
6.945 Final Project
Dwimiykwim

Ziv Scully (ziv@mit.edu)
Daniel Shaar (dshaar@mit.edu)

1 Argument Inference

We have written an interpreter for a Scheme-like language that supports auto-
matic inference of procedure arguments. The core of the argument inference
system is in two new special forms: madlab and madblock.

The madlab special form is a variation of lambda. Specifically, the form
creates a procedure that can take its arguments in any order. Instead of using
position to match given arguments to the variables they are bound to, a madlab
specifies a predicate for each input variable that the argument bound to that
variable must satisfy. For example,

(define madmap
(madlab ((xs list?) (f procedure?))

(map f xs)))

is a variant of map that can take its arguments in either order. We call the result-
ing procedures “madlab procedures” or simply “madlabs”. For most purposes,
madlabs are ordinary compound procedures that happen to have unusually flex-
ible interfaces. For example, if we define

(define (curry f . args)
(lambda more-args

(apply f (append args more-args))))

then both (curry madmap exp) and (curry madmap (iota 16)) work as
expected, raising e to each of the elements of an input list and mapping an input
function over the integers from 0 to 15, respectively. Note that the argument
matching is not done until the madlab is applied. To demonstrate this, consider

(define silly
(madlab ((xy (member-of? ’(x y)))

(yz (member-of? ’(y z))))
(list xy yz)))

1

and the partial application (curry silly ’y), where member-of? has the
obvious namesake meaning. When it’s applied to ’x, the ’y is matched with
yz, but when it’s applied to ’z, the ’y is matched with xy.

The madblock special form is a variation of begin. Just like begin, it
groups together a sequence of expressions, evaluates each of them in turn, and
returns the result of the last one. The only difference is that the result of each
evaluation in the sequence is added to an inference context, which, as we will
soon explain, is the list of values available to ?? (which performs inference).
The inference context is dynamically bound (the interpreter uses MIT Scheme’s
fluid-let) to the empty list at the beginning of each madblock, so the in-
ference context is empty at the start of the sequence. Our interpreter makes it
easy to refer explicitly to values of expressions earlier in the sequence using the
define special form by having define return the result of evaluating its body
as opposed to an unspecified value or the name it was bound to.

The ?? special form is what Dwimiykwim is all about. It takes a madlab and
any number of other expressions and applies the madlab to the given expres-
sions plus any additional necessary values from the inference context. That is,
it infers what arguments to pass to the given madlab. For instance,

(madblock
(curry list ’say)
’dont-pick-me-im-a-symbol-not-a-procedure-or-list
"a very distracting string"
’(1 2 5 3-sir 3)
(?? madmap))

returns ((say 1) (say 2) (say 5) (say 3-sir) (say 3)). Inference
only succeeds if there is an unambiguous matching between the madlab’s pred-
icates and the union of the given expressions and values from the inference
context with the additional constraint that every given expression is matched.
(See Section 3 for details.) For example, only the first two inferences in

(madblock
(curry list ’say)
(define xs ’(1 2 5 3-sir 3))
(?? madmap)
(?? madmap xs)
(?? madmap))

will succeed. A single procedure, (curry list ’say), is in the inference con-
text the whole time. When the first ?? happens, there is also only one list, so

2

inference succeeds. Note, however, that the resulting list is added to the infer-
ence context. The second ?? is explicitly passed a list, and inference succeeds
thanks to this constraint. By the time the third ?? happens there are three lists
in the inference context, so inference fails due to ambiguity.

Just as the body of a lambda with multiple expressions desugars to a sin-
gle begin expression, the body of a madlab desugars to a single madblock.
Additionally, each of the argument variables is added as an expression to the
beginning of the madblock. The effect of this is that ?? can be used freely in
the body of a madlab and the arguments are automatically added to the in-
ference context. If for some reason we need to keep the arguments out of the
context, we can write body as a madblock explicitly. There is nothing to worry
about with regards to nesting because each madblock starts with a fresh infer-
ence context. In fact, the intended style is for madblock to be rare and mostly
invoked implicitly through madlab. This is because madlab creates a new en-
vironment, which is a good idea given the intended synergy with define.

2 Tagging

The first piece of this project that is intended to set groundwork for inference
and matching is a lightweight system for tagging data. The motivation for this
system is that it creates a method for describing data with useful characteristics
that can be used for performing argument inference with tag checks as predi-
cates. Since tags can be arbitrarily created by the user and are not limited like
type systems usually are, the language becomes more flexible.

Tagged data consists of a value and a list of tags, which can be used to de-
scribe the significance of the data. We can add more tags to data as it moves
through a program, and remove the tags if we would just like the value. How-
ever, we can always perform default operations on tagged data without remov-
ing the tags in advanced because procedures untag data before processing it out-
side the interpreter. This is implemented by making a procedure “tag aware”.
Being tag aware removes tags in logical places, so that Scheme functions and
other necessary functions can operate as intended when the tags are not impor-
tant. For example, car and cdr should be tag aware because the record type
for tagged data is a list, but we only care for the actual data being tagged.

As stated earlier, since MIT Scheme does not come with a nice type system by
default, tags allow us to work with variables by more generally describing their
characteristics. The primary usefulness of these tags lies in argument matching.
By giving values tags, we can match tags to tag predicates to determine if a
variable is an appropriate argument to a function. Functions can request that

3

certain variables have certain tags, or more generally, that these variables satisfy
arbitrary predicates. This allows us to verify that the user is performing the
intended task by forcing him/her to think in advance about what really belongs
in the function call.

A simple example to illustrate this point with out-of-order operands is or-
dering tagged operands after receiving them in the wrong order. The syntax for
tagging data is ~~. In this example, we tag the numbers 3 and 4 with x and
y, respectively. We make a madlab x-then-y that, given some x and some y,
will make a list containing the x followed by the y. This uses the argument
matching with the ~~? predicate: ((~~? t) x) is true when x has tag t.

;dwimiykwim>
(define (x-then-y (x (~~? ’x))

(y (~~? ’y)))
(list x y))

;dwimiykwim>
(x-then-y (~~ ’y 4) (~~ ’x 3))
;=> (#(<tagged> 3 (x)) #(<tagged> 4 (y)))

Although this tag system does not have to be used in order to perform the core
features of Dwimiykwim—argument inference and out of order operations—
it is convenient in many cases, especially in describing the semantics of the
arguments. For instance, we might use x and y as tags for x and y coordinates
of points on a plane, which can help avoid bugs where we accidentally pass in
the wrong coordinate.

3 Bipartite Matching

Inferring arguments of madlabs reduces to the following problem in graph the-
ory. We are given a bipartite graph with vertex partitions A and B satisfying
|A| ≤ |B| along with a subset B∗ ⊆ B of “required” vertices, and we ask whether
there exists a unique matching of size |A| such that every vertex of B∗ is matched.
A is the set of predicates of the madlab’s arguments, B∗ is the set of values passed
in explicitly, B is the union of B∗ and the set of values in the inference context,
and there is an edge between a ∈ A and b ∈ B if and only if b satisfies a.

This problem is quite easily solved by a variation on the traditional max-
imum bipartite matching algorithm, which we review quickly here. We refer
to vertices in A as “sources” and vertices in B as “targets”. Let E be the edge
set of the graph and M ⊆ E be a matching. We think of edges in M as being
oriented from B to A and edges in E \ M as being oriented from A to B. An

4

augmenting path of M is a path from an unmatched source to an unmatched
target that follows only edges in E\M from sources to targets and only edges in
M from targets to sources. Given an augmenting path of a matching, swapping
the orientations (that is, inserting or removing from the matching as appro-
priate) of all the edges in the path yields a larger matching: all intermediate
vertices in the path remain matched, but the previously unmatched endpoints
are now matched. This means a maximum matching has no augmenting paths.
It is well-known that the converse also holds: if a matching has no augmenting
path, it is not maximal. Therefore, to find a maximum matching, we repeatedly
search for augmenting paths, flipping edge orientations when we find them,
until there are no more, at which point the edges from B to A are the edges of
the maximum matching.

Our problem differs from traditional maximum matching in two ways. First,
we require that some targets B∗ ⊆ B be matched because we must use every ar-
gument that was passed in explicitly. To do this, we start by finding a maximum
matching M of B∗ with A, reporting failure if |M | < |B∗|, and then matching
A with B using M as a starting point, guaranteeing that all of B∗ will remain
matched. Second, we are concerned with whether the maximum matching is
unique because there must not be multiple ways to match all the predicates with
arguments. To do this, given a maximum matching M , for each edge e ∈ M ,
we attempt to find an augmenting path of the matching M \{e} in a graph with
reduced edge set E \ {e}, with the additional requirement that if e was incident
with a vertex b ∈ B∗ then the augmenting path must finish at b. That these
algorithms are valid follows from the fact that, given a non-maximum match-
ing M , there is a maximum matching containing a vertex unmatched by M only
if there is an augmenting path of M containing that vertex, which is a slight
strengthening of the result mentioned earlier.

Once the graph is constructed, all of this can be done in quadratic time.
Our implementation is purely functional and makes liberal use of linear-time
list procedures, so it is slower than this by approximately another quadratic
factor, but procedures generally don’t take in more than, say, 8 arguments, and
O(84) is perfectly acceptable running time for our prototype.

4 Debugging

In addition to constructing mechanisms for tagging, inferring arguments in
function calls, and matching function arguments, we have created a way for
the user to easily correct ambiguity errors that arise from more than one pos-
sible way to interpret an inference. For example, consider the simple madlab

5

below:

(define num-str
(madlab ((x number?) (y string?))

(list y x)))

If we were to call a madblock that had two number values and strings in its
inference context, then upon inference, we would have an ambiguity error. To
handle this case, we put the program into debug mode, and display the context,
edges, and required args to the user. The context is indexed, so that the user
does not have to spend time typing in every expression they would like to force
in the matching. Using this information, the user is then expected to add new
required args to settle any ambiguities. The reason we ask for required argu-
ments is because those will be used in the matching and will usually eliminate
multiple matchings. Once the user enters some combination of unambiguous
args, we notify the user of the successful matching and exit debug mode. A
sample workflow for num-str would be:

(madblock
1
"foo"
2
"bar"
(?? num-str))

=== Dwimiykwim Tawimiydkwim ===
Context:
(0 "bar")
(1 2)
(2 "foo")
(3 1)
Edges:
(x 1 3)
(y 0 2)
Required:
()
New required:
(0)
Ambiguous matching!
New required:
(0 3)
Unambiguous matching! Terminate debugging mode!

6

In this example, the user was allowed to test multiple sets of required argu-
ments, until one achieved a good matching. The user would then be expected
to go and correct the code by specifying those as required arguments in the
inference. The new program would now be:

(madblock
1
"foo"
2
"bar
(?? num-str 1 "bar"))

Since the user is providing so many arguments, it would not be very useful to
use inference unless they modified the code to remove some expressions.

Under the hood of the debugger, when we encounter a bad matching, we
enter debug mode, indexing each item in the context, and print all the informa-
tion we know about the matching that had an error. We ask the user to give us
a list of newly required arguments, verifying that this is indeed a list of num-
bers, and checking using the matching function if the ambiguity resolves. In
the case where the user has not specified enough required arguments, we ask
the user for a new set of required arguments, not saving the initial choice. This
continues until either the user exits the debugger, or a good match is found and
program terminates with an error.

Our debugger is useful for dealing with having too full an inference context.
Further work would focus on the opposite case, in which there aren’t enough
predicate-satisfying values in the inference context to call a madlab at all, and
on streamlining the user experience in both cases. The eventual goal is for pro-
gramming with Dwimiykwim to be a conversation between the programmer and
interpreter. The programmer sketches programs by specifying what functions
to call and certain hints about what to pass them, and the interpreter responds
with requests for more hints or missing values.

5 Demo and Discussion

As a taste of writing a real program with Dwimiykwim and a demonstration of
how much data flow can be inferred, we devote this section to walking through
the process of a sample program. We will start by building an evaluator for
arithmetic expressions then extend it to include Scheme-style let bindings.
Along the way, we’ll discuss some further minor features of Dwimiykwim that

7

would have been distracting details in the previous exposition but are nice to
have in practice.

The main task for our arithmetic evaluator is evaluating binary operations.
(We leave generalizing to n-ary operations as an exercise to the reader best tried
after reading this entire section.) As a fist step, we should be able to identify
when an expression is a binary operation and, if it is one, extract the operation
name and arguments. Just as (define (f x1 . . . xn) . . .) desugars to a
lambda expression, (define (f (x1 p1?) . . . (xn pn?)) . . .) desugars
to a madlab expression where x1 must satisfy p1? and so on.

(define (binop? exp)
(and (pair? exp)

(member (car exp) ’(+ - * /))))
(define (binop-op (exp binop?))

(car exp))
(define (binop-left (exp binop?))

(cadr exp))
(define (binop-right (exp binop?))

(caddr exp))

Here we use madlabs not for disambiguation between arguments but to allow
inference of the single argument when there’s only a single value in the infer-
ence context that could possibly be a binary operation expression.

Our application procedure is straightforward. Both the left and right subex-
pressions are numbers after evaluation, so we need tags to tell them apart.

(define (apply-binop (op symbol?)
(left (~~? ’left))
(right (~~? ’right)))

((cadr (assq op
(list (list ’+ +)

(list ’- -)
(list ’* *)
(list ’/ /))))

left
right))

Even though left and right have tags, we can still apply procedures from
the underlying Scheme to them. The tags are automatically stripped from the
arguments of all such procedures with a short list of exceptions including cons
and list that allow for tagged data to exist in larger data structures.

8

The plan for evaluation is to have a case each for numeric primitives and
binary operations. We choose a case with the following madlabs, which are
once again madlabs for the sake of inference rather than argument ordering.

(define (exp? x)
(null? (tags x)))

(define (primitive? (exp exp?))
(number? exp))

(define (operation? (exp exp?))
(binop? exp))

Technical note: we can’t just define binop? as a madlab that only accepts an
expression because during inference we need to apply it to many values that
aren’t expressions, though this could definitely be handled more intelligently
by a future version of Dwimiykwim. At this point it is probably clear to the
reader that we have not gone to great lengths to make our predicates air-tight,
but our somewhat lenient definitions of exp? and binop? suffice for this demo.

We can now finally define our main procedure. Recall that ?? invokes
argument inference, ~~ tags its second argument with its first, and that the
body of madlab expressions desugar to madblocks. This procedure introduces
madblock-inherit, which is a variant of madblock that uses the previous
inference context as a starting point instead of an empty context. It is proba-
bly not wise to use madblock-inherit widely, but here it is mostly harmless
and slightly reduces clutter. It is still somewhat safe in that values added to the
inference context don’t leak into the previous inference context.

(define (eval (exp exp?))
(cond
((?? primitive?)
exp)

((?? operation?)
(madblock-inherit
(~~ ’left (?? eval (?? binop-left)))
(~~ ’right (?? eval (?? binop-right)))
(?? binop-op)
(?? apply-binop)))))

Notice that we almost all of the data flow is inferred: the only explicit argu-
ments given are for evaluating the left and right subexpressions, both of which
are expressions, so we need to disambiguate them somehow. The ?? isn’t neces-
sary for those eval applications, but the intended style is for essentially every

9

application to be an inference, which, as we’ll see shortly, makes it robust to
future expansion. A quick test shows that everything works as expected.

;dwimiykwim>
(eval ’(- (+ 3 4) 9))
;=> -2

Adding let bindings to our expression language turns out to be surprisingly
little work. In particular, despite the fact that the evaluation procedure will pass
around a variable context, the two cases we defined above won’t change at all!
The basic operations for the let expressions are below. Given what we’ve seen
so far, they are all straightforward.

(define (let? exp)
(and (pair? exp)

(eq? (car exp) ’let)))
(define (let-vars (exp let?))

(map car (cadr exp)))
(define (let-vals (exp let?))

(map cadr (cadr exp)))
(define (let-body (exp let?))

(caddr exp))

Context operations are also straightforward, but we need one new tool: ~~:delq
removes its first argument from the tag list of its second.

(define ctx?
(~~? ’ctx))

(define empty-ctx
(~~ ’ctx ’()))

(define (bind (ctx ctx?)
(vars (list-of symbol?))
(vals (list-of number?)))

(~~ ’ctx (append (zip list vars vals)
(~~:delq ’ctx ctx))))

(define (lookup (ctx ctx?)
(var symbol?))

(cadr (assq var ctx)))

In the above, the helper predicate list-of does what it says on the tin.

10

(define (list-of p?)
(lambda (xs)

(and (list? xs)
(every p? xs))))

We are almost ready to define evaluation, but first we need a new infer-
ence primitive, ??:apply. It is actually not a primitive at all but defined in
Dwimiykwim’s standard library.

(define (??:apply proc . args)
(lambda more-args

(infer proc (append args more-args))))

In fact, not even ?? is a primitive.

(define (?? proc . args)
(infer proc args))

The real primitive is infer, which acts like ?? but takes a list instead of a vari-
able number of arguments. This enables the definition new inference primitives
like ??:apply. We use the word “primitive” not literally but to connote that it
would be bad style to define too many of these context-dependent procedures.

We neeed predicates for the two new cases, after which we can define a new
evaluation procedure.

(define (variable? (exp exp?))
(symbol? exp))

(define (declaration? (exp exp?))
(let? exp))

The fact that we used ?? for the eval applications earlier means we don’t need
to change the first two cases of eval.

11

(define (eval (ctx ctx?)
(exp exp?))

(cond
((?? primitive?)
exp)

((?? operation?)
(madblock-inherit
(~~ ’left (?? eval (?? binop-left)))
(~~ ’right (?? eval (?? binop-right)))
(?? binop-op)
(?? apply-binop)))

((?? variable?)
(?? lookup))

((?? declaration?)
(madblock-inherit
(map (??:apply eval) (?? let-vals))
(?? let-vars)
(eval (?? bind) (?? let-body))))))

Once again, we have to provide very few arguments explicitly, and once again,
eval does what it’s supposed to do.

;dwimiykwim>
(eval
empty-ctx
’(let ((x (+ 2 2))

(y (- 6 3)))
(+ (* x x) (* y y))))

;=> 25

What happened throughout this demo was that we shifted work from the
top-level procedure eval to its helper procedures. While this first draft of
Dwimiykwim is admittedly clunky, there is a glimmer of hope in the way that
the helper procedures self-organize into the top-level procedure with just a few
essential hints as guidance. The approach also benefits safety somewhat by re-
quiring the programmer to specify very specifically how helper procedures are
used. This information typically exists anyway in documentation (or, worse,
in a single programmer’s fallible memory), and making use of it to write the
program is a potentially rich area for further research.

12

