f〉 gives

[Y(F)](x) = [[F](Y(F))](x) = Y(F).

That is, [Y(F)] always returns its encoding.
This example is simple enough that we can examine GF directly.

GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉= 〈g 7→ 〈x 7→ [g](g)〉〉.

GF says “apply my first argument, decoded, to itself, still encoded”.
Y(F) = [GF](GF) decodes GF and applies it to a still encoded GF.

This echoes the famous natural-language Quine: “quoted and followed by
itself is a Quine” quoted and followed by itself is a Quine.

Ziv Scully Recursion Theorem 18.504 21 / 28



Applications

Quines

A Quine is a program that prints its own source code. This sounds easy at
first, but after some trial and error it starts to seem impossible.
But we just said that defining P(x) = 〈P〉 is okay!
Letting [F](f) = 〈x 7→ f〉 gives

[Y(F)](x) = [[F](Y(F))](x) = Y(F).

That is, [Y(F)] always returns its encoding.
This example is simple enough that we can examine GF directly.

GF = 〈g 7→ 〈x 7→ [[F]([g](g))](x)〉〉= 〈g 7→ 〈x 7→ [g](g)〉〉.

GF says “apply my first argument, decoded, to itself, still encoded”.
Y(F) = [GF](GF) decodes GF and applies it to a still encoded GF.
This echoes the famous natural-language Quine: “quoted and followed by
itself is a Quine” quoted and followed by itself is a Quine.

Ziv Scully Recursion Theorem 18.504 21 / 28



Applications

Impossibility results

Theorem (Rice’s theorem)

No nontrivial predicate of Turing machines is decidable.

Proof.

Fix some nontrivial predicate decidable by P, and let [A] and [B] satisfy
and not satisfy the predicate, respectively.
The procedure

Q(x) =

(

B P(〈Q〉)
A otherwise

gives a contradiction.

Ziv Scully Recursion Theorem 18.504 22 / 28



Applications

Impossibility results

Theorem (Rice’s theorem)

No nontrivial predicate of Turing machines is decidable.

Proof.

Fix some nontrivial predicate decidable by P, and let [A] and [B] satisfy
and not satisfy the predicate, respectively.

The procedure

Q(x) =

(

B P(〈Q〉)
A otherwise

gives a contradiction.

Ziv Scully Recursion Theorem 18.504 22 / 28



Applications

Impossibility results

Theorem (Rice’s theorem)

No nontrivial predicate of Turing machines is decidable.

Proof.

Fix some nontrivial predicate decidable by P, and let [A] and [B] satisfy
and not satisfy the predicate, respectively.
The procedure

Q(x) =

(

B P(〈Q〉)
A otherwise

gives a contradiction.

Ziv Scully Recursion Theorem 18.504 22 / 28



Fixed points and diagonalization

The story so far

1 A very λ-calculus appetizer

2 Main theorem

3 Applications

4 Fixed points and diagonalization

Ziv Scully Recursion Theorem 18.504 23 / 28



Fixed points and diagonalization

Yet another proof of Cantor’s theorem

A surjection â : N→ 2N gives a function a : N×N→ 2 such that for any
b : N→ 2, there is some n such that b= a(n,−), in which case we say that
b is “representable” by a.

Let ∆(n) = (n, n) and σ(p) = 1− p.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(n) 6= a(n, n) for all n,
which means b 6= a(n,−) for all n. Therefore, â is not a surjection.

Ziv Scully Recursion Theorem 18.504 24 / 28



Fixed points and diagonalization

Yet another proof of Cantor’s theorem

A surjection â : N→ 2N gives a function a : N×N→ 2 such that for any
b : N→ 2, there is some n such that b= a(n,−), in which case we say that
b is “representable” by a.
Let ∆(n) = (n, n) and σ(p) = 1− p.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(n) 6= a(n, n) for all n,
which means b 6= a(n,−) for all n. Therefore, â is not a surjection.

Ziv Scully Recursion Theorem 18.504 24 / 28



Fixed points and diagonalization

Yet another proof of Cantor’s theorem

A surjection â : N→ 2N gives a function a : N×N→ 2 such that for any
b : N→ 2, there is some n such that b= a(n,−), in which case we say that
b is “representable” by a.
Let ∆(n) = (n, n) and σ(p) = 1− p.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(n) 6= a(n, n) for all n,
which means b 6= a(n,−) for all n. Therefore, â is not a surjection.

Ziv Scully Recursion Theorem 18.504 24 / 28



Fixed points and diagonalization

Yet another proof of Cantor’s theorem

A surjection â : N→ 2N gives a function a : N×N→ 2 such that for any
b : N→ 2, there is some n such that b= a(n,−), in which case we say that
b is “representable” by a.
Let ∆(n) = (n, n) and σ(p) = 1− p.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(n) 6= a(n, n) for all n,
which means b 6= a(n,−) for all n. Therefore, â is not a surjection.

Ziv Scully Recursion Theorem 18.504 24 / 28



Fixed points and diagonalization

Yet another proof the halting problem is undecidable

Suppose a : N×N→ 2 decides the halting problem. That is, a(F, X) is 1 if
and only if [F](X) halts.

Let σ(0) = 1 and σ(1) never terminate.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(〈b〉) 6= a(〈b〉, 〈b〉). This
manifests itself as the usual contradiction:

a(〈b〉, 〈b〉) = 0 ⇔ b(〈b〉) doesn’t halt ⇔ a(〈b〉, 〈b〉) = 1

Ziv Scully Recursion Theorem 18.504 25 / 28



Fixed points and diagonalization

Yet another proof the halting problem is undecidable

Suppose a : N×N→ 2 decides the halting problem. That is, a(F, X) is 1 if
and only if [F](X) halts.
Let σ(0) = 1 and σ(1) never terminate.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(〈b〉) 6= a(〈b〉, 〈b〉). This
manifests itself as the usual contradiction:

a(〈b〉, 〈b〉) = 0 ⇔ b(〈b〉) doesn’t halt ⇔ a(〈b〉, 〈b〉) = 1

Ziv Scully Recursion Theorem 18.504 25 / 28



Fixed points and diagonalization

Yet another proof the halting problem is undecidable

Suppose a : N×N→ 2 decides the halting problem. That is, a(F, X) is 1 if
and only if [F](X) halts.
Let σ(0) = 1 and σ(1) never terminate.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(〈b〉) 6= a(〈b〉, 〈b〉). This
manifests itself as the usual contradiction:

a(〈b〉, 〈b〉) = 0 ⇔ b(〈b〉) doesn’t halt ⇔ a(〈b〉, 〈b〉) = 1

Ziv Scully Recursion Theorem 18.504 25 / 28



Fixed points and diagonalization

Yet another proof the halting problem is undecidable

Suppose a : N×N→ 2 decides the halting problem. That is, a(F, X) is 1 if
and only if [F](X) halts.
Let σ(0) = 1 and σ(1) never terminate.

N×N
a
� 2

N

∆

æ

b
� 2

σ

ç

By construction, because σ has no fixed points, b(〈b〉) 6= a(〈b〉, 〈b〉). This
manifests itself as the usual contradiction:

a(〈b〉, 〈b〉) = 0 ⇔ b(〈b〉) doesn’t halt ⇔ a(〈b〉, 〈b〉) = 1

Ziv Scully Recursion Theorem 18.504 25 / 28



Fixed points and diagonalization

Yet another cookie-cutter diagonalization proof

The general picture, due originally to Lawvere and nicely explained by
Yanofsky (http://arxiv.org/abs/math/0305282):

X × X
a
� Y

X

∆

æ

b
� Y

σ

ç

X = domain ∆= diagonal a= “application”

Y = “truth values” σ = shuffle b= “bad”,

where “bad” means not representable as a(x,−) for some x.

Ziv Scully Recursion Theorem 18.504 26 / 28



Fixed points and diagonalization

Cookies contrapositively cut

X × X
a
� Y

X

∆

æ

b
� Y

σ

ç

Contrapositively, if b is representable as a(x,−) for some x, then σ must
have a fixed point.

Ziv Scully Recursion Theorem 18.504 27 / 28



Fixed points and diagonalization

A sketchier, boxier recursion theorem

Fix total computable P. Let a(f , x) = [f](x) and σ([f]) = σ([P(f)]). (We
strategically choose not to worry about how σ is well-defined as part of
the composition but isn’t on its own.)

N×N
a
� TM

N

∆

æ

b
� TM

σ

ç

All of ∆, a, and σ do straightforward computations, so b is computable
and therefore representable as a(〈b〉,−).
This means σ has a fixed point, or, equivalently, P has a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 28 / 28



Fixed points and diagonalization

A sketchier, boxier recursion theorem

Fix total computable P. Let a(f , x) = [f](x) and σ([f]) = σ([P(f)]). (We
strategically choose not to worry about how σ is well-defined as part of
the composition but isn’t on its own.)

N×N
a
� TM

N

∆

æ

b
� TM

σ

ç

All of ∆, a, and σ do straightforward computations, so b is computable
and therefore representable as a(〈b〉,−).

This means σ has a fixed point, or, equivalently, P has a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 28 / 28



Fixed points and diagonalization

A sketchier, boxier recursion theorem

Fix total computable P. Let a(f , x) = [f](x) and σ([f]) = σ([P(f)]). (We
strategically choose not to worry about how σ is well-defined as part of
the composition but isn’t on its own.)

N×N
a
� TM

N

∆

æ

b
� TM

σ

ç

All of ∆, a, and σ do straightforward computations, so b is computable
and therefore representable as a(〈b〉,−).
This means σ has a fixed point, or, equivalently, P has a fixed point modulo
equivalence of encoded Turing machines.

Ziv Scully Recursion Theorem 18.504 28 / 28


	A very -calculus appetizer
	Main theorem
	Applications
	Fixed points and diagonalization

