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When all you have is the abstractly nonsensical hammer of category
theory, everything looks like a commutative diagram.

Introduction

Our goal is to introduce category theory, the study of structures called categories
that capture the essence of functions between sets by only assuming the most
basic properties of functions hold. By doing this, they become general enough to
describe a wide variety of mathematical structures, many of which don’t have
much at all to do with functions between sets. As we will demonstrate later,
several set-specific constructions can be defined in a purely category-theoretic
way, unifying many related notions and generalizes them to new contexts where
the original construction was not an obvious thing to think about. For instance,
products of sets, groups, rings, and topological spaces all fit the same category-
theoretic definition, and the same definition describes greatest lower bounds in
posets.

The author’s introudction to category theory was through a summer course
taught by Wofsey [4], and the exposition of the subject given in this paper fol-
lows the same general approach as Wofsey’s notes while drawing on a wider
array of examples. The reader may find a more in depth introduction in [1].

1 The Basics

It has been said that the very beginning is a very good place to start.

Definition 1.1. A category C is
• a collection of objects, often written X , Y , or Z;
• a collection of maps, also called morphisms or arrows, each from one ob-

ject, the source, to another, the target, often written f : X → Y ; and
• a composition operation taking f : X → Y and g : Y → Z to g f : X → Z

such that
• composition is associative, namely h(g f ) = (hg) f for any maps f , g, and

h with appropriate sources and targets; and
• there is an identity map idX for each object X such that f idX = f for any

f : X → Y and idX g = g for any g : Y → X .
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Roughly speaking, categories consist of a collection of “set-ish” objects with
a collection of “function-ish” maps between objects. In particular, we write
composition of maps in the same order function composition is written.

Example 1.2. There is a category of sets, written Set. Its objects are sets, its
maps are functions, the source and target of a map are respectively the domain
and codomain of the function, and its composition is ordinary function compo-
sition.

The concerned reader might worry about the size of the collections of objects
and maps in Set, and indeed, these are both proper classes. For our purposes,
all that will matter is that the collection of maps between two particular objects
is a set, which will be the case for all the categories we consider.

Example 1.3. There is a category of groups, written Grp. Its objects are groups,
its maps are group homomorphisms, and its composition operation is ordinary
function composition. Proving that Grp is a category basically amounts to prov-
ing that homomorphisms are closed under composition.

Example 1.4. Many categories have sets with some additional structure for
objects and functions that preserve that structure for maps. Grp is one such
category. Other examples include
• Ab, the category of abelian groups, whose maps are group homomor-

phisms;
• Ring and Rng, the categories of rings with and without required units,

respectively, whose maps are ring homomorphisms;
• Pos, the category of posets (partially ordered sets), whose maps are order-

preserving functions;
• Top, the category of topological spaces, whose maps are continuous func-

tions; and
• Set∗ and Top∗, the categories of pointed sets and pointed topological

spaces, respectively, whose maps are functions and continuous functions,
respectively, that bring the basepoint of the source to the basepoint of the
target.

Example 1.5. Another category, hTop, also has topological spaces as its objects
but has homotopy classes of continuous functions as its maps. One can define
hTop∗ similarly. Both of these categories are important in algebraic topology
[3].

Example 1.6. As a first example of a “non-set-ish” category, we can view any
poset as a category. Its objects are elements of the poset, and it has a unique
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map X → Y if and only if X ≤ Y . Composing the unique map X → Y with the
unique map Y → Z to obtain the unique map X → Z enforces transitivity, and
the existence of identity maps enforces reflexivity. (Antisymmetry of the order
is not enforced by the definition of categories.)

Example 1.7. One can also view a group as a category. It has a single object and
a map from the object to itself for each element of the group with composition
given by group multiplication.

We now turn our attention towards redefining familiar set-related concepts
in a way that generalizes to categories other than Set. One typically defines
sets by describing their elements, but the last two examples above show that
there is no obvious way to refer to elements of objects in a general category.
For instance, it is unclear what an element of 5 in the poset Z would be. We
can make some progress, though: an element of a set X is equivalent to a map
x : 1 → X in Set, where 1 = {∗} is any one-element set and x(∗) ∈ X is the
desired element.

In order to have any hope of defining elements for other categories, we need
to define 1 without referring to elements. A first attempt might be the somewhat
circular definition that, because the set 1 has a single element, defines 1 to be
an object such that there is a unique map 1 → 1, namely the identity map.
Unfortunately, there is another set with this property: the empty set! In the
particular case of Set, we can resolve the ambiguity by observing that there is
a map 0→ 1 (where 0 is the empty set) but no map 1→ 0. The definition that
ends up being most useful is equivalent in the case of Set but stronger in general.
(For the following and most other definitions in this paper, we omit formalities
like “in a given category C ” unless they are needed for disambiguation.)

Definition 1.8. A terminal object is an object 1 such that for any object X there
is a unique map !X : X → 1.

Example 1.9. In Set, terminal objects are one-element sets. It is clear that there
is a unique map from any other set to a one-element set. To see that no other
object can be terminal, consider maps from a two-element set 2. There are no
maps from 2 the empty set, and there are multiple maps from 2 to any set with
at least two elements. Similar reasoning applies to Pos, Top, and Top∗.

Given this, we could define an element of an object X as a map 1→ X where
1 is some fixed terminal object. Just as all one-element sets are essentially the
same, we will soon see that all terminal objects in a category are essentially the
same.

Example 1.10. In a poset, the terminal object is the maximum if it exists.
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Not all posets have maximum elements, illustrating that not all categories
have terminal objects.

Example 1.11. In Grp, terminal objects are trivial groups. Every other group
clearly has a unique map to the trivial group, and every other group has at least
two maps to itself: the identity map and the trivial map, which sends all group
elements to the identity element. (These maps coincide for the trivial group.)
Similar, but not identical, reasoning applies to Ab and Ring.

We begin to see the limitation of reasoning using only elements. In Set, Pos,
and Top, the categorical definition of elements recovers the typical definition.
However, in Grp, Ab, Ring, Rng, and Top∗, maps have to preserve an identity
element or basepoint, so maps from 1 are too constrained to be of much use.

Recall our earlier discussion about Set, in which we tried to define 1 as the
object such that there was a unique map 1→ 1 but found that there was also
a unique map 0→ 0. We obtained the correct definition for 1 by strengthening
one side, namely by requiring a unique map X → 1 for any X . It turns out that
strengthening the other side characterizes the empty set.

Definition 1.12. An initial object is an object 0 such that for any object X there
is a unique map ?X : 0→ X .

Example 1.13. In Set, the only initial object is the empty set. It is perhaps
counterintuitive that we are able to define functions from the empty set at all.
This is easiest to see by considering the formal definition of a function f : X → Y
as a subset f ⊂ X × Y such that for each x ∈ X there is a unique y ∈ Y with
(x , y) ∈ f . The unique function from the empty set to any other set X is given
by {} ⊂ {} × X . Similar reasoning applies to Pos and Top.

Example 1.14. In a poset, the initial object is the minimum if it exists.

Example 1.15. In Grp, Ab, Rng, and Top∗ (but notably not Ring), initial objects
coincide with terminal objects. For instance, in Grp, there is a unique map from
a trivial group to any other group because group homomorphisms preserve the
identity.

Example 1.16. In Ring, there are no maps from a one-element ring to any other
ring because no other ring has the additive and multiplicative identities coin-
cide. Instead, one can show that the initial object is Z, which is the “simplest”
ring that has both additive and multiplicative identities.

The author was slightly lazy in the last example to say that “the” initial object
“is” Z. Though the distinction is inconsequential in practice, we could construct
the ring of integers in multiple ways, so Ring contains many copies of Z. Of
course, they are all isomorphic as rings, and we can express this categorically.
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Definition 1.17. An isomorphism is a map f : X → Y such that there exists a
map g : Y → X satisfying g f = idX and f g = idY . We call two objects X and Y
isomorphic and write X ∼= Y when there is an isomorphism between them.

Proposition 1.18. Terminal and initial objects are unique up to unique isomor-
phism. That is, if 1 and 1′ are both terminal, then there is a unique isomorphism
1→ 1′, and similarly for initial objects.

Proof. Let 1 and 1′ be terminal. Because 1′ is terminal, there is a unique map
f : 1→ 1′, and, because 1 is terminal, there is a unique map g : 1′→ 1. We can
compose these to get g f : 1 → 1, but because 1 is terminal, there is a unique
map 1 → 1, namely id1, so g f = id1. Similarly, f g = id1′ , so f is an isomor-
phism. The argument for initial objects is analogous.

Example 1.19. As mentioned previously, in Top and Top∗, terminal objects are
one-point spaces by similar reasoning as the Set case. In hTop and hTop∗, it is
not hard to show that terminal objects are contractible spaces, that is, spaces
homotopy equivalent to a one-point space. This difference is due to additional
isomorphisms in hTop and hTop∗. In Top and Top∗, isomorphism corresponds
to (basepoint-preserving) homeomorphism. In hTop and hTop∗, isomorphism
corresponds to (basepoint-preserving) homotopy equivalence, a much weaker
condition. For instance, Rn is homotopy equivalent to a one-point space.

2 Categorical Arithmetic

One might describe the product of two sets by writing

X × Y = {(x , y) | x ∈ X , y ∈ Y }.

That is, an element of X × Y corresponds uniquely to an element of X and an
element of Y . How do we express this categorically? We might try directly
translating our definition for sets, which would define X × Y as an object such
that there is a bijection between maps 1→ X × Y and pairs consisting of a map
1→ X and a map 1→ Y . In Set, this definition picks out an object isomorphic
to X × Y , but it won’t hold up in other categories for two reasons. First, we
have already seen that only considering maps from 1 is inadequate in some
categories, especially those in which 1 happens to be initial as well as terminal.

Second, simply stating that there is a bijection doesn’t give enough infor-
mation about the product structure. In Set, the product structure is inconse-
quential because any two sets with the same cardinality are isomorphic, but we
can see the problem in other categories. Consider [0,1]× [0, 1] as a product of
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topological spaces. Even in Top there is a bijection [0, 1]→ [0, 1]× [0, 1] given
by a space-filling curve, but the inverse of that bijection is not continuous, so it
is not an isomorphism in Top. Our provisional definition only counts elements,
so it cannot distinguish between [0,1] and [0,1]× [0, 1].

We are missing this: given an element (x , y): 1→ X ×Y , we should be able
to extract the corresponding x : 1→ X and y : 1→ Y using maps in the category.
That is, we should require projection maps π1 : X × Y → X and π2 : X × Y → Y
such that the diagram below commutes, meaning that all compositions of maps
along paths going between the same two locations in the diagram are equal.

1

X X × Y Y

x
(x ,y)

y

π1 π2

That is, if (x , y) corresponds to elements x and y , we want π1(x , y) = x and
π2(x , y) = y . This is the essential idea behind the definition of products. All
we have to do is generalize to objects other than 1 because maps from 1 aren’t
as informative in most categories as they are in Set.

Definition 2.1. A product of two objects X and Y is
• an object X × Y together with
• two maps, called projections, π1 : X × Y → X and π2 : X × Y → Y

such that for every object Z with f : Z → X and g : Z → Y , there is a unique
( f , g): Z → X × Y such that the diagram below commutes.

Z

X X × Y Y

f
( f ,g)

g

π1 π2

We will often refer to an object alone as a product, in which case the existence
of projection maps is implied.

Example 2.2. In Set, products are Cartesian products. We can interpret the
definition as saying that to define a function Z → X × Y , we have to define the
first coordinate of its output using a function Z → X and the second coordinate
of its output using a function Z → Y .

Example 2.3. In a poset, products are greatest lower bounds. The product
definition specifies an element X×Y ≤ X , Y such that if Z ≤ X , Y then Z ≤ X×Y .
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Not all posets have least upper bounds for every pair of elements, illustrating
that not all categories products for every pair of objects.

Example 2.4. In Grp, Ab, Ring, Rng, products are the direct product of groups
or rings.

Example 2.5. In Top and Top∗, products are spaces with the product topol-
ogy. The categorical definition of products captures the fact that the product
topology is the coarsest topology for which π1 and π2 are continuous. One
can define infinite products in essentially the same way we defined products of
two objects, and there are at least two sensible-seeming topologies on infinite
product spaces in topology, the product topology and the box topology. The cat-
egorical product picks the product topology, and that turns out to be the more
natural choice, enabling results such as Tychonoff’s theorem [2].

Proposition 2.6. Products are unique up to isomorphism.

Proof. Let P and P ′ be two products of X and Y with projections as shown in
the diagram below.

P

X P ′ Y

P

π1

(π1,π2)

idP

π2

π′1

(π′1,π′2)

π′2

π1 π2

Because P ′ is a product, there is a unique map (π1,π2): P → P ′ such that
the upper two triangles commute. Similarly, because P is a product, there is
a unique map (π′1,π′2): P ′ → P such that the lower two triangles commute.
Finally, again because P is a product, there is a unique map P → P that com-
mutes with the outer four maps. It just so happens that idP commutes with the
outer four maps, so (π′1,π′2)(π1,π2) = idP . Swapping P and P ′ shows that the
reverse composition is also the identity, so P ∼= P ′.

The proof above closely mimics the proof that terminal objects are unique
up to isomorphism. This is not a coincidence.

Example 2.7. Products of X and Y in a category C are terminal objects of
another category, which we callCX×Y . The objects ofCX×Y are triples (P, p1, p2),
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where P is an object of C together with maps p1 : P → X and p2 : P → Y . The
maps (Q, q1, q2)→ (P, p1, p2) in CX×Y are given by maps f : Q → P in C such
that the following diagram in C commutes.

Q

X Y

P

q1

f

q2

p1 p2

To compose maps in CX×Y , we just compose the corresponding maps in C .
Showing thatCX×Y is a category is not hard and boils down to the fact that com-
posing corresponding maps inC gives a map that makes the diagram commute,
which can be shown by drawing one copy of the diagram on top of another. A
terminal object in CX×Y is
• an object (P, p1, p2) in CX×Y ,

– or, in C , an object P with maps p1 : P → X and p2 : P → Y ,
• such that for any object in CX×Y ,

– or, in C , any object Q with maps q1 : Q→ X and q2 : Q→ Y ,
• there is a unique map to the terminal object,

– or, in C , a unique map f : Q→ P such that the diagram commutes.
This exactly defines P with projections p1 and p2 as a product of X and Y in C .

We might ask what the initial object of CX×Y is. Unfortunately, the answer
is not terribly exciting: if C has an initial object, then (0, ?X , ?Y ) is the initial
object of CX×Y . (Recall that ?X is the unique map 0→ X in C .) The trouble is
that objects in CX×Y come equipped with outgoing maps. Finding the terminal
object of CX×Y is an object P of C for which it is easy to construct certain
incoming maps, which is useful because we have to supply P with outgoing
maps p1 and p2 to make it (rather, the triple) an object of CX×Y , so we end up
with information about maps into and out of P. In contrast, the initial object is
an object Q of C for which it is easy to construct certain outgoing maps, which
is less interesting because we have to supply Q with outgoing maps q1 and q2,
so all the information about Q is outgoing maps, which we can make trivial all
at once by choosing Q = 0.

Recalling the definitions of terminal and initial objects, we see that they are
identical save for the direction of the map. It turns out that we get an interesting
definition not just by finding an initial object instead of a terminal object but by
flipping the directions of all the maps involved and finding the initial object of
that category. This is easier to think about in terms of flipping the map directions
in Definition 2.8.

8



2× 2∼= 4: An Introduction to Category Theory Ziv Scully

Definition 2.8. A coproduct, sometimes called a sum, of two objects X and Y is
• an object X + Y together with
• two maps, called inclusions, i1 : X → X + Y and i2 : Y → X + Y

such that for every object Z with f : X → Z and g : Y → Z , there is a unique
[ f , g]: X + Y → Z such that the diagram below commutes.

Z

X X + Y Y

f
[ f ,g]

g

i1 i2

We will often refer to an object alone as a coproduct, in which case the existence
of inclusion maps is implied.

Example 2.9. In a poset, coproducts are least upper bounds. In this context,
flipping map directions in the definition of products flips ≤ to ≥, which turns
greatest lower bounds into least upper bounds.

Just as the unique-up-to-isomorphism proofs for terminal and initial objects
are analogous, the proof of the next proposition is essentially the same as the
corresponding proof for products.

Proposition 2.10. Coproducts are unique up to isomorphism.

Example 2.11. In Set, coproducts are disjoint unions. Because coproducts are
unique up to isomorphism, it suffices to show only that disjoint unions satisfy
the definition, and the fact that nothing else (that isn’t isomorphic) does fol-
lows from uniqueness. There are clear inclusion maps into a disjoint union. If
we want to specify a function X + Y → Z , it suffices to specify where to map
each element coming from X and where to map each element coming from Y .
This is exactly given by a pair of functions f : X → Z and g : Y → Z , and the
commutative diagram enforces the fact that the resulting function X + Y → Z
does the same thing as f on the X part and the same thing as g on the Y part.

Example 2.12. In Grp, products are free products of groups. In Ab, products
are free abelian products of groups, which turn out to be the same as direct
products. This emphasizes the importance of the context of a category, even
when one category is a subcategory of another. Even if X and Y are abelian,
the possibility that we might have to map into a nonabelian Z in Grp imposes
the constraint that elements of X and Y sent into X + Y by the inclusions not
commute. In Ab, all groups are abelian, so not only must X + Y be abelian if it
exists, it is okay for it to be abelian because any Z we might have to map into is
also abelian.
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Example 2.13. In Top, coproducts are disjoint unions of topological spaces. In
Top∗, coproducts are wedge sums, which are disjoint unions of pointed spaces
with the basepoints identified. The arguments are similar to that for Set.

We end the section by showing two facts about products that confirm some
intuition we might have about them from Set.

Proposition 2.14. Given f : W → Y and g : X → Z, if the products W × X and
Y × Z exist, then there is a unique map f × g : W × X → Y × Z such that the
following diagram commutes.

W W × X X

Y Y × Z Z

f

π1

f ×g

π2

g

π′1 π′2

Proof. The diagram above is a thinly-disguised version of the diagram in the
definition of products. All we need to do is find compositions that give maps
W × X → Y and W × X → Z . Specifically, f × g = ( f π1, gπ2).

Proposition 2.15. If 1 is a terminal object, then X × 1∼= X for any object X .

Proof.
Z

X X 1

f

( f ,!Z )

!Z

idX !X

The above diagram commutes if and only if ( f , !Z) = f , so X with projections
idX and !X satisfies the definition of being a product of X and 1.

The intuition for this is clear in “set-ish” categories, but it might be surprising
at first that it holds in general. Roughly, X × Y encodes the combined informa-
tion about maps into X and Y . There is no information to be had about maps
into 1 because they are all uniquely determined, so X ×1 only needs to encode
information about maps into X , a purpose for which X itself serves adequately.

3 A Powerful Surprise

We informally discussed “flipping map directions” in the previous section in
the context of relating terminal objects with initial objects and products with
coproducts. This can be made precise.
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Definition 3.1. The opposite of a category C is a category C op with the same
collection of objects, a map f op : Y → X for each map f : X → Y in C , and
composition given by f op gop = (g f )op.

Given a category-theoretic concept (such as a statement or definition) about
an arbitrary categoryC , the dual statement or definition is that concept applied
toC op but interpreted as a statement aboutC . Concretely, to dualize a concept,
one flips all the map directions and reverses the order of every composition.
Dual concepts are often named with a “co-” prefix.

Example 3.2. Terminal objects are dual to initial objects, explaining the syn-
onym “coterminal” for initial.

Example 3.3. Products are dual to coproducts. The dual of Proposition 2.15 is
that if 0 is a terminal object, then X + 0∼= X for all objects X .

Example 3.4. The dual of the statement X × (Y + Z) ∼= (X × Y ) + (X × Z) is
X + (Y × Z)∼= (X + Y )× (X + Z).

The last example tells us that if we could prove that × distributes over +
using just the definitions of products and coproducts, we could prove that +
distributes over × using just the definitions of products and coproducts. Only
one of these is true in Set, so there must be some sort of additional structure
that exists in Set without the dual of that structure also existing. This missing
piece takes the form of objects representing a third arithmetic operation: ex-
ponentiation! The following definition is a step up in complexity compared to
others given so far, but be assured that clarifying examples will quickly follow.

Definition 3.5. An exponential of two objects X and Y is
• an object Y X and
• a evaluation map ε : Y X × X → Y

such that for any object Z with f : Z × X → Y , there is a unique f ∗ : Z → Y X

such that the following diagram commutes, recalling the definition of product
maps from Proposition 2.14.

Z Z × X

Y X Y X × X Y

f ∗

π1

f ∗×idX
f

π′1
ε

The intuition is that Y X is an object in a category that represents the arrows
X → Y in that same category. If exponentials for every pair of objects exist,
then, in a manner of speaking, the category “knows about its own maps”.
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Example 3.6. In Set, Y X is the set of functions X → Y . To see this, substi-
tute 1 in for Z and recall that elements of a set are maps into the set from 1.
The evaluation map ε is function evaluation: given a function (an element of
Y X ) and an argument (an element of X ), it yields the result of applying the
function to the argument. The definition (with Z = 1) enforces that elements
of Y X correspond to functions 1 × X ∼= X → Y , and the commutativity of the
diagram enforces that the element f ∗ corresponding to the map f actually rep-
resents f and not another function. More generally, if we let Z be arbitrary,
the commutative diagram illustrates a correspondence between two-argument
functions and one-argument functions that yield one-argument functions given
by f (z, x) = f ∗(z)(x). Similar things happen in Top and Pos, though certain
conditions on the spaces need to be true for the object in Top to exist [2].

Example 3.7. In a boolean algebra (which is a specific type of poset), Y X rep-
resents implication. Furthermore fact, the existence of a complement operation
means that the poset is the same as its opposite category. This means boolean
algebras have coexponentials, so + should distribute over × in these categories,
and ∨ does indeed distribute over ∧ in classical logic.

Example 3.8. In categories like Grp, Ab, Rng, and Top∗ that have an object Z
that is both terminal and initial, most exponentials do not exist. The diagram
from Definition 3.5 would become the following.

Z Z × X

Y X Y X × X Y

?Y X

!Z×X

?Y X ×idX
f

π′1
ε

That is, we would have f ∗ =?Y X for any f , which means f = ε(?Y X × idX ), so
there would exist a unique f : X × Z → Y . Recalling that X × Z ∼= X when Z
is terminal, this would mean that there is only one map between any pair of
objects for which there exists an exponential. This is obviously not the case for
most pairs of objects in these categories.

Recall that for any Z we have a bijection between maps Z → X×Y and pairs
of maps Z → X and Z → Y given in one direction by composition with projec-
tions and in the other direction by the definition of the product. However, the
existence of the bijection alone is not enough to define X×Y as the product of X
and Y . The bijection is in some way compatible with the categorical structure,
namely a certain diagram (the one in the definition of products) commutes.
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We have a dual situation for coproducts and even a similar situation for expo-
nentials, where the bijection is between maps Z × X → Y and Z → Y X . With
further category theoretic machinery [1] it is possible to precisely define when
a bijection is natural, that is, when it is compatible with categorical structure in
the way those for products, coprodcuts, and exponentials are.

Given two products P and P ′ of X and Y , for any Z , there is a natural
bijection between maps Z → P and Z → P ′ given by composing the natural
bijections with pairs of maps Z → X and Z → Y . Consider the specific case
where Z = P. The identity map idP : P → P corresponds via natural bijection to
the pair of projections π1 : P → X and π2 : P → Y , which in turn corresponds
to (π1,π2): P → P ′. This, as we saw in the proof of Proposition 2.6, is an
isomorphism. In general, a result called the Yoneda lemma [4] tells us the
following: if for any Z there is a natural bijection between maps Z → X and
maps Z → Y , then there is an isomorphism X → Y . In particular, as in our
product example, the isomorphism corresponds to idX via the natural bijection.
With this, we are a few short lemmas away from our main theorem.

Lemma 3.9. Products and coproducts are commutative and associative, so finite
products and coproducts of more than two objects are well-defined.

Proof. Commutativity follows immediately from the symmetry of the defini-
tions. Associativity is pretty easily shown directly in a similar proof to that
of Proposition 2.6. Even more simply, we can give a natural bijection, as we do
here for the product case, from maps into X × Y × Z parenthesized arbitrarily
to triples of maps into each of X , Y , and Z . Composing one such bijection with
the inverse of another gives a natural bijection between maps into two different
parenthesizations.

Lemma 3.10. In a category with products, coproducts, and exponentials of every
pair of objects, X × (Y + Z)∼= (X × Y ) + (X × Z).

Proof. As discussed, it suffices to give a natural bijection between maps out of
the objects on each side. All of the following are in natural bijection:
• maps (Y + Z)× X →W ,
• maps Y + Z →W X , by the definition of exponentials,
• pairs of maps Y →W X , Z →W X , by the definition of coproducts,
• pairs of maps Y × X →W, Z × X →W , by exponentials again, and
• maps (Y × X ) + (Z × X )→W , by coproducts again.

Theorem 3.11. (1+ 1)× (1+ 1)∼= 1+ 1+ 1+ 1.

Proof. We leave the proof as an exercise to the particularly advanced reader.
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